
Lund Institute of Technology

2001-03-04

ARTES TODAY

Dear participant at the 3:rd ARTES Graduate Student Conference
in Lund, Sweden, March 8-9, 2001,

Starting as an idea in 1996, ARTES has now developed into an internationally well known
research network. Almost 100 graduate students, their advisors and industrial partners are included
in the network, and more than 40 of the students are currently funded by ARTES.

Last year ARTES was evaluated by its funding organisation, the Swedish Foundation for Strategic
Research (SSF). It was a great experience for us to gather all the material you supplied us with. An
impressive amount of studies have already been carried out, providing many impressive results.
The publications (printed double sided) that were sent to the evaluators completely filled a
standard size paper box for copying machine paper. What is really amazing is that this is only the
beginning, since in August last year when the evaluation took place the average ARTES student
had only carried out an equivalent of one year of studies. What is even more satisfying is that the
comments we received from SSF have been very positive, indicating that ARTES is the best
programme in the IT field, as well as the importance of the network for creating a critical mass.
This has given us courage to proceed with planning of the next stage, provisionally named
ARTES++.

The aim is to start ARTES++ already 2002, i.e. before the end of ARTES in the beginning of
2003. The intention is to continue with the networking activities in ARTES++, but to make the
research programme more focused by defining a number of sub-programmes (or clusters) with
specific research agendas and technical visions. The research groups and industrial networks are
currently being formed for these clusters.

Now, in March 2001 ARTES project support has reached its maximum, at a level of 1.6 MSEK
per month, corresponding to one PhD carried out every 6 weeks. This corresponds to about 40%
of the total Real-Time studies in Sweden. Adding the importance of the networking and mobility
activities, it is definitely fair to say that ARTES is the driving force for the real-time research in
Sweden. On the other hand, this research would never have been possible without the many
talented and dedicated graduate students that performs most of the actual work.

Your contributions are highly appreciated! As is your help to cover all relevant conferences in the
world with your presence and travel reports.

This Graduate Student Conference is the largest so far with 42 pre-registerd participants.

Welcome
Hans Hansson and Roland Grönroos

Participants at
ARTES Graduate Student Conference 2001

Number of participants 42, presentations 21.

