August 15-19, 2005

HAgskolan i Skdvde

- www.artes.uu.se

Programme

- August 15, ARTES Tutorials of special industry interest

> 8.00 Registration in building G at room 110.

° 9.15 Tutorial: Autonomic Computing for Real-Time Systems,
Mike Hinchey, NASA Goddard Space Flight Center, USA

> 10.00 Break

> 10.15 Tutorial continues.

> 12 Lunch

- 13.15 Tutorial: Real-Time Issues in Wireless Sensor Networks,
Chenyang Lu, Washington University in St. Louis, USA

> 15.15 Break

> 15.30 ARTES Real-Time doctors presentations

= 15.30 Reliable Avionics, Kristina Forsberg, Saab Avitronics

- 16.00 H3kan Sivencrona, Mecel AB

> 17.00 Time to put up posters.

> 19.00 Dinner at Scandic Billingen, Tradgdrdsgatan 10.

- August 16-17, Real-Time in Sweden 2005

> 8th biennial SNART conference on real-time systems

+ August 18

> 8.15 Tutorial: Componenent-based Software Engineering & Design
Exploration, Michel Chaudron, Eindhoven University of
Technology, The Netherlands.

> 10.00 Break

> 10.15 Tutorial: Distribution and fault tolerance, two sides of the
same coin, Jan Lindblad, System Architect, Enea
Embedded Technology, Sweden.

> 12.00 Lunch

> 13.15 Tutorial: Execution time analysis, can itbe done? How to do?
Jan Lindblad, Enea Embedded Technology, Sweden.

> 15.00 Break

> 15-23 ARTES social activity at Lakd castel, boat trip to and
dinner at Navens light house.

+ August 19

> 8.15 Tutorial: Experimental sensor networking research,
Thiemo Voigt and Joakim Eriksson, Swedish Institute of
Computer Science, Sweden.

> 10.00 Break

> 10.15 Talk: The future for IT, Karl-Einar Sjédin,
Vinnovas unit for information and communication
research, participated in the report "Inspiration till
Innovation".

> 12.00 Lunch, end of summerschool.

- www.artes.uu.se

Contents

The 9:th ARTES summerschool

Programme

Content

ARTES++

Participant list

Autonomic Computing for Real-Time Systems, Mike Hinchey,
Real-Time Issues in Wireless Sensor Networks, Chenyang Lu,

Posters
1 Analysable Compnents, John Hakansson
2 Architectures for Logistics Telemetry Applications,
Markus Adolfsson
3 Design of Electrical Architectures for Safety Cases,
Fredrik Torner
4 Project ModComp, Jianlin Shi

Monday dinner

Componenent-based Software Engineering & Design Exploration,
Michel Chaudron,

Distribution and fault tolerance, two sides of the same coin,
Jan Lindblad,

Execution time analysis, can it be done? How to do?,
Jan Lindblad,

ARTES social activity

Experimental sensor networking research,
Thiemo Voigt and Joakim Eriksson,

The future for IT, Karl-Einar Sjodin

- www.artes.uu.se

ARTES++

ARTESH++ is a Swedish national graduate school in real-time and embedded
systems, supported by Swedish Foundation for Strategic Research (SSF). The
school is planned to operate from 2004 until 2007 with 20 students annually.
Today is 36 students provided support for international mobility, industrial stay,
and attending courses. Other activities include courses, an annual summer school
and an annual graduate student conference.

Courses fall 2005

«Advanced Real-Time Scheduling, HT'05, 5p.
Location: MdH, Vasteras.
*Forskningsplanering, HT'05, 3p.
Location: 1st workshop in conjunction with ARTES Summerschool in Skévde,
then at MdH in Vasterds. Time plan: 20/8, 26-27/8, and 14-15/11.
e Hardware/Software Codesign, HT'05, 5p.
Location: LIU, Linkdping.
¢ Introduction to Systems Thinking and its Application, HT'05, 5p.
Location: University of Skovde. Time plan: 6-8/9 and 18-19/10.
* Real Time Communication, HT'05, 5p.
Location: Halmstad University. Time plan: Sept. 13-14, Oct. 4-5, and Nov. 1-2

ARTES graduate student conference in spring 2006

Calls to appear
* Courses for 2006
* Invitation to Ph.D. students to apply to the ARTES++ programme for 2006

Applications and questions

should be sent by e-mail to info@artes.uu.se

Send letters to
ARTES
Box 337
SE 75105 Uppsala

Sweden

Markus Adolfsson
Mehdi Amirijoo
Martin Andersson
Anita Andler
Raul Barbosa
Carl Bergenhem
Marcus Brohede
Vicente Casanova
Michel Chaudron
Sigrid Eldh
AnnMarie Ericsson
Johan Erikson
Joakim Eriksson
Xing Fan

Elena Fersman
Kristina Forsberg
Roland Gronroos
Thomas Gustafsson
Sanny Gustavsson
Mike Hinchey
John Hakansson
Viacheslav Izosimov
Najeem Lawal
Niklas Lepisto

Jan Lindblad
Birgitta Lindstrom
Chenyang Lu
Gunnar Mathiason
Leonid Mokrushin
Robert Nilsson
Susanna Nordstrom
Anders Pettersson
Paul Pettersson
Anil Reddy
Jianlin Shi

Hakan Sivencrona
Karl-Einar Sjodin

Aleksandra Tesanovic

Fredrik ToOrner
Martin Torngren
Thiemo Voigt

Participants

Hogskolan i Halmstad
LinkOpings universitet

Lunds universitet

ARTES, Skovde

Chalmers Tekniska Hogskola
SP Electronics

Hogskolan i Skovde

Technical University of Valencia

Eindhoven University of Technology

Malardalens hogskola
Hogskolan i Skovde
Malardalens hogskola
SICS

Hogskolan i Halmstad
Ericsson AB

Saab Avitronics
ARTES, Uppsala
LinkOpings universitet
Hogskolan i Skovde

NASA Goddard Space Flight Center

Uppsala universitet
LinkOpings universitet
Mittuniversitetet
Mittuniversitetet

Enea Embedded Technology
Hogskolan i Skovde

W ashington University in St. Louis

Hogskolan i Skovde
Uppsala universitet
Hogskolan i Skovde
Malardalens hogskola
Malardalens hogskola
ARTES, Uppsala
Jonkoping University
KTH

Mecel AB
VINNOVA
LinkOpings universitet
Volvo Car Corporation
KTH

SICS

markus @x3-c.com
meham@ida.liu.se
martin.andersson@control.Ith.se
anita.andler@usa.net
rbarbosa@ce.chalmers.se
Carl.Bergenhem@sp.se
marcus.brohede@his.se
vcasanov@isa.upv.es
m.r.v.chaudron@TUE.nl
sigrid.eldh@mdh.se
annmarie.ericsson@his.se
johan.erikson@mdh.se
joakime@sics.se
xing.fan@ide.hh.se

elenaf @it.uu.se
kristina.forsberg@saabtech.se
Roland.Gronroos @it.uu.se
thogu@ida.liu.se
sanny.gustavsson@ida.his.se
mike.hinchey @usa.net
johnh@it.uu.se
viaiz@ida.liu.se
Najeem.Lawal@miun.se
Niklas.Lepisto@miun.se
jan.lindblad@enea.se
birgitta.lindstrom@his.se
lu@cse.wustl.edu
gunnar.mathiason@his.se
leom@it.uu.se
nilo@iki.his.se
susanna.nordstrom@realfast.se
anders.pettersson@mdh.se
paupet@it.uu.se
anilk_reddy3@yahoo.co.in
jlanlin@md.kth.se
hakan.sivencrona@mecel.se
Karl-Einar.Sjodin@vinnova.se
alete@ida.liu.se
ftorner@volvocars.com
martin@md.kth.se
thiemo@sics.se

COMB834J2 20004/05

=

utorial
Autonomic Computing in
Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

Overview

1. Motivation for Autonomic Computing in Real-Time Systems
2. What is Autonomic Computing?

3. Self-* properties

4. Autonomic Managers and Autonomic Elements

5. New and emerging biological metaphors

6. Examples from NASA Sensor Network applications

7. Another Example: HRSM

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 1

COMB834J2

(1) Motivation for
Autonomic Computing

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

The goals of the IT industry over the last
20 years:

Goal #1: Improve performance

Goal #2: Improve performance

Goal #3: Improve cost-performance

-

v

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

COMB834J2

What big crisis is likely to hit the
computer industry ?

The main concern to further progress in the
information technology industry:

That Moore’s law cannot continue to hold

i.e. that processing power will
double every 18-24 months «.3

Breathtaking Statistics

 Price to Performance ratio doubles every 18
months = 100 fold increase per decade.

» Performance improvements in the next 18
months = all performance improvements to date.

* New processing power = sum of all previous
processing power.

* New storage = sum of all available storage ever.

J.N. Gray, Turing Award Lecture, 1999

http://www.infj.ulst.
http://odl.ulst.ac.uk

ac.uk/~roylcom834 &

20004/05

COMB834J2 20004/05

Problem

« Assumptions of continuous improvements
in system development, that meet our
ever more complex requirements.

» Pervasiveness of software, and our
growing reliance on it.

Flawed Assumptions

* Human beings can achieve perfection; they can
avoid making mistakes during installation,
maintenance and upgrades.

» Software will eventually be bug free; the
emphasis of industry has been to hire better
programmers; the emphasis of academia to train
better Software Engineers

« MTBF is large (>100 years) and will continue to
grow.
* Maintenance costs are a function of hardware

costs.
Patterson and Brown, 2001

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 4

COMB834J2 20004/05

Software Lags behind Hardware

99.9999%

Telephone sysiem_s I

99.939%

99.93%

Availability

99.9%

Mohile phones
99%

‘Y
e
\.

Internet
9%

1950 1960 1970 1980 1990 2000

The real crisis ...

e Rather, it is the IT industry’s exploitation
e of the technologies in accordance with
""‘; Moore’s law that has led us to the verge
- of a complexity crisis...

By 2010, around 200 million IT workers

@ — the working population of the USA —
will be required to keep computer
systems running.

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk S

COMB834J2

The problem is complexity .
A Schematic of HotMail

» ~7,000 servers
* 100 backend stores

« Links to -.
_ Passport Local Director|
— Ad-rotator .—-
— Internet Mail gateways st .

+ ~ 1B messages per day
* 150M mailboxes, 100M active
+ ~400,000 new per day.

Jim

LMor.i
with 120TB (cooked) -l ‘
® 3 data Centers Local Director| g

Local Director

F

Telnet Management

Gray's talk: “D; in the Internet Era”

Microsoft.com Network Diagram
=

The problem is complexity ...
One of the Data Centers (500 servers)

C‘anyon Park Data Center

Jim

Gray's talk: “D; in the Internet Era”

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

COMB834J2

Complexity

Any intelligent fool can make things bigger

and more complex ... It takes a touch of

genius and a lot of courage to move in the
opposite direction.

Albert Einstein

Conquering Complexity

Today, “complexity” is a word that is much in

fashion We have learned very well that many of
the systems that we are trying to deal with in our
contemporary science and engineering are very
complex indeed. They are so complex that it is
not obvious that the powerful tricks and
procedures that served us for four centuries or
more in the development of modern science and
engineering will enable us to understand and
deal with them...

Herbert A. Simon

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

COMB834J2 20004/05

Conquering Complexity

... We are learning that we need a
science of complex systems and we
are beginning to develop it.

Herbert A. Simon

% Please raise your hand if you ever...

« trouble connecting to a wired or a wireless network at another work location, hotel
or switching from home to work (even with DHCP)?,

* lost a working connection and shouted across the office has anyone else’s
network connection gone?,

* have gone into the IP settings area in Windows and been confused about the
correct settings?,

» had a PC which would no longer booted and needed major repair or re-
installation of the OS?,

* had a hard-disk crash?

When you consider how many users could honestly be back up and running
(with all applications and data) in less than a days work after a hard disk crash or
could completely migrate to a new PC in less than a day highlights the indirect
(often unaccounted) costs of managing personal computing...

panig, gan 2003

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 8

COMB834J2

Total Cost of Ownership

Worldwide I/T Spending

Network
20.0%

\
Server &“u“
Storage
30.0%

2000 2001 2002 2003 2004 2005
IDC, June, 2001

People costs in 2000 is about
1% of the WW economy

Distribution of TCO Costs

Client

Bantz, Jan 2003

Client computing TCO — direct costs

Average cost per desktop seat $100-180/month (org. w/ > 5000 employees)

Annualized Distributed Computing Cost
SI/W Dist. _

2.4% Help Desk
IMAC i T 16.7%

14.3% E-Mail
Management T 4.8%
6.0% Asset Mgmt
T 48%

Server/Lan Maint.

0
13.1% _ On-Site Support

H/W Maint. 17.9%
9.5% Infrastructure

- 10.7%

I Help Desk

[E-Mail

I Asset Mgmt

[on-site Support
M Infrastructure

l H/W Maint.

W server/Lan Maint.
B Management

I ImAC

[s/w Dist.

Bantz, Jan 2003

http://www.infj.ulst.ac.uk/~roy/com834 &

http://odl.ulst.ac.uk

20004/05

COMB834J2

Client computing TCO — indirect costs

Indirect Costs of client computing (in hours/month of end user time)

(205.2 hr./yr @ $50/hr. = $10,260)

Development of Personal Applications

Downtime
File & Data Management _ T 04
1.4

Formal Learning

o7 M %

_ Peer Support
7.9

Casual Learning & Self-support
5.7

[Peer Support

[] casual Learning & Self-support

[l Formal Learning

] File & Data Management

[l Development of Personal Applications
Il Downtime

source: Gartner Group

Bantz, Jan 2003

The sources of data loss

Incident rate is approx. 6% of devices per year

Causes of Lost Data

_ Hardware Destruction
Theft _ 3.0%
9.0%

ComputerDViruses _
6.0% _ Hardware Failure ;Hardware Failure

0 Human Error
B Software Corruption
B Computer Viruses
B Theft
™ Hardware Destruction

Software Corruption _ P
13.0%

Human Error _
29.0%

source: "The Cost of Lost Data" by David Smith, Pepperdine Univ.

Bantz, Jan 2003

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

10

COMB834J2

The Legacy...

» TCO and complexity - the legacy of;
* Downsizing?
* End user computing (EUC)?

* Global Economy?

(2) What is
Autonomic Computing

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

http://www.infj.ulst.
http://odl.ulst.ac.uk

ac.uk/~roylcom834 &

20004/05

11

COMB834J2

Definitions

au-to-nom-ic (awts ndbmmik)
adj.
Physiology.

