
August 15-19, 2005
 Högskolan i Skövde

www.artes.uu.se

･ August 15, ARTES Tutorials of special industry interest
◦ 8.00 Registration in building G at room 110.
◦ 9.15 Tutorial: Autonomic Computing for Real-Time Systems,

Mike Hinchey, NASA Goddard Space Flight Center, USA
◦ 10.00 Break
◦ 10.15 Tutorial continues.
◦ 12 Lunch
◦ 13.15 Tutorial: Real-Time Issues in Wireless Sensor Networks,

Chenyang Lu, Washington University in St. Louis, USA
◦ 15.15 Break
◦ 15.30 ARTES Real-Time doctors presentations
▪ 15.30 Reliab le Avionics, Kristina Forsberg, Saab Avitronics
▪ 16.00 Håkan Sivencrona, Mecel AB
◦ 17.00 Time to put up posters.
◦ 19.00 Dinner at Scandic Billingen, Trädgårdsgatan 10.

･ August 16-17, Real-Time in Sweden 2005
◦ 8th biennial SNART conference on real-time systems

･ August 18
◦ 8.15 Tutorial: Componenent-based Software Engineering & Design

Exploration, Michel Chaudron, Eindhoven University of
Technology, The Netherlands.

◦ 10.00 Break
◦ 10.15 Tutorial: Distribution and fault tolerance, two sides of the

same coin, Jan Lindblad, System Architect, Enea
Embedded Technology, Sweden.

◦ 12.00 Lunch
◦ 13.15 Tutorial: Execution time analysis, can it be done? How to do?

Jan Lindblad, Enea Embedded Technology, Sweden.
◦ 15.00 Break
◦ 15-23 ARTES social activity at Läkö � castel, boat trip to and

dinner at Navens light house.
･ August 19

◦ 8.15 Tutorial: Experimental sensor networking research,
Thiemo Voigt and Joakim Eriksson, Swedish Institute of
Computer Science, Sweden.

◦ 10.00 Break
◦ 10.15 Talk: The future for IT, Karl-Einar Sjödin,

Vinnovas unit for information and communication
research, participated in the report "Inspiration till
Innovation".

◦ 12.00 Lunch, end of summerschool.

www.artes.uu.se

Programme

www.artes.uu.se

Contents

The 9:th ARTES summerschool

Programme

Content

ARTES++

Participant list

Autonomic Computing for Real-Time Systems, Mike Hinchey,

 Real-Time Issues in Wireless Sensor Networks, Chenyang Lu,

Posters
1 Analysable Compnents, John Håkansson
2 Architectures for Logistics Telemetry Applications,

Markus Adolfsson
3 Design of Electrical Architectures for Safety Cases,

Fredrik Törner
4 Project ModComp, Jianlin Shi

Monday dinner

 Componenent-based Software Engineering & Design Exploration,
Michel Chaudron,

 Distribution and fault tolerance, two sides of the same coin,
Jan Lindblad,

 Execution time analysis, can it be done? How to do?,
Jan Lindblad,

 ARTES social activity

 Experimental sensor networking research,
Thiemo Voigt and Joakim Eriksson,

 The future for IT, Karl-Einar Sjödin

ARTES++
ARTES++ is a Swedish national graduate school in real-time and embedded
systems, supported by Swedish Foundation for Strategic Research (SSF). The
school is planned to operate from 2004 until 2007 with 20 students annually.
Today is 36 students provided support for international mobility, industrial stay,
and attending courses. Other activities include courses, an annual summer school
and an annual graduate student conference.

Courses fall 2005
•Advanced Real-Time Scheduling, HT'05, 5p.

Location: MdH, Västerås.
•Forskningsplanering, HT'05, 3p.

Location: 1st workshop in conjunction with ARTES Summerschool in Skövde,
then at MdH in Västerås. Time plan: 20/8, 26-27/8, and 14-15/11.

• Hardware/Software Codesign, HT'05, 5p.
Location: LIU, Linköping.

• Introduction to Systems Thinking and its Application, HT'05, 5p.
Location: University of Skövde. Time plan: 6-8/9 and 18-19/10.

• Real Time Communication, HT'05, 5p.
Location: Halmstad University. Time plan: Sept. 13-14, Oct. 4-5, and Nov. 1-2

ARTES graduate student conference in spring 2006

Calls to appear
* Courses for 2006
* Invitation to Ph.D. students to apply to the ARTES++ programme for 2006

Applications and questions
should be sent by e-mail to info@artes.uu.se

Send letters to
ARTES
Box 337
SE 75105 Uppsala
Sweden

www.artes.uu.se

Participants

www.artes.uu.se

Markus Adolfsson Högskolan i Halmstad markus@x3-c.com
Mehdi Amirijoo Linköpings universitet meham@ida.liu.se
Martin Andersson Lunds universitet martin.andersson@control.lth.se
Anita Andler ARTES, Skövde anita.andler@usa.net
Raul Barbosa Chalmers Tekniska Högskola rbarbosa@ce.chalmers.se
Carl Bergenhem SP Electronics Carl.Bergenhem@sp.se
Marcus Brohede Högskolan i Skövde marcus.brohede@his.se
Vicente Casanova Technical University of Valencia vcasanov@isa.upv.es
Michel Chaudron Eindhoven University of Technology m.r.v.chaudron@TUE.nl
Sigrid Eldh Mälardalens högskola sigrid.eldh@mdh.se
AnnMarie Ericsson Högskolan i Skövde annmarie.ericsson@his.se
Johan Erikson Mälardalens högskola johan.erikson@mdh.se
Joakim Eriksson SICS joakime@sics.se
Xing Fan Högskolan i Halmstad xing.fan@ide.hh.se
Elena Fersman Ericsson AB elenaf@it.uu.se
Kristina Forsberg Saab Avitronics kristina.forsberg@saabtech.se
Roland Grönroos ARTES, Uppsala Roland.Gronroos@it.uu.se
Thomas Gustafsson Linköpings universitet thogu@ida.liu.se
Sanny Gustavsson Högskolan i Skövde sanny.gustavsson@ida.his.se
Mike Hinchey NASA Goddard Space Flight Center mike.hinchey@usa.net
John Håkansson Uppsala universitet johnh@it.uu.se
Viacheslav Izosimov Linköpings universitet viaiz@ida.liu.se
Najeem Lawal Mittuniversitetet Najeem.Lawal@miun.se
Niklas Lepistö Mittuniversitetet Niklas.Lepisto@miun.se
Jan Lindblad Enea Embedded Technology jan.lindblad@enea.se
Birgitta Lindström Högskolan i Skövde birgitta.lindstrom@his.se
Chenyang Lu Washington University in St. Louis lu@cse.wustl.edu
Gunnar Mathiason Högskolan i Skövde gunnar.mathiason@his.se
Leonid Mokrushin Uppsala universitet leom@it.uu.se
Robert Nilsson Högskolan i Skövde nilo@iki.his.se
Susanna Nordström Mälardalens högskola susanna.nordstrom@realfast.se
Anders Pettersson Mälardalens högskola anders.pettersson@mdh.se
Paul Pettersson ARTES, Uppsala paupet@it.uu.se
Anil Reddy Jönköping University anilk_reddy3@yahoo.co.in
Jianlin Shi KTH jianlin@md.kth.se
Håkan Sivencrona Mecel AB hakan.sivencrona@mecel.se
Karl-Einar Sjödin VINNOVA Karl-Einar.Sjodin@vinnova.se
Aleksandra Tesanovic Linköpings universitet alete@ida.liu.se
Fredrik Törner Volvo Car Corporation ftorner@volvocars.com
Martin Törngren KTH martin@md.kth.se
Thiemo Voigt SICS thiemo@sics.se

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 1

TutorialTutorial
Autonomic Computing inAutonomic Computing in

RealReal––TimeTime Systems Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

OverviewOverview
1. Motivation for Autonomic Computing in Real-Time Systems
2. What is Autonomic Computing?
3. Self-* properties
4. Autonomic Managers and Autonomic Elements
5. New and emerging biological metaphors
6. Examples from NASA Sensor Network applications
7. Another Example: HRSM

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 2

(1) Motivation for(1) Motivation for
Autonomic ComputingAutonomic Computing

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

The goals of the IT industry over the lastThe goals of the IT industry over the last
20 years:20 years:

Improve performanceGoal #1:

Goal #2:

Goal #3:

Improve performance

Improve cost-performance

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 3

The main concern to further progress in the
information technology industry:

That Moore’s law cannot continue to hold

i.e. that processing power will
double every 18–24 months

What big crisis is likely to hit theWhat big crisis is likely to hit the
computer industry ?computer industry ?

Breathtaking StatisticsBreathtaking Statistics
• Price to Performance ratio doubles every 18

months ≈ 100 fold increase per decade.
• Performance improvements in the next 18

months = all performance improvements to date.
• New processing power = sum of all previous

processing power.
• New storage = sum of all available storage ever.

 J.N. Gray, Turing Award Lecture, 1999

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 4

ProblemProblem

• Assumptions of continuous improvements
in system development, that meet our
ever more complex requirements.

• Pervasiveness of software, and our
growing reliance on it.

Flawed Assumptions
• Human beings can achieve perfection; they can

avoid making mistakes during installation,
maintenance and upgrades.

• Software will eventually be bug free; the
emphasis of industry has been to hire better
programmers; the emphasis of academia to train
better Software Engineers

• MTBF is large (>100 years) and will continue to
grow.

• Maintenance costs are a function of hardware
costs.

Patterson and Brown, 2001

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 5

Software Lags behind Hardware

Rather, it is the IT industry’s exploitation
of the technologies in accordance with
Moore’s law that has led us to the verge
of a complexity crisis…

The real crisis The real crisis ……

By 2010, around 200 million IT workers
– the working population of the USA –
will be required to keep computer
systems running.

£

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 6

A Schematic of HotMailA Schematic of HotMail

• ~7,000 servers
• 100 backend stores

 with 120TB (cooked)
• 3 data centers
• Links to

– Passport
– Ad-rotator
– Internet Mail gateways
– …

• ~ 1B messages per day
• 150M mailboxes, 100M active
• ~400,000 new per day.

S
w

it
tc

h
e

d
 E

th
e

rn
e

t

In
te

rn
e

t

Telnet Management

Local Director

Local Director

Local Director

Local Director

MSERVS

MSERVS
MSERVSFront

Doors

MSERVS
MSERVS

Incoming

MailServer

s

MSERVS
MSERVS

AD Servers

Local Director

MSERVS
MSERVSGraphics

Servers

DataData
Data

Data
USTORES

Member

Directory

Local Director

MSERVS
MSERVSLogin

Servers

Jim Gray’s talk: “Dependability in the Internet Era”

The problem is complexity The problem is complexity ……

One of the Data Centers (500 servers)One of the Data Centers (500 servers)

Cisco 7000

ICPMSCOMC7501

Cisco 7000

ICPMSCOMC7502

Catalyst
5000

ICPMSCOMC5001

(MSCOM1)

ATM0/0/0.1

FE4/0/0
Port 1/1

HSRP

FE4/1/0 FE4/1/0

HSRP

Port 2/1 Port 2/1
Catalyst
5000

ICPMSCOMC5002

(MSCOM2)

FE4/0/0

ATM0/0/0.1

Port 1/1

Cisco 7000

ICPMSCOMC7503

Catalyst
5000

ICPMSCOMC5003

(MSCOM3)

ATM0/0/0.1

FE4/0/0
Port 1/1

HSRP

FE4/1/0 FE4/1/0

HSRP

Port 2/1 Port 2/1 Catalyst
5000

ICPMSCOMC5004

(MSCOM4)

FE4/0/0

ATM0/0/0.1

Port 1/1

Cisco 7000

ICPMSCOMC7504

SD

SER
E TH

N EXT
SELECT

RESET

T XC

RXL

PWR

SYSTEMS

SER
ETH

NEXT
SELECT

RESE T
TXC

RXL

PWR

SER
E TH

NEXT
SELECT

RESET

TXC

RXL

PWR

SER
ETH

NEX T
SELECT

RESET

T XC

RXL

PWR

AC AC

48V DC 48V DC

5VDC OK 5VDC OK

SHUTDOWN SHUTDOWN

CAUTION:Double Pole/neutral fusing CAUTION:Double Pole/neut ral fusing

F12A/250V F12A/250V

ASX-1000

B DB DB D B D

A CA CA CA C

SD

S ER
ETH

NEXT
SELE CT

RES ET

T XC

RXL

PWR

SYSTEMS

SER
ETH

NEXT
SELE CT

RES ET
TXC

RXL

PW R

SER
ETH

NEX T
S ELECT

RES ET

T XC

RXL

PW R

SER
ETH

NEX T
S ELECT

RES ET

T XC

RXL

P WR

AC AC

48V DC 48V DC

5VDC OK 5VDC OK

SHUTDOWN SHUTDOWN

CAUTION:Double Pole/neutral fusing CAUTION:Double Pole/neut ral fusing

F12A/250V F12A/250V

ASX-1000

B DB DB D B D

A CA CA CA C

ICPMDISTFA1001 ICPMDISTFA1002

3A2
2A2

2A2

1A2

ATM0/0/0.1

4A2

ATM0/0/0.1

4A2

1A2

Cisco 7000

ICPMSCOMC7505

Catalyst 2926

ICPMSFTDLC2921

(MSCOM DL1)

Port 1/1

FE4/0/0

HSRP

Cisco 7000

ICPMSCOMC7506

Catalyst 2926

ICPMSFTDLC2922

(MSCOM DL2)