Name E-mail Affiliation

Lars Albertsson lalle@sics.se SICS

Björn Andersson ba@ce.chalmers.se Chalmers

Bengt Asker bengt.asker@telia.com ARTES

Carl Bergenhem carl.bergenhem@ide.hh.se Halmstad

Anton Cervin anton@control.lth.se Lund

Fredrik Dahlgren fredrik.dahlgren@ecs.ericsson.se Ericsson Mobile

Radu Dobrin radu.dobrin@mdh.se MDH

Cecilia Ekelin cekelin@ce.chalmers.se Chalmers

Magnus Ekman mekman@ce.chalmers.se Chalmers

Torbjörn Ekman torbjorn@cs.lth.se Lund

Jad El-khoury jad@md.kth.se KTH

Petter Ericson Anoto AB

Sven Gestegård Robertz Sven.Gestegard@cs.lth.se Lund

Flavius Gruian Flavius.Gruian@cs.lth.se Lund

Roland Grönroos Roland.Gronroos@DoCS.UU.SE ARTES

Sanny Gustavsson sanny@ida.his.se Skövde

Hans Hansson hansh@DoCS.UU.SE ARTES

Dan Henriksson dan@control.lth.se Lund

Hoai Hoang hoang@ide.hh.se Halmstad

Daniel Häggander Daniel.Haggander@ipd.hk-r.se Blekinge

Magnus Jonsson Magnus.Jonsson@ide.hh.se Halmstad

Krzysztof Kuchcinski Krzysztof.Kuchcinski@cs.lth.se Lund

Tomas Lennvall tomas.lennvall@mdh.se MDH

Bo Lincoln lincoln@control.lth.se Lund

Birgitta Lindström birgitta@ida.his.se Skövde

Sorin Manolache sorma@ida.liu.se Linköping

Anders Nilsson anders.nilsson@cs.lth.se Lund

Klas Nilsson klas@cs.lth.se Lund

Robert Nilsson robni@ida.his.se Skövde

Thomas Nolte thomas.nolte@mdh.se MDH

Dag Nyström dag.nystrom@mdh.se MDH

Anders Orebäck oreback@nada.kth.se KTH

Anders Pettersson anders.pettersson@mdh.se MDH

Paul Pop paupo@ida.liu.se Linköping

Paul Scerri pausc@ida.liu.se Linköping

Per Håkan Sundell phs@cs.chalmers.se Chalmers

Radoslaw Szymanek Radoslaw.Szymanek@cs.lth.se Lund

Yudong Tan ydtan@ece.gatech.edu MDH/guest

Mattias Wecksten Mattias.Wecksten@ratech.se Halmstad

Zhang Yi yzhang@cs.chalmers.se Chalmers

Aleksandra Zagorac g-aleza@ida.liu.se Linköping

Karl-Erik Årzén karlerik@control.lth.se Lund

Invitation, Programme, Participants, Presentations

Programme: ARTES Real-Time Graduate Student Conference 2001

Thursday March 8
9.30-10.00 Registration and Coffee

10.00-10.20 Introduction Hans Hansson, Karl-Erik Årzén

10.20-11.00 Session: Computer Control Chair: Klas Nilsson

AIDA II Progress Report: Towards a Co-simulation Jad El-Khoury, KTH

Environment for Computer Control Systems

Analyzing the Effects of Missed Deadlines in Control Systems Anton Cervin, LTH

11.00-11.15 Break

11.15-12.15 Session: Testing & Debugging Chair: Bengt Asker

Simulation-Based Debugging and Profiling of Lars Albertsson, SICS

Soft Real-Time Applications

Methods for Increasing Software Testability Birgitta Lindström, HIS

Test Case Generation for Testing of Timeliness Robert Nilsson, HIS

12.30-13.30 Lunch, Kårhuset

13.30-14.30 Plenary

CTechnologies & Anoto: An Embedded System Case Study Petter Ericson

Chief Scientific Officer,

Anoto AB

14.30-15.30 Session: Scheduling Chair: Hans Hansson

Fixed-Priority Preemptive Multiprocessor Scheduling: Björn Andersson, Chalmers

To Partition or not to Partition

Solving Embedded System Scheduling Problems Cecilia Ekelin, Chalmers

using Constraint Programming

Memory and Time-Efficient Schedulability Analysis Sorin Manolache, LiU

of Task Sets with Stochastic Execution Time

15.30-16.00 Coffee

16.00-17.00 Session Chair: Karl-Erik Årzén

On Energy Reduction in Hard Real-Time Systems Flavius Grubian, LTH

with Dynamic Voltage Supply Processors

Minimizing System Modification in an Paul Pop, LiU

Incremental Design Approach

Minimization of Execution Scenarios in Anders Pettersson, MDH

Static Priority Preemptive Scheduled Real-Time Systems

19.00-... Dinner, Restaurant Stäket

Friday March 9
8.45-9.45 Plenary

Future Mobile Phones - Design Challenges Fredrik Dahlgren,

from a Real-Time System’s Perspective Technical Manager

Ericsson Mobile Communications

9.45-10.00 ARTES Patent Award Ceremony

10.00-10.30 Coffee

10.30-11.30 Session Chair: Karl-Erik Årzén

Deterministic Java in Tiny Embedded Systems Anders Nilsson, LTH

Designing Agents for Systems with Adjustable Autonomy Paul Scerri, LiU

On recovery and consistency preservation in Sanny Gustavsson, HIS

distributed real-time database systems

11.30-11.40 Break

11.40-12.20 Session: Communication Chair: Magnus Jonsson

Switched Real-Time Communication for Industrial Applications Hoai Hoang, HH

Fibre-Ribbon Pipeline Ring Network with Distributed Carl Bergenhem, HH

Global Deadline Scheduling

12.30-13.30 Lunch, Kårhuset

13.30-14.30 Session: Real-Time Programming Chair: Klas Nilsson

Modeling and Analysis of Message-Queues in Thomas Nolte, MDH

Multi-Tasking Systems

Applications of lock and wait-free shared data structures Håkan Sundell, Chalmers

to real-time systems

Non-blocking synchronization for soft realtime applications Zhang Yi, Chalmers

Presentations at
ARTES Graduate Student Conference 2001

Name Title and Authors

Lars Albertsson Simulation-Based Debugging and Profiling of Soft Real-Time Applications
Lars Albertsson