— Of, relating to, or controlled by the autonomic nervous
system.

— Ocecurring involuntarily; automatic: an autonomic reflex.
. Resulting from internal stimuli; spontaneous.

au-ton-o-mic-i-ty (awts ném i sittee)
n.
. The state of being autonomic.

Definitions (2)

au-ton-o-mous (aw tbnnemas)
adj.

* Not controlled by others or by outside forces; independent: an
autonomous judiciary; an autonomous division of a corporate
conglomerate.

* Independent in mind or judgment; self-directed.

— Independent of the laws of another state or government; self-
governing.

— Of or relating to a self-governing entity: an autonomous
legislature.

— Self-governing with respect to local or internal affairs: an
autonomous region of a country.

* Autonomic.
[From Greek autonomos : auto-, auto- + nomos, law]

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

12

COMB834J2

Autonomic Computing —

Biological Inspiration
Autonomic Computing, launched by IBM in 2001, is emerging as a
valuable approach to the design of effective computing systems.

”) The autonomic concept is inspired by the human body's autonomic
S nervous system.

sympathetic (SyNS) parasympathetic (PaNS)

Computer Software Systems
are Not Self-Managing

NASA Satellite Support ~ Best Case

| . il

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

13

COMB834J2 20004/05

(3)
Self-* properties

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

Autonomic Systems —
Selfware & self-* properties

— OBJECTIVES SELF CONFIGURING
SELF HEALING
Se Self-
SELF OPTIMISING L
what SELF PROTECTING
Self- Self-
SELF * Optimizing = Protecting
AUTONOMIC _|
COMPUTING
Sensors +—~_Effectors
SELF * Auton"‘I i@ ent
‘v
how SELF AWARE Analy>e-—%an
ENVIRONMENT AWARE)
Monitor xecute
SELF MONITORING Kxouledge
==
L ATTRIBUTES SELF ADJUSTING Sensors \={Aiffectors |

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 14

COMB834J2

Autonomic Computing —
Other Emerging self-* properties

« self-anticipating,
* self-adapting,
« self-critical,

« self-defining,

« self-diagnosis,
* self-governing,
« self-installing

« self-organized,
« self-recovery,
* self-reflecting,
« self-simulation
« self-stabilizing

Self-managing :
(wo)man in the loop?

* self-*
All positive? Issue : Trust
* selfish © Unexpected emergent behaviour

Race conditions efc.

Self-* properties

self-*
Self-managing properties.

self-anticipating
The ability to predict likely outcomes or simulate self-* actions.

self-assembling

Assembly of models, algorithms, agents, robots, etc.; self-assembly is often influenced
by nature, such as nest construction in social insects. Also referred to as self-
reconfigurable systems.

self-awareness

“Know thy self’; awareness of internal state; knowledge of past states and operating
abilities.

self-chop
The initial four (and generic) self-properties (Self-Configuration, Self-Healing, Self-
Optimisation and Self-Protection).

self-configuring
The ability to configure and re-configure in order to meet policies/goals.

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

15

COMB834J2

Self-* properties

self-critical

The ability to consider if policies are being met or goals are being achieved (alternatively,
self-reflect)

self-defining
In reference to autonomic event messages between Autonomic Managers: contains data
and definition of that data—metadata (for instance using XML).

In reference to goals/policies: defining these (from self-reflection, etc.).

self-governing
As in autonomous: responsibility for achieving goals/tasks.

self-healing
Reactive (self-repair of faults) and Proactive (predicting and preventing faults).

self-installing

As in a specialized form of self-configuration — installing patches, new components, etc
or re-installation of OS after major crash.

self-managing
Autonomous, along with responsibility for wider self-* management issues.

Self-* properties

self-optimizing
Optimization of tasks and nodes.

self-organized
Organization of effort/nodes. Particularly used in networks/communications.

self-protecting
The ability of a system to protect itself.

self-reflecting

The ability to consider if routine and reflex operations of self-* operations are as
expected. May involve self-simulation to test scenarios.

self-similar

Self-managing components created from similar components that adapt to a specific
task, for instance a self-managing agent.

self-simulation
The ability to generate and test scenarios, without affecting the live system.

selfware
Self-managing software, firmware and hardware.

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

16

COMB834J2 20004/05

@)
Autonomic Managers &
Autonomic Elements

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

Autonomic Computing —
The Autonomic Element

SELF CONFIGURING

AE = MC+AM

SELF OPTIMISING

— OBIECTIVES

. Autonomic Element (stationary agent or other)
what "Reflestionye

Managed Component

> N\
Autonomic Manager
AUTONOMIC _|
ICOMPUTING
Self-Aware M
co S e M,
how [ENWirQRmMENt- m ﬁ&gww
Aware Reflex Signal
ENVIRONMENT AW E <
SELF MONITORING —— — I
— ATTRIBUTES: SELF ADJUSTING

Autonomic Communications Channel

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk 17

COMB834J2

Autonomic Computing —
The Autonomic Manager

Autonomic Element (stationary agent or other)

Reflection
Managed Component
> N\
Autonomic Manager
| Self-Monitor | | Self-Adjuster |

Self-Aware

==

_/

Environment-

Aware

L oo
"l NITOWICUytT

AdantarL-nt
~naapter7priannet

Environment-
Monitor

| |AM SAM Commal

Reflex Siénal’

20004/05

) m—

P ——

Autonomic Communications Channel

Autonomic Computing —
The Autonomic Environment
AE AE AE
MC MC McC
/7NN T 7\
[~ [| —— [~
AN —m—@— AN
7 i 7
i O
77y 77Xy 7
Il] .
© s 00 «—> S w —»s ° 5 s s
c) s* s s 5‘5 .
Autonomic Communications Channel
Key
S* Self* event messages AE Autonomic Element (AM+MC)
MC Managed Component
AM y agent)
@ Autonomic Agent (Mobile agent)

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

18

COMB834J2

| Sensors J| ! Effectors |

Autonomic Elenient

Analyze| |Plan

Monito Knowiedge xecut

N) /
| Sensors — Effectors |

IBM’s View

An autonomic element
contains a continuous
control loop that monitors
activities and takes actions
to adjust the system to meet
business objectives

Autonomic elements learn
from past experience to build
action plans

Managed elements need to
be instrumented consistently

IBM — AC Blueprint 2003 & Ganek, AMS 2003

- They manage themselves

space ”

Autonomic Database “I'need to allocate
some additional table

How Do We Make Components Autonomic?

- Autonomic elements have two management tasks

- They manage their relationships with other
elements through negotiated agreements

Autonomic Storage Array

> oy

l_\-{_ 4 “I am reallocating [>
storage and
moving the
information”

Ganek, AMS 2003

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

19

COMB834J2

Autonomic features

Autonomic control loops:
next step evolution

USER

RESPONS

E TIME

BUSINESS
SLA
POLICY
AVAIL.
> RESOURCE

\A
U6
' if; \“@ ' /
I

Local view

Global environment view and

knowledge

Ganek, AMS 2003

Sensors

Monitor

Effectors

Policy Validations
Policy Resolution

Analyze

Plan
Policy Transforms

Execute

Recent Activity Log

Simple Correlators Service Dispatcher
Metric Managers Knowledge Scheduler Engine
IM, | Distribution Engine

Policy

N\

/

IBM — AC Blueprint 2003

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

20

COMB834J2

@ Putting It All Together — An Example

Systems can go from steady state

e® e
€ € " to overloaded without
warning

Web

Servers

T X
% % % Ap=*--*>n _Dataand
Few ’ | ’%. 1 Transactlon/
minutes ®

&y, =
G-

later...

%

Ganek, AMS 2003

@ Autonomic Computing: Dynamic Surge
Protection

Analyze
Forecaster' (Perf Modg

Execute
Knowledge (Controller)

Sensor

Element

Driver
(simulates

Inte I:
Surge
Button

Database

Ganek, AMS 2003

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk

20004/05

21

COMB834J2

(53 surge [l
| swpe |

-} HRdlient inspector
Bean Edit Data View Options Help

1. Steady State

#Active Servers

#WAS.

ok

%:§ HRdlient inspector:1 =

Bean Edit Data View Opfions Help

oi

B8OPS

oActualBOPS |

Predicted BOPS

Bean Edit Data View Options Help

O

Seconds

Response Time

anek, AMS 2003

_lojxl

2. Monitor, Detect Surge

| swpe |
-1 HRdlient inspector
NuIDYWAsN
2 -)
:1 #Active Servers 1
L
o e
TIME
Bean Edit Data View Options Help
: 1
A [
g n
¢ o -Actual BOPS
1
Predicted BOPS N_ae
HRdlient inspector:2. -
Bean Edit Data View Options Help 'R
Driver Responsef
Response Time J/
]
Ganek, AMS 2003

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk

20004/05

22

COMB834J2

=lojx]

3. Forecast, Provi

Edit Data View Options Help

sion Servers

#WAS.

#Active Servers

5

o

[|
Bean Edit Data View Options Help
Drrrz nARlBoFs
i /"’\,—-,
1 1 e
g T 7
¢ o Actual BOPS v
| I
=
Predicted BOPS [

| HRclient inspector:2 I

Bean Edit Data View Options Help

DrLr Resnnr!a Time

Seconds

Response Time I

LA

TIME

anek, AMS 2003

(58 surge Sl
| swpe |

4. Monitor, Remove Servers

273 4 =
IAmDVWAI%ndes I
I
| #Active Servers 1 1/ L \
L L L
; =1 | 7
TIME
1 | ~Iolx]
Bean Edit Data View Options Help
: DI vandAFfBOPS /_’\’-I\
1 1 [\ A
g 1 I_/“M 1
° o-Actual BOPS
3 | D= ¢ | SR
=== ! e
Predicted BOPS L | LS
=13
Bean Edit Data View Options Help
DIJGVRESFE'SETV\'\! I
I 1 |
L1, |
" | Response Time J)J M
¥ =

http://www.infj.ulst.ac.uk/~roy/com834 &
http://odl.ulst.ac.uk

nek, AMS 2003

20004/05

23

COMB834J2 20004/05

(5) New and emerging
biological metaphors

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

Reflex and Healing

A concept inspired by biological systems is the dual approach of
reflexes and healing. Animals have a reflex system, where the
nerve pathways enable rapid response to pain.

Reflexes cause a rapid, involuntary motion, such as when a hot
surface is touched.

The effect is that the system reconfigures itself, moving away from
the danger to keep the component functioning.

On a much longer timescale, the body will heal itself.
Resources from one part of the system are redirected to rebuild the
injured body part, including repair of the reflex response network.

Source: Bapty et al, ECBS 2003

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 24

COMB834J2 20004/05

""
[!j Autonomic Element & Autonomic Computing Environment
[)

Autonomic Element (stationary agent or other)

| Managed Component |

>
Autonomic Manager
| Self-Monitor | | Self-Adjuster |

Self-Aware I Q //

K tad, Adapter]t
-l Knowiedge r Iruaplvl‘r p.anuc.[

Environment- //-Xf
A "
ware Environment | WAMComrr | Reflex Signal
Monitor | > |
- —) m—
=NV,

Autonomic Communications Channel / |

m Embedded Systems :

< » Heart-Beat Monitoring (HBM)

The typical approach for system management is based on events which are
generated and sent under fault or problem conditions.

In the embedded system space the opposite is typically the case.
A system management action occurs when something does not occur.

An example is the fault tolerant mechanism of a heartbeat monitor (HBM),
through a combination of the hardware (the timer) and software (the heartbeat
generator) an ‘I am alive’ signal is generated periodically to indicate all is well
The absence of this signal indicates a fault or problem. Some embedded
processors have a hardware timer which, if not periodically reset by software,
causes a reset/restart. This allows a particularly blunt, though effective,
recovery from a software hang.

This approach offers the advantage that through continuous monitoring
problem determination becomes a proactive rather than a reactive process.

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 25

COMB834J2

A similar concept used by y A
NASA is the Beacon monitor, '
deep space craft send back a —

signal containing a urgency level \,j\]%

tone i~
Nominal All functions as expected no need to downlink.

Interesting Interesting — non-urgent event. Establish comms when convenient.

Important Comms need to take place within timeframe or else state could
deteriorate.

Urgent Emergency. A critical component has failed. Cannot recover
autonomously and intervention is necessary immediately.

No Tone Beacon mode is not operating.

Pulse Monitoring (PBM)

The HBM only informs if a process is alive or dead
(assuming comms working)
— not the processes actual health or state of being.

PBM = HBM + Beacon urgency concept

With a pulse monitor instead of just checking the presence of a beat,
the rate or tone within the beat would also be measured.

This can give a quick measurement as to the state of health of a
process.

= =

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

26

COMB834J2

m PBM — a mechanism for autonomicity
(= 3

The concept of incorporating a pulse monitor to provide
- a reflex reaction for indicating the ‘health’ based on vital signs

- providing dynamics within autonomic responses
and multiple loops of control;

- some slow and precise (normal event message channel)

- others fast and possibly imprecise (PBM)

g =

Autonomic Computing —
The Autonomic Environment

| am healthy

mc 9 -
7ah 4P S N B7a\

oY © @
. O
[/ [/ 3 3
=) = =
N\ 7 7
s s I\ s s
s* —> —> S .
© «—" s . 5 s
@ s S s S .
S
Autonomic Communications Channel
Key
S* Self* event messages AE Autonomic Element (AM+MC)
Q - Pulse Monitor (PBM) mc Managed Component
\ Heart-Beat Monitor (HBM) AM A ic M ionary agent)
@ Autonomic Agent (Mobile agent)

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

27

COMB834J2

Apoptosis —
returning to Biological metaphors

if you cut yourself and it starts bleeding...

- often, the cut will have caused skin cells to be displaced down into muscle tissue
- if they survive and divide, they have the potential to grow into a tumour

- the body’s solution to dealing with this is cell self-destruction

- with mounting evidence that cancer is the result of cells not dying fast enough,
rather than multiplying out of control

- Itis believed that a cell knows when to commit suicide because cells are

programmed to do so T T
e :\.
- i.e. self-destruct (sD) is an intrinsic property. ,/'/ "w O _\
g0 O |
) J
O O O/

Apoptosis —
returning to Biological metaphors
- this sD is delayed due to the continuous receipt of biochemical reprieves.
- this process is referred to as apoptosis,

- meaning ‘drop out’,
(used by the Greeks to refer to the Autumn dropping of leaves from trees);

- i.e., loss of cells that ought to die in the midst of the living structure.
- the process has also been nicknamed ‘death by default’,

- where cells are prevented from putting an end to themselves

due to constant receipt of biochemical ‘stay alive’ signals T Tl
mP O
; \
 J70 O |
\ J
O O O

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

28

COMB834J2

Self-protection & Trust

Security issues with Agents

Greenburg (1998) highlighted the situation simply by recalling the situation
where the server
omega.univ.edu was decommissioned

- its work moving to other machines.