Port 1/1

FE5/0/0

HSRP

Port 1/2Port 1/2

FE4/0/0

HSRP

FE5/0/0

HSRP

IIS

IIS

IIS

IIS

IIS

IIS

CPMSFTWBW26

CPMSFTWBW28

CPMSFTWBW30

CPMSFTWBW37

CPMSFTWBW38

CPMSFTWBW39

WWW.MICROSOFT.COM
WWW.MICROSOFT.COM

CPMSFTWBW24

CPMSFTWBW31

CPMSFTWBW32

CPMSFTWBW33

CPMSFTWBW34

CPMSFTWBW35

CPMSFTWBW40

CPMSFTWBW41

CPMSFTWBW42

CPMSFTWBW43

SEARCH.MICROSOFT.COM

CPMSFTWBS01

CPMSFTWBS02

CPMSFTWBS03

CPMSFTWBS04

CPMSFTWBS05

CPMSFTWBS06

CPMSFTWBS07

CPMSFTWBS08

CPMSFTWBS09

CPMSFTWBS10

CPMSFTWBS11

CPMSFTWBS12

CPMSFTWBS13

CPMSFTWBS14

CPMSFTWBS15

CPMSFTWBS16

CPMSFTWBS17

CPMSFTWBS18

WWW.MICROSOFT.COM

CPMSFTWBW08

CPMSFTWBW13

CPMSFTWBW14

CPMSFTWBW29

CPMSFTWBW36

CPMSFTWBW44

CPMSFTWBW45

WWW.MICROSOFT.COM

CPMSFTWBW01

CPMSFTWBW15

CPMSFTWBW25

CPMSFTWBW27

CPMSFTWBW46

CPMSFTWBW47

REGISTER.MICROSOFT.COM

CPMSFTWBR03

CPMSFTWBR04

CPMSFTWBR05

CPMSFTWBR09

CPMSFTWBR10

SUPPORT.MICROSOFT.COM

CPMSFTWBT01

CPMSFTWBT02

CPMSFTWBT03

CPMSFTWBT07

CPMSFTWBT04

CPMSFTWBT05

WINDOWS.MICROSOFT.COM

CPMSFTWBY01

CPMSFTWBY02

CPMSFTWBY03

CPMSFTWBY04

WINDOWS98.MICROSOFT.COM

CPMSFTWBJ01

WINDOWSMEDIA.MICROSOFT.COM

PREMIUM.MICROSOFT.COM

CPMSFTWBP01

CPMSFTWBP02
CPMSFTWBP03

SUPPORT.MICROSOFT.COM

CPMSFTWBT06

CPMSFTWBT08

CPMSFTWBR07

CPMSFTWBR08

CPMSFTWBR01

CPMSFTWBR02

CPMSFTWBR06

REGISTER.MICROSOFT.COM

WINDOWSMEDIA.MICROSOFT.COM WINDOWSMEDIA.MICROSOFT.COM

CPMSFTWBJ01

CPMSFTWBJ02
CPMSFTWBJ03

CPMSFTWBJ05

CPMSFTWBJ06

CPMSFTWBJ07

CPMSFTWBJ08

CPMSFTWBJ09

CPMSFTWBJ10

CPMSFTWBJ06

CPMSFTWBJ07

CPMSFTWBJ08

CPMSFTWBJ09

CPMSFTWBJ10

MSDN.MICROSOFT.COM

CPMSFTWBN01

CPMSFTWBN02

CPMSFTWBN03

CPMSFTWBN04KBSEARCH.MICROSOFT.COM

CPMSFTWBT40

CPMSFTWBT41

CPMSFTWBT42

CPMSFTWBT43

CPMSFTWBT44

INSIDER.MICROSOFT.COM

CPMSFTWBI01 CPMSFTWBI02

3D2

Catalyst
5000

IUSCCMQUEC5002

(COMMUNIQUE2)

Catalyst
5000

IUSCCMQUEC5001

(COMMUNIQUE1)

Catalyst
5000

Catalyst
5000

ICPMSCBAC5001
ICPMSCBAC5502

Port 1/1 Port 1/2Port 2/12

Cisco 7000

ICPCMGTC7501

Cisco 7000

ICPCMGTC7502

FE4/1/0

Port 1/1

FE4/1/0SQL

Microsoft.com SQL Servers

Microsoft.com Stagers,

Build and Misc. Servers

FTP 6

Build Servers 32

IIS 210

Application 2

Exchange 24

Network/Monitoring 12

SQL 120

Search 2

NetShow 3

NNTP 16

SMTP 6

Stagers 26

Total 459

Microsoft.com Server Count

Drawn by: Matt Groshong
Last Updated: April 12, 2000

IP addresses removed by Jim Gray
 to protect security

CPMSFTSQLB05

CPMSFTSQLB06

CPMSFTSQLB08

CPMSFTSQLB09

CPMSFTSQLB14

CPMSFTSQLB16

CPMSFTSQLB18

CPMSFTSQLB20

CPMSFTSQLB21

Backup SQL Servers

CPMSFTSQLB22

CPMSFTSQLB23

CPMSFTSQLB24

CPMSFTSQLB25

CPMSFTSQLB26

CPMSFTSQLB27

CPMSFTSQLB36

CPMSFTSQLB37

CPMSFTSQLB38

CPMSFTSQLB39

CPMSFTSQLA05

CPMSFTSQLA06

CPMSFTSQLA08

CPMSFTSQLA09

CPMSFTSQLA14

CPMSFTSQLA16

CPMSFTSQLA18

CPMSFTSQLA20

CPMSFTSQLA21

CPMSFTSQLA22

Live SQL Servers

CPMSFTSQLA23

CPMSFTSQLA24

CPMSFTSQLA25

CPMSFTSQLA26

CPMSFTSQLA27

CPMSFTSQLA36

CPMSFTSQLA37

CPMSFTSQLA38

CPMSFTSQLA39

IIS

IIS

IIS IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

Consolidator SQL Servers

CPMSFTSQLC02

CPMSFTSQLC03

CPMSFTSQLC06

CPMSFTSQLC08

CPMSFTSQLC16

CPMSFTSQLC18

CPMSFTSQLC20

CPMSFTSQLC21

CPMSFTSQLC22

CPMSFTSQLC23

CPMSFTSQLC24

CPMSFTSQLC25

CPMSFTSQLC26

CPMSFTSQLC27

CPMSFTSQLC30

CPMSFTSQLC36

CPMSFTSQLC37

CPMSFTSQLC38

CPMSFTSQLC39

DOWNLOAD.MICROSOFT.COM DOWNLOAD.MICROSOFT.COM

HTMLNEWS(pvt).MICROSOFT.COM

CPMSFTWBV01

CPMSFTWBV02

CPMSFTWBV03

CPMSFTWBV04

CPMSFTWBV05

CPMSFTWBD01

CPMSFTWBD05

CPMSFTWBD06

CPMSFTWBD07

CPMSFTWBD08

CPMSFTWBD03

CPMSFTWBD04

CPMSFTWBD09

CPMSFTWBD10

CPMSFTWBD11

ACTIVEX.MICROSOFT.COM

CPMSFTWBA02 CPMSFTWBA03

FTP.MICROSOFT.COM

CPMSFTFTPA03

CPMSFTFTPA04

CPMSFTFTPA05

CPMSFTFTPA06

NTSERVICEPACK.MICROSOFT.COM

CPMSFTWBH01

CPMSFTWBH02

CPMSFTWBH03

HOTFIX.MICROSOFT.COM

CPMSFTFTPA01

ASKSUPPORT.MICROSOFT.COM

CPMSFTWBAM03

CPMSFTWBAM04

CPMSFTWBAM01

CPMSFTWBAM01

MSDNNews.MICROSOFT.COM

CPMSFTWBV21

CPMSFTWBV22
CPMSFTWBV23

MSDNSupport.MICROSOFT.COM

CPMSFTWBV41 CPMSFTWBV42

NEWSLETTERS.MICROSOFT.COM

CPMSFTSMTPQ01 CPMSFTSMTPQ02

NEWSLETTERS

CPMSFTSMTPQ11

CPMSFTSMTPQ12

CPMSFTSMTPQ13

CPMSFTSMTPQ14

CPMSFTSMTPQ15

NEWSWIRE

CPMSFTWBQ01

CPMSFTWBQ02

CPMSFTWBQ03

Misc. SQL Servers

INTERNAL SMTP

CPMSFTSMTPR01

CPMSFTSMTPR02

NEWSWIRE.MICROSOFT.COM

CPITGMSGR01 CPITGMSGR02

NEWSWIRE
CPITGMSGD01

CPITGMSGD02

CPITGMSGD03

OFFICEUPDATE.MICROSOFT.COM

CPMSFTWBO01

CPMSFTWBO02

CPMSFTWBO04

CPMSFTWBO07

PremOFFICEUPDATE.MICROSOFT.COM

CPMSFTWBO30

CPMSFTWBO31
CPMSFTWBO32

SearchMCSP.MICROSOFT.COM

CPMSFTWBM03

SvcsWINDOWSMEDIA.MICROSOFT.COM

CPMSFTWBJ21 CPMSFTWBJ22

STATS
CPITGMSGD04

CPITGMSGD05

CPITGMSGD07

CPITGMSGD14

CPITGMSGD15

CPITGMSGD16

CPMSFTSTA14

CPMSFTSTA15

CPMSFTSTA16

WINDOWS_Redir.MICROSOFT.COM

CPMSFTWBY05

COMMUNITIES

COMMUNITIES.MICROSOFT.COM

CPMSFTNGXA01

CPMSFTNGXA02

CPMSFTNGXA03

CPMSFTNGXA04

CPMSFTNGXA05

CODECS.MICROSOFT.COM

CPMSFTWBJ16

CPMSFTWBJ17

CPMSFTWBJ18

CPMSFTWBJ19

CPMSFTWBJ20

CGL.MICROSOFT.COM

CPMSFTWBG03

CPMSFTWBG04

CPMSFTWBG05

CPMSFTWBG04

CPMSFTWBG05

CDMICROSOFT.COM

CPMSFTWBC01

CPMSFTWBC02

CPMSFTWBC03

BACKOFFICE.MICROSOFT.COM

CPMSFTWBB01

CPMSFTWBB03
CPMSFTWBB04

Build Servers

INTERNET-BUILD

INTERNET-BUILD1

INTERNET-BUILD2

INTERNET-BUILD3

INTERNET-BUILD4

INTERNET-BUILD5

INTERNET-BUILD6

INTERNET-BUILD7

INTERNET-BUILD8

INTERNET-BUILD9

INTERNETBUILD10

INTERNETBUILD11

INTERNETBUILD12

INTERNETBUILD13

INTERNETBUILD14

INTERNETBUILD15

INTERNETBUILD16

INTERNETBUILD17

INTERNETBUILD18

INTERNETBUILD19

INTERNETBUILD20

INTERNETBUILD21

INTERNETBUILD22

INTERNETBUILD23

INTERNETBUILD24

INTERNETBUILD25

INTERNETBUILD26

INTERNETBUILD27

INTERNETBUILD30

INTERNETBUILD31

INTERNETBUILD32

INTERNETBUILD34

INTERNETBUILD36

INTERNETBUILD42

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IIS

IISIIS

IIS IIS

SQL

SQL

SQL

SQL

SQLSQL

SQL

SQL

SQL

SQL

SQL

Stagers
CPMSFTCRA10

CPMSFTCRA14

CPMSFTCRA15

CPMSFTCRA32

CPMSFTCRB02

CPMSFTCRB03

CPMSFTCRP01

CPMSFTCRP02

CPMSFTCRP03

CPMSFTCRS01

CPMSFTCRS02

CPMSFTCRS03

CPMSFTSGA01

CPMSFTSGA02

CPMSFTSGA03

CPMSFTSGA04

CPMSFTSGA07

PPTP / Terminal Servers

CPMSFTPPTP01

CPMSFTPPTP02

CPMSFTPPTP03

CPMSFTPPTP04

CPMSFTTRVA01

CPMSFTTRVA02

CPMSFTTRVA03

CPMSFTSQLD01

CPMSFTSQLD02

CPMSFTSQLE01

CPMSFTSQLF01

CPMSFTSQLG01

CPMSFTSQLH01

CPMSFTSQLH02

CPMSFTSQLH03

CPMSFTSQLH04

CPMSFTSQLI01

CPMSFTSQLL01

CPMSFTSQLM01

CPMSFTSQLM02

CPMSFTSQLP01

CPMSFTSQLP02

CPMSFTSQLP03

CPMSFTSQLP04

CPMSFTSQLP05

CPMSFTSQLQ01

CPMSFTSQLQ06

CPMSFTSQLR01

CPMSFTSQLR02

CPMSFTSQLR03

CPMSFTSQLR05

CPMSFTSQLR06

CPMSFTSQLR08

CPMSFTSQLR20

CPMSFTSQLS01

CPMSFTSQLS02

CPMSFTSQLW01

CPMSFTSQLW02

CPMSFTSQLX01

CPMSFTSQLX02

CPMSFTSQLZ01

CPMSFTSQLZ02

CPMSFTSQLZ04

CPMSFTSQL01

CPMSFTSQL02

CPMSFTSQL03

Monitoring Servers

CPMSFTHMON01

CPMSFTHMON02

CPMSFTHMON03

CPMSFTMONA01

CPMSFTMONA02

CPMSFTMONA03

Canyon Park Data CenterMicrosoft.com Network Diagram

Jim Gray’s talk: “Dependability in the Internet Era”

The problem is complexity The problem is complexity ……

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 7

ComplexityComplexity

Any intelligent fool can make things bigger
and more complex … It takes a touch of

genius and a lot of courage to move in the
opposite direction.

Albert Einstein

Conquering ComplexityConquering Complexity

Today, “complexity” is a word that is much in
fashion We have learned very well that many of
the systems that we are trying to deal with in our
contemporary science and engineering are very
complex indeed. They are so complex that it is
not obvious that the powerful tricks and
procedures that served us for four centuries or
more in the development of modern science and
engineering will enable us to understand and
deal with them...

 Herbert A. Simon

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 8

Conquering ComplexityConquering Complexity

… We are learning that we need a
science of complex systems and we

are beginning to develop it.

Herbert A. Simon

 Please raise your hand if you everPlease raise your hand if you ever……

Bantz, Jan 2003

• trouble connecting to a wired or a wireless network at another work location, hotel
or switching from home to work (even with DHCP)?,

• lost a working connection and shouted across the office has anyone else’s
network connection gone?,

• have gone into the IP settings area in Windows and been confused about the
correct settings?,

• had a PC which would no longer booted and needed major repair or re-
installation of the OS?,

• had a hard-disk crash?

• ….When you consider how many users could honestly be back up and running
(with all applications and data) in less than a days work after a hard disk crash or
could completely migrate to a new PC in less than a day highlights the indirect
(often unaccounted) costs of managing personal computing…

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 9

Total Cost of OwnershipTotal Cost of Ownership

2000 2001 2002 2003 2004 2005
0

500

1000

1500

2000

$
B

IDC, June, 2001

HW

SW

People

Worldwide I/T Spending

People costs in 2000 is about
1% of the WW economy

Client

Server &
Storage

30.0%

Network
20.0%

Distribution of TCO Costs

Bantz, Jan 2003

Client computing TCO Client computing TCO –– direct costs direct costs

Average cost per desktop seat $100-180/month (org. w/ > 5000 employees)

Help Desk

16.7%

E-Mail

4.8%

Asset Mgmt

4.8%

On-Site Support

17.9%

Infrastructure

10.7%

H/W Maint.

9.5%

Server/Lan Maint.

13.1%

Management

6.0%

IMAC

14.3%

S/W Dist.

2.4%

Annualized Distributed Computing Cost

Help Desk

E-Mail

Asset Mgmt

On-Site Support

Infrastructure

H/W Maint.

Server/Lan Maint.

Management

IMAC

S/W Dist.