Björn Andersson Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to
Partition

Björn Andersson and Jan Jonsson

Carl Bergenhem Fibre-Ribbon Pipeline Ring Network with Distributed Global Deadline
Scheduling

Carl Bergenhem, Magnus Jonsson, and Jörgen Olsson

Anton Cervin Analyzing the Effects of Missed Deadlines in Control Systems
Anton Cervin

Fredrik Dahlgren Future Mobile Phones - Design Challenges from a Real-Time System’s
Perspective

Fredrik Dahlgren

Cecilia Ekelin Solving Embedded System Scheduling Problems using Constraint
Programming

Cecilia Ekelin and Jan Jonsson

Jad El-khoury AIDA II Progress Report Towards a Co-simulation Environment for Computer
Control Systems

Jad El-khoury

Petter Ericson CTechnologies & Anoto: An Embedded System Case Study
Petter Ericson

Flavius Gruian On Energy Reduction in Hard Real-Time Systems with Dynamic Voltage
Supply Processors

Flavius Gruian

Sanny Gustavsson On recovery and consistency preservation in distributed real-time database
systems

Sanny Gustavsson, Sten F. Andler

Hoai Hoang Switched Real-Time Communication for Industrial Applications
Hoai Hoang

Birgitta Lindström Methods for Increasing Software Testability
Birgitta Lindström, Jonas Mellin, and Sten Andler

Sorin Manolache Memory and Time-Efficient Schedulability Analysis of Task Sets with
Stochastic Execution Time

Sorin Manolache, Petru Eles, Zebo Peng.

Anders Nilsson Deterministic Java in Tiny Embedded Systems
Anders Nilsson and Torbjörn Ekman

Robert Nilsson Test Case Generation for Testing of Timeliness
Robert Nilsson, Sten F. Andler and Jonas Mellin

Thomas Nolte Modeling and Analysis of Message-Queues in Multi-Tasking Systems
Thomas Nolte

Anders Pettersson Minimization of Execution Scenarios in Static Priority Preemptive Scheduled
Real-Time systems

Anders Pettersson

Paul Pop Minimizing System Modification in an Incremental Design Approach
Paul Pop, Petru Eles, Traian Pop, Zebo Peng

Paul Scerri Designing Agents for Systems with Adjustable Autonomy
Paul Scerri and Nancy Reed

Per Håkan Sundell Applications of lock and wait-free shared data structures to real-time
systems

Håkan Sundell

Zhang Yi Non-blocking synchronization for soft realtime applications.
Zhang Yi

Invitation, Programme, Participants, Presentations

Updated: 03-Mar-2001 09:39 by Roland Grönroos
e-mail: artes@docs.uu.se web: www.artes.uu.se
Location: http://www.artes.uu.se/events/gsconf01/pres.shtml

AIDA II Progress Report
Towards a Co-simulation Environment for

Computer Control Systems

Jad El-khoury

KTH, Department of Machine design,
Mechatronics lab, 100 44 Stockholm

jad@md.kth.se

ABSTRACT

Modern machinery, such as automobiles, trains and aircraft, are equipped with embedded dis-
tributed computer control systems where the software implemented functionality is steadily in-
creasing. The development of such systems, however, is still a relatively new and young
discipline. There is consequently a lack of tools, methods and models to support, in particular,
the early architectural design stages.

Closely associated with the design of a distributed control system are design decisions on the
overall system structure, function triggering and synchronization, policies for scheduling, com-
munication and error handling. These parameters to a large extent determine the resulting sys-
tem timing and dependability, and hence, impact the control application performance and
robustness.

The primary target for the research described here is the development of executable models to
support architectural design. The report describes earlier efforts in this direction including
case studies in the DICOSMOS and AIDA projects. Experiences from the studies are discussed
including aspects on modelling to support interdisciplinary design, modeling abstraction and
accuracy, and tool implementation.

A state of the art survey of related modelling efforts reveals that very little appears to have been
done in terms of modelling and simulation that involves simulation of the environment with the
computer control system. In addition, the treatment of distributed computer systems, redundant
systems, and error scenarios in this context appear to be scarce.