- When a few years later a new computer was assigned the old name,

- to the surprise of everyone email arrived, much of it 3 years old.

- the mail had survived ‘pending’ on Internet relays waiting for
omega.univ.edu to come back up.

The same situation could arise for mobile agents;
these would not be rogue mobile agents —
they would be carrying proper authenticated credentials.

The mobile autonomic agent could cause substantial damage,

e.g., deliver an archaic upgrade (self-configuration)

to part of the network operating system resulting in bringing down the entire
network

é Self-protection & Trust

self-destruct property a solution?

Generally the security concerns with agents

- misuse of hosts by agents (accidental)
- accidental or unintentional situations caused by that agent
(race conditions and unexpected emergent behavior)

- misuse of agents by hosts, (accidental or deliberate)
- misuse of agents by other agents. (accidental or deliberate)

- the latter two through deliberate or accidental situations caused by
external bodies acting upon the agent.

- the range of these situations and attacks have been categorized as:
damage, denial-of-service, breach-of-privacy, harassment, social
engineering, event-triggered attacks, and compound attacks.

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

29

COMB834J2 20004/05

é Self-protection & Trust
self-destruct property a solution? (cont,)

In the situation where portions of an agent’s binary image e.g.,
monetary certificates,
keys,
information, etc.

are vulnerable to being copied when visiting a host,
this can be prevented by encryption.

Yet there has to be decryption in order to execute,
which provides a window of vulnerability.

This situation has similar overtones to biological apoptosis,
where the body is at its most vulnerable during cell division.

Autonomic Computing —
The Autonomic Environment inc self-
destruct

| am healthy

K s* S
Stay alive s s
Autonomic Communications Channel
Key
S* Self* event messages AE Autonomic Element (AM+MC)
Q =\~ Pulse Monitor (PBM) mc Managed Component
\ Heart-Beat Monitor (HBM) AM A ic M ionary agent)
© Autonomic Agent (Mobile agent) & © Autonomic Agent Apoptosis Controls

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 30

COMB834J2 20004/05

}

=}

(6) Examples from

NASA Sensor Network
applications

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

Challenges

* NASA has set far-reaching autonomy goals for
ground-based and space-based systems.

— More reliance on “intelligent” systems and less on
human interventions characterize its autonomy
goals.

* Goddard has a leading role in the development
of agent-based systems to realize NASA’s
autonomy goals.

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 31

COMB834J2

LOGOS

Lights-Out Ground Operations
System

—a proof-of-concept system that used a
community of autonomous software agents

—Agents cooperated to perform functions
previously performed by human control
center operators.

An Overview of LOGOS

Spacecraft

!

Control n
Center LOGOS Paging
Log System

1 4 4

GenSAA/ ¥

Genie Log SysMM FIRE Pager
] I/F Agent Agent Agent I/F Agent

!

GenSAA/
GensAA | [. User LOGOS
Data Server { l‘?’ff/‘;gem AGENT COMMUNITY { iF Agent } Ul [e— USER

(MOPSS DB I/F Archive VisAGE
MOPSS |« ‘\I/F Agent Agent I/F Agent I/F Agent

A [4
I:l = External Y ‘ ‘

System "
VisAGE

D) -haent (0GOS °

DB
= Data
Archive

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

32

COMB834J2

LOGOS

Self- Self-healing Self- Self-protecting
configuring optimizing
LOGOS self LOGOS self- LOGOS self- LOGOS self-
configures when | heals by optimizes itself protects in a very
it gets informed providing through the limited fashion.
that a spacecraft | solutions to process of An element of
pass is aboutto | anomalous interacting with a | self-protection is

occur.

situations in the
s/c component of
itself and through
human
intervention.

human operator
in dealing with a
problem that it
cannot initially
handle.

the
authentication of
its users.

@/ NASA Space Exploration Missions

» Future space missions will require cooperation between multiple
satellites/rovers/craft for e.g.

ANTS (Autonomous Nano-Technology Swarm)

* Developers are proposing intelligent, autonomous swarms to do

new science

* Swarm-based systems are highly parallel and nondeterministic

» Testing these systems using current techniques will be difficult
to impossible

» This raises issues for self-protection of system (mission) goals,

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

33

COMB834J2

ANTS Space Exploration Missions

The ANTS architecture is itself inspired by biological low level
social insect colonies with their success in the division of labor.

Within their specialties, individual specialists generally outperform
generalists, and with sufficiently efficient social interaction and
coordination, the group of specialists generally outperforms the
group of generalists.

Thus systems designed as ANTS are built from potentially very
large numbers of highly autonomous, yet socially interactive,
elements.

The architecture is self-similar in that elements and sub-elements of
the system may also be recursively structured as ANTS

ANTS Space Exploration Missions

Targets for ANTS-like missions include surveys of extreme
environments on the

— Earth,

— Moon,

— Mars, as well as

— asteroid,

— comet,

— or dust populations.
The revolutionary ANTS paradigm makes the achievement of such
goals possible through the use of many small, autonomous,
reconfigurable, redundant element craft acting as independent or
collective agents

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

34

COMB834J2

4

4

IR
worker

Aster0|d belt

Aster0|d(s)
Workers ® ;, Messengers

ANTS Mission

Rulers

,a

Workers Workers

X-ray worker e

Lagrange point

habitat

. } Earth
5

Spectrometer

Gamma Ray Worker
o~ / \

Self-Directed Exploration

Magnetometer
Worker

IR/V/UV

X-Ray Worker

Radio Ranging

Spectrometer

Messenger

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

35

COMB834J2 20004/05

ANTS MISSION

Prospecting Asteroid Mission

Encounter Architecture \ ASTEROID
Coordinated & ' i Escape
Synchronized Terminator .g \p . S
Observations follower : 4 \
Dayside/Nightside N

/

Opportunistic
observations

Hovering over Orbit/Hover
Sub-solar Point Insertion
HOVERING ORBITS
ARE MOST IMPORTANT \
2003-0604 NASA/RASC ANTS M. Rilee, P. Clark, L-3; S. CMWASA/GSFC

Difficulty of Testing Swarms

* Emergent properties that may not be known

* Highly distributed and parallel

» Large number of interacting entities

* Worse than exponential growth in interactions

» Intelligent entities (capabilities increase over time)
* Total or near total autonomy

* What if things do go wrong?

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk 36

COMB834J2

Autonomic Apoptosis in NASA Missions?

With NASA missions we are not considering a generic situation.
Mission control and operations is a trusted private environment.
This eliminates many of the wide range of agent security issues

Leaving the particular concerns;

— is the agent operating in the correct context
— and showing emergent behavior within acceptable parameters?

Autonomic Apoptosis in NASA Missions?

Suppose one of the worker agents was indicating incorrect operation,
or when co-existing with other workers was the cause of undesirable
emergent behavior, and was failing to self-heal correctly.

That emergent behavior (depending on what it was) may put the scientific
mission in danger.

Ultimately the stay-alive signal from the ruler agent would be withdrawn.

If a worker, or its instrument, were damaged, either by collision with
another worker, or (more likely) with an asteroid, or during a solar storm, a
ruler could withdraw the stay-alive signal and request a replacement
worker.

Another worker could self-configure to take on the role of the lost worker;
i.e., the ANTS adapt to ensure an optimal and balanced coverage of tasks
to meet the scientific goals.

If a ruler or messenger were similarly damaged, its stay-alive signal would
also be withdrawn, and a worker would be promoted to play its role.

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

37

COMB834J2

Self-Aware Environment-Aware
ANTS ANTS
DS1 Self-Optimizing
Self-Protecting
DS1
ANTS ANTS
Self-Monitor HRSM HRSM Self-Adjust

(6) Another Example
Hubble Robotic
Servicing Mission

Tutorial
Autonomic Computing in Real-Time Systems

Roy Sterritt & Mike Hinchey
‘B r.sterritt@uilster.ac.uk “& michael.g.hinchey@nasa.gov

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

38

COMB834J2

Solution

» Requirements Based Programming
— Tractability from Requirements all the way

through to code

— Builds on an MBD approach by providing a

“front end”

— Our contention is that RBP should be formal

Requirements to Design to Code

—

Requirements (reversed)

expressed as

scenarios
Mathematical
laws of
concurrency

Models

—

Existing code
generating tools

T

Code

Existing model
extraction (reverse
engineering) tools

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

39

COMB834J2

Requirements To Design To Code

* This new method (R2D2C) provides

mathematically tractable development of
systems with provable correctness

Automated translation of requirements into a
provably correct system

The practicality of the approach is assured
because it is transparent and based on
requirements expressed as scenarios — an
approach familiar to engineers

Benefits of the Method

Automation of entire development process
Significant increase in quality

Ability to do formal proof on properties of
implementations

Ability to do formal proof of correctness
Automated means for requirements analysis

Guaranteed correspondence between
requirements and their implementation as code

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

40

COMB834J2

Applications

End-to-end automatic code generation of
provably correct systems

Automatic reimplementation after any
requirements change

Exploiting re-use across platforms

Reverse engineering legacy systems to a
mathematically sound model

Analysis and documentation of existing systems
(e.g., expert systems)

Re-engineering of legacy systems to a provably
correct new implementation

HRSM Procedures

2 WFC3_mod_0121. doc - Microsoft Word

Edt Vew Inseit Fomak Tooks Toble Wndow Help AdobsPDF Acobet Comments
= RENRE RV <N B S 9 ﬁ)jm% = @] diResd [Nomal + Hebve - 8

Page | Sec 1 410 AL i Coll Engish (U.S

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

41

COMB834J2

HRSM Procedures

2 WFC3_mod_0121. doc - icrosoft Word
fHe Edt Vew [nset Fomet Jook Toble Window Help AdobePDF Acrobat Comments
HRN=A" NI NN A AP . S ARG RN Y=

Type 2 questionfor el %) X
100% + @ | diRead ajwmmgmm.a .\;E\Lj

L1]

Snaglt 11| window

: o
A a WFC3'Installations Cl
i GA DR-28

T [Corocetel] TS

Hoolcaddy.]
~+ WWFC3-Taok Caddy-(GrounSirap Tool, Connector Tool, Stabilzation Took (remainsinHST-FR27), Socket Extension Taokre
oL L WERCD inerface Pite), Harmess Took (remains o ECU hamess)
1WFPC2 Interface Pltef

y WEPC2,WFC3,
HST S48 postionectat 0°andsun along V1 s
— w x
N = = Start-of-Day-1m =
5 0010000 | Deily GAIDR: Power Up andCheckout (00 15)x Deify GAIDF: Power Uyt Checkout-(0015)% sl GAIDR Porier Up and Chet
X <~ TEDlasksx tasksw + —» TBDtasksx
: L ®
T | (eromlgono | (scomn: €3 Tool Cadh ol (scohumn (etrieve WEC3 ToolC
015x ey
©1:33 Jcohmn v @1:33)Jcokamn 2y ©1:33)Jcoumn] row e
— x
- (eronly | (<coumn [command Enttoot stowage doce Jromrh
open [coamn vl
— x
N (eronlx -+~ (ccolum [Reease Brakes- (0p0n Jcolum »Jx Jrow ks
(eronlx « = (zcohumn aneuver o Enttootstowae row =
M locetion-(00:10) cokamn °
x
(oronl « — [column (et Frase..cnmty Icolumn vy ronhe M
=s@=w< >
Page | Sec 1 2L AL Ini col2 Engish (U.S

XML Document

icrosoft Internet Explorer

File Edit View Favorites Tools Help

&) \ﬂ @ 7;\1 /.“Seavch i‘:{Favontes & R 77] ~ J ﬁ ‘3

@M:\WFG_mod_ma_z.xml v Gu Links > &~ @ snaglt [

<?xml version="1.0" encoding="UTF-8" standalone="no" 7>
- <procedure Ins="http://deimos.cs.vt.edu/nasa/table">
Assumptions: Not first robotic servicing task ECU harness connection needs to be made after WFC3
installation (for thermal protection) 1 tool caddy: WFC3 Tool Caddy (Ground Strap Tool, Connector Tool,
Stabilization Tool (remains in HST FR27), Socket Extension Tool (remains attached to WFPC2 Interface
Plate), Harness Tool (remains on ECU harness)) 1 WFPC2 Interface Plate Sun-Protection required for
HST WF cavity, WFPC2, WFC3, and any EM open bays HST SAs positioned at 0o and sun along -V1
axisStart of Day 1001:00:00Daily GA/DR Power Up and Checkout {(00:15)Daily GA/DR Power Up and
Checkout (00:15)Daily GA/DR Power Up and Checkout (00:15)TBD tasksTBD tasksTBD tasks
- <row time="001:00:15">
001:00:15
<column>Retrieve WFC3 Tool Caddy (01:33)</column=
<column>Retrieve WFC3 Tool Caddy (01:33)</columnz
<column>Retrieve WFC3 Tool Caddy (01:33)</column=
</rows
- <row>
<zcolumn=Command EM tool stowage door open</column:=
</row>
- <row>
<column:>Release Brakes (00:01)</column:
</frows
- <row>

~

£3

g’] Done :ﬂ My Computer

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

42

COMB834J2

g W o

o

21:
22:
23:
24:
31:
43:
46:

Natural Language Input for
R2D2C

<retrieve>(wfc3_tool caddy)

<command> (em_tool_ stowage_door)

<release> (brakes)

<maneuver>(, <to> em tool stowage location)
<set> (brakes)

<install>(wfc3_tool caddy, <at> hst worksite)
<release> (brakes)

<maneuver>(, <to> hst _wfc3 tool caddy stowage location)
<command> (em_tool_ stowage_door)

<set> (brakes)

<install>(stabilization_tool, <in> hst fr27)
<retrieve>(wfpc2 interface plate)

<release> (brakes)

[@R2D2C: HST Example One.
File Edit Tools Help

Compile Run | View

fﬂiaiﬁ'rélffgrmm; input | Requir it Design Code }?estin |

GA sends brakeset.
DRone receives brakeset then sends brakerelease then sends stabilize then sends brakeset.
DRtwo recenves hrakeset then sends wfctoolaguire then sends brakeset.

http://www.infj.ulst.ac.uk/~roy/com834 &

http://odl.ulst.ac.uk

20004/05

43

COMB834J2

[@ R2D2C: HST Exampls One.
File Edit Tools Help

Compile | Run | View

channel brakerelease, brakeset, stabilize, wictoolaguire : T,
GA= brakese
DRone = br

et! 0-> DRh
System = DRone [|{| [} [] DRtwo [|{| [}] GA;