Bantz, Jan 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 10

Client computing TCO Client computing TCO –– indirect costs indirect costs

Peer Support

7.9

Casual Learning & Self-support

5.7

Formal Learning

0.7

File & Data Management

1.4

Development of Personal Applications

1 Downtime

0.4

Peer Support

Casual Learning & Self-support

Formal Learning

File & Data Management

Development of Personal Applications

Downtime

source: Gartner Group

Indirect Costs of client computing (in hours/month of end user time)

(205.2 hr./yr @ $50/hr. = $10,260)

Bantz, Jan 2003

The sources of data lossThe sources of data loss

Hardware Failure
40.0%

Human Error
29.0%

Software Corruption
13.0%

Computer Viruses
6.0%

Theft
9.0%

Hardware Destruction
3.0%

Causes of Lost Data

Hardware Failure

Human Error

Software Corruption

Computer Viruses

Theft

Hardware Destruction

Incident rate is approx. 6% of devices per year

source: "The Cost of Lost Data" by David Smith, Pepperdine Univ.

Bantz, Jan 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 11

The LegacyThe Legacy……

• TCO and complexity - the legacy of;

• Downsizing?

• End user computing (EUC)?

• Global Economy?

(2) What is(2) What is
Autonomic ComputingAutonomic Computing

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 12

DefinitionsDefinitions

au·to·nom·ic (àwtә nómmik)
adj.

Physiology.
– Of, relating to, or controlled by the autonomic nervous

system.
– Occurring involuntarily; automatic: an autonomic reflex.

• Resulting from internal stimuli; spontaneous.

au·ton·o·mic·i·ty (àwtә nóm i síttee)
n.

• The state of being autonomic.

Definitions (2)Definitions (2)

au·ton·o·mous (aw tónnәmәs)
adj.

• Not controlled by others or by outside forces; independent: an
autonomous judiciary; an autonomous division of a corporate
conglomerate.

• Independent in mind or judgment; self-directed.
– Independent of the laws of another state or government; self-

governing.
– Of or relating to a self-governing entity: an autonomous

legislature.
– Self-governing with respect to local or internal affairs: an

autonomous region of a country.
• Autonomic.
[From Greek autonomos : auto-, auto- + nomos, law]

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 13

Autonomic Computing Autonomic Computing ––
Biological InspirationBiological Inspiration

Rest and Digest

sympathetic (SyNS) parasympathetic (PaNS)

Autonomic Computing, launched by IBM in 2001, is emerging as a
valuable approach to the design of effective computing systems.

The autonomic concept is inspired by the human body's autonomic
nervous system.

It is the part of the nervous system that controls the vegetative functions
of the body such as circulation of the blood, intestinal activity and
secretion and the production of chemical ‘messengers’, hormones, that
circulate in the blood

Fight or Flight

Computer Software SystemsComputer Software Systems
are are NotNot Self-Managing Self-Managing

Worst Case

Best CaseNASA Satellite Support

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 14

(3)(3)
Self-* propertiesSelf-* properties

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

what

how

AUTONOMIC
COMPUTING

ATTRIBUTES

SELF AWARE

ENVIRONMENT AWARE

OBJECTIVES

SELF HEALING

SELF OPTIMISING

SELF PROTECTING

SELF ADJUSTING

SELF CONFIGURING

SELF MONITORING Knowledge

Analyze Plan

Monitor Execute

Element
Sensors Effectors

Sensors Effectors
Autonomic Element

SELF *

SELF *

Autonomic Systems Autonomic Systems ––
SelfwareSelfware & self-* properties & self-* properties

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 15

Autonomic Computing Autonomic Computing ––
Other Emerging self-* propertiesOther Emerging self-* properties

• self-anticipating,
• self-adapting,
• self-critical,
• self-defining,
• self-diagnosis,
• self-governing,
• self-installing
• self-organized,
• self-recovery,
• self-reflecting,
• self-simulation
• self-stabilizing
• self-*

Self-managing :
(wo)man in the loop?

All positive?
• selfish 

Issue : Trust
Unexpected emergent behaviour

Race conditions etc.

Self-* propertiesSelf-* properties

self-*
Self-managing properties.

self-anticipating
The ability to predict likely outcomes or simulate self-* actions.

self-assembling
Assembly of models, algorithms, agents, robots, etc.; self-assembly is often influenced

by nature, such as nest construction in social insects. Also referred to as self-
reconfigurable systems.

self-awareness
“Know thy self”; awareness of internal state; knowledge of past states and operating

abilities.

self-chop
The initial four (and generic) self-properties (Self-Configuration, Self-Healing, Self-

Optimisation and Self-Protection).

self-configuring
The ability to configure and re-configure in order to meet policies/goals.

Self-*

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 16

Self-* propertiesSelf-* properties

self-critical
The ability to consider if policies are being met or goals are being achieved (alternatively,

self-reflect)

self-defining
In reference to autonomic event messages between Autonomic Managers: contains data

and definition of that data–metadata (for instance using XML).
In reference to goals/policies: defining these (from self-reflection, etc.).

self-governing
As in autonomous: responsibility for achieving goals/tasks.

self-healing
Reactive (self-repair of faults) and Proactive (predicting and preventing faults).

self-installing
As in a specialized form of self-configuration – installing patches, new components, etc

or re-installation of OS after major crash.

self-managing
Autonomous, along with responsibility for wider self-* management issues.

Self-*

Self-* propertiesSelf-* properties

self-optimizing
Optimization of tasks and nodes.

self-organized
Organization of effort/nodes. Particularly used in networks/communications.

self-protecting
The ability of a system to protect itself.

self-reflecting
The ability to consider if routine and reflex operations of self-* operations are as

expected. May involve self-simulation to test scenarios.

self-similar
Self-managing components created from similar components that adapt to a specific

task, for instance a self-managing agent.

self-simulation
The ability to generate and test scenarios, without affecting the live system.

selfware
Self-managing software, firmware and hardware.

Self-*

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 17

(4)(4)
Autonomic Managers &Autonomic Managers &

Autonomic ElementsAutonomic Elements
Tutorial

Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

Autonomic Computing Autonomic Computing ––
The Autonomic ElementThe Autonomic Element

Managed Component

Autonomic Element (stationary agent or other)

Autonomic Communications Channel

Reflex Signal

Self-Aware

Environment-
Aware

Autonomic Manager

Reflectionwhat

how

AUTONOMIC
COMPUTING

ATTRIBUTES

SELF AWARE

ENVIRONMENT AWARE

OBJECTIVES

SELF HEALING

SELF OPTIMISING

SELF PROTECTING

SELF ADJUSTING

SELF CONFIGURING

SELF MONITORING

SELF *

SELF *

AE = MC+AMAE = MC+AM

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 18

Autonomic Computing Autonomic Computing ––
The Autonomic ManagerThe Autonomic Manager

Managed Component

Autonomic Element (stationary agent or other)

Self-Monitor Self-Adjuster

Environment-
Monitor AMAM Comms

Adapter / plannerKnowledge

Autonomic Communications Channel

Reflex Signal

Self-Aware

Environment-
Aware

Autonomic Manager

Reflection

S*

Key

Self-* event messages AE

MC

AM

Managed Component

Autonomic Manager (Stationary agent)

Autonomic Element (AM+MC)

Autonomic Agent (Mobile agent)

Autonomic Computing Autonomic Computing ––
The Autonomic EnvironmentThe Autonomic Environment

AE

Autonomic Communications Channel

MC

AM

S*

S*

S*

S*

S*S*
S*S*

AE

MC

AM

AE

MC

AM

S*

S*

S*

S*

S*

S*

S*

S*

S*

S*



COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 19

Knowledge

Analyze Plan

Monitor Execute

Element
Sensors Effectors

Sensors Effectors
Autonomic Element

Managed
Element

Autonomic
Manager

• An autonomic element
contains a continuous
control loop that monitors
activities and takes actions
to adjust the system to meet
business objectives

• Autonomic elements learn
from past experience to build
action plans

• Managed elements need to
be instrumented consistently

Ganek, AMS 2003IBM – AC Blueprint 2003 &

IBM’s View

How Do We Make Components Autonomic?

• Autonomic elements have two management tasks
– They manage themselves
– They manage their relationships with other

elements through negotiated agreements

Autonomic Database Autonomic Storage Array“I need to allocate
some additional table

space ”

“I am reallocating
storage and
moving the

information”

Ganek, AMS 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 20

Autonomic control loops:
next step evolution

Autonomic features
Local view

Global environment view and
knowledge

USER
RESPONS

E TIME AVAIL.
RESOURCE

BUSINESS
SLA

POLICY

Ganek, AMS 2003

Sensors Effectors

Analyze Plan

Monitor Execute

Topology

Recent Activity Log Policy

Calendar
Knowledge

Analysis Engines

Policy Validations

Policy Resolution

Rules Engines

Policy Interpreter

Policy Transforms

Plans Generators

Workflow Engine

Service Dispatcher

Scheduler Engine

Filters

Simple Correlators

Metric Managers
Distribution Engine

IBM – AC Blueprint 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 21

Few
 minutes
 later…

Putting It All Together – An Example

SystemsSystems cancan go go fromfrom steadysteady state state
……

Internet

 to to overloadedoverloaded withoutwithout
warningwarning

Ganek, AMS 2003

Autonomic Computing: Dynamic Surge
Protection

DatabaseWAS

Driver
(simulates
Internet in/out)Surge

Button

Monitoring Configuration
management

Sensor Effector

ControllerForecaster

Performance
Modeler

Statistics /
Knowledge

Element

Monitor

Analyze
 (Forecaster)

Sensors

Execute
(Controller)

Plan
(Perf Modeler)

Effectors

Knowledge

Ganek, AMS 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 22

Response Time

Actual BOPS

Predicted BOPS

#Active Servers

#Requested Servers

1
1. Steady State

Ganek, AMS 2003

2. Monitor, Detect Surge

Response Time

Actual BOPS

Predicted BOPS

#Active Servers

#Requested Servers

1 2

Ganek, AMS 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 23

3. Forecast, Provision Servers

Response Time

Actual BOPS

Predicted BOPS

#Active Servers

#Requested Servers

1 21 2 3

Ganek, AMS 2003

Response Time

Actual BOPS

Predicted BOPS

#Active Servers

#Requested Servers

4. Monitor, Remove Servers
1 2 43

Ganek, AMS 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 24

(5) New and emerging(5) New and emerging
 biological metaphorsbiological metaphors

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

Reflex and HealingReflex and Healing

A concept inspired by biological systems is the dual approach of
reflexes and healing. Animals have a reflex system, where the
nerve pathways enable rapid response to pain.

Reflexes cause a rapid, involuntary motion, such as when a hot
surface is touched.

The effect is that the system reconfigures itself, moving away from
the danger to keep the component functioning.

On a much longer timescale, the body will heal itself.
Resources from one part of the system are redirected to rebuild the
injured body part, including repair of the reflex response network.

Source: Bapty et al, ECBS 2003

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 25

sH
sO
sC
sP

s*
...

sH
sO
sC
sP

s*
...

Autonomic Communications Channel

Autonomic Element Autonomic Element & & Autonomic Computing EnvironmentAutonomic Computing Environment

Managed Component

Autonomic Element (stationary agent or other)

Self-Monitor Self-Adjuster

Environment-
Monitor AMAM Comms

Adapter / plannerKnowledge

Autonomic Communications Channel

Reflex Signal

Self-Aware

Environment-
Aware

Autonomic Manager

Embedded Systems :Embedded Systems :

The typical approach for system management is based on events which are
generated and sent under fault or problem conditions.

In the embedded system space the opposite is typically the case.

A system management action occurs when something does not occur.

An example is the fault tolerant mechanism of a heartbeat monitor (HBM),
through a combination of the hardware (the timer) and software (the heartbeat
generator) an ‘I am alive’ signal is generated periodically to indicate all is well
The absence of this signal indicates a fault or problem. Some embedded
processors have a hardware timer which, if not periodically reset by software,
causes a reset/restart. This allows a particularly blunt, though effective,
recovery from a software hang.

This approach offers the advantage that through continuous monitoring
problem determination becomes a proactive rather than a reactive process.

Heart-Beat Monitoring (HBM)Heart-Beat Monitoring (HBM)

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 26

NASANASA’’s Beacon Monitorings Beacon Monitoring

A similar concept used by
NASA is the Beacon monitor,
deep space craft send back a
signal containing a urgency level
tone.

Beacon mode is not operating.No Tone

Emergency. A critical component has failed. Cannot recover
autonomously and intervention is necessary immediately.

Urgent

Comms need to take place within timeframe or else state could
deteriorate.

Important

Interesting – non-urgent event. Establish comms when convenient.Interesting

All functions as expected no need to downlink.Nominal

Pulse Monitoring (PBM)Pulse Monitoring (PBM)

The HBM only informs if a process is alive or dead
(assuming comms working)
– not the processes actual health or state of being.

PBM = HBM + Beacon urgency concept

With a pulse monitor instead of just checking the presence of a beat,
the rate or tone within the beat would also be measured.

This can give a quick measurement as to the state of health of a
process.

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 27

PBM PBM –– a mechanism for autonomicity a mechanism for autonomicity

The concept of incorporating a pulse monitor to provide

- a reflex reaction for indicating the ‘health’ based on vital signs

- providing dynamics within autonomic responses
 and multiple loops of control;

- some slow and precise (normal event message channel)

- others fast and possibly imprecise (PBM)

S*

Pulse Monitor (PBM)

Key

Self-* event messages AE

MC

AMHeart-Beat Monitor (HBM)

Managed Component

Autonomic Manager (Stationary agent)

Autonomic Element (AM+MC)

Autonomic Agent (Mobile agent)

Autonomic Computing Autonomic Computing ––
The Autonomic EnvironmentThe Autonomic Environment

AE

Autonomic Communications Channel

MC

AM

S*

S*

S*

S*

S*S*
S*S*

AE

MC

AM

AE

MC

AM

S*

S*

S*

S*

S*

S*

S*

S*

S*

S*



I am alive

I am healthy

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 28

Stay
Alive

Apoptosis Apoptosis ––
returning to Biological metaphorsreturning to Biological metaphors

- if you cut yourself and it starts bleeding…

- often, the cut will have caused skin cells to be displaced down into muscle tissue

- if they survive and divide, they have the potential to grow into a tumour

- the body’s solution to dealing with this is cell self-destruction

- with mounting evidence that cancer is the result of cells not dying fast enough,
 rather than multiplying out of control

- It is believed that a cell knows when to commit suicide because cells are
 programmed to do so

- i.e. self-destruct (sD) is an intrinsic property.

- this sD is delayed due to the continuous receipt of biochemical reprieves.

- this process is referred to as apoptosis,

- meaning ‘drop out’,
 (used by the Greeks to refer to the Autumn dropping of leaves from trees);

- i.e., loss of cells that ought to die in the midst of the living structure.