The possibilities for extending the simulation models to arrive at a ready to use library to sup-
port the design of distributed control systems are discussed. This work is already under way.
Remaining work includes to verify the developed simulation models, and to evaluate the models
and their usage in case studies. One related topic for further work includes integrating the sim-
ulation models with the AIDA modeling framework. A longer term aim is that the models and
simulation features should form part of a larger toolset supporting also earlier and later devel-
opment stages, thus providing more comprehensive analysis and synthesis support.

1. INTRODUCTION

This report is a summary of an internal report developed at the mechatronics lab in order to iden-
tify the short and long-term research work to be done in the AIDA II project. Please refer to
(Törngren, 2001) for more detailed information.

1.1. Background: embedded control systems, trends and challenges

Machinery, such as automobiles, trains and aircraft, are increasingly being equipped with em-

bedded control systems that are based on distributed computer systems. In these systems the
functionality is steadily increasing due to the possibilities enabled by software and networks for
information exchange. The computer system is typically composed of a number of networks
that connect the different nodes of the system. A node typically includes sensor and actuator in-
terfaces, a microcontroller, and a communication interface to the broadcast bus. From a control
function perspective, such machines can be said to be controlled by a hierarchical system, where
subfunctions interact with each other and through the vehicle dynamics to provide the desired
control performance.

However, a number of challenges face the developers of such machinery in order to really be
able to benefit from the technology advances:

• The need to cope with the dramatic increase in system (software) complexity. Apart from the
sheer amount of new functionality, complexity also arises from different types of interfer-
ence between functions partly arising from their usage of shared computer system resources.

• Managing and exploiting multidisciplinarity. The development of embedded control systems
requires knowledge in, and cooperation between, several different scientific and engineering
disciplines.

• Verification and validation of dependability requirements. The main challenge here is that
of developing mechatronic (software based) systems that are safer and more reliable than
their mechanical counterparts. Albeit the advantages, software easily becomes very complex
and is difficult to verify and validate. In addition, the distributed computer systems where the
software is implemented add “new” failure modes.

1.2. Modelling and simulation in the context of architectural design

The development of embedded computer control systems is still a relatively new and young dis-
cipline. Consequently, there is a lack of tools, methods and models to support, in particular, the
early so called architectural design stages. The primary target for the research described here is
the development of models to support architectural design. In the context of designing a distrib-
uted computer control system, architectural design is here used to refer to decisions on the:

• Overall system structure, including both functional, software and computer structure (These
issues include deciding on allocation and partitioning)

• Function triggering, synchronization, and policies for scheduling all resources
• Communication principles
• Policies for error handling, and the mechanisms used for error detection.
Choices of these “design parameters” to a large extent determine the resulting system reliability,
safety, and timing, and impact the control application performance and robustness.

The very basic idea is to develop models that can be used to analyse different architectural pro-
posals, simulation is the analysis approach taken in this work. In a longer term perspective, the
aim is that the models and simulation features should form part of a larger toolset being devel-
oped at the mechatronics lab; a toolset that supports the design of embedded control systems in
order the meet the main identified challenges: complexity, multidisciplinarity and dependabili-
ty.

Some of the requirements on the models are as follows (the reader is referred to Törngren (1995)
and Redell (1998) for more detail and background):

• The models should allow both functionality, to be implemented in a computer system, and
the computer systems to be represented.

• The models should allow co-simulation of functionality, as implemented in a computer sys-
tem, together with the controlled continuous time processes and the behavior of the computer
system.

• The models should support interdisciplinary design, thus taking into account different sup-
porting methods, modelling views, abstractions and accuracy, as required by control, system
and computer engineers.

• The models should be useful also for a descriptive framework, visualising different aspects
of the system, as well as being useful for other types of analysis such as scheduling analysis.

1.3. Why model based architectural design?

By model based design we primarily refer to models that are sufficiently formal to allow anal-
ysis to be carried out. Early architectural analysis allows the solution space to be explored, and
at the same time provides a better opportunity for the early detection of erroneous requirements
and design bugs. Clearly, such mistakes are very costly if detected late. Compared to traditional
testing, the approach allows different failure modes to be approached and analysed one at a time,
progressing the verification through the development in an iterative and incremental fashion.