Natural Language Input | Requirements Design | Code

Testing

ahilize | 0-»= hrakeset! 0-= DRone ;

H

ipublic class Test

K

ipublic static void main{(Stringll args)
K

Transaction holtrelease = new Transaction(2);
Transaction bhrakeset = new Transaction(2);
Transaction stabilize = new Transaction{(2);
Transaction wfctoolaguire = new Transactiond(2);
IGA GA_init = new GA<hrakeset);
IDRone DRone_init = new DRone<holtrelease. brakeset.
DRtwo DRtwo_init = new DRtwo<(holtrelease. brakeset.
>
>

stabilize);
uwfctoolaquire);

http://www.infj.ulst.ac.uk/~roy/lcom834 &
http://odl.ulst.ac.uk

20004/05

44

COMB834J2

[@ R2D2C: HST Example Three. 9(=1(c3]

File Edit Tools Help

Compile | Run | View

[Natural Language Input | Requirements [Design T Code | Testing

Transaction holtrelease = new Transaction(2),

Transaction hrakeset = new Transaction{2);

Transaction stabilize = new Transaction(2),;

Transaction wictoolaguire = new Transaction{2);

GA GA_init= new GA{brakeset);

DRone DRone_lnit= new DRone(holtrelease, brakeset, stahllize),
DRtwo DRtwo_init= new DRtwo(boltrelease, hrakeset, wictoolaguire);
DRone_init.start();

DRtwo_init.start();

GA_init.start;

EXECUTING:

hrakeset
hrakeset

DEADLOCK DETECTED]

Invitation — to joint the new
I[EEE Task Force on

* http://www.computer.org/tab/
* http://www.computer.org/TCsignup/index.htm

* http://tab.computer.org/aas/

http://www.infj.ulst.ac.uk/~roy/lcom834 &

http://odl.ulst.ac.uk

20004/05

45

Real-Time Issues in Wireless Sensor Networks

Chenyang Lu
Department of Computer Science and Engineering
Washington University in St. Louis
http://www.cse.wustl.edu/~lu

Many mission-critical applications require wireless sensor networks to interact with
physical environments under stringent timing constraints and severe resource
constraints. Examples include intruder tracking, medical care, fire monitoring, and
structural health monitoring. This tutorial presents our research on a range of real-time
issues in wireless sensor networks including (1) packet scheduling algorithms for end-
to-end real-time communication; (2) power management protocols for energy-
efficient real-time data collection; and (3) spatiotemporal query services for mobile
users. This tutorial also discusses research challenges in the area of real-time wireless
sensor networks.

Biography

Dr. Chenyang Lu is an Assistant Professor in the Department of Computer Science
and Engineering at Washington University in St. Louis. He received the Ph.D. degree
from University of Virginia in 2001, the M.S. degree from Chinese Academy of
Sciences in 1997, and the B.S. degree from University of Science and Technology of
China in 1995, all in computer science. He is author and co-author of more than 40
refereed technical papers and a recipient of the NSF CAREER Award. His current
research infterests include wireless sensor networks, adaptive QoS control, and real-
fime embedded systems and middleware.

References
C. Lu, B.M. Blum, T.F. Abdelzaher, J.A. Stankovic, and T. He, RAP: A Redl-Time

Communication Architecture for Large-Scale Wireless Sensor Networks, IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS'02), September 2002.

O. Chipara, C. Lu, and G.-C. Roman, Efficient Power Management based on
Application Timing Semantics for Wireless Sensor Networks, International Conference
on Distributed Computing Systems (ICDCS'05), June 2005.

C. Lu, G. Xing, O. Chipara, C.-L. Fok, and S. Bhattacharya, A Spatiotemporal Query
Service for Mobile Users in Sensor Networks, International Conference on Distributed
Computing Systems (ICDCS'05), June 2005.

S. Bhattacharya, G. Xing, C. Lu, G.-C. Roman, B. Harris, and O. Chipara, Dynamic
Wake-up and Topology Maintenance Protocols with Spatiotemporal Guarantees,
Infernational Conference on Information Processing in Sensor Networks (IPSN'05), April
2005.

Analysable Components

UNIVERSITET John Hakansson, Department of Information Technology, Uppsala University

SaveCCM: An Analysable Component Model for Real-Time Systems

SaveCCM is a component model defining the graphical language and run-time framework of the
SAVE component technology, SAVEComp

Component Based Development
CBD is a promising approach for embedded systems.
Typical for embedded software is the presence of
resource constraints in multiple dimensions.

An essential dimension is time, since many embedded
systems have real-time requirements.

The SAVE Project

SAVE is a national programme supported by SSF.
The goal is to establish an engineering discipline
for systematic development of component-based

software for safety critical embedded systems.
The SAVE component technology is developed with safety critical vehicular systems in mind.
Itis similar to the Rubus component model, with additional focus on quality attributes and
independence of underlying operating system.

Design and Analysis Tvg‘:ggiPPAAL Team

An overview of the analysis enabled development process of SaveCOMP - Paul Pettersson

- Leonid Mokrushin
i - John Hakansson

- Pavel Krcal
- Shi Xiaochun

\

- Simulation
- Schedulability Analysis
- Model checking

Component
Existing Resitory

Components (]

||

||
- - TA model
Quality Attributes b s

- Estimates SaveCCM C ilati
- Measures system - Compilation

- Analysis Results Platform - Deployment

- Budgets indpendent ' .
" - Testing

TIMES and UPPAAL
Tools for timed automata:

- Modelling and simulation

- Model checking

- Schedulability analysis (TIMES)
- Code generation (TIMES)

Case Study

A simple SaveCCM system with a Pl controller has been used as a case study.
Temporal properties of the controller have been successfully verified using
the timed automata model checker UPPAAL.

John Hékansson
¢

www.uppaal.com, www.timestool.com P e

Uppsala University

johnh@it.uu.se

Architectures for Logistics
Telemetry Applications

Markus Adolfsson
markus@x3-c.com

Me surrendering to my
son Sebastian’s wish to
hug / wrestle his dad

Halmstad University & XCube Communication AB

Industrial PhD student

What is telemetry?

Tech Encyclopedia defines the concept of Telemetry as
“Transmitting data captured by instrumentation and
measuring devices to a remote station where it is
recorded and analyzed. For example, data from a weather
satellite is telemetered to earth”

/ Data Sensor Data Storage Usage

®
State-of-the-art Technology

Embedded Active RFID-tags placed on the packets
measure one or more attributes (e.g., temperature,
humidity, acceleration). The ARFID tags form a wireless
sensor network that periodically sends their
measurements to a master node. The master node
forwards its received measurements to the central data-
storage along with both time- and position-stamps to
enable audit tracking of shipments.

©)

N
Suitable model for Logistics?
Logistic applications striving for "live-tracking” fit well into
the telemetry model. E.g., cold-chain surveillance for dairy
products and meat transports where there is a great need
to monitor such applications by logging entire shipments,
but also to alert when cold-aggregates break down,
pallets are left too long on docking bays, etc.

Data Storage Usage \

World-wide, multi-modal tracking

The goal of these kinds of applications is to be able to
track and monitor goods worldwide, regardless of the
good’s current carrier is a truck (/and), a ship (marine), or
an airplane (air). From a system-perspective, it is still the
same shipment.

71 4

A multi-variable optimization problem

measurements vs. alerts).

How can an architecture for logistics telemetry applications be modeled? What requirements are there and how do they relate
to each other? How can maximum lifetimes be achieved in the deployed, heavily constrained monitoring devices, still
conforming to the requirements defined for the application? Real-time requirements enabling efficient detection of new devices
in the wireless sensor network, but also to guarantee that measurements reach the application user in time (e.g., ordinary

Design of Electrical Architectures for Safety Cases
ARTES++ Summerschool 2005

Participants
PhD Student
Academic supervisor

Fredrik T6rner
Peter Ohman, Chalmers

Industrial supervisor Per Johannessen

Research Program Programradet for fordonsforskning

Electrical Architecture

Architecture is defined according to IEEE-1471 as:
“The fundamental organization of a system embodied in its
components, their relationships to each other, and to the
environment, and the principles guiding its design and
evolution”

An architecture is the basis for vehicle functionality and aims to

fulfill non-functional requirements such as safety and cost.

Figure 1 shows 26 ECUs distributed in a car connected by CAN
and MOST. Together they realizes the electrical system in an
XC90, supporting several hundred customer functions.

250kbit

N Low Speed

CAN High Speed

CAl
AOST

!

DDM

Figure 1 — Network Topology view of the XC90 architecture

Problems

Functionality in today's cars are evolving towards solutions more
dependent on electronics. New advanced safety and convenience
functionality demands implementation in embedded, real-time
electronics.

Integration between systems are necessary to maximize
functionality and decrease cost by utilize inherent redundancy
between sensors and processors. This brings a high complexity to
the systems and raises high demands on the architecture in aspect of
reliability and available bandwidth.

Possible solutions to this are real-time communication protocols
such as FlexRay. These technologies will be necessary but they are
not the complete solution. The integration itself needs to be
implemented in a way that does not decrease the safety of the
vehicles occupants.

The OEM, who will have the integrator role, will be responsible for
the complete vehicles safety, and will have to show this property to
a number of stakeholders: e.g. government, customers and liability
courts.

Project start Lic

Safety Case

In order to show how and why a system is safe an argumentation is
needed. A safety case is the collection of justifications why the
system is safe and a safety argumentation combining them. The
justifications can be of several types e.g. Hazard Analysis results,
FMEA results, verification protocols. The exact contents are
dependant on the product and its context. Figure 2 visualize a
possible structure of a safety case.

New legislation are demanding safety cases for some systems in the
automotive industry, currently there are requirements for brake and
steering systems. Safety cases can also be used in product liability
cases, providing a solid argumentation of the safety for a system.

Safety Case for System

System Design
integration methods

Safety Justification
Process Compliance

)

Safety Justification
for Sub-system

)

Safety Justification
for Sub-system

L

Figure 2 - Safety Case structure

E

Design
principles

System
architecture

J

Safety Process

In order to handle development of safety critical systems a few
standards exists that may be applied to the automotive industry.
IEC61508 is the defacto safety standard today but is found difficult
and inappropriate to use in the automotive industry. MISRA is a
standard developed for the automotive industry and FAKRA is a
possible upcoming ISO standard currently under development.
Figure 3 shows an overview of what could be included in a safety
case according to MISRA.

Refined Safety Envelope
High-Level Safety Requil
Safety Integrity Level

Safety Envelope

Safety Policy

>

VYVY

Overall system requirements

& Environment PSA | Hazard List 9
> »

Safety Argument - 8
>

Project Safety Plan o >

1o

-

Low-Ls y ©

System Model Requirements g 2]

>
Hazard Probabilities_ |
>

DSA

P>

Detail description of
SYSterTeq|
architecture

Failure Modes

&

Figure 3 — Overview of safety process

Research Questions

How is a safety case best developed for distributed control systems in
the automotive industry?

How can a safety case be developed to support the design of
electrical architectures?

Project finish
PhD

VOLVO

Volvo Car Corporation

\ |

Project ModComp

Model-Based Development and Competence Integration

Introduction:

This project is a collaboration between KTH and Volvo Car
Corporation (VCC). The project will develop knowledge,
supporting methods and prototype tools for efficient
development of complex mechatronical products. The
focus in the project is on automotive embedded control
systems. Central problems in developing such products
include how to handle the large teams with many
competences involved, fragmented information, and
difficulties in integration. The aim is to enhance the
understanding about the work procedures, to improve
management of the complexity within the development of
mechatronics products, and to eventually provide practical
means for efficient integration.

The project runs from 2004 through 2006.

Expected Contributions:
* Documentation and analysis of the current industrial
situation.

- State of the art for multi-domain model
development and integration.

+ Requirement specification for a data management and
integration platform.

based

Methodology and ontology with respect to integration in
mechatronics system and organizational development.

Contributions to a research platform for model and tool
integration.

+ Improved product development at VCC through new
work methods implementation and use of new tools.

Specifications
'
Architectural design

- Fd [N =

Mechanics <> Control =* Software =*Electronics

€ .

Integration

Tasks Teams

® %

Teams

Tasks ®

w X ®

x X X e N

g 1/

Development Process —(A“gnmyj Development Organization
/ﬁ

Interactions AN Interactions

S|

Components

% x| x

Components
x| % %

®

x x

Product Architecture
Interactions

Technology and competence integration in the mechatronics. The overall question posed in
the project: How to manage the modeltool integration and the competence integration in the

mechatronics products development?

Some questions and challenges for multi-
disciplinary development of automotive
embedded control systems:

- What are the design trade-offs and communication
required between different competences?

* What are appropriate work procedures?
» What services should CAE tools provide?

* How can data in different tools, representing different
aspects or views, be managed and integrated?

iy,

TH

VETENSKAP
OCH KONST 8%

Contact: &
Jianlin Shi, Doctoral Student
, +46-8-790 6776
Diana Malvius, Doctoral Student
, +46-8-790 7806
Ola Redell, Doctor
, +46-8-790 8343

et

KTH Machine Design

www.md.kth.se

Participants:

KTH, Department of Machine Design:
Mechatronics - Professor Jan Wikander (Project leader)

Embedded control system - Professor Martin Térngren,
Junior Researcher Ola Redell, PhD student Jianlin Shi

Integrated product development - Professor Margareta
Norell, Assistant professor Sofia Ritzén, PhD student Diana
Malvius

Volvo Car Corporation:
Niklas Vemdahl and Nils Edeus

Project home page:

This project is funded by the
Swedish Agency for Innovation System
(VINNOVA)

Monday dinner

Scandic Billingen Trédgardsgatan 10 at 19.00

Scandic Billingen byggdes ar 1888 och har sedan dess varit kant for sin vackra
arkitektur och trivsamma atmosfar. Hotellet ar centralt belaget vid
jarnvagsstationen och med centrum runt hérnet.

Meny

Paron- och chevrétoast serveras med en knaprig serranoskinka

Chateau Briand serveras med kraftig rodvinsds samt en ost- och potatismuffin
och rostade grénsaker

Husets chokladkaka serveras med gradde smaksatt med likor.