- the process has also been nicknamed ‘death by default’,

- where cells are prevented from putting an end to themselves
 due to constant receipt of biochemical ‘stay alive’ signals

Stay
Alive

Apoptosis Apoptosis ––
returning to Biological metaphorsreturning to Biological metaphors (cont.)

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 29

Self-protection & TrustSelf-protection & Trust
Security issues with AgentsSecurity issues with Agents

Greenburg (1998) highlighted the situation simply by recalling the situation
where the server

omega.univ.edu was decommissioned

- its work moving to other machines.
- When a few years later a new computer was assigned the old name,
- to the surprise of everyone email arrived, much of it 3 years old.
- the mail had survived ‘pending’ on Internet relays waiting for
 omega.univ.edu to come back up.

The same situation could arise for mobile agents;
these would not be rogue mobile agents –
they would be carrying proper authenticated credentials.

The mobile autonomic agent could cause substantial damage,
e.g., deliver an archaic upgrade (self-configuration)
to part of the network operating system resulting in bringing down the entire
network

Self-protection & TrustSelf-protection & Trust
self-destruct property a solution?self-destruct property a solution?

Generally the security concerns with agents

- misuse of hosts by agents (accidental)
- accidental or unintentional situations caused by that agent
 (race conditions and unexpected emergent behavior)

- misuse of agents by hosts, (accidental or deliberate)

- misuse of agents by other agents. (accidental or deliberate)

- the latter two through deliberate or accidental situations caused by
external bodies acting upon the agent.
- the range of these situations and attacks have been categorized as:
damage, denial-of-service, breach-of-privacy, harassment, social
engineering, event-triggered attacks, and compound attacks.



COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 30

Self-protection & TrustSelf-protection & Trust
self-destruct property a solution? self-destruct property a solution? (cont.)

In the situation where portions of an agent’s binary image e.g.,
monetary certificates,
keys,
information, etc.

are vulnerable to being copied when visiting a host,
this can be prevented by encryption.

Yet there has to be decryption in order to execute,
which provides a window of vulnerability.

This situation has similar overtones to biological apoptosis,
where the body is at its most vulnerable during cell division.



S*

Pulse Monitor (PBM)

Key

Self-* event messages AE

MC

AMHeart-Beat Monitor (HBM)

Managed Component

Autonomic Manager (Stationary agent)

Autonomic Element (AM+MC)

Autonomic Agent (Mobile agent) Autonomic Agent Apoptosis Controls 

Autonomic Computing Autonomic Computing ––
The Autonomic Environment inc self-The Autonomic Environment inc self-

destructdestruct
AE

Autonomic Communications Channel

MC

AM

S*

S*

S*

S*

S*S*
S*S*

AE

MC

AM

AE

MC

AM

S*

S*

S*

S*

S*

S*

S*

S*

S*

S*






I am alive

I am healthy

Stay alive

sD

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 31

(6) (6) Examples fromExamples from
NASA Sensor NetworkNASA Sensor Network

applicationsapplications
Tutorial

Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

ChallengesChallenges

• NASA has set far-reaching autonomy goals for
ground-based and space-based systems.

– More reliance on “intelligent” systems and less on
human interventions characterize its autonomy
goals.

• Goddard has a leading role in the development
of agent-based systems to realize NASA’s
autonomy goals.

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 32

LOGOSLOGOS

• Lights-Out Ground Operations
System

– a proof-of-concept system that used a
community of autonomous software agents

– Agents cooperated to perform functions
previously performed by human control
center operators.

An Overview of LOGOSAn Overview of LOGOS

GenSAA/
Genie
I/F Agent

AGENT COMMUNITY

Log
I/F Agent

SysMM
Agent

FIRE
Agent

Pager
I/F Agent

User
I/F Agent

MOPSS
I/F Agent

DB I/F
Agent

Archive
I/F Agent

VisAGE
I/F Agent

LOGOS
UI

USER

VisAGE

Paging
System

MOPSS

GenSAA
Data Server

GenSAA/
Genie

Control
Center

Spacecraft

= Agent

= External
 System

= Data

Archive

LOGOS

LOGOS

DB

 Archive

Log

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 33

LOGOSLOGOS

LOGOS self-
protects in a very
limited fashion.
An element of
self-protection is
the
authentication of
its users.

LOGOS self-
optimizes itself
through the
process of
interacting with a
human operator
in dealing with a
problem that it
cannot initially
handle.

LOGOS self-
heals by
providing
solutions to
anomalous
situations in the
s/c component of
itself and through
human
intervention.

LOGOS self
configures when
it gets informed
that a spacecraft
pass is about to
occur.

Self-protectingSelf-
optimizing

Self-healingSelf-
configuring

NASA Space Exploration MissionsNASA Space Exploration Missions

• Future space missions will require cooperation between multiple
satellites/rovers/craft for e.g.

ANTS (Autonomous Nano-Technology Swarm)

• Developers are proposing intelligent, autonomous swarms to do
new science

• Swarm-based systems are highly parallel and nondeterministic

• Testing these systems using current techniques will be difficult
to impossible

• This raises issues for self-protection of system (mission) goals,

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 34

• The ANTS architecture is itself inspired by biological low level
social insect colonies with their success in the division of labor.

• Within their specialties, individual specialists generally outperform
generalists, and with sufficiently efficient social interaction and
coordination, the group of specialists generally outperforms the
group of generalists.

• Thus systems designed as ANTS are built from potentially very
large numbers of highly autonomous, yet socially interactive,
elements.

• The architecture is self-similar in that elements and sub-elements of
the system may also be recursively structured as ANTS

ANTS Space Exploration MissionsANTS Space Exploration Missions

ANTS Space Exploration Missions ANTS Space Exploration Missions (cont.)

• Targets for ANTS-like missions include surveys of extreme
environments on the
– Earth,
– Moon,
– Mars, as well as
– asteroid,
– comet,
– or dust populations.

• The revolutionary ANTS paradigm makes the achievement of such
goals possible through the use of many small, autonomous,
reconfigurable, redundant element craft acting as independent or
collective agents

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 35

ANTS MissionANTS Mission

Self-Directed ExplorationSelf-Directed Exploration

Mass
Spectrometer

Gamma Ray Worker

Magnetometer
Worker

IR/V/UV
Spectrometer

Messenger

X-Ray Worker

Radio Ranging

Mass
Spectrometer

Mass
Spectrometer

Gamma Ray WorkerGamma Ray Worker

Magnetometer
Worker

Magnetometer
Worker

IR/V/UV
Spectrometer

IR/V/UV
Spectrometer

MessengerMessenger

X-Ray WorkerX-Ray Worker

Radio RangingRadio Ranging

Asteroid

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 36

ANTS MISSIONANTS MISSION

Difficulty of Testing SwarmsDifficulty of Testing Swarms

• Emergent properties that may not be known

• Highly distributed and parallel

• Large number of interacting entities

• Worse than exponential growth in interactions

• Intelligent entities (capabilities increase over time)

• Total or near total autonomy

• What if things do go wrong?

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 37

Autonomic Apoptosis in NASA Missions?Autonomic Apoptosis in NASA Missions?

• With NASA missions we are not considering a generic situation.

• Mission control and operations is a trusted private environment.

• This eliminates many of the wide range of agent security issues

• Leaving the particular concerns;

– is the agent operating in the correct context
– and showing emergent behavior within acceptable parameters?

Autonomic Apoptosis in NASA Missions?Autonomic Apoptosis in NASA Missions?

• Suppose one of the worker agents was indicating incorrect operation,
or when co-existing with other workers was the cause of undesirable
emergent behavior, and was failing to self-heal correctly.

• That emergent behavior (depending on what it was) may put the scientific
mission in danger.

• Ultimately the stay-alive signal from the ruler agent would be withdrawn.

• If a worker, or its instrument, were damaged, either by collision with
another worker, or (more likely) with an asteroid, or during a solar storm, a
ruler could withdraw the stay-alive signal and request a replacement
worker.

• Another worker could self-configure to take on the role of the lost worker;
i.e., the ANTS adapt to ensure an optimal and balanced coverage of tasks
to meet the scientific goals.

• If a ruler or messenger were similarly damaged, its stay-alive signal would
also be withdrawn, and a worker would be promoted to play its role.

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 38

Self-Aware Environment-Aware

Self-Monitor Self-Adjust

Self-Configuring Self-Optimizing

Self-Healing Self-Protecting
Self-*

HRSM

HRSM

HRSMHRSM

ANTS
ANTS ANTS

ANTSANTS

ANTS

ANTS ANTS

DS1

DS1

DS1

(6) (6) Another ExampleAnother Example
Hubble RoboticHubble Robotic

Servicing MissionServicing Mission
Tutorial

Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
 r.sterritt@ulster.ac.uk  michael.g.hinchey@nasa.gov

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 39

SolutionSolution

• Requirements Based Programming
– Tractability from Requirements all the way

through to code
– Builds on an MBD approach by providing a

“front end”
– Our contention is that RBP should be formal

Requirements to Design to CodeRequirements to Design to Code

Requirements
expressed as
scenarios

CodeModels Existing code
generating tools

Existing model
extraction (reverse
engineering) tools

Mathematical
laws of
concurrency

(reversed)

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 40

Requirements To Design To CodeRequirements To Design To Code

• This new method (R2D2C) provides
mathematically tractable development of
systems with provable correctness

• Automated translation of requirements into a
provably correct system

• The practicality of the approach is assured
because it is transparent and based on
requirements expressed as scenarios – an
approach familiar to engineers

Benefits of the MethodBenefits of the Method

• Automation of entire development process
• Significant increase in quality
• Ability to do formal proof on properties of

implementations
• Ability to do formal proof of correctness
• Automated means for requirements analysis
• Guaranteed correspondence between

requirements and their implementation as code

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 41

ApplicationsApplications

• End-to-end automatic code generation of
provably correct systems

• Automatic reimplementation after any
requirements change

• Exploiting re-use across platforms
• Reverse engineering legacy systems to a

mathematically sound model
• Analysis and documentation of existing systems

(e.g., expert systems)
• Re-engineering of legacy systems to a provably

correct new implementation

HRSM Procedures

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 42

HRSM Procedures

XML Document

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 43

Natural Language Input for
R2D2C

-- Actor 1

0: <retrieve>(wfc3_tool_caddy)

3: <command>(em_tool_stowage_door)

4: <release>(brakes)

5: <maneuver>(, <to> em_tool_stowage_location)

6: <set>(brakes)

18: <install>(wfc3_tool_caddy, <at> hst_worksite)

21: <release>(brakes)

22: <maneuver>(, <to> hst_wfc3_tool_caddy_stowage_location)

23: <command>(em_tool_stowage_door)

24: <set>(brakes)

31: <install>(stabilization_tool, <in> hst_fr27)

43: <retrieve>(wfpc2_interface_plate)

46: <release>(brakes)

…

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 44

COM834J2 20004/05

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk 45

Invitation – to joint the new
IEEE Task Force on
Autonomous & Autonomic Systems

• http://www.computer.org/tab/

• http://www.computer.org/TCsignup/index.htm

• http://tab.computer.org/aas/

Real-Time Issues in Wireless Sensor Networks

Chenyang Lu

Department of Computer Science and Engineering
Washington University in St. Louis

http://www.cse.wustl.edu/~lu

Many mission-critical applications require wireless sensor networks to interact with
physical environments under stringent timing constraints and severe resource
constraints. Examples include intruder tracking, medical care, fire monitoring, and
structural health monitoring. This tutorial presents our research on a range of real-time
issues in wireless sensor networks including (1) packet scheduling algorithms for end-
to-end real-time communication; (2) power management protocols for energy-
efficient real-time data collection; and (3) spatiotemporal query services for mobile
users. This tutorial also discusses research challenges in the area of real-time wireless
sensor networks.

Biography

Dr. Chenyang Lu is an Assistant Professor in the Department of Computer Science
and Engineering at Washington University in St. Louis. He received the Ph.D. degree
from University of Virginia in 2001, the M.S. degree from Chinese Academy of
Sciences in 1997, and the B.S. degree from University of Science and Technology of
China in 1995, all in computer science. He is author and co-author of more than 40
refereed technical papers and a recipient of the NSF CAREER Award. His current
research interests include wireless sensor networks, adaptive QoS control, and real-
time embedded systems and middleware.

References

C. Lu, B.M. Blum, T.F. Abdelzaher, J.A. Stankovic, and T. He, RAP: A Real-Time
Communication Architecture for Large-Scale Wireless Sensor Networks, IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’02), September 2002.

O. Chipara, C. Lu, and G.-C. Roman, Efficient Power Management based on
Application Timing Semantics for Wireless Sensor Networks, International Conference
on Distributed Computing Systems (ICDCS'05), June 2005.

C. Lu, G. Xing, O. Chipara, C.-L. Fok, and S. Bhattacharya, A Spatiotemporal Query
Service for Mobile Users in Sensor Networks, International Conference on Distributed
Computing Systems (ICDCS'05), June 2005.

S. Bhattacharya, G. Xing, C. Lu, G.-C. Roman, B. Harris, and O. Chipara, Dynamic
Wake-up and Topology Maintenance Protocols with Spatiotemporal Guarantees,
International Conference on Information Processing in Sensor Networks (IPSN'05), April
2005.

Monday dinner

Scandic Billingen Trädgårdsgatan 10 at 19.00

Scandic Billingen byggdes år 1888 och har sedan dess varit känt för sin vackra
arkitektur och trivsamma atmosfär. Hotellet är centralt beläget vid
järnvägsstationen och med centrum runt hörnet.

Meny

Päron- och chevrétoast serveras med en knaprig serranoskinka

Chateau Briand serveras med kraftig rödvinsås samt en ost- och potatismuffin
och rostade grönsaker

Husets chokladkaka serveras med grädde smaksatt med likör.

1

CBSE 2005

ComponentComponent--BasedBased

SoftwareSoftware EngineeringEngineering

ARTESARTES SummerschoolSummerschool

SkovdeSkovde, August 2005, August 2005

M.R.V. Chaudron
M.R.V.Chaudron@tue.nl

www.win.tue.nl/~mchaudro/

Technische Universiteit Eindhoven

2

CBSE 2005

Introduction CBSE & Reuse

Motivation

Concepts, Definitions, Terminology

3

CBSE 2005

Observations on the practice of SE

Systems should be built to facilitate change
easy removal and addition of functionality

It is not the strongest of the species that survive, nor
the most intelligent, but the ones most responsive to
change. -- Charles Darwin

About 80% of software engineering deals with
changing existing software

Time to market is an important competitive
advantage: incorporate successful innovations quickly

4

CBSE 2005

• The size & complexity of software increases rapidly

• Single products become part of product families

• Software is upgraded after deployment

• The time-to-market must decrease significantly

• The cost of products must be reduced

Problems of Software Engineering

5

CBSE 2005

Systems should be assembled from existing components

The CBD- Solution’

component repository & market component-based
systems

compose

Idea dates (at least) to the1968 NATO Conference
Douglas McIlroy: Mass Produced Software Components

6

CBSE 2005

Why Components?