A strong advantage of model based design used in the context of early analysis, is the ability to
evaluate alternative architectures with very few restrictions. Compared to traditional integration
testing, or hardware in-the-loop simulation where the complete environment of a node is simu-
lated in real-time, model based design and analysis provides additional advantages including the
ability to easily and with low cost change the design, and the possibility to instrument and ana-
lyse the internals of the distributed computer system. This is not to say that model based design
can replace the others, but the tasks of for example the system integrator can be made much eas-
ier given that some aspects of the system, such as its timing behavior, have been analysed thor-
oughly earlier. A strong point of the modelling activity is that it is a very useful process that can
reveal a number of aspects, such as missing requirements and design bugs.

The investigation of computer system models, at different levels of abstraction with different
accuracy/complexity, is an educative process that we hope can provide additional understanding
to support interdisciplinary design. The model and tool prototypes are also very important as
part of the research because they enable different forms of feedback.

2. ACCOMPLISHMENTS IN MODELLING AND SIMULATION AT THE
MECHATRONICS LAB

2.1. Early work on modelling and simulation in the DICOSMOS project

An early investigation of “timing problems” was carried out in the DICOSMOS project, see
Wittenmark et al. (1995), Törngren (1995), Nilsson (1996). Here the effects of time-varying
feedback delays, sampling period jitter and data loss in feedback control systems were investi-
gated. Inspired by earlier work along the lines of Ray (1988), cosimulation was one approach
taken in DICOSMOS towards analysing the timing problems. Special Simulink (www.math-
works.com) blocks were developed to model time-varying delays, sampling instant jitter, vacant
sampling and sample rejection (data-loss through over-writing of data), Törngren (1995). A
feedback control system, as modelled in Simulink, could then be instrumented with these blocks
to come one step towards modelling a distributed computer implementation. The approach
turned out to be useful for illustrating the effects of the timing problems and for analysing them,
e.g. for comparing the effects of sampling period jitter vs. a time varying delay, or for analysing
the sensitivity of a particular control design.

2.2. The AIDA modelling framework

The basis for developing the modelling framework was to determine the information needed in
the context of the early stages of design of distributed control systems. The models were target-
ed towards motion control applications implying the need to be able to model time- and event-
triggered, multirate, control systems with different modes of operation. These control systems
are to be implemented on distributed heterogeneous hardware with both serial and parallel com-
munication links interconnecting the processing elements. There is a need for modelling the var-
ious system specific overheads, scheduling policies, error handling etc. The derived
requirements and the AIDA modelling framework are thoroughly described by Redell (1998),
Törngren and Redell (2000).

2.3. Modelling and simulation of the SMART satellite fault-tolerant computer system

During very early design stages of the development of the distributed computer control system
of the SMART satellite, to be launched in 2002 by the European Space Agency, the Swedish
Space Corporation needed to analyse and verify the use of the Controller Area Network (CAN)
in the on-board satellite computer control system. In particular the error handling of CAN in
conjunction with the chosen design for a fault tolerant network was of concern. This work was
partly carried out by the authors of this report, and included assessing the design by means of
modelling and simulation. The main aim of the simulation was to verify that the given rules for
redundancy are not conflicting, and that the system can recover from a single permanent fault.
For more information on the simulation models the reader is referred to Törngren and Fredriks-
son (1999).

2.4. Cosimulation within the DICOSMOS2 project

Sanfridson (1999 & 2000) describes a co-simulation of a truck and semi-trailer using a CAN
bus for the on-board distributed control system in order to investigate the performance of con-
trol applications and adjust control periods and message priorities on-line. The simulations have
been implemented in Matlab/Simulink. The model of the CAN bus is fairly detailed which gives
a realistic timely behaviour of the network communication. The major drawback is the amount
of processor time required to carry out the simulation at this detailed level.

3. THE STATE OF THE ART

Various simulation tools have been developed to tackle some of the issues discussed in this re-
port. A small survey has been performed in order to evaluate these tools, with an earlier com-
plementing survey given by Redell (1998). What was common between these tools is the fact
that they are developed with the aim of simulating real-time computer systems. However, each
tool is focused on particular aspects of such systems.