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

Component-Based
Software Engineering

ARTES Summerschool
Skovde, August 2005

M.R.V. Chaudron

M.R.V.Chaudron@tue.nl
www.win.tue.nl/~mchaudro/
Technische Universiteit Eindhoven

CBSE 2005

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

» Introduction CBSE & Reuse
» Motivation
» Concepts, Definitions, Terminology

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Observations on the practice of SE

About 80% of software engineering deals with
changing existing software

It is not the strongest of the species that survive, nor
the most intelligent, but the ones most responsive to
change. —- Charles Darwin

Time to market is an important competitive
advantage: incorporate successful innovations quickly

- Systems should be built to facilitate change
- easy removal and addition of functionality

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Problems of Software Engineering

- The size & complexity of software increases rapidly
- Single products become part of product families

- Software is upgraded after deployment

- The time-to-market must decrease significantly

- The cost of products must be reduced

technische universiteit eindhoven CBSE 2005
T U e [faculteit wiskunde en informatica

The CBD-'Solution’

Systems should be assembled from existing components
Idea dates (at least) to the1968 NATO Conference
Douglas Mcllroy: Mass Produced Software Components

component repository & market component-based
systems

technische universiteit eindhoven CBSE 2005
T U e [faculteit wiskunde en informatica

Why Components?

Component

Following other engineering

disciplines (civil and electrical),
software engineering is looking to
develop

a catalogue of software
building blocks

connection standards

Confusing or helpful?

technische universiteit eindhoven CBSE 2005
T U e [faculteit wiskunde en informatica

What is CBSE?

based on definition of SEl in CMU/SEI-2000-TR-008

Component-based Software Engineering is concerned with the rapid
assembly and maintenance of component-based systems, where

- components and platforms have certified properties

- these certified properties provide the basis for predicting

properties of systems built from components.

Predictability is a key property of mature engineering disciplines.
It enables feedback on design and adaptation;

i.e. development time is reduced because we can analyze prior to
building

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Extra Functional Properties

Performance
Scalability L T A Reliability

Maintainability = <€— System => Efficiency
/ \ CPU, Memory Use

\1, Timeliness
Schedulability

Essential system engineering problem:
a plurality of contradictory goals

a plurality of means (technology, process)

each of which provides a varying degree of help or hindrance in
achieving a given goal

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Business Drivers for CBD

Improve Productivity:

Build more software using fewer resources through
enabling the assembly of systems from components that
may be independently developed by different parties.

Independent in time and space
- independent from ultimate application
- independent from (future) peer-components

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

Motivations for CBSE

- Productivity

+ Quality

- Time-to-market
- Maintenance

~ Strategic business
goals that increase

>~ — Turnover
- Market share

reduce

— Cost of development
— Cost of ownership

CBSE 2005

e ¢ €
> profit
€
€ €

TU /e it anioe,
CBSE & Software Productivity

Increase competitiveness (sw/€):
- Reduce cost of development
- Increase software/€

Limited human talent (sw/people):
Increase software/person
= reuse existing solutions, rather than invent them

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

CBSE & System Quality
Improve Quality:

Idea: Assuming that a collection of high-quality

components is available, assembling these should
yield systems of high-quality.

1. The cost of establishing the high quality of
components is amortized over multiple use.

2. Multiple use of a component increases the
likelihood of finding and removing errors.

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

CBSE & Maintenance

The use of CBD requires good modular design.

This modularity provide quality properties like
- comprehensibility/understandability

- maintainability

- flexibility

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

CBSE & Time-to-market

If the reuse of a component requires less time
than the development of a component, systems
can be built faster.

CBSE 2005

technische universiteit eindhoven
T U e [faculteit wiskunde en informatica

Productivity & Quality
-

)
e
ot :-—.'-_

Productivity

People

Process Technology

CBSE 2005

| faculteit wiskunde er informatica

T u e technische universiteit eindhoven CBSE 2005

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Technical Drivers for CBSE

Flexibility
Interoperability

System Adaptability
Reliability Qualities
Maintainability

Integration

CBSE may help improve system qualities

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Reuse-based Software Engineering
- Reuse-based SE has many business drivers
in common with CBSE:
- increase productivity & quality
- reduce time-to-market,
- reduce development cost

However, reuse imposes less technical- and
design-constraints on the unit of reuse (asset).

CBSE enables Reuse, Reuse is not sufficient for CBSE.

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Reusable Assets

Virtually any product of the SE process can be reused:

Requirements
Architectures

Designs

- design patterns, interfaces

Source Code

- ranging from to libraries, patterns, to modules, to macros,
coding conventions, ...

Test Scripts

T u e technische universiteit eindhoven CBSE 2005

| faculteit wiskunde er informatica

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

What is a software component?

How can you recognize a software component?
Suggestions from the audience?

Reflect on differences between civil and electrical
engineering on the one hand and software
engineering on the other hand

Cross-cutting concerns

21

TU /e i s,
What is a Component?

Probably more definitions than for ‘software architecture’

A software component is a unit of composition with
contractually specified /nterfaces and explicit context
dependencies only

A software component is /independently deployable
and subject to composition by third parties.

Clemens Szyperski, 1997

22

TU /e et e,
What is /independent deployment?

A software component is a unit of /ndependent
deployment

- no dependencies on peer-components
- some ‘meaningful’ functionality by itself

components tend to be ‘large grained’

- never partially deployed

23

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

What is a Component?

A reusable software component is a logically cohesive,
loosely coupled module that denotes a single
abstraction.

Grady Booch, Software Components with Ada, 1987

Tries to provides some design guidance.
What is cohesive? loosely coupled? single abstraction?

24

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Object Technology and CBSE

“OT is Neither Necessary Nor Sufficient for CBSE”
OT was a useful and convenient starting point for CBSE

OT did not express full range of abstractions needed by CBSE

(insufficiency)

It is possible to realize CBSE without employing OT(non-necessity)

CBSE might induce substantial changes in approach to system design,

project management, and organizational style

25

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

What is a Component?

“A binary unit of independent production, acquisition, and deployment that

interacts to form a functioning system.”

— C. Szyperski, Component Software

‘A component is an independently deliverable package of operations.”

- Texas Instruments Literature

“A replaceable unit of development work which encapsulates design
decisions and which will be composed with other components as part of a

larger unit.” - Desmond D’ Souza, in Catalysis

26

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Useful Distinction

has component
specification

specifies functionality
& extra-functional

- properties of component
component has
Intenface architect/design
% component
implementation _ _
implementation
exposes e
functionality has of specification
(operations) = programmer
& behaviour component ‘
at run-time Instance S—1— .
instantiation in a

concrete device

27

run-time environment

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

It depends (on what?)

It depends to some degree on what you want to do with
components:

» REPLACING one part of an implementation with another:
- then adhering to a well defined specification is sufficient
- at run-time, then mechanisms are needed for
- registering, locating / binding components

» EXTEND components
- extend interfaces, merge implementations

28

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

It depends (on what?)

» TRADING (use across multiple organizations)
- need mechanism for
- hiding intellectual property
- certification

» RE-USE
- need repository for searching / matching, versioning
- economics impact granularity

» Application domain BUSINESS/EMBEDDED
- type and granularity of component

29

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Different usage requirements

Substitutability Extensibility Decomposability
C,HC HG, C,HG HG C,HGC, HC,
G HCHG GGG S GGG
complete extensible generic components,

specification architecture flexible architecture

30

technische universiteit eindhoven CBSE 2005
T U e | faculteit wiskunde enr informatica

CBD in Practice

Lego + Fisher Technik + Meccanno + Ministek + ...

31

technische universiteit eindhoven CBSE 2005
T U e [faculteit wiskunde en informatica

A component can be used within the scope
of a component-model

T
———
P ™ o |
-l
-y
—_F

.Net, Enterprise Java Beans, Corba Components + ...

32

technische universiteit eindhoven CBSE 2005
T U /e [faculteit wiskunde en informatica
Component Model

Definition A component mode/ specifies the standards
and conventions that are needed to enable the
composition of independently developed
components.

33

TU /e iz e,
Multitude of Component Models

- Q: Why are there so many component models?

A: Dbecause there are many different requirements
- Technically: on component-systems
- Organizationally: development process

CBSE 2005

34

TU/e technische universiteit eindhoven

phase

representation of
component

infrastructure

[faculteit wiskunde en informatica

development

W\ %@Q
2

desigh &
modelling tool

programming tool

compiler

packaging distribution

N\

—] e

packaging
tool

deployment

CBSE 2005

execution

execution infrastructure

configuration management tool

build/release tool

35

technische universiteit eindhoven
TU e [faculteit wiskunde en informatica
phase development packaging
oy (B oS
o L

representation of model / specification

CBSE 2005

distribution deployment execution

S

component e.g. UML, Petri-net
source code & data files
e.g. C++ Structured archive
e.g. zip-file

e Solid-medium that preserves file-structure
e network: requires conventions on where to install

unpack & place comp in memory
executable code

- low level machine code
- high level code for interpretation

36

TU/e

technische universiteit eindhoven

[faculteit wiskunde en informatica

Component Packaging (UML

contain,

Madel

Syuid

Robocop Component
$ouid

Executable
Component

Resource Model

Behavior bodel

Relates Behavior Model
and Executable
Component

Model Relation

CBSE 2005

Behavior Model Of

Resource Maodel Of

Implerments

Relates Executable L
Component and DL

Relates Resource
Model and Executable
Caormponent

37

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Architecture vs. Generic Components

Architectural component Framework component Generic component
‘plug-in’
| A A A
I:A::I IYP—Q;I ?

there is exactly one component several components fit at a every component fits
that fits each place in the system particular place in the system at every place

38

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

CBSE Development Activities

Identify System
Requirements

- Performance

System o Real-Time
Architecture - Portability

CBSE 2005

Component
Model

39

TU /e it anioe,
Different types of requirements

- When to compose?
- At what stage is flexibility needed?
- Design-, compilation-, run-time

.- Different extra—functional requirements

CBSE 2005

40

TU /e it o,
Aspects of Component Models

A component model is a set of agreements that is needed to
enable the combination of components.

A component model typically addresses

- Life-cycle management: instantiation, (de)activation, removal
- Binding mechanisms

- Interaction style

- Data exchange format

- Process model

Related: Packaging Model

41

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

Component Platform

CBSE 2005

A component platform is run-time incarnation of

the component model.

For example:

CO o

CLR
Windows

e

JVM

] Gkt [

CORBA

Windows

Windows

UNIX

42

TU/e it
Component Platform

Platforms typically provide support for

Inter—-component services Extra-functional / resource aspects
- binding - scheduling
- interaction — quality of service management

- (dynamic) load balancing

Component lifecycles - (re)negotatiation
— install, replace, remove

- security
— fault tolerance (replication)
— interoperabiliy (language/0S)

43

TU/e it
Component Platform

What ‘features’ does the infrastructure provide?
- (dynamic) load balancing / scheduling

— fault tolerance (replication)

— quality of service negotiation

— security

- heterogeneous platforms (language/OS)

44

technische universiteit eindhoven CBSE 2005
T U e [faculteit wiskunde en informatica

- CBD aims to earn money through improving
Productivity, Quality, Time-to-market, Maintenance

- There are many types of components because there
are many different domains with different
requirements on component-based systems.

= many component models = many component platforms

45

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

Questions?

You should know

- an answer to ‘What is a component?’

- what a component model is

- the relation between reuse, CBD, and OO

CBSE 2005

46

CBSE 2005

TU /e et e,
Summarizing, CBSE is about

Plug & Play: components can be composed with little effort - preferably at
run-time

Interface-centric: components can be composed without knowing their
implementation

Standardization: component can be manufactured by multiple vendors and
widely reused across corporations

Distribution through Market: components can be acquired and improved
though competition market, and provide incentives to the vendors
Architecture-centric: components may be designed on a pre-defined

(product-line) architecture

47

TU /e i s
Concluding Remarks 1

What’s New in CBSE?

It deals with components that were not a-priori designed to be part

of the same application

There will be multiple types of software components - belonging to

multiple component models.

48

technische universiteit eindhoven CBSE 2005
I U e [faculteit wiskunde en informatica

Concluding Remarks 2

CBD aims to
- increase productivity of SE

- change-ability of software systems

It is likely that every system will need some degree of

custom development

- Wrapping is inevitable

49

T U /e technische universiteit eindhoven CBSE 2005
[faculteit wiskunde en informatica
CBSE is about managing dependencies

- |Is this not addressing the symptoms, rather than the
disease?

- Q: Why not try to avoid dependencies in the first
place?
Type of dependencies:
design time: tooling
compile-time: compiler, other components

run-time: platform, other components

50

technische universiteit eindhoven
I U e [faculteit wiskunde en informatica

Useful Distinction

CBSE 2005

*

component
interface

*

component
specificatie

component
implementatie

definieert functionaliteit
& extra-functionele
eigenschappen van de
component

ol
v

|

implementatie
van specificatie

component
instantie

51

Distribution vs. Fault Tolerance

Jan Lindblad
Enea Embedded Technology

Enea www.enea.com

* Founded 1968 by 4 KTH Students
» Headquarters in Kista, Stockholm
+ Ca 500 employees, majority in Sweden

» Offices: 4 in Sweden, 4 in Europe, 5 in USA,
2 in Asia

» First Swedish UNIX system

» enea.se first domain in Sweden
* OSE family of operating systems
» Telecom dominates

OSE www.enea.com/ose

* Operating System for Embedded applications
— Microkernel, message passing, distributed systems

— File systems, IP-stacks, Program loader, Memory
management, Virtual machines, ... as plug-ins

— PowerPC, ARM, MIPS, DSPs, 16-bit CPUs, ...

» OSE kernel safety certified to IEC 61508-3
» Thousands of concurrent OSE processes
* Interrupt latency < 1us on many processors

Jan Lindblad jan . lindblad @ enea . se

» System Architect, System Manager at
Enea Embedded Technology

« Built first computer at 12, designed & built
sound card at 16, wrote first compiler at 17

* Married and three kids in villa outsid
Stockholm ; ek

Fault tolerance in distributed systems

Distributed and fault tolerant software have a lot in
common. As applications are growing more widely
distributed, issues like

 fault tolerance
* network management
» security

are becoming more and more relevant. This
tendency is even more accentuated with the recent
development of ad hoc networking technology, such
as the Bluetooth standard.

In the Fault tolerance world

Fault tolerant design and programming is based on
« Stable backwards recovery
» Single point of failure avoidance
« Simplicity
» Supervision
» Separation

Let’s see what they are and how many problems in
the fault tolerant world are similar to those in
distributed systems, and many of the solutions for
fault tolerance are also applicable to distributed
systems

Process state diagram

Backwards Recovery

Embedded for leaders

Action

g -

...click!

Process state diagram

Embedded for leaders

Backwards Recovery

Code flow in state S

\
O
©

Ptr == NULL,
we can’t be in
state S!