Following other engineering

disciplines (civil and electrical),

software engineering is looking to

develop

a catalogue of software

building blocks

connection standards

Component

Library

Confusing or helpful?

7

CBSE 2005

What is CBSE?

Component-based Software Engineering is concerned with the rapid

assembly and maintenance of component-based systems, where

• components and platforms have certified properties

• these certified properties provide the basis for predicting

properties of systems built from components.

Component-based Software Engineering is concerned with the rapid

assembly and maintenance of component-based systems, where

• components and platforms have certified properties

• these certified properties provide the basis for predicting

properties of systems built from components.

based on definition of SEI in CMU/SEI-2000-TR-008

Predictability is a key property of mature engineering disciplines.

It enables feedback on design and adaptation;

i.e. development time is reduced because we can analyze prior to

building

8

CBSE 2005

Extra Functional Properties

Performance

Reliability

Timeliness

Schedulability

Scalability

Efficiency
CPU, Memory Use

Maintainability

Essential system engineering problem:

• aa plurality of contradictory goals

• aa plurality of means (technology, process)

each of which provides a varying degree of help or hindrance in
achieving a given goal

System

9

CBSE 2005

Improve Productivity:

Build more software using fewer resources through

enabling the assembly of systems from components that

may be independently developed by different parties.

Business Drivers for CBD

Independent in time and space

independent from ultimate application

independent from (future) peer-components

10

CBSE 2005

Motivations for CBSE

• Productivity

• Quality

• Time-to-market

• Maintenance

Strategic business
goals that increase

- Turnover

- Market share

reduce

- Cost of development

- Cost of ownership

profit

€

€

€€

€€

11

CBSE 2005

Increase competitiveness (sw/€):

• Reduce cost of development

• Increase software/€

Limited human talent (sw/people):

• Increase software/person

reuse existing solutions, rather than invent them

CBSE & Software Productivity

12

CBSE 2005

Improve Quality:

Idea: Assuming that a collection of high-quality

components is available, assembling these should

yield systems of high-quality.

CBSE & System Quality

1. The cost of establishing the high quality of

components is amortized over multiple use.

2. Multiple use of a component increases the

likelihood of finding and removing errors.

13

CBSE 2005

CBSE & Maintenance

The use of CBD requires good modular design.

This modularity provide quality properties like

• comprehensibility/understandability

• maintainability

• flexibility

• …

14

CBSE 2005

CBSE & Time-to-market

If the reuse of a component requires less time

than the development of a component, systems

can be built faster.

15

CBSE 2005

Productivity & Quality

Productivity

Quality
Productivity

People

Process Technology

16

CBSE 2005

Dependent dimensions

Quality

Effort Time

17

CBSE 2005

Technical Drivers for CBSE

CBSE may help improve system qualities

Flexibility

Adaptability

Maintainability

Reliability

Integration

Interoperability

System
Qualities

18

CBSE 2005

Reuse-based Software Engineering

• Reuse-based SE has many bbusiness drivers
in common with CBSE:

– increase productivity & quality

– reduce time-to-market,

– reduce development cost

CBSE enables Reuse, Reuse is not sufficient for CBSE.

However, reuse imposes less technical- and

design-constraints on the unit of reuse (asset).

19

CBSE 2005

Reusable Assets

Virtually any product of the SE process can be reused:

• Requirements

• Architectures

• Designs

– design patterns, interfaces

• Source Code

– ranging from to libraries, patterns, to modules, to macros,

coding conventions, ...

• Test Scripts

20

CBSE 2005

Questions?

21

CBSE 2005

What is a software component?

Suggestions from the audience?

Reflect on differences between civil and electrical

engineering on the one hand and software

engineering on the other hand

Cross-cutting concerns

How can you recognize a software component?

22

CBSE 2005

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only

A software component is independently deployable
and subject to composition by third parties.

Clemens Szyperski, 1997

What is a Component?

Probably more definitions than for ‘software architecture’

23

CBSE 2005

A software component is a unit of independent

deployment

no dependencies on peer-components

some ‘meaningful’ functionality by itself

components tend to be ‘large grained’

never partially deployed

What is independent deployment?

24

CBSE 2005

A reusable software component is a logically cohesive,
loosely coupled module that denotes a single
abstraction.

Grady Booch, Software Components with Ada, 1987

What is a Component?

Tries to provides some design guidance.
What is cohesive? loosely coupled? single abstraction?

25

CBSE 2005

Object Technology and CBSE

“OT is Neither Necessary Nor Sufficient for CBSE”

OT was a useful and convenient starting point for CBSE

OT did not express full range of abstractions needed by CBSE

(insufficiency)

It is possible to realize CBSE without employing OT(non-necessity)

CBSE might induce substantial changes in approach to system design,

project management, and organizational style

26

CBSE 2005

What is a Component?

“A binary unit of independent production, acquisition, and deployment that

interacts to form a functioning system.”

- C. Szyperski, Component Software

“A component is an independently deliverable package of operations.”

- Texas Instruments Literature

“A replaceable unit of development work which encapsulates design

decisions and which will be composed with other components as part of a

larger unit.” - Desmond D’ Souza, in Catalysis

27

CBSE 2005

Useful Distinction

component
specification

component
implementation

component
interface

specifies functionality
& extra-functional
properties of component

implementation
of specification

architect/design

programmer

run-time environment

*

*

component
instance

*

instantiation in a
concrete device

exposes
functionality
(operations)
& behaviour
at run-time

has

has

has

28

CBSE 2005

It depends (on what?)

It depends to some degree on what you want to do with

components:

REPLACING one part of an implementation with another:

- then adhering to a well defined specification is sufficient

- at run-time, then mechanisms are needed for

- registering, locating / binding components

EXTEND components

- extend interfaces, merge implementations

29

CBSE 2005

It depends (on what?)

TRADING (use across multiple organizations)

• need mechanism for

•hiding intellectual property

•certification

RE-USE

• need repository for searching / matching, versioning

• economics impact granularity

Application domain BUSINESS/EMBEDDED

• type and granularity of component

30

CBSE 2005

Different usage requirements

C1 C2 C3

C1 C’2 C3

C1 C2 C3

C1 C2 C3 C4

C1 C2 C3

C2 C3 C4

Substitutability Extensibility Decomposability

complete
specification

extensible
architecture

generic components,
flexible architecture

31

CBSE 2005

CBD in Practice

Lego + Fisher Technik + Meccanno + Ministek + ...

32

CBSE 2005

A component can be used within the scope
of a component-model

.Net, Enterprise Java Beans, Corba Components + ...

33

CBSE 2005

Component Model

Definition A component model specifies the standards
and conventions that are needed to enable the
composition of independently developed
components.

34

CBSE 2005

Multitude of Component Models

• Q: Why are there so many component models?

• A: because there are many different requirements

– Technically: on component-systems

– Organizationally: development process

35

CBSE 2005

executiondevelopment deployment

design &
modelling tool

programming tool

configuration management tool

compiler

build/release tool

execution infrastructure

representation of
component

phase

infrastructure

packaging distribution

packaging
tool

36

CBSE 2005

executiondevelopment deployment

representation of
component

phase packaging distribution

model / specification
e.g. UML, Petri-net

source code & data files
e.g. C++ Structured archive

e.g. zip-file

• Solid-medium that preserves file-structure
• network: requires conventions on where to install

unpack & place comp in memory

executable code
- low level machine code
- high level code for interpretation

37

CBSE 2005

Component Packaging (UML)

38

CBSE 2005

Architecture vs. Generic Components

there is exactly one component
that fits each place in the system

every component fits
at every place

Architectural component Framework component
‘plug-in’

Generic component

several components fit at a
particular place in the system

39

CBSE 2005

Component
Design

CBSE Development Activities

Component
Assembly

Component
Implementation

Component
Acquisition

Identify System
Requirements

•Performance
•Real-Time
•Portability
•…

System
Architecture

Component
Model

40

CBSE 2005

Different types of requirements

• When to compose?

– At what stage is flexibility needed?

• Design-, compilation-, run-time

• Different extra-functional requirements

41

CBSE 2005

Aspects of Component Models

A component model is a set of agreements that is needed to

enable the combination of components.

A component model typically addresses

• Life-cycle management: instantiation, (de)activation, removal

• Binding mechanisms

• Interaction style

• Data exchange format

• Process model

Related: Packaging Model

42

CBSE 2005

Component Platform

A component platform is rrun-time incarnation of

the component model.

For example:

Windows

CLR

.Net
Components

Windows

JVM

Java
Components

Windows

CORBA

Corba
Components

UNIX

43

CBSE 2005

Component Platform

Platforms typically provide support for

Extra-functional / resource aspects

- scheduling

- quality of service management

- (dynamic) load balancing

- (re)negotatiation

- security

- fault tolerance (replication)

- interoperabiliy (language/OS)

Inter-component services

- binding

- interaction

Component lifecycles

- install, replace, remove

44

CBSE 2005

Component Platform

What ‘features’ does the infrastructure provide?

- (dynamic) load balancing / scheduling

- fault tolerance (replication)

- quality of service negotiation

- security

- heterogeneous platforms (language/OS)

45

CBSE 2005

Summary

• CBD aims to earn money through improving
Productivity, Quality, Time-to-market, Maintenance

• There are many types of components because there
are many different domains with different
requirements on component-based systems.

many component models many component platforms

46

CBSE 2005

Questions?

You should know
- an answer to ‘What is a component?’

- what a component model is
- the relation between reuse, CBD, and OO

47

CBSE 2005

Plug & Play: components can be composed with little effort – preferably at

run-time

Interface-centric: components can be composed without knowing their

implementation

Standardization: component can be manufactured by multiple vendors and

widely reused across corporations

Distribution through Market: components can be acquired and improved

though competition market, and provide incentives to the vendors

Architecture-centric: components may be designed on a pre-defined

(product-line) architecture

Summarizing, CBSE is about

48

CBSE 2005

What’s New in CBSE?

It deals with components that were not a-priori designed to be part

of the same application

There will be multiple types of software components – belonging to

multiple component models.

Concluding Remarks 1

49

CBSE 2005

Concluding Remarks 2

CBD aims to

– increase productivity of SE

– change-ability of software systems

It is likely that every system will need some degree of

custom development

– Wrapping is inevitable

50

CBSE 2005

CBSE is about managing dependencies

• Is this not addressing the symptoms, rather than the
disease?

• Q: Why not try to avoid dependencies in the first
place?

Type of dependencies:

design time: tooling

compile-time: compiler, other components

run-time: platform, other components

51

CBSE 2005

Useful Distinction

component
specificatie

component
implementatie

component
interface

definieert functionaliteit
& extra-functionele
eigenschappen van de
component

implementatie
van specificatie

*

*

component
instantie

*

1

Distribution vs. Fault Tolerance
Jan Lindblad

Enea Embedded Technology

Enea www.enea.com

• Founded 1968 by 4 KTH Students
• Headquarters in Kista, Stockholm
• Ca 500 employees, majority in Sweden
• Offices: 4 in Sweden, 4 in Europe, 5 in USA,

2 in Asia

• First Swedish UNIX system
• enea.se first domain in Sweden
• OSE family of operating systems
• Telecom dominates

2

OSE www.enea.com/ose

• Operating System for Embedded applications
– Microkernel, message passing, distributed systems
– File systems, IP-stacks, Program loader, Memory

management, Virtual machines, … as plug-ins
– PowerPC, ARM, MIPS, DSPs, 16-bit CPUs, …

• OSE kernel safety certified to IEC 61508-3
• Thousands of concurrent OSE processes
• Interrupt latency < 1µs on many processors

Jan Lindblad jan . lindblad @ enea . se

• System Architect, System Manager at
Enea Embedded Technology

• Built first computer at 12, designed & built
sound card at 16, wrote first compiler at 17

• Married and three kids in villa outside
Stockholm

3

Fault tolerance in distributed systems

Distributed and fault tolerant software have a lot in
common. As applications are growing more widely
distributed, issues like

• fault tolerance
• network management
• security

are becoming more and more relevant. This
tendency is even more accentuated with the recent
development of ad hoc networking technology, such
as the Bluetooth standard.

In the Fault tolerance world

Fault tolerant design and programming is based on
• Stable backwards recovery
• Single point of failure avoidance
• Simplicity
• Supervision
• Separation

Let’s see what they are and how many problems in
the fault tolerant world are similar to those in
distributed systems, and many of the solutions for
fault tolerance are also applicable to distributed
systems

4

 …click!

Start

Action

Backwards Recovery

R

F7F2

S

Process state diagram

R

F7F2

S

Backwards Recovery

Code flow in state SProcess state diagram

Ptr == NULL,
we can’t be in
state S!

All ok?
No

Go to
error handler

5

R

F7F2

S

Backwards Recovery

Error handlerProcess state diagram

 Oops!

R

F7F2

S A state error has been detected

We thought we were in state S,
but we can’t be -- we’re lost!

There is no safe way back

Backwards Recovery

When a state error has been detected, all you can
be sure of (prove) is that something is wrong. There
is no way to safely bring the current (unknown) state
back to a known state. This is mathematically proven.

Therefore it’s a good idea to “nuke” the whole
context with the state problem, and all parts of the
system that could be “infected” by this context. And
do it fast, before the problem spreads.

6

Backwards Recovery

Most importantly: any cleanup that needs to be done
when killing “infected” parts of the system must not
be done by the “infected”!

In a distributed system, any cleanup that needs to be
done when a connection is lost cannot be done by
the remote process!

Single point of failure avoidance

N

N

N

N N N

S

S

V

V

H

H

7

Supervision
in a fault tolerant system

•
Server Client

If the client dies, the server will free any
resources allocated by the client

Client Server
If the server dies, the client will stop
using any resources allocated from the
server

Manager Child
If the child dies, the manager is
responsible for creating and starting a
new child

Child Manager
If the manager dies, the child must
terminate

Supervision
in a fault tolerant system

•1.

SC
allocate()

2.

SC
free(NULL)

3.

SC
Death notification

C commits an error and is
killed abruptly.

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

S receives a death notification
for C and releases the allocated
resource

S still holds a resource
reservation for C

8

Supervision
in a distributed system

•1.

SC
allocate()

2.

SC
Lost connection

3.

SC
Death notification

The connection to C is lost
abruptly.

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

S receives a death notification
for C and releases the allocated
resource

S still holds a resource
reservation for C

Supervision
in a distributed system

•1.