The following tools were evaluated: (See Törngren, 2001 for further details)

• RT/CS Co-design: A Matlab Toolbox for Real-time and Control Systems Co-design
• DRTSS: A Simulation Framework for Complex Real-time Systems
• STRESS - A Simulator for Hard Real-time Systems
• HaRTS: Design and Simulation of Hard Real-time Applications

4. SOME ESSENTIAL ISSUES IN MODELLING AND SIMULATION

4.1. Interdisciplinary design: modeling purpose, abstraction and accuracy

Good cooperation and interfaces between the involved engineers is essential to maintain con-

sistency between specifications, design and implementation. When developing a motion control
system for a machine, somehow the functions and elements thereof need to be allocated to the
nodes. This principally means that an implementation independent functional design needs to
be enhanced with new “system” functions that:

• Perform communication between parts of the control system.
• Perform scheduling of the computer system processors and networks.
• Perform additional error detection and handling.
This mapping will change the timing behavior of the functions due to effects such as delays and
jitter.

4.2. Issues related to system development and tool implementation

While developing distributed control systems, it would be advantageous to have a simulation
toolbox or library, in which the user can build the system based on prebuilt modules to define
things such as the network protocols and the scheduling algorithms. With such a tool, the user
can focus on the application details instead. Such a tool is possible since components like dif-
ferent types of schedulers and CAN network are well defined and standardised across applica-
tions. Such a tool will enforce a boundary between the application and the rest of the system.
This will speed up the development process, and gives the developers extra flexibility in devel-
oping the application.

Also, to be useful and cost-effective for system development, the usage of the models and the
simulation facilities need to be integrated into the development process.

5. FUTURE WORK

Investigating and extending the AIDA modeling framework. Some further ideas for devel-
oping the models are as follows:

• The developed simulation models should be integrated with the AIDA modelling frame-
work. Ideally, the same basic models should be useful for static analysis and for simulation.

• The simulation models do describe both system structure and behavior but they are not al-
ways very descriptive since they sometimes lack graphical views. Some proposals in this di-
rection have been made in the AIDA models (Redell, 1998).

• The semantics of pure simulation models (such as the ones in Simulink) inherently differ
from the timing behaviour of real-time execution, (Törngren et al., 1997). How can this se-
mantic gap be bridged?

• The simulation models and the AIDA framework need to be extended both upwards, to mod-
els used in earlier design stages, and downwards, towards the implementation. Basically, the
motivation is given by the need for a holistic design framework that enables models (and
work accomplished) to be reused, and used efficiently. Thus it would be desirable to be able
to refine the models such that they can be used not just in early design. In addition, work car-
ried out in configuring a computer node for example, should be reusable in later prototyping
and implementation stages.

• The use of the Unified Modelling Language (UML, 1997) and CODARTS models (Gomaa,
1993, a development of structured analysis models) in conjunction with the modeling frame-
work will be investigated. Key aspects here include assessing when and why to use object
models vs. functional (structured analysis) models, and how they map to other entities such
as tasks.

Developing a toolset for architectural analysis. This topic builds upon the ideas of the AIDA
project. The idea is to develop a toolset that provides comprehensive analysis and modelling
support for embedded control systems.

The following are some ideas for the implementation of a prototype toolset for research purpos-
es:

• The envisioned toolset concept is based on a number of well established engineering tools
that are complemented and extended with a number of functionalities. These functionalities
include additional models to enable important analysis and synthesis to be carried out. They
will also include necessary interfaces between tools. There are two strong reasons for this
structure; given limited research efforts, energy should not be spent on reinventing the wheel.
In addition, using available tools will make it easier to demonstrate and apply the toolset con-
cept in a realistic setting. It will also facilitate the pinpointing of the opportunities provided
by the complementing tools. As an example, there are tools around that can deal with mod-
elling and analysis of reliability, safety, control system design, finite state machines, timing
analysis, etc., but these tools are not integrated; and even if they were, can not provide the
functionality required for appropriately supporting the design of distributed real-time control
systems.

• The functionalities considered include support for overall system structuring in early design
stages (where reliability, safety, resource load and costs are evaluated), hazard and safety
analysis integrated with control system design, and control design complemented with sup-
port for distributed real-time system implementation where timing analysis is one important
part.