Go to
error handler

Backwards Recovery

Process state diagram Error handler

A state error has been detected

We thought we were in state S,
but we can’t be -- we're lost!

There is no safe way back

Backwards Recovery

When a state error has been detected, all you can

be sure of (prove) is that something is wrong. There
is no way to safely bring the current (unknown) state
back to a known state. This is mathematically proven.

Therefore it's a good idea to “nuke” the whole
context with the state problem, and all parts of the
system that could be “infected” by this context. And
do it fast, before the problem spreads.

Backwards Recovery

Most importantly: any cleanup that needs to be done
when killing “infected” parts of the system must not
be done by the “infected”!

In a distributed system, any cleanup that needs to be
done when a connection is lost cannot be done by
the remote process!

Single point of failure avoidance

@ @
® e

&
@

Embedded for leaders

Supervision

in a fault tolerant system

If the client dies, the server will free any
resources allocated by the client

i

If the server dies, the client will stop
using any resources allocated from the
server

Manager

If the child dies, the manager is
responsible for creating and starting a
new child

Manager

If the manager dies, the child must
terminate

Embedded for leaders

Supervision

in a fault tolerant system

Client C allocates a resource

1.
allocate() from server S. It could be some
> memory, opening a file, an
application specific foo, ...
2. C commits an error and is
@ free(NULL)

reservation for C

Death notification

1

S receives a death notification
for C and releases the allocated
resource

killed abruptly.
S still holds a resource

Embedded for leaders

Supervision
in a distributed system

@ allocate() @
—_—

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

2

@ Lost connection @

The connection to C is lost
abruptly.

S still holds a resource
reservation for C

.. Death notification @

S receives a death notification
for C and releases the allocated
resource

Embedded for leaders

Supervision
in a distributed system

@ allocate() @
—_—

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

@ Death notification

2. . The connection to S is lost
Lost connection abruptly.
C still believes it has the
resource
3 C receives a death notification

for S and aborts the operation
involving the allocated resource

Supervision
in a distributed system

Simplicity

Many small units that work together are much more
likely to produce a good result than few large units.

Think of when you were building Lego models, many
small and highly specialized parts give the best result

The complexity of a software module is exponential
in it’s size. This fact is very important in systems that
have to be certified/verified/tested.

In distributed systems there is an added benéefit, it's
easier to create an optimal system configuration
using small units, it's simply more configurable.

Simplicity

Embedded for leaders

Memory protection

Separate CPU time

Separation

Embedded for leaders

Separate memory pools

oo
N

Separate device drivers
& interrupt sources

vy

10

In the Fault tolerance world

We've seen some areas where the fault tolerant way
of designing systems solve difficult problems of
distributed systems

Let’s stay in this environment and go on with looking
at some other design issues of distributed systems

* Interprocess communication (IPC)
+ Different networking styles

Interprocess Communication (IPC)

Even though the system needs separation, it also
needs forms of communication across the boundaries

 Messages
Perfect for local and transparent remote
communication
Kernel

* Sockets
Standard, works both local and remote, a little slow
Networking stack

Interprocess Communication (IPC)

* Pipes
Possible locally, a little slow
File system

+ Semaphores
No! Violates separation and will not work remotely
Applications

Interprocess Communication (IPC)

Let's take a closer look at what communication
styles an ordinary application employs in various
situations

We'll take a look at how a Web browser
communicates with

» the address book
» the display
 the file system
+ the network
This will give some insights regarding how

applications can be designed to be more easily
distributed

Networking styles
address book

* Access: direct
function calls into
separate program
module (.dll / .s0)

* Not distributed

Address II
book

Display

File
System

l
]

Embedded for leaders

Networking styles
display
» Access: library calls
Address

== |

Display

book * Windows environment:
* Unix (X-windows)
environment:

Not distributed
Web browser L. .
- Distributed using
System sockets

locally & remotely

i

* Application: nearly
unaware

13

il

|

Address I
book

Display

Sockets

Web browser

Embedded for leaders

Networking styles
file system
» Access: library calls

» Access to local file
systems is not
distributed

» Access to remote file
systems using a
multitude of
mechanisms,
including sockets and
SMB

* Application: totally
unaware

i

Address
book
Display

Embedded for leaders

Networking styles
sockets
» Access: library calls

» Application sets up
and manages
connections and

protocols
- Application: totally

D Web browser
File
System aware
FTP | DNS
/—1 Sockets r HTTP| SSL
SMTP

14

Summary of networking styles

No distribution direct function calls

Explicit applications fully aware of the network

one distribution mechanism, which is
used locally also

Transparent one distribution mechanism, which is
unified used locally also

Transparent several parallell distribution mechanisms
diversified no distribution used locally

Shared library

Sockets

and have to handle many network issues.

X-windows

File systems

Embedded networking

Diversified transparent networking makes
used -- and the media could even change
@? @ Local
\ Over IP / Internet

@ Shared memory to DSP
with byte order conversion

CAN bus link

Embedded for leaders

it possible

for processes to communicate over a multitude of
media, while staying unaware of what media is being

in runtime

Local over memory
protection barrier

15

Embedded for leaders

Embedded networking

Local

iy

Local over memory

protection barrier

CAN bus link

Over IP / Internet

Shared memory to DSP
with byte order conversion

o

Embedded networking

g

¢ File
\ system

o

Shared memory to DSP
with byte order conversion

Embedded for leaders

ARM

16

Wrist
computer
holding
address

N\

Short range
radio net

Personal computer

Now we can keep up with this guv!

Wrist
All it took was some Cﬁggil:]tge f
fault tolerant design... % address

N\

Short range
radio net

Personal computer

17

Overwhelming
comple yity

Jan Lindblad
Enea Embedded Technology

Introduction

Embedded software development cost is
increasing steadily. Today, about half the
cost consists of test and maintenance.

* Why is this?
— Some important trends exposed
* What can be done about it?
— Some suggestions to answers
— Some suggestions for research

Enea www.enea.com

* Founded 1968 by 4 KTH Students
» Headquarters in Kista, Stockholm
+ Ca 500 employees, majority in Sweden

» Offices: 4 in Sweden, 4 in Europe, 5 in USA,
2 in Asia

» First Swedish UNIX system

» enea.se first domain in Sweden
* OSE family of operating systems
» Telecom dominates

OSE www.enea.com/ose

» Operating System for Embedded applications
— Microkernel, message passing, distributed systems

— File systems, IP-stacks, Program loader, Memory
management, Virtual machines, ... as plug-ins

— PowerPC, ARM, MIPS, DSPs, 16-bit CPUs, ...

» OSE kernel safety certified to IEC 61508-3
» Thousands of concurrent OSE processes
* Interrupt latency < 1us on many processors

Jan Lindblad jan . lindblad @ enea . se

» System Architect, System Manager at
Enea Embedded Technology

« Built first computer at 12, designed & built
sound card at 16, wrote first compiler at 17

* Married and three kids in villa outside
Stockholm ; G5

Real-time Research Projects

» Execution Time Analysis (ETA)
— Measurement techniques
— WCET by Abstract Interpretation
— Evaluation of commercial WCET tools
» Automatic race condition detection
— Whole system simulation in Simics
* Root cause analysis of reported bugs
— Classification and countermeasures

Software development cost increases

Why?

Current trends

MP3 player — Mobile phone — DVD player —
Pacemaker — Car — Watch — Landline phone — Stereo
— TV — Photo album — Coffee machine — Dishwasher
— Indoor climate system — Traffic light control system
— Paper mill — National energy transmission system —
Nuclear power plant — A380 airliner — Ariane 5 rocket

Which of these contain embedded software?

19907

20057
20207

Current trends

MP3 player — Mobile phone — DVD player —
Pacemaker — Car — Watch — Landline phone — Stereo
— TV — Photo album — Coffee machine — Dishwasher
— Indoor climate system — Traffic light control system
— Paper mill — National energy transmission system —
Nuclear power plant — A380 airliner — Ariane 5 rocket

« Integration => Increased
« Communication Complexity

* Functionality & Size — Bugs
» Ecosystem
 Dynamic & Configuration => Reset button

Functionality & Size

+ Embedded = small?
— OSE 5.1: 2 million SLOC
— Ericsson Mobile platform: 3 million SLOC
— Ericsson Cello platform > 50 million SLOC equiv

» Compare with desktop systems
— RedHat 7.1: 30 million SLOC
— Windows NT 5.0 20 million SLOC
— Windows XP 2002: 40 million SLOC

Ecosystem

Embedded = all sources available?
+ OSE: 4 sites, 62 official partners
» EMP platform: 30 software suppliers

We are not software houses,
we are integration houses!

Dynamic & Configuration

» Plug and play (or pray)
* Runtime upgrades
« Linux kernel configuration

« Complex configuration/reconfiguration

Increased Complexity

MP3 player — Mobile phone — DVD player —
Pacemaker — Car — Watch — Landline phone — Stereo
— TV — Photo album — Coffee machine — Dishwasher
— Indoor climate system — Traffic light control system
— Paper mill — National energy transmission system —
Nuclear power plant — A380 airliner — Ariane 5 rocket

» Higher cost per bug(?)
« More bugs per system => Increased cost
* More systems

Most bugs are low cost — no inquiry board —
but they are many = Salami trick

The Problem

+ Large systems written by many developers
around the world at different points in time in
multiple languages

» Partial access to source code

» Applications communicating with the outside
world, millions of configuration combinations,
dynamically reconfiguring

» Typical program analysis: compiler warnings

Test & maintenance is only This is the class of systems
50% of the development cost?? that really need analysis tools

How can we defeat the complexity?

Suggested attack routes

» We need to raise the abstraction level for
systems programmers
— Languages
— Intentional programming
— Contracts

+ We need methods to analyze and test large
systems

* We need the systems to handle unforeseen
situations autonomously

Languages

» Every APl is a language

» C is everywhere because of
— Huge ecosystem (tools, engineers, code, ...)
— High expressiveness
— Up to the programmer [to be efficient]

» But C is not particularly analyzable ®

« UML? Java? Erlang? Ada?
Academic languages?

Languages

« UML? Java? Erlang? Ada?
Academic languages?

Maybe, but it's not mainly about that...

We need higher level language concepts like

» Parallel processes, components & contracts,
error handling, recovery,
intentional programming, ...

Intentional programming
dict_get(key, dict)

=
dict_lookup(key, dict)
dict_search(key, dict)
dict_is_key(key, dict)

Joe Armstrong, “Making reliable distributed
systems in the presence of software errors”

Contracts

» Hardware components have data sheets
— Lists max and typical values

» What about software components?

* Reuse = contracts (Ariane 5)

» Eclipse Java IDE

10

Suggested attack routes

* We need to raise the abstraction level for
systems programmers

» We need methods to analyze and test large
systems
— Components
— Specification & program analysis
— Test & simulation

* We need the systems to handle unforeseen
situations autonomously

Components

» Divide and conquer, one piece at a time
« Components need isolation and specification

* Analyze one component,
use specifications for rest of system

+ Key to reuse

+ Writing usable specifications is hard,
tool support needed

Specification & program analysis

* Dereferencing NULL is not good

» Stack overflow is not good

 Indexing out of bounds is usually not good

+ Division by zero is not good

=

I* @exec_time: 120 < T < 200 + 20*x->maxlen
@stack_memory: 88 <M < 1520
@precond: 0 <y < x->maxlen
@postcond: return 0..65535 */

uint16_t foo_lookup(FX *x, uint32_ty){ ...

Test & simulation

» Cannot test every possible
— Hardware platform
— Configuration
— Interleaving
— Error situation

* Need tools that can handle abstract
configurations, hardware, interleavings, ...

Like abstract values in abstract interpretation

Suggested attack routes

* We need to raise the abstraction level for
systems programmers

* We need methods to analyze and test large
systems

» We need the systems to handle unforeseen
situations autonomously
— Backwards recovery
— Supervision
— Seamless distribution

Backwards recovery

When a state error has been detected, all
you can be sure of (prove) is that something
is wrong. There is no way to safely bring the
current (unknown) state back to a known
state.

Therefore it's a good idea to “nuke” the
whole context with the state problem, and all
parts of the system that could be “infected”
by this context. And do it fast, before the
problem spreads.

13

Backwards recovery

Most importantly: any cleanup that
needs to be done when killing
“infected” parts of the system must
not be done by the “infected’!

* Processes can die at any time =

— Semaphores or mailboxes cannot be used

— Cleanup by resource manager (server), not by
process itself (client)

— Process supervision required

Supervision

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

allocate()

C commits an error and is

OF
X

S receives a death notification
for C and releases the
allocated resource

Death notification

free(NULL) killed abruptly.
S still holds a resource
reservation for C

14

Seamless distribution

Embedded for leaders

allocate()

Client C allocates a resource
from server S. It could be some
memory, opening a file, an
application specific foo, ...

OF
X

The connection to C is lost
abruptly.

S still holds a resource
reservation for C

Death notification

Lost connection @

S receives a death notification
for C and releases the
allocated resource

Supervisors

actual work

with the function

Embedded for leaders

Just as in a business organization, a supervisor:
» Has responsibility for a function

» Knows what should be done
(may change over time, e.g. plug and play)

* Manages, but does not participate in, the

» Has to deal with any failures of the workers
(restart, service degradation, ...)

 |s terminated if there are persistent problems

15

Supervisors

Likewise, a worker:
* Is hired/created by the supervisor

» Gets a task to execute and parameters for
the task from the supervisor

* Reports problems with the task to the
supervisor

* |Is fired/terminated by the supervisor

« May be a supervisor itself with respect to its
own workers

Supervision tree

Supervisors ... °

* (Re-)start
» Recover from
problems with
» Shutdown » ”

... the workers

16

Conclusions

Example 1: Telecom

“The world’s largest machine”

Very distributed and dynamic

Huge ecosystem

Lot’s of bugs remain in shipping systems
Fault tolerant design

Very few analysis tools used
Real-time design by stomach or pen+paper

17

Example 2: Automotive

A few dozen ECUs

Centralized distribution and little dynamics
Small centralized ecosystem

Not fault tolerant — “all faults eliminated”
Complete system design, analysis, testing

Several different analysis tools actually used
Real-time design by proven methods & tools

Telecom j

Where are we heading?

‘ Automotive

* Very distributed

* Huge ecosystem

* Bugs remain in shipping systems

+ Fault tolerant design

» Several different analysis tools actually used
* Real-time design by proven methods & tools
» Components

18

ENE ENEA EMBEDDED TECHNOLOGY

Execution Time Analysis

Jan Lindblad
System Architect, System Manager

ENE ENEA EMBEDDED TECHNOLOGY

AGENDA

* The Timing Challenge
— The Challenge
— Measurement or Calculation?
— Wanted!