SC
allocate()

2.

SC
Lost connection

3.

SC
Death notification

The connection to S is lost
abruptly.

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

C receives a death notification
for S and aborts the operation
involving the allocated resource

C still believes it has the
resource

9

Supervision
in a distributed system

C S R

QP

S R

QPN
C

A
B

N
G

H
F

S C

Death
notification

Simplicity

Many small units that work together are much more
likely to produce a good result than few large units.

Think of when you were building Lego models, many
small and highly specialized parts give the best result

The complexity of a software module is exponential
in it’s size. This fact is very important in systems that
have to be certified/verified/tested.

In distributed systems there is an added benefit, it’s
easier to create an optimal system configuration
using small units, it’s simply more configurable.

10

Simplicity

•

Separation
Memory protection

Separate CPU time

Separate memory pools

Separate device drivers
& interrupt sources

11

In the Fault tolerance world

We’ve seen some areas where the fault tolerant way
of designing systems solve difficult problems of
distributed systems

Let’s stay in this environment and go on with looking
at some other design issues of distributed systems

• Interprocess communication (IPC)
• Different networking styles

Interprocess Communication (IPC)

Even though the system needs separation, it also
needs forms of communication across the boundaries

• Messages
Perfect for local and transparent remote
communication
Kernel

• Sockets
Standard, works both local and remote, a little slow
Networking stack

12

Interprocess Communication (IPC)

• Pipes
Possible locally, a little slow
File system

• Semaphores
No! Violates separation and will not work remotely
Applications

Interprocess Communication (IPC)

Let’s take a closer look at what communication
styles an ordinary application employs in various
situations

We’ll take a look at how a Web browser
communicates with

• the address book
• the display
• the file system
• the network

This will give some insights regarding how
applications can be designed to be more easily
distributed

13

Networking styles
address book

• Access: direct
function calls into
separate program
module (.dll / .so)

• Not distributed
Web browser

File
System

Address
book

Sockets

Display

Networking styles
display

• Access: library calls

• Windows environment:
Not distributed

• Unix (X-windows)
environment:
Distributed using
sockets
locally & remotely

• Application: nearly
unaware

Web browser
File

System

Address
book

Sockets

Display

14

Networking styles
file system

• Access: library calls

• Access to local file
systems is not
distributed

• Access to remote file
systems using a
multitude of
mechanisms,
including sockets and
SMB

• Application: totally
unaware

Web browser
File

System

Address
book

Sockets

Display

Networking styles
sockets

• Access: library calls

• Application sets up
and manages
connections and
protocols

• Application: totally
aware

Web browser
File

System

Address
book

Sockets

Display

FTP DNS
HTTP
SMTP ...

SSL

15

Summary of networking styles

No distribution direct function calls Shared library

Explicit applications fully aware of the network
and have to handle many network issues.
one distribution mechanism, which is
used locally also

Sockets

Transparent
unified

one distribution mechanism, which is
used locally also

X-windows

Transparent
diversified

several parallell distribution mechanisms,
no distribution used locally

File systems

Embedded networking

Diversified transparent networking makes it possible
for processes to communicate over a multitude of
media, while staying unaware of what media is being
used -- and the media could even change in runtime

S

C

S

S

S

S

Local

Local over memory
protection barrier

Over IP / Internet

Shared memory to DSP
with byte order conversion

CAN bus link

16

Embedded networking

SC

S S

Local Local over memory
protection barrier

Over IP / Internet

Shared memory to DSP
with byte order conversion

CAN bus link

S

N N

C

ARMDSP

Embedded networking

File
systemC

Shared memory to DSP
with byte order conversion

File
system

N N

C

17

Conclusion
Display

Wrist
computer
holding
address

book

Cell
phone

Personal computer

Short range
radio net

Flash
disk

Now we can keep up with this guy!
Display

Wrist
computer
holding
address

book

Cell
phone

Personal computer

Short range
radio net

All it took was some
fault tolerant design…

Flash
disk

1

Overwhelming
comple ity
Jan Lindblad

Enea Embedded Technology

xx

Introduction

Embedded software development cost is
increasing steadily. Today, about half the
cost consists of test and maintenance.

• Why is this?
– Some important trends exposed

• What can be done about it?
– Some suggestions to answers
– Some suggestions for research

2

Enea www.enea.com

• Founded 1968 by 4 KTH Students
• Headquarters in Kista, Stockholm
• Ca 500 employees, majority in Sweden
• Offices: 4 in Sweden, 4 in Europe, 5 in USA,

2 in Asia

• First Swedish UNIX system
• enea.se first domain in Sweden
• OSE family of operating systems
• Telecom dominates

OSE www.enea.com/ose

• Operating System for Embedded applications
– Microkernel, message passing, distributed systems
– File systems, IP-stacks, Program loader, Memory

management, Virtual machines, … as plug-ins
– PowerPC, ARM, MIPS, DSPs, 16-bit CPUs, …

• OSE kernel safety certified to IEC 61508-3
• Thousands of concurrent OSE processes
• Interrupt latency < 1µs on many processors

3

Jan Lindblad jan . lindblad @ enea . se

• System Architect, System Manager at
Enea Embedded Technology

• Built first computer at 12, designed & built
sound card at 16, wrote first compiler at 17

• Married and three kids in villa outside
Stockholm

Real-time Research Projects

• Execution Time Analysis (ETA)
– Measurement techniques
– WCET by Abstract Interpretation
– Evaluation of commercial WCET tools

• Automatic race condition detection
– Whole system simulation in Simics

• Root cause analysis of reported bugs
– Classification and countermeasures

4

Software development cost increases

Why?

Current trends

MP3 player – Mobile phone – DVD player –
Pacemaker – Car – Watch – Landline phone – Stereo
– TV – Photo album – Coffee machine – Dishwasher
– Indoor climate system – Traffic light control system
– Paper mill – National energy transmission system –
Nuclear power plant – A380 airliner – Ariane 5 rocket

Which of these contain embedded software?

1990?1990?

2005?2005?
2020?2020?

5

Current trends

MP3 player – Mobile phone – DVD player –
Pacemaker – Car – Watch – Landline phone – Stereo
– TV – Photo album – Coffee machine – Dishwasher
– Indoor climate system – Traffic light control system
– Paper mill – National energy transmission system –
Nuclear power plant – A380 airliner – Ariane 5 rocket

• Integration
• Communication
• Functionality & Size
• Ecosystem
• Dynamic & Configuration

 ⇒⇒ IncreasedIncreased
ComplexityComplexity

 ⇒⇒ BugsBugs

 ⇒⇒ Reset buttonReset button

Functionality & Size

• Embedded = small?
– OSE 5.1: 2 million SLOC
– Ericsson Mobile platform: 3 million SLOC
– Ericsson Cello platform > 50 million SLOC equiv

• Compare with desktop systems
– RedHat 7.1: 30 million SLOC
– Windows NT 5.0 20 million SLOC
– Windows XP 2002: 40 million SLOC

6

Ecosystem

Embedded = all sources available?
• OSE: 4 sites, 62 official partners
• EMP platform: 30 software suppliers

We are not software houses,
we are integration houses!

Dynamic & Configuration

• Plug and play (or pray)
• Runtime upgrades
• Linux kernel configuration

• Complex configuration/reconfiguration

7

Increased Complexity

MP3 player – Mobile phone – DVD player –
Pacemaker – Car – Watch – Landline phone – Stereo
– TV – Photo album – Coffee machine – Dishwasher
– Indoor climate system – Traffic light control system
– Paper mill – National energy transmission system –
Nuclear power plant – A380 airliner – Ariane 5 rocket

• Higher cost per bug(?)
• More bugs per system
• More systems

 ⇒⇒ Increased cIncreased costost

Most bugs are low cMost bugs are low cost ost –– no inquiry board no inquiry board ––
but they are many but they are many ⇒⇒ Salami trick Salami trick

The Problem

• Large systems written by many developers
around the world at different points in time in
multiple languages

• Partial access to source code
• Applications communicating with the outside

world, millions of configuration combinations,
dynamically reconfiguring

 Typical program analysis: compiler warnings

This is the class of systems
that really need analysis tools

Test & maintenance is only
50% of the development cost??

8

How can we defeat the complexity?

Suggested attack routes

 We need to raise the abstraction level for
systems programmers
– Languages
– Intentional programming
– Contracts

• We need methods to analyze and test large
systems

• We need the systems to handle unforeseen
situations autonomously

9

Languages

• Every API is a language
• C is everywhere because of

– Huge ecosystem (tools, engineers, code, …)
– High expressiveness
– Up to the programmer [to be efficient]

• But C is not particularly analyzable 

• UML? Java? Erlang? Ada?
Academic languages?

Languages

• UML? Java? Erlang? Ada?
Academic languages?

Maybe, but it’s not mainly about that…

We need higher level language concepts like
• Parallel processes, components & contracts,

error handling, recovery,
intentional programming, …

10

Intentional programming

dict_get(key, dict)
⇒⇒

dict_lookup(key, dict)
dict_search(key, dict)
dict_is_key(key, dict)

Joe Armstrong, “Making reliable distributed
systems in the presence of software errors”

Contracts

• Hardware components have data sheets
– Lists max and typical values

• What about software components?

• Reuse ⇒⇒ contracts (Ariane 5)

• Eclipse Java IDE

11

Suggested attack routes

• We need to raise the abstraction level for
systems programmers

 We need methods to analyze and test large
systems
– Components
– Specification & program analysis
– Test & simulation

• We need the systems to handle unforeseen
situations autonomously

Components

• Divide and conquer, one piece at a time
• Components need isolation and specification
• Analyze one component,

use specifications for rest of system

• Key to reuse
• Writing usable specifications is hard,

tool support needed

12

Specification & program analysis

• Dereferencing NULL is not good
• Stack overflow is not good
• Indexing out of bounds is usually not good
• Division by zero is not good
⇒⇒

/* @exec_time: 120 < T < 200 + 20*x->maxlen
@stack_memory: 88 < M < 1520
@precond: 0 < y < x->maxlen
@postcond: return 0..65535 */

uint16_t foo_lookup(FX *x, uint32_t y) { …

Test & simulation

• Cannot test every possible
– Hardware platform
– Configuration
– Interleaving
– Error situation

• Need tools that can handle abstract
configurations, hardware, interleavings, …
Like abstract values in abstract interpretation

13

Suggested attack routes

• We need to raise the abstraction level for
systems programmers

• We need methods to analyze and test large
systems

 We need the systems to handle unforeseen
situations autonomously
– Backwards recovery
– Supervision
– Seamless distribution

Backwards recovery

When a state error has been detected, all
you can be sure of (prove) is that something
is wrong. There is no way to safely bring the
current (unknown) state back to a known
state.
Therefore it’s a good idea to “nuke” the
whole context with the state problem, and all
parts of the system that could be “infected”
by this context. And do it fast, before the
problem spreads.

14

Backwards recovery

Most importantly: any cleanup that
needs to be done when killing
“infected” parts of the system must
not be done by the “infected”!

• Processes can die at any time ⇒
– Semaphores or mailboxes cannot be used
– Cleanup by resource manager (server), not by

process itself (client)
– Process supervision required

•1.

SC
allocate()

2.

SC
free(NULL)

3.

SC
Death notification

C commits an error and is
killed abruptly.

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

S receives a death notification
for C and releases the
allocated resource

S still holds a resource
reservation for C

Supervision

15

•1.

SC
allocate()

2.

SC
Lost connection

3.

SC
Death notification

The connection to C is lost
abruptly.

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

S receives a death notification
for C and releases the
allocated resource

S still holds a resource
reservation for C

Seamless distribution

Supervisors

Just as in a business organization, a supervisor:
• Has responsibility for a function
• Knows what should be done

(may change over time, e.g. plug and play)
• Manages, but does not participate in, the

actual work
• Has to deal with any failures of the workers

(restart, service degradation, …)
• Is terminated if there are persistent problems

with the function

16

Supervisors

Likewise, a worker:
• Is hired/created by the supervisor
• Gets a task to execute and parameters for

the task from the supervisor
• Reports problems with the task to the

supervisor
• Is fired/terminated by the supervisor
• May be a supervisor itself with respect to its

own workers

Supervision tree

Supervisors …
• (Re-)start
• (Re-)configure
• Recover from

problems with
• Shutdown

… the workers

S

W SW W

W W

17

Conclusions

Example 1: Telecom

• “The world’s largest machine”
• Very distributed and dynamic
• Huge ecosystem
• Lot’s of bugs remain in shipping systems
• Fault tolerant design

• Very few analysis tools used
• Real-time design by stomach or pen+paper

18

Example 2: Automotive

• A few dozen ECUs
• Centralized distribution and little dynamics
• Small centralized ecosystem
• Not fault tolerant – “all faults eliminated”
• Complete system design, analysis, testing

• Several different analysis tools actually used
• Real-time design by proven methods & tools

Where are we heading?

Telecom Automotive

• Very distributed
• Huge ecosystem
• Bugs remain in shipping systems
• Fault tolerant design
• Several different analysis tools actually used
• Real-time design by proven methods & tools
• Components

1

Execution Time Analysis
Jan Lindblad
System Architect, System Manager

2

AGENDA
• The Timing Challenge

– The Challenge
– Measurement or Calculation?
– Wanted!

• Execution Time Analysis
• Program Analysis

2

3

The Challenge
All of us are designing software with requirements

on
– Parallelism
– Real-Time
– High Performance

Most of the difficult problems with our software
concerns the timing behavior.

4

The Challenge
How do we make sure that…
– Parallelism

• … there are no race conditions or deadlocks?
– Real-Time

• … we are always finished before every deadline?
– High Performance

• … the average execution time is short enough?
• … we optimize the code where it makes a difference?
• … we use algorithms that scale well?

3

5

Race conditions
Modern classification of bugs:
– Bohrbugs
– Heisenbugs

Most race conditions and deadlocks are never found
– Heisenbugs generally cannot be found by testing

6

Performance
Numbers to search for:
– Execution time

• System call, context switch times (max,
average)

• Interrupt latency (max, average, jitter)
• Various application operations (max, average)
• …

– Complexity analysis
• Ordo classes

4

7

Performance
Execution Time (ET) depends on
– compiler
– processor

Ok, just a matter of counting cycles in the binary
code.

… or ?

8

Performance
Execution Time (ET) depends on
– compiler
– processor
– pipeline
– cache (what is the worst realistic cache state?)
– input (what is the worst input?)
– network, bus, switch fabric delays
The worst case is not interesting anyway.

5

9

Finding the Execution Time
In theory

The problem to find the execution time of a program is
undecidable.

– If you could tell the execution time of every program, you
would also have solved the halting problem.

In practice
Two main approaches are used:

– Measurement on a real implementation
– Calculation on a model of the system

10

Measurement or Calculation?