• Model reuse must be enabled by the envisioned toolset. Reuse can come in different forms.
One aspect of this is to be able to use a developed model throughout the life cycle of a product
in order to support product maintenance including upgrades. As discussed earlier, this re-
quires models to be refined during the development. Having developed a simulatable model,
it would be valuable to reuse this information, for example the computer system configura-
tion, in further prototyping and development work.

Many interesting issues exist and will arise in the development of this type of toolset.This in-
cludes how to manage the different types of models and how to use the toolset facilities in sys-
tem development. The toolset should be complemented by an appropriate design methodology.
One important piece of this methodology should be a verification framework that promotes the
development of dependable embedded systems.

Extending the functionality of the toolset also requires the models to be extended (as partly dis-
cussed in the previous section). For example, the AIDA models currently do not include explicit
fault models and attributes such as criticality.

6. REFERENCES

Gomaa (1993). Hassan Gomaa. Software design methods for concurrent and real-time systems.
Addison-Wesley publishing company, 1993.

Nilsson (1996). Johan Nilsson. Real-Time Control Systems with Delays. PhD thesis. ISRN
LUTFD2/TFRT--1049--SE, Lund Institute of Technology, Sweden.

Ray and Halevi (1988). Asok Ray and Y. Halevi. Integrated Communication and Control
Systems: Part II - Design Considerations. ASME Journal of Dynamic Systems,
Measurements and Control, Vol 110, Dec. 1998, pp 374-381.

Redell (1998). Ola Redell. Modelling of Distributed Real-Time Control Systems, An Approach for Design and
Early Analysis, Licentiate Thesis, Department of Machine Design, KTH, 1998, TRITA-MMK
1998:9, ISSN 1400-1179, ISRN KTH/MMK--98/9--SE, Stockholm, Sweden.

Sanfridson (1999). Martin Sanfridson. QoS in Distributed Control of Safety-Critical Motion
Systems. Work in progress paper at the 20th Real-time Systems Symposium, Phoenix,
December 1999.

Sanfridson (2000). Martin Sanfridson. Timing problems in distributed control. Licentiate Thesis,
TRITA-MMK 2000:14, ISSN 1400-1179, ISRN KTH/MMK--00/14--SE, May 2000.

Törngren (1995). Martin Törngren. Modelling and design of distributed real-time control applications.
Doctoral thesis, Department of Machine Design, KTH, TRITA-MMK 1995:7, ISSN1400-
1179, ISRN KTH/MMK--95/7--SE.

Törngren and Fredriksson (1999). Martin Törngren and Peter Fredriksson. SMART-1. CAN and
Redundancy logic simulation of the SMART SU. Swedish Space Corporation, Report S80-
1-SRAPP-1.

Törngren and Redell (2000). Martin Törngren and Ola Redell. A Modelling Framework to
support the design and analysis of distributed real-time control systems. Journal of
Microprocessors and Microsystems 24 (2000) 81-93, Elsevier, special issue based on
selected papers from the Mechatronics 98 proceedings.

Törngren (2001). Martin Törngren, Jad El-khoury, Martin Sanfridson and Ola Redell. Modelling
and Simulation of Embedded Computer Control Systems: Problem formulation. Internal Report,
Department of Machine Design, KTH, TRITA-MMK 2001:3, ISSN1400-1179, ISRN KTH/
MMK--01/3--SE.

Törngren et al. (1997). Martin Törngren, Christer Eriksson, Kristian Sandström (1997). Real-
time issues in the design and implementation of multirate sampled data systems. In Preprints
of SNART 97 -Swedish National Association on Real-Time Systems Conference, Lund, 21-
22 August 1997.

UML (1997). UML notation guide. Version 1.1. Sept. 1997. Object Management Group, doc.
no. ad/97-08-05. http://www.rational.com/uml

Wittenmark et al. (1995). Björn Wittenmark, Johan Nilsson, and Martin Törngren. Timing
Problems in Real-time Control Systems. Proceedings of the 1995 American Control
Conference, Seattle, WA, USA.