* Execution Time Analysis

* Program Analysis

ENE ENEA EMBEDDED TECHNOLOGY

The Challenge

All of us are designing software with requirements
on

— Parallelism
— Real-Time

— High Performance

Most of the difficult problems with our software
concerns the timing behavior.

ENE ENEA EMBEDDED TECHNOLOGY

The Challenge

How do we make sure that...

— Parallelism
* ... there are no race conditions or deadlocks?
— Real-Time
* ... we are always finished before every deadline?
— High Performance
» ... the average execution time is short enough?
* ... we optimize the code where it makes a difference?
* ... we use algorithms that scale well?

ENEA ENEA EMBEDDED TECHNOLOGY

Race conditions

Modern classification of bugs:
— Bohrbugs

— Heisenbugs

Most race conditions and deadlocks are never found

— Heisenbugs generally cannot be found by testing

ENEA ENEA EMBEDDED TECHNOLOGY

Performance

Numbers to search for:
— Execution time

 System call, context switch times (max,
average)

* Interrupt latency (max, average, jitter)
* Various application operations (max, average)

— Complexity analysis
* Ordo classes

ENE ENEA EMBEDDED TECHNOLOGY

Performance
Execution Time (ET) depends on
— compiler

— Processor

Ok, just a matter of counting cycles in the binary
code.

ENEA ENEA EMBEDDED TECHNOLOGY

Performance

Execution Time (ET) depends on
— compiler
— processor

— pipeline

— cache (what is the worst realistic cache state?)

— input (what is the worst input?)
— network, bus, switch fabric delays

The worst case is not interesting anyway.

ENE ENEA EMBEDDED TECHNOLOGY

Finding the Execution Time

In theory
The problem to find the execution time of a program is
undecidable.

— If you could tell the execution time of every program, you
would also have solved the halting problem.

In practice
Two main approaches are used:
— Measurement on a real implementation

— Calculation on a model of the system

ENE ENEA EMBEDDED TECHNOLOGY

Measurement or Calculation?
actual
BCET WCET
possible execution times

safe BCET safe WCET
estimates estimates

(0 tighter tighter
» WCET = Worst Case Execution Time

* BCET = Best Case

* ACET = Average Case

ENEA ENEA EMBEDDED TECHNOLOGY

Measurement or Calculation?

MEASUREMENT

Measurement samples
points inside the
curve.

By definition unsafe.
Need to add “enough”
safety margin.

Input dependent.
Model of typical or
worst input needed.

CALCULATION

Calculation finds a
point outside the
curve.

By definition safe.
Overestimates, but
how much?

Model of system
needed.

ENEA ENEA EMBEDDED TECHNOLOGY

Measurement or Calculation?
Sources of Misestimation

MEASUREMENT

Other input than used in
test may generate much
longer execution times.

— The program may not
even complete its
execution.

CALCULATION

Simplistic system model
may give magnitudes of
overestimation.

— Pipeline: 2-8x

— Cache: 10-40x

ENEA ENEA EMBEDDED TECHNOLOGY

Automatic tool that analyzes the timing aspects of
my system, pointing out improvement areas:

Deadline budget or system performance goals
Where to optimize?
What parts have large variance in execution time?
What parts scale badly?
What parts were too complex for high quality analysis?
How much better/worse did it get after the latest change?

ENE ENEA EMBEDDED TECHNOLOGY

Automatic tool that analyzes the timing aspects of my
system, pointing out timing related software errors:

Locking errors

— Possible race conditions, deadlock, live-lock
— Failure to acquire or release a lock

Control flow problems

— Infinite loops

Priority problems

— Starvation, priority inversion

ENE ENEA EMBEDDED TECHNOLOGY

Automatic tool that can work under real conditions:

Multiple source languages

— C, C++, assembler, UML, SDL, SCADE, ...

Multiple source providers

— Application developer, operating system, 3rd parties, ...
Multiple tool chains

— Each source provider may have own tool chain

ENE ENEA EMBEDDED TECHNOLOGY

Automatic tool that can work under real conditions:

* Modern processors
— Caches, superscalar pipelines, hierarchy of buses
* Optimizing compilers
— Analyzing the actual running code
* Dynamic programs
— Loops with data dependencies, function pointers, ...

ENEA ENEA EMBEDDED TECHNOLOGY

AGENDA

* Execution Time Analysis
— Measurement
— WCET
— pWCET

* Program Analysis

ENEA ENEA EMBEDDED TECHNOLOGY

Measurement

* Observations on the actual system
— Can be automated
* Generation of relevant input
Usually extremely large input domain
Plus all possible timings of input

Input include interrupts,
clock signals, bus traffic, ...

* (Collection of data

— Usually intrusive in some way

ENEA ENEA EMBEDDED TECHNOLOGY

Measurement Results

WCET=48.6us (in our test runs)
AverageET=12.8us (in our test runs)

+

“We used an ARM920 processor running at 120
MHz, with a 32-bit bus at 33 MHz. The cache ...
The code was run 100 times, and the average and
maximums were noted.”

User always has other, different conditions

ENEA ENEA EMBEDDED TECHNOLOGY

Automatic WCET Estimation

* Flow analysis

— Determine the dynamic behavior
Flow of the program
analysis

* Low level analysis

\ 4 — Determine execution time for the
program parts on the hardware

e (Calculation

— Combine flow and low-level times
to give a WCET estimate

A a
ual WCET
WCET Estimate /™

10

J
Programl D d DCNAVIO O
a DIC O O dCIE
y
FIowl ber of loop ite
analysis
Re on dep
\4
Low level put depena
analysis
Y c Dle p
A 0 e
Calculation 5
O Acd D d d
v ANnotato

WCET
Estimate

ENEA EMBEDDED TECHNOLOGY

ENE,
WCET Flow Analysis

do
{
if(...)
do
if(...) //B
- //IC
else
// D
if(...) /I E
/I F
/G
} while(...) /H
else

else
VA
} while(...) "

Example program

Basic block graph e ione And

-

' -~
; Structurally possible\ Sy -
flows (infinite)

I

1
1
1
1

Basic finiteness

1

1
1
1

]

|
epath(D, ()
! 1

]

1
1
1
WCET found here =

WCET found here =
overestimation desired result

\

4
7

\
Relation between possiblez

QW 1010

11

ENEA ENEA EMBEDDED TECHNOLOGY

WCET Low Level Analysis

Progra’ﬁn Determine execution time for program parts
Account for hardware effects

Work on object code

— The “real” program

level Two main issues:
Sis |«

— Cache analysis (global)

— Pipeline analysis (local)
lation|

y

ENEA ENEA EMBEDDED TECHNOLOGY

fib(int n)
{
int
i,Fnew,Fold, temp,
ans;
Fnew=1; Fold=0;
for(i=2;i<=n;i++)
{
temp Fnew;

Fnew Fnew
+ Fold;

Fold temp;

ENEA ENEA EMBEDDED TECHNOLOGY

WCET Cache Effects

fib: "4
#1, rs5 miss
#0, re6
#2, r7
fib_0

ENEA ENEA EMBEDDED TECHNOLOGY

WCET Cache Effects

fib:

First
iteration of
the loop

Remaining
iterations

13

ENE ENEA EMBEDDED TECHNOLOGY

WCET Pipeline Effects

foo(x):

Toop(i=1..100)

if (x > 5)

then
: X = X*2
else

X = X+2
end
: if (x < 0)
then

b[i] =

"alil;

ENE ENEA EMBEDDED TECHNOLOGY

WCET Flow Information

e Constraints:
— Start condition
— Program structure
— Loop bounds

— Other flow information

14

ENE ENEA EMBEDDED TECHNOLOGY

WCET Result

* Integer Linerar Programming
equation solver: I 8
wc in the model

ENE ENEA EMBEDDED TECHNOLOGY

WCET Tools

» Mailardalen University + Uppsala University

— Flow analysis
— Low level analysis
— Integration

e AbsInt GmbH

— AirBus is a customer

* Tidorum OY
— BoundT tool

15

ENEA ENEA EMBEDDED TECHNOLOGY

Enea WCET Experience

Foo)
{

Our results were
alloc(...) // System call
inside alloc()
if(error_check_mode)
do_lengthy_memory_check()
if(corrupt_memory)
error ("memory_corrupt”)
inside error handle
if(corrupt_memory)

b ° g
R = Flow analysis required

* Completely correct

* Completely irrelevant

return

Program flow
should end here,
but tool follows a
longer path

ENE ENEA EMBEDDED TECHNOLOGY

pWCET

> The best model of the processor
is the processor itself ™

» Let’s measure the execution time
— But for small, small simple pieces separately
— Qives distribution of execution times

— Combine the small pieces!

16

PWCET Sequence

Case 1: Assume execution times of A and B
independent

o B .

Convolution H(z) ZJ"F(X) G(z —x) dx

Usually this is not a feasible assumption

17

ENEA ENEA EMBEDDED TECHNOLOGY

PWCET Sequence

Case 2: Assume A and B dependent, known
dependency

-E.M

H(z) =| jx,y)

X+y=2

Jx,y) =p[X=x, Y =]

Usually the dependency is not known

ENEA ENEA EMBEDDED TECHNOLOGY

PWCET Sequence

Case 3: Assume A and B dependent, unknown dependency

>

H(z) = 02 min(F(x), G(y))

X+y=z

0X 0y

Assumes the worst possible dependency (conmonotonic)

36

18

pPpWCET Control Flow
If B then C else D
& Z =B + max(C, D)

Fori=1..N
Z=G+n(A..G)

Single basic block

7. = Measure!

PWCET Result

11k

19

ENEA ENEA EMBEDDED TECHNOLOGY

PWCET Tools
* University of York

— www.rapita.com

* Enea Epact

ENEA ENEA EMBEDDED TECHNOLOGY

Execution Time Analysis
Measurement
actual actual
possible execution times

safe BCET safe WCET
estimates estimates

T

10 observations B B3 9

[3

,\%’ How much
margin?

20

IENE £} 1At ChEtuoeDECNoLOY
Execution Time Analysis
WCET

actual actual
BCET WCET
possible execution times

safe BCET safe WCET
estimates estimates

How to build
a model?

ENEA 1 s rcmouse
Execution Time Analysis
pWCET

actual
BCET

safe BCET safe WCET
estimates estimates

]
Approximation by measurement &
10,000 micro statistical combination

observations

@y & Measure
a ‘ R \; E what ‘ Select your level
- input?? of confidence

possible execution times

21

ENE ENEA EMBEDDED TECHNOLOGY

Future Tools

Many research groups are working on execution
time analysis in EU, and Sweden especially

Current effort to standardize interfaces between
execution time analysis tools

— Different analysis methods will help each other

ENE ENEA EMBEDDED TECHNOLOGY

AGENDA

* Program Analysis
— Stack Usage
— Reverse Engineerning the Design

— Simulation

22

ENE ENEA EMBEDDED TECHNOLOGY

Stack Usage

aiCall from Abslnt is a call graph analyzer
* See the call graph

* See the maximum stack depth used
— Use this information to configure OSE processes

aiPop from Abslnt is a code compressor

» Rewrites object code into functionally equivalent,
but more compact object code

ENEA ENEA EMBEDDED TECHNOLOGY

Reverse Engineering the Design
The ASTEC remodelling project works on a tool to

» Extract the design of a system from code.
Use this information to
Understand the system
Check that the design is what you think it is

Verify that changes to the code don’t change the design in
negative ways

23

ENEA ENEA EMBEDDED TECHNOLOGY

Simulation

Simics from Virtutech is a CPU+System simulator

e Provides a deterministic and non-intrusive
observation environment. Use it to
— Measure execution time
— Find race conditions and deadlocks

* Current project to intelligently insert
delays/breakpoints to change the timing behaviour at
sensitive spots.

Find reason for ’glitches’

* Put a breakpoint on missed frame/lost call.

ENE ENEA EMBEDDED TECHNOLOGY

AGENDA

24

ENEA ENEA EMBEDDED TECHNOLOGY

Information Sources

Mailardalen University, M. Real-Time Research Center
University of York, Real-Time Systems Research Group
Uppsala University, Advanced Software Technology Group
Swedish institute of Computer Science (SiCS)

Virtutech AB

Rapita Systems Ltd

AbsInt GmbH

Tidorum OY, BoundT

Enea Epact, Embedded Technology AB

ENEA ENEA EMBEDDED TECHNOLOGY

25

NRTES

A mstwerk for RedHHme ressardh and
gradnnie Binsniim in Soeln

ARTES summerschool 2005

Invitation, Programme, Skévde information, SNART, Poster instruction, Travel

Programme

15-16 Bus to Lackd castel

16-17 Free strolling around and possibility to see exhibitions.

17-17.40 Guided tour of the castel

18-22 Boat to Navens Light house inkl. BBQ (Bring your swimssuit in case the
weather is varm.)

e 22-23 Bus to Skévde

SN,

Updated: 09-Aug-2005 15:42 T E) .
. . 2 Suweddinh g Fovmedabion for Stralegic Rewardy
Location: http://www.artes.uu.se/events/summer05/social_activity.shtml %h ;‘F o
fogy.

Tutorial: Experimental Sensor Networking Research

Thiemo Voigt and Joakim Eriksson
Swedish Institute of Computer Science
{thiemo, joakim}@sics.se

August 9, 2005

Wireless sensor networks (WSN) consist of a potentially large number
of tiny nodes equipped with sensing facilities, a low power processor, lim-
ited memory, and a radio module that enables the nodes to form networks
through which sensed data can be transported to a base station. Applica-
tions range from tornado detection and environmental science, to industrial
process monitoring, ventilation control and intrusion detection systems.

While analysis and simulation of sensor networks are indispensable, ex-
perimental research and the deployment of prototype or real sensor networks
are at least of equal importance. In this tutorial, we present some of the
research conducted at the Swedish Institute of Computer Science in the area
of wireless sensor networks. Our work includes some theoretical aspects but
the main focus is on experimental work in the areas of experimental evalua-
tion of lifetime bounds for WSNs, TCP /IP support for sensor networks, the
Contiki operating system and the development of prototype networks with
industry partners.

More information about the WSN research at SICS in general can be
found at http://www.sics.se/sensornets/. Most of the work presented in
this tutorial has been conducted within the VINNOVA-sponsored DTNSN-
project, see http://www.sics.se/cna/dtnsn/. The demonstrator shown as
part of the tutorial has mostly been developed within the EFFWSN project
financed by FMV.