• WCET = Worst Case Execution Time
• BCET = Best Case

0 tighter tighter

safe BCET
estimates

safe WCET
estimates

actual
BCET

actual
WCET

possible execution times

• WCET = Worst Case Execution Time
• BCET = Best Case
• ACET = Average Case

6

11

Measurement or Calculation?
MEASUREMENT
– Measurement samples

points inside the
curve.

– By definition unsafe.
Need to add “enough”
safety margin.

– Input dependent.
Model of typical or
worst input needed.

CALCULATION
– Calculation finds a

point outside the
curve.

– By definition safe.
Overestimates, but
how much?

– Model of system
needed.

12

Measurement or Calculation?
Sources of Misestimation

MEASUREMENT
Other input than used in
test may generate much
longer execution times.
– The program may not

even complete its
execution.

CALCULATION
Simplistic system model
may give magnitudes of
overestimation.
– Pipeline: 2-8x
– Cache: 10-40x

7

13

Wanted!
Automatic tool that analyzes the timing aspects of
my system, pointing out improvement areas:

• Deadline budget or system performance goals
– Where to optimize?
– What parts have large variance in execution time?
– What parts scale badly?
– What parts were too complex for high quality analysis?
– How much better/worse did it get after the latest change?

14

Wanted!
Automatic tool that analyzes the timing aspects of my
system, pointing out timing related software errors:

• Locking errors
– Possible race conditions, deadlock, live-lock
– Failure to acquire or release a lock

• Control flow problems
– Infinite loops

• Priority problems
– Starvation, priority inversion

8

15

Wanted!
Automatic tool that can work under real conditions:

• Multiple source languages
– C, C++, assembler, UML, SDL, SCADE, ...

• Multiple source providers
– Application developer, operating system, 3rd parties, ...

• Multiple tool chains
– Each source provider may have own tool chain

16

Wanted!
Automatic tool that can work under real conditions:

• Modern processors
– Caches, superscalar pipelines, hierarchy of buses

• Optimizing compilers
– Analyzing the actual running code

• Dynamic programs
– Loops with data dependencies, function pointers, …

9

17

AGENDA
 The Timing Challenge
• Execution Time Analysis

– Measurement
– WCET
– pWCET

• Program Analysis

18

Measurement
• Observations on the actual system

– Can be automated

• Generation of relevant input
– Usually extremely large input domain
– Plus all possible timings of input
– Input include interrupts,

clock signals, bus traffic, …
• Collection of data

– Usually intrusive in some way

10

19

Measurement Results
WCET=48.6us (in our test runs)
AverageET=12.8us (in our test runs)

+
“We used an ARM920 processor running at 120
MHz, with a 32-bit bus at 33 MHz. The cache …
The code was run 100 times, and the average and
maximums were noted.”

User always has other, different conditions

20

Automatic WCET Estimation
• Flow analysis

– Determine the dynamic behavior
of the program

• Low level analysis
– Determine execution time for the

program parts on the hardware
• Calculation

– Combine flow and low-level times
to give a WCET estimate

Compiler

Object
Code

Target
Hardware

Reality

program

Actual
WCET

Low level
analysis

Calculation

Flow
analysis

Analysis

WCET
Estimate

Actual
WCET

WCET
Estimate

11

21

WCET Flow Analysis
• Dynamic behaviour of program
• Example of info determined:

– Number of loop iterations
– Recursion depth
– Input dependencies
– Infeasible paths
– Function instances

• Provided by static analysis and/or manual
annotations

Flow
analysis

Low level
analysis

Calculation

Program

WCET
Estimate

22

WCET Flow Analysis

Example program

do
{
 if(...)
 do
 {
 if(...)
 ...
 else
 ...
 if(...)
 ...
 else
 ...
 } while(...)
 else
 ...
} while(...)
...

// A// A

// B// B
// C// C

//// DD
// E// E

// F// F

// G// G
//// HH

// I// I
// J// J

Structurally possible
 flows (infinite)

Relation between possible
executions and flow info

Basic finiteness

max = 10max = 10

max = 20max = 20
A

B

C D

F G

H

E

Basic block graph

J

I

Statically allowed

samepathsamepath(D,G)(D,G)
Actual

feasible
paths

WCET found here = WCET found here =
desired resultdesired result

WCET found here =WCET found here =
 overestimation overestimation

12

23

WCET Low Level Analysis
• Determine execution time for program parts
• Account for hardware effects
• Work on object code

– The “real” program
• Two main issues:

– Cache analysis (global)
– Pipeline analysis (local)

Flow
analysis

Program

Low level
analysis

Calculation

WCET
Estimate

24

WCET Low Level Analysis
fib(int n)

{

 int
i,Fnew,Fold,temp,
ans;

 Fnew=1; Fold=0;

 for(i=2;i<=n;i++)
 {

 temp = Fnew;

 Fnew = Fnew
+ Fold;

 Fold = temp;

 }

 ans = Fnew;

 return ans;

}

fib:
mov #1, r5
mov #0, r6
mov #2, r7
br fib_0

fib_1:
mov r5,r8
add r6,r5
mov r8,r6
add #1,r7

fib_0:
cmp r7,r1
bge fib_1

fib_2:
mov r5,r1
jmp [r31]

FlowsFlows
asas

edgeedgess

EachEach
blockblock
willwill

run asrun as
a unita unit

13

25

WCET Cache Effects
fib:

mov #1, r5
mov #0, r6
mov #2, r7
br fib_0

fib_1:
mov r5,r8
add r6,r5
mov r8,r6
add #1,r7

fib_0:
cmp r7,r1
bge fib_1

fib_2:
mov r5,r1
jmp [r31]

miss
hit
hit
hit

miss
hit

miss
hit
hit
hit

26

WCET Cache Effects
fib:

mov #1, r5
mov #0, r6
mov #2, r7
br fib_0

fib_1:
mov r5,r8
add r6,r5
mov r8,r6
add #1,r7

fib_0:
cmp r7,r1
bge fib_1

fib_2:
mov r5,r1
jmp [r31]

miss
hit
hit
hit

miss
hit

miss
hit
hit
hit

hit
hit

hit
hit
hit
hit

RemainingRemaining
iterationsiterations

FirstFirst
iteration ofiteration of

the loopthe loop

hit
hit

14

27

WCET Pipeline Effects
 foo(x):

A:
loop(i=1..100)

B: if (x > 5)
then

C: x = x*2

 else
D: x = x+2

 end

E: if (x < 0)
then

F: b[i] =
a[i];

 end

G: bar (i)

 end loop

Foo()

C

A

B

D

E

F

G

end

tA=7

tD=2

tB=5

tC=12

tE=4

tF=8

tG=20

tend=0

δAB=-2

δBC=-2 δBD=-1

δDE=-2δCE=-1

δEF=-2

δFG=-2

δEG=-1

δGA=-1

28

WCET Flow Information
• WCET=

max Σ(xentity * tentity)
– Where xentity satisfies

all constraints
• Constraints:

– Start condition
– Program structure
– Loop bounds
– Other flow information

Foo()

C

A

B

D

E

F

G

end

XXAA

XXBB

XXCC XXDD

XXEE

XXFF

XXGG

Xfoo=1

XXGAGA

XXABAB

XXBCBC XXBDBD

XXDEDE

XXEGEG

XXCECE

XXEFEF

XXFGFG

XXfooAfooA

XAB=XA

XE=XCE+XDE

XA=XfooA+XGA

XBC+XBD=XB

XA<=100

XC+XF<=XA

15

29

WCET Result
• Integer Linerar Programming

equation solver:

in the model

30

WCET Tools
• Mälardalen University + Uppsala University

– Flow analysis
– Low level analysis
– Integration

• AbsInt GmbH
– AirBus is a customer

• Tidorum OY
– BoundT tool

16

31

Enea WCET Experience
Our results were

• Completely correct

• Completely irrelevant

⇒ Flow analysis required

Foo()
{
 alloc(...) // System call
 inside alloc()
 if(error_check_mode)
 do_lengthy_memory_check()
 if(corrupt_memory)
 error(”memory_corrupt”)
 inside error handler
 if(corrupt_memory)
 reboot()
 else if(...)
 ...

 return

Program flow
should end here,
but tool follows a

longer path

32

pWCET
” The best model of the processor

is the processor itself ”

• Let’s measure the execution time
– But for small, small simple pieces separately
– Gives distribution of execution times
– Combine the small pieces!

17

33

pWCET Exec Time Distribution
Foo()

C

A

B

D

E

F

G

end

+
 ? ? ?

34

pWCET Sequence
Case 1: Assume execution times of A and B

independent

Usually this is not a feasible assumption

A

B

x
H(z) = F(x) G(z – x) dxConvolution

18

35

pWCET Sequence
Case 2: Assume A and B dependent, known

dependency

Usually the dependency is not known

x+y=z
H(z) = j(x,y)

J(x,y) = p[X≤x, Y ≤ y]

A

B

36

pWCET Sequence
Case 3: Assume A and B dependent, unknown dependency

Assumes the worst possible dependency (conmonotonic)

x+y=z
H(z) = ∂2 min(F(x), G(y))

 ∂x ∂y

A

B

19

37

pWCET Control Flow
If B then C else D

 Z = B + max(C, D)

For i=1..N

Z = G + n(A..G)

Single basic block

Z = Measure!

C

B

D

A

G

E

38

pWCET Result

20

39

pWCET Tools
• University of York

– www.rapita.com

• Enea Epact

40

Execution Time Analysis
Measurement

0

safe BCET
estimates

safe WCET
estimates

actual
BCET

actual
WCET

possible execution times

10 observations

How much
margin?

21

41

Execution Time Analysis
WCET

0

safe BCET
estimates

safe WCET
estimates

actual
BCET

actual
WCET

possible execution times

How to build
 a model?

(and is the model correct?)

42

Execution Time Analysis
pWCET

0

safe BCET
estimates

safe WCET
estimates

actual
BCET

actual
WCET

possible execution times

Select your level
of confidence

10,000 micro
observations

Approximation by measurement &
statistical combination

Measure
what

input??

22

43

Future Tools
Many research groups are working on execution
time analysis in EU, and Sweden especially

• Current effort to standardize interfaces between
execution time analysis tools
– Different analysis methods will help each other

44

AGENDA
 The Timing Challenge
 Execution Time Analysis
• Program Analysis

– Stack Usage
– Reverse Engineerning the Design
– Simulation

23

45

Stack Usage
aiCall from AbsInt is a call graph analyzer

• See the call graph

• See the maximum stack depth used
– Use this information to configure OSE processes

aiPop from AbsInt is a code compressor

• Rewrites object code into functionally equivalent,
but more compact object code

46

Reverse Engineering the Design
The ASTEC remodelling project works on a tool to

• Extract the design of a system from code.
Use this information to
– Understand the system
– Check that the design is what you think it is
– Verify that changes to the code don’t change the design in

negative ways

24

47

Simulation
Simics from Virtutech is a CPU+System simulator

• Provides a deterministic and non-intrusive
observation environment. Use it to

– Measure execution time
– Find race conditions and deadlocks

• Current project to intelligently insert
delays/breakpoints to change the timing behaviour at
sensitive spots.

– Find reason for ’glitches’

• Put a breakpoint on missed frame/lost call.

48

AGENDA
 The Timing Challenge
 Execution Time Analysis
 Program Analysis

25

49

Information Sources
• Mälardalen University, M. Real-Time Research Center
• University of York, Real-Time Systems Research Group
• Uppsala University, Advanced Software Technology Group
• Swedish institute of Computer Science (SiCS)
• Virtutech AB
• Rapita Systems Ltd
• AbsInt GmbH
• Tidorum OY, BoundT
• Enea Epact, Embedded Technology AB

 Execution Time
 Analysis

ARTES summerschool 2005
Invitation, Programme, Skövde information, SNART, Poster instruction, Travel

Programme

15-16 Bus to Läckö castel
16-17 Free strolling around and possibility to see exhibitions.
17-17.40 Guided tour of the castel
18-22 Boat to Navens Light house inkl. BBQ (Bring your swimssuit in case the
weather is varm.)
22-23 Bus to Skövde

Updated: 09-Aug-2005 15:42
Location: http://www.artes.uu.se/events/summer05/social_activity.shtml

Tutorial: Experimental Sensor Networking Research

Thiemo Voigt and Joakim Eriksson
Swedish Institute of Computer Science

{thiemo,joakim}@sics.se
August 9, 2005

Wireless sensor networks (WSN) consist of a potentially large number
of tiny nodes equipped with sensing facilities, a low power processor, lim-
ited memory, and a radio module that enables the nodes to form networks
through which sensed data can be transported to a base station. Applica-
tions range from tornado detection and environmental science, to industrial
process monitoring, ventilation control and intrusion detection systems.

While analysis and simulation of sensor networks are indispensable, ex-
perimental research and the deployment of prototype or real sensor networks
are at least of equal importance. In this tutorial, we present some of the
research conducted at the Swedish Institute of Computer Science in the area
of wireless sensor networks. Our work includes some theoretical aspects but
the main focus is on experimental work in the areas of experimental evalua-
tion of lifetime bounds for WSNs, TCP/IP support for sensor networks, the
Contiki operating system and the development of prototype networks with
industry partners.

More information about the WSN research at SICS in general can be
found at http://www.sics.se/sensornets/. Most of the work presented in
this tutorial has been conducted within the VINNOVA-sponsored DTNSN-
project, see http://www.sics.se/cna/dtnsn/. The demonstrator shown as
part of the tutorial has mostly been developed within the EFFWSN project
financed by FMV.

The future for IT,
Karl-Einar Sjödin,

Vinnovas unit for information and communication research,

08-473 31 13
Karl-Einar.Sjodin@VINNOVA.se

Teknisk Framsyn är ett nationellt projekt som syftar till att skapa insikt och visioner om
teknikutvecklingen på lång sikt. Rapporterna kan hämtas i digital form på projektets hemsida:
www.tekniskframsyn.nu.

Inspiration till innovation, 2004
Vägval för Sverige, 2004

❞ Vårt senaste århundrade åstadkom fler förändringar än under
de föregående ett tusen åren tillsammans.

Det kommande århundradet kommer att överträffa

vårt föregående århundrade. ❞
HG Wells vid en föreläsning över temat

upptäckten av framtiden i London 1902.

1

Sverige måste våga välja väg!

 Karl-Einar Sjödin, VINNOVA
Teknisk Framsyn

Skövde 2005-08-19

Teknisk Framsyn vill ...

 Stärka det framtidsinriktade arbetet
i företag och organisationer

 Främja hållbar tillväxt och förnyelse
i Sverige

 Skapa underlag och processer för
att prioritera områden som bygger
upp svensk kompetens. Vad är vi
egentligen riktigt bra på i Sverige?

Fokus: 15–20 år framåt

2

Projektet Teknisk Framsyn

 Nationellt projekt som analyserar
svenska förutsättningar för teknisk och
ekonomisk tillväxt

 Ungefär hundra experter från olika delar
av samhället pekar på de viktigaste
framtidsfrågorna – vägval för Sverige

 Projektet visar på förväntade
teknologiska genombrott

 Projektet lyfter fram samspelet mellan
teknik, samhälle och olika institutioner

Huvudbudskap

 Välj väg – vi står inför sex vägval där beslut
krävs nu för vår framtida konkurrenskraft

 Prioritera inom forskning och utveckling
– vi föreslår 11 mångvetenskapliga
teknikområden

 Utveckla för framtiden – även i små företag
 Samarbeta – Sverige står inte ensamt
 Förankra en vision som styr besluten i

både näringsliv, forskning och politik

3

Starka, globala drivkrafter
tränger sig på

antingen vi vill eller inte!

Nya värderingar

Global specialisering

Global
kunskaps-
rustning

Klimatförändringar,
ändliga resurser

Global
konvergens,
social divergens

IT och bioteknik

Komplexa system
som ger sårbarhet

Gränslöshet

Individualisering
och nya grupperingar

Chocker

Terrorism föder rädsla

Demografi

Globalisering

Komplexitet

Kunskaps-
samhället

Drivkrafternas virvelvind

4

Våra viktigaste val:
vi vill ...

 att Sverige ska vara en del av världen
 kraftsamla för framtidens infrastruktur
 ta vara på människors resurser

och vi måste våga ...
 modernisera det offentliga åtagandet
 ta steget mot det hållbara samhället
 prioritera och fokusera

6. Vi måste våga prioritera och
fokusera, genom att ...

 Satsa på FoU, men satsa smart –
inom 11 mångvetenskapliga
teknikområden

 Skapa mer förädling – prioritera
verksamhet långt fram i värdekedjan

 Specialisera regionalt
 Skapa mylla för nya företag
 Våga välja bort!

5

Vad har vi valt bort?

Exempel:
 Optiska datorer
 Glasmetall
 Kiselkarbid
 Samhällsplanering
 Människans

åldrandeprocess

 Funktionella textilier
 Fiberoptik
 Högspänning
 Nätverksdatorer
 Akustik
 Funktionell mat

Ett nytt synsätt:

11 mångvetenskapliga
teknikområden

6

Mångvetenskapliga teknikområden
med stor svensk potential (1)

 Säkrare komplexa
system

 Mekaniska system
och strukturer

 Interaktiv teknik
 Funktionella material

Mångvetenskapliga teknikområden
med stor svensk potential (2)

 Miljö- och
livscykelteknologi

 Rörlig
energiförsörjning

 Fasta energisystem

7

Mångvetenskapliga teknikområden
med stor svensk potential (3)

 Säkerhet och skydd
 Hållbar

livsmedelsproduktion
 Tillgänglig IT
 Hälsa och

sjukvårdsteknik

Säkrare komplexa system

Exempel:
 Öppna standarder
 Simuleringsteknik
 Teknik för

trafiksäkerhet
 Automatisering
 Datasäkerhet, inkl.

programvaruteknik

8

Våga fatta beslut!

Att inte besluta får lika stora
konsekvenser som aktiva beslut – men

de är oftast värre!

Det behövs åtgärder nu för att
Sverige ska vara framgångsrikt

om 15–20 år!

www.tekniskframsyn.nu

1

1

Information Society and Media Directorate-General – European Commission
Unit Grid Technologies

IST-Call 5 Grid Information Day - Brussels, 30 May 2005

Next

Generation

Grids

Software
Technologies

Knowledge
Technologies

Service-Service-
OrientedOriented

KnowledgeKnowledge
UtilityUtility

Evolution of
HPCN

Current
Grids

Grid Research - the ChallengeGrid Research - the Challenge
Complexity - Interoperability - Ease of Use - ...Complexity - Interoperability - Ease of Use - ...

Complex
Systems

Computing
 Architectures

Mobile
Services

Global
Computing

Evolution of
the Web

2

Information Society and Media Directorate-General – European Commission
Unit Grid Technologies

IST-Call 5 Grid Information Day - Brussels, 30 May 2005

Next
Generation

Grids

• E
nd

-u
se

r e
mpo

wer
men

t

• L
ife

-su
pp

or
t t

o b
us

ine
ss

 pr
oc

es
se

s

• Societal behaviour (millions of self-organising nodes)
• Computational semantics, ontologies, meta-descriptions
• Pervasive virtual organisations

• Continuously changing requirem
ents

• Grid services developm
ent environm

ents

Virtualisation

End
-U

se
r V

isi
on

Software Vision

Architectural Vision

Simplification Abstraction

““Next Generation Grid(s) - European Grid Research 2005 - 2010Next Generation Grid(s) - European Grid Research 2005 - 2010””, June 2003, June 2003
 ““Next Generation Grids 2 Next Generation Grids 2 –– Requirements and Options for European Grids Research Requirements and Options for European Grids Research

20052005––2010 and beyond2010 and beyond””, August 2004, August 2004

Next Generation Grid(s) Next Generation Grid(s) –– 3-fold Vision 3-fold Vision
Expert Group Reports:Expert Group Reports:

2

3

Information Society and Media Directorate-General – European Commission
Unit Grid Technologies

IST-Call 5 Grid Information Day - Brussels, 30 May 2005

WP 2005-2006WP 2005-2006
Advanced Grid Technologies, Systems and ServicesAdvanced Grid Technologies, Systems and Services

Application
Pull

Technology
Push

Network-centric Grid Operating Systems
Potential new fabric layer for future

distributed systems and services

Grid Foundations
Architecture, design and development of technologies

and systems for building the invisible Grid

Grid-enabled Applications & Services
for business and society

Research, development, validation and take-up of
generic environments and tools

Applications
e-business, e-health,

e-gov, e-learning
Environment

Advanced
Grid

Technologies,
Systems

and Services
A

pplication
Sector 3

A
pplication
Sector 2

A
pplication
Sector n

A
pplication
Sector 1

Budget :Budget : 62 M 62 M€€ (90%) (90%)

4

Information Society and Media Directorate-General – European Commission
Unit Grid Technologies

IST-Call 5 Grid Information Day - Brussels, 30 May 2005

Further Info on Grid ResearchFurther Info on Grid Research
•• Brochure: Brochure: ““Building Grids for EuropeBuilding Grids for Europe””

 FP6 Grid Project Fact Sheets, FP5 Grid Project Result Sheets

•• Expert Group ReportsExpert Group Reports
 “Next Generation Grid(s) – European Grid Research 2005 - 2010”, 2003
 “Next Generation Grids 2 – Requirements and Options for European

Grids Research 2005–2010 and beyond”, August 2004

•• FP5 FP5 GridstartGridstart ““IST Grid Projects Inventory andIST Grid Projects Inventory and
RoadmapRoadmap””

•• Brochure: Brochure: ““AchievementsAchievements of of EU Grid ProjectsEU Grid Projects””
•• IST Work IST Work ProgrammeProgramme 2005-2006 2005-2006 www.cordis.lu/istwww.cordis.lu/ist

and more:
www.cordis.lu/ist/gridswww.cordis.lu/ist/grids

ARTEMIS
The European Technology Platform for

Embedded Systems

Introduction to the
ARTEMIS Strategic Research Agenda

Eric Schutz
Vice President External Technology Coordination

STMicroelectronics

karsjod
08-

4

The ARTEMIS Technology Platform
Advanced research and technology in embedded intelligence and systems

Aim and scope
Develop and drive a joint European vision and strategy on
Embedded Systems

- R&D and educational challenges

- structural challenges: IPR, open source software, standards, research
infrastructure,…

Align fragmented R&D efforts in the ERA along a common
strategic agenda at Community, intergovernmental and
national levels

6

Connecting the physical
to the virtual world

Embedded Systems - what they are
Intelligent electronic devices

- contain a computing device, transparent to the user
- combine HW & SW
- part of larger non-computing system(s)
- resource constrained

Reactive to their environment
- “real-world” systems for control, perception and cognition

Networked
- Ad-hoc collaboration

7

Embedded Systems

Embedded Systems are everywhere
- cars, roads, bridges, tunnels, medical instruments,

surgical robots, homes, offices, factories, aeroplanes,
airports, mobile phones, phone networks, virtual reality
glasses, clothes, …

Interconnected into networks of many devices
- … but are not general-purpose PC’s, servers, etc…

Used in all market sectors
- automotive, aerospace, medical, environment,

communications, entertainment, textiles, transport,
logistics, printing, chemicals, food & drink, timber,
materials, agriculture, …

9

The ARTEMIS Vision

… An ongoing, major evolution of our society in which all … An ongoing, major evolution of our society in which all
systems, machines and objects will become digital, systems, machines and objects will become digital,
communicating and selfcommunicating and self--managedmanaged

Societal and economical consequences:Societal and economical consequences:
-- CompetitivenessCompetitiveness of most industry sectors will rely on ES innovation of most industry sectors will rely on ES innovation

capabilitycapability
-- ES technologies critically important in rebalancing ES technologies critically important in rebalancing Productivity GrowthProductivity Growth

between Europe and the US and Asiabetween Europe and the US and Asia
-- Security, Safety and Quality of lifeSecurity, Safety and Quality of life in our society will increasingly depend in our society will increasingly depend

on ES technologieson ES technologies

10

The ARTEMIS Vision

Europe takes a leading role in ES development
- Requires committed investment in research and

development
ARTEMIS will facilitate and stimulate success by:

- Avoiding fragmentation, ensure effective use of
resources

• Focused research and development

- Establishing an environment supportive of innovation
• Cooperation and competition in technological development

- Proactively stimulating the emergence of a new supply
industry

• Components, tools, design methodologies

11

Embedded Systems
New Paradigm, New Challenges

MPU

memory

I.O
MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

MPU

memory

I.O

MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

MPU

memory

I.O

MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

MPU

memory

I.O

MPU

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

DSP

memory

I.O

Single-processor
systems Proprietary,

Fixed-function
Multi-processor

solutions

Networked (ad-hoc,
opportunistic), reconfigurable

“processor ecosystem”

1980 - 90’s 2000 2010+

= Major technological complexity challenge
- How to maintain Europe’s lead in meeting this

challenge?

12

The ARTEMIS SRA

The ARTEMIS platform elaborates a Strategic
Research Agenda (SRA) around the vision to:

- Make Ambient Intelligence a reality
• Address the complexity problem

- Ensure competitiveness of European industries
- Create opportunities (knowledge, ecosystem, …) for a

New Industry to flourish

Subscribed to by Europe’s leading technology
companies and institutes

13

The ARTEMIS SRA Targets

To define a focused strategy, ARTEMIS set
High Level targets to be attained by 2016

- 50% of ES deployed worldwide based on ARTEMIS results
- Twice as many SMEs within the aegis of ARTEMIS engaged in

the ES supply chain
- Realise an integrated chain of European-sourced tools, to

support development of ES
- Achieve seamless interoperability between the envisaged

Ambient Intelligence environments
• At home, travelling, at work, in public spaces, …

- Generate at least 5 ‘radical innovations’
• Comparable to e.g. μ-processor, DSP, software radio, …
• The number of relevant patents will have doubled

14

The ARTEMIS SRA Targets
To meet these targets, ARTEMIS must
aim to close the design productivity gap

- Reduce cost of system design by 50%
- Achieve 50% reduction in development cycles
- Manage complexity increase of 100% with 20%

effort reduction
- Reduce by 50% the effort for re-validation and

re-certification
- Achieve cross-sectoral reuse

• E.g. automotive, aerospace and
manufacturing

Complexity Expectation

Capability

GAP

Time

15

ARTEMIS Application Contexts
Focus research on technologies with high re-

usability
Identified four, strategically significant “Application
Contexts”:
- Industrial systems

• Automotive: “Frugal, safe car”
• Aerospace: “Customisable, efficient, safe air transport ”
• Manufacturing & process Industries: “Efficient, flexible manufacturing”

- Private spaces: “Efficiency, safety and pleasure in the home”
• Includes Medical sector

- Nomadic Environments: “Walk, Talk, Hear, See”

- Public Infrastructure: “Secure and dependable environment”

16

ARTEMIS’ Pan-
Application-Context approach

Fo
un

da
tio

na
l s

ci
en

ce
 &

te

ch
no

lo
gy

Industrial

R
es

ea
rc

h
D

om
ai

ns

Application Contexts

M
ul

tid
om

ai
n,

 re
-u

sa
bl

e
in

no
va

tio
ns

an

d
re

se
ar

ch
 re

su
lts

Industrial Nomadic
Environ-
ments

Private
Spaces

Public
Infrastruc

-ture

Reference Designs & Architectures

Seamless connectivity, Middleware

System Design methods & tools

Common objectives:

Sustainability

Design Efficiency

Ease of Use

High added value

Time to market

Modularity

Safety / Security

Robustness

Competitiveness

Innovation

Cost reduction

Interoperability

ARTEMIS approach cuts barriers between application sectors,
stimulating creativity and yielding multi-domain, re-usable results

17

Identified RESEARCH DOMAINS

Reference designs and architectures:
- Create a generic platform and a suite of abstract

components
Seamless connectivity and middleware

- Interoperable link to the physical world
Design methods and tools: The ARTEMIS method

- Design efficiency, systematic design, productivity and
quality

Scientific foundational research
- provides the essential breakthrough ideas driving future

innovation

	Frontpage
	Programme
	Contents
	ARTES++
	Participants
	Mike Hinchey
	1 Motivation for Autonomic Computing
	2 What is AC
	3 Self-* properties
	4 Autonomic managers & elements
	5 New and emerging biological
	6 Examples from NASA
	6 Sensor network
	6 Hubble

	Invitation

	Chenyang Lu RT Issues in Wireless
	Posters
	John Håkansson Analysable Compnents
	Markus Adolfsson Architectures
	Fredrik Törner Design of Electrical
	Jianlin Shi, Project ModComp

	Dinner
	M.R.V. Chaudron CBSE
	What is a software component
	Multitude of Component Models
	Component platform
	Summarizing CBSE

	Jan Lindblad
	Distribution vs. Fault Tolerance
	Overwhelming complexity
	Execution Time Analysis

	Social activity
	Thiemo Voigt nad Joakim Eriksson
	Experimental Sensor Networking Research

	Karl-Einar Sjödin, The future for IT

	x: Utdrag för presentation 2005-08-19 av K-E Sjödin
	y: (ftp://ftp.cordis.lu/pub/ist/docs/artemis/eric_schutz.pdf)
	Text1: http://www.cordis.lu/ist
	Text2: http://www.cordis.lu/ist/grids