The future for IT,

Karl-Einar Sjodin,
Vinnovas unit for information and communication research,

08-473 31 13
Karl-Einar.Sjodin@VINNOVA.se

Teknisk Framsyn ir ett nationellt projekt som syftar till att skapa insikt och visioner om
teknikutvecklingen pa ldng sikt. Rapporterna kan hémtas i digital form pé projektets hemsida:
www.tekniskframsyn.nu.

Inspiration till innovation, 2004
Vigval for Sverige, 2004

»® Vidrt senaste drhundrade dstadkom fler fordndringar dn under
de foregaende ett tusen daren tillsammans.
Det kommande drhundradet kommer att overtrdffa
vdrt foregdende drhundrade. *

HG Wells vid en foreldsning 6ver temat
upptickten av framtiden i London 1902.

http://www.cordis.lu/ist

http://www.cordis.lu/ist/grids

Sverige maste vaga vélja vag!

Karl-Einar Sjodin, VINNOVA
Teknisk Framsyn

Skdvde 2005-08-19

Teknisk Framsyn vill ...

= Starka det framtidsinriktade arbetet
i foretag och organisationer

= Framja hallbar tillvaxt och férnyelse
i Sverige

= Skapa underlag och processer for
att prioritera omraden som bygger

upp svensk kompetens. Vad ar vi
egentligen riktigt bra pa i Sverige?

Fokus: 1520 ar framat]

Projektet Teknisk Framsyn

= Nationellt projekt som analyserar
svenska forutsattningar for teknisk och
ekonomisk tillvaxt

= Ungefar hundra experter fran olika delar
av samhallet pekar pa de viktigaste
framtidsfragorna — vagval for Sverige

= Projektet visar pa férvantade
teknologiska genombrott

= Projektet lyfter fram samspelet mellan
teknik, samhalle och olika institutioner

Teknisk Framsyn

Huvudbudskap

= Valj vag — vi star infér sex vagval dar beslut
kravs nu for var framtida konkurrenskraft

= Prioritera inom forskning och utveckling
— vi féreslar 11 mangvetenskapliga
teknikomraden

= Utveckla for framtiden — aven i sma féretag
= Samarbeta — Sverige star inte ensamt

= Forankra en vision som styr besluten i
bade naringsliv, forskning och politik

Teknisk Framsyn

Starka, globala drivkrafter
tranger sig pa

antingen vi vill eller inte!

d
"\

] Tekisk Framsyn

Drivkrafternas virvelvind

Globalisering o Terrorism foder radsla IT och bioteknik
Global specialisering

Gransloshet

Chocker
Global
kunskaps-
rustning

Kunskaps-
samhallet
Global

konvergens,
social divergens

) Komplexa system Klimatférandringar,
Komplexitet som ger sarbarhet andliga resurser]f

Teknisk Framsyn [l

Nya varderingar

Demografi

Individualisering
och nya grupperingar

Vara viktigaste val:
vi vill ...

= att Sverige ska vara en del av varlden
= kraftsamla for framtidens infrastruktur
= ta vara pa manniskors resurser

och vi méste véga ...

= modernisera det offentliga atagandet
= ta steget mot det hallbara samhallet
= prioritera och fokusera

6. Vi maste vaga prioritera och
fokusera, genom att ...

= Satsa pa FoU, men satsa smart —
inom 11 mangvetenskapliga
teknikomraden

= Skapa mer foradling — prioritera
verksamhet langt fram i vardekedjan

= Specialisera regionalt
= Skapa mylla for nya foretag
= Vaga valja bort!

Vad har vi valt bort?

Exempel.

= Optiska datorer = Funktionella textilier
= Glasmetall = Fiberoptik

= Kiselkarbid = HOgspanning

= Samhallsplanering = Natverksdatorer

» Manniskans = Akustik

aldrandeprocess Funktionell mat

Ett nytt synsatt:

11 mangvetenskapliga
teknikomraden

Mangvetenskapliga teknikomraden
med stor svensk potential (1)

gy /)
= Sakrare komplexa ///—
system ”

= Mekaniska system
och strukturer

= |nteraktiv teknik
= Funktionella material

Mangvetenskapliga teknikomraden
med stor svensk potential (2)

= Miljo- och
livscykelteknologi

= Rorlig
energiforsorjning

» Fasta energisystem

Mangvetenskapliga teknikomraden
med stor svensk potential (3)

= Sakerhet och skydd

= Hallbar
livsmedelsproduktion i

= Tillganglig IT
= Halsa och -
sjukvardsteknik LSS

‘Q./A:G :

Sakrare komplexa system

Exempel:
= Oppna standarder
Simuleringsteknik

Teknik for
trafiksakerhet

Automatisering

Datasakerhet, inkl.
programvaruteknik

Vaga fatta beslut!

Att inte besluta far lika stora
konsekvenser som aktiva beslut — men
de ar oftast varre!

Det behdvs atgarder nu for att
Sverige ska vara framgangsrikt
om 15-20 ar!

www.tekniskframsyn.nu

Grid Research - the Challenge
Complexity - Interoperability - Ease of Use - ...

Knowledge Complex Computing
Technologies Systems Architectures

Evolution of

HPCN
/l\

Next . Séfvice- ..

Current : 7 Orientéd. |
_ Generation ("= ﬁ%}'lenied
Grids 4 Knsg\]%g% ,
Grids lity
\\’ /) \'\:\%N‘\ 7
¢ ,
. o 1
Evolution of =
the Web .
Software Mobile Global
Technologies Services Computing
Information Society and Melj‘lri‘iat [(;irrizc.:_:rcahtﬁﬁoes;lizr:l — European Commission E
IST-Call 5 Grid Information Day - Brussels, 30 May 2005 lnﬁ)ﬁstmgdcty

1

Next Generation Grid(s) — 3-fold Vision

Expert Group Reports:

“Next Generation Grid(s) - European Grid Research 2005 - 2010”, June 2003
“Next Generation Grids 2 — Requirements and Options for European Grids Research
2005-2010 and beyond”, August 2004

Architectural Vision

* Societal behaviour (millions of self-organising nodes)
» Computational semantics, ontologies, meta-descriptions

* Pervasive virtual organisations Virtualisation
Information Society and Media Directorate-General — European Commission -
Unit Grid Technologies E
IST-Call 5 Grid Information Day - Brussels, 30 May 2005 lnfomslmodc[y
an ia

2

WP 2005-2006

Advanced Grid Technologies, Systems and Services
Budget : 62 M€ (90%)

2 N

Applications
e-business, e-health,
e-gov, e-learning

Environment

Grid-enabled Applications & Services
Application for business and society
Pull Research, development, validation and take-up of
generic environments and tools Advanced
. - Grid
Grid Foundations Technologies,
Architecture, design and development of technologies Systems
and systems for building the invisible Grid and Services

gEG LA Network-centric Grid Operating Systems

Push Potential new fabric layer for future
distributed systems and services

\

Information Society and Media Directorate-General — European Commission -
Unit Grid Technologies B
IST-Call 5 Grid Information Day - Brussels, 30 May 2005 Tnformation Society
and Media
3

Further Info on Grid Research

¢ Brochure: “Building Grids for Europe”
= FP6 Grid Project Fact Sheets, FP5 Grid Project Result Sheets
Expert Group Reports

= “Next Generation Grid(s) — European Grid Research 2005 - 2010”, 2003

= “Next Generation Grids 2 — Requirements and Options for European
Grids Research 2005-2010 and beyond”, August 2004

FP5 Gridstart “IST Grid Projects Inventory and
Roadmap”

Brochure: “Achievements of EU Grid Projects”
IST Work Programme 2005-2006

www.cordis.lul/ist

and more:
www.cordis.lu/ist/grids

IST-Call 5 Grid Information Day - Brussels, 30 May 2005 Tnformation Society

and Media

Information Society and Media Directorate-General — European Commission -
- Unit Grid Technologies B

4

ARTEMIS

The European Technology Platform for
Embedded Systems

Introduction to the
ARTEMIS Strategic Research Agenda

Eric Schutz
Vice President External Technology Coordination

STMicroelectronics
(ftp://ftp.cordis.lu/pub/ist/docs/artemis/eric_schutz.pdf)

Utdrag for presentation 2005-08-19 av K-E Sjodin

karsjod
08-

ARTEMIS
t e

m i S

Aim and scope

! Develop and drive a joint European vision and strategy on
Embedded Systems

- R&D and educational challenges

- structural challenges: IPR, open source software, standards, research
infrastructure,...

! Align fragmented R&D efforts in the ERA along a common
strategic agenda at Community, intergovernmental and
national levels

Embedded Systems - what they are

! Intelligent electronic devices
contain a computing device, transparent to the user
combine HW & SW
part of larger non-computing system(s)
resource constrained
! Reactive to their environment
- “real-world” systems for control, perception and cognition
! Networked
- Ad-hoc collaboration

Connecting the physical
to the virtual world

Embedded Systems

! Embedded Systems are everywhere

- cars, roads, bridges, tunnels, medical instruments,
surgical robots, homes, offices, factories, aeroplanes,

airports, mobile phones, phone networks, virtual reality
glasses, clothes, ...

! Interconnected into networks of many devices
- ... but are not general-purpose PC’s, servers, etc...
1 Used in all market sectors

- automotive, aerospace, medical, environment,
communications, entertainment, textiles, transport,
logistics, printing, chemicals, food & drink, timber,
materials, agriculture, ...

The ARTEMIS Vision

cu ‘ty Safety and Quallty of life in
B &

The ARTEMIS Vision

_!Europe takes a leading role in ES development

- Requires committed investment in research and
development

_IARTEMIS will facilitate and stimulate success by:

- Avoiding fragmentation, ensure effective use of
resources
* Focused research and development
- Establishing an environment supportive of innovation
« Cooperation and competition in technological development
- Proactively stimulating the emergence of a new supply
industry
« Components, tools, design methodologies

10

Embedded Systems
New Paradigm, New Challenges

1980 - 90’s 2000 2010+
N
I.O /
MPU >
IO memory
MPU ‘l t memory ‘l
memory 0 Eﬂ &
]
e
/ /
Single-processor

Proprietary,
Fixed-function
Multi-processor
solutions

1= Major technological complexity challenge

- How to maintain Europe’s lead in meeting this
Al challenge?

systems Networked (ad-hoc,

opportunistic), reconfigurable
“processor ecosystem”

11

The ARTEMIS SRA

! The ARTEMIS platform elaborates a Strategic
Research Agenda (SRA) around the vision to:
- Make Ambient Intelligence a reality
* Address the complexity problem
- Ensure competitiveness of European industries

- Create opportunities (knowledge, ecosystem, ...) for a
New Industry to flourish

! Subscribed to by Europe’s leading technology
companies and institutes

12

The ARTEMIS SRA Targets

! To define a focused strategy, ARTEMIS set
High Level targets to be attained by 2016

50% of ES deployed worldwide based on ARTEMIS results

Twice as many SMEs within the aegis of ARTEMIS engaged in
the ES supply chain

Realise an integrated chain of European-sourced tools, to
support development of ES

Achieve seamless interoperability between the envisaged
Ambient Intelligence environments

At home, travelling, at work, in public spaces, ...
Generate at least 5 ‘radical innovations’

« Comparable to e.g. y-processor, DSP, software radio, ...

 The number of relevant patents will have doubled

13

The ARTEMIS SRA Targets

1 To meet these targets, ARTEMIS must
aim to close the design productivity gap

- Reduce cost of system design by 50%
- Achieve 50% reduction in development cycles

- Manage complexity increase of 100% with 20%
effort reduction

- Reduce by 50% the effort for re-validation and
re-certification

- Achieve cross-sectoral reuse

« E.g. automotive, aerospace and
manufacturing

Complexity

Expectation

Capability

Time

>

14

ARTEMIS Application Contexts

Focus research on technologies with high re-
usability

!ldentified four, strategically significant “Application
Contexts™

Industrial systems

» Automotive: “Frugal, safe car”
» Aerospace: “Customisable, efficient, safe air transport ”
» Manufacturing & process Industries: “Efficient, flexible manufacturing”

Private spaces: “Efficiency, safety and pleasure in the home”
* Includes Medical sector

Nomadic Environments: “Walk, Talk, Hear, See”

Public Infrastructure: “Secure and dependable environment”

15

Research Domains

ARTEMIS’ Pan-
Application-Context approach

! ARTEMIS approach cuts barriers between application sectors,
stimulating creativity and yielding multi-domain, re-usable results

A

Application Contexts Common objectives:
Industrial A , S
-~ — Sustainability
Industrial Nomadic Private Public Design Efficiency
Environ- Spaces Infrastruc 0
ments -ture S Ease of Use
((| | NG High added value
o5 Reference Designs & Architectures » o _
3 |) = > Time to market
= £
® .
'% § L L | |\ %_’E Modularity
— = n 2 :
© 2 -< Seamless connectivity, Middleware » 2 Safety / Security
o5)
T § 7 1 T l/ C@ Robustness
je N TT o
S - Competitiveness
o - o
L System Design methods & tools » S Innovation

Cost reduction

Interoperability

16

Identified RESEARCH DOMAINS

] Reference designs and architectures:

- Create a generic platform and a suite of abstract
components

1 Seamless connectivity and middleware
- Interoperable link to the physical world

1 Design methods and tools: The ARTEMIS method
- Design efficiency, systematic design, productivity and
quality
) Scientific foundational research

- provides the essential breakthrough ideas driving future
Innovation

17

	Frontpage
	Programme
	Contents
	ARTES++
	Participants
	Mike Hinchey
	1 Motivation for Autonomic Computing
	2 What is AC
	3 Self-* properties
	4 Autonomic managers & elements
	5 New and emerging biological
	6 Examples from NASA
	6 Sensor network
	6 Hubble

	Invitation

	Chenyang Lu RT Issues in Wireless
	Posters
	John Håkansson Analysable Compnents
	Markus Adolfsson Architectures
	Fredrik Törner Design of Electrical
	Jianlin Shi, Project ModComp

	Dinner
	M.R.V. Chaudron CBSE
	What is a software component
	Multitude of Component Models
	Component platform
	Summarizing CBSE

	Jan Lindblad
	Distribution vs. Fault Tolerance
	Overwhelming complexity
	Execution Time Analysis

	Social activity
	Thiemo Voigt nad Joakim Eriksson
	Experimental Sensor Networking Research

	Karl-Einar Sjödin, The future for IT

	x: Utdrag för presentation 2005-08-19 av K-E Sjödin
	y: (ftp://ftp.cordis.lu/pub/ist/docs/artemis/eric_schutz.pdf)
	Text1: http://www.cordis.lu/ist
	Text2: http://www.cordis.lu/ist/grids