Analyzing of the Effects of Missed
Deadlines in Control Systems

Anton Cervin
Department of Automatic Control

Lund Institute of Technology
Box 118, SE 221 00 Lund, Sweden

anton@control.lth.se

Abstract
Design based on worst-case assumptions and hard deadlines can give low

resource utilization. In control systems, this corresponds to slow sampling and
low control performance. By allowing temporary overloads and overruns, we
can increase both the average CPU utilization and the control performance.

As a first step toward real-time control design that tolerates overruns, this
paper gives two examples which explore the impact of missed deadlines on con-
trol performance. In the first example, it is illustrated that control performance
and scheduling performance are totally different things. In the second exam-
ple, it is shown that in some cases we can actually gain control performance by
setting tight deadlines which are then sometimes missed. The key parameters
that link the areas of scheduling analysis and control analysis are the sampling
interval, the input-output latency, and the jitter.

1. Background

Ever since the seminal paper on real-time scheduling theory, [Liu and Layland,
1973], computer-controlled systems have been used as the primary example of hard
real-time systems. In a hard real-time system, the computer responds to periodic
or non-periodic events by executing tasks that must finish within hard deadlines—
or else, the system will fail. This description has shaped much of the real-time
systems research during the past thirty years. It is questionable, however, whether
this description really fits the large majority of computer-controlled systems.

Typically, a controller is implemented as a task that should execute periodically
in the computer. In each period, the controller should sample the process output,
execute the control algorithm, and send the new control signal, to the process. The
controller is often designed using sampled-data control theory, see e.g. [Åström and
Wittenmark, 1997], which assumes that the samples are taken at equidistant points
in time.

The performance and stability of the closed-loop system depend not only on the
control algorithm, but also on the actual implementation and run-time behavior of
the controller in the computer system. The computing hardware, the execution-time
properties of the control algorithm, the real-time operating system, the scheduling
algorithm, and the possible network delays all introduce various amounts of de-
lay and jitter in the control system. In the end, from a control perspective, it is

1

the actual sampling period (including jitter) and the actual input-output latency
(including jitter) that influence the performance and stability of the closed-loop
system. For further discussion on the sources and effects of timing variations, see
[Törngren, 1998].

2. Where Do Deadlines Come From?

In the hard real-time scheduling literature, it is often unclear where the timing
constraints—including deadlines—actually come from [Ramamritham, 1996]. The
paper [Liu and Layland, 1973] is an exception to this, however: One of the assump-
tions clearly states that “Deadlines consist of run-ability constraints only—i.e. each
task must be completed before the next request occurs.” This implies that D = T
for all tasks. The connection to control theory is then made by mentioning that
“Any control loops closed within the computer must be designed to allow at least an
extra unit sample delay.” Later research has extended the schedulability analysis
to handle the cases D < T and D > T as well, see e.g. [Tindell et al., 1994] and
[Stankovic et al., 1998], but the origin of the deadlines and their relation to control
theory are rarely mentioned.

Sample

0 D T

Control

Response Time

Latency
Time

Figure 1 Illustration of the relationship between deadline (D), response time, and input-
output latency for a control task. The latency is bounded by the response time, which in turn
is bounded by the deadline. The task is assumed to be released at time zero.

From a control perspective, deadlines are primarily used to bound the input-
output latency of the controllers. Figure 1 illustrates the relationship between dead-
line, response time, and input-output latency for a control task. Here, it is assumed
that the A-D conversion takes place when the control task starts its execution,
and that the D-A conversion takes place when the task completes its execution.
A common alternative is to sample the process at the beginning of the period.
Furthermore, it is common practice to divide the control algorithm into two parts—
Calculate Output and Update State—and send out the control signal when the first
part has completed.

For controlled plants with unstable dynamics, bounded latency is absolutely nec-
essary to guarantee the stability of the closed-loop system. For all plants, bounded
latency is necessary to guarantee some minimum level of control performance. Also,
in general, the smaller the latency can be made, the better control performance
and robustness can be achieved. Thus, typical deadlines assigned to control tasks
(D ≤ T) are often much tighter than what is dictated by pure stability considera-
tions.

Deadlines may also be derived from other real-time constraints in the implemen-
tation. For instance, consider the case in Figure 2, where a dedicated, high-priority
output task τDA is used to minimize the output jitter of control task τ1, see [Locke,

2

τ1 τDA

Buffer

Figure 2 In fixed-priority scheduling with offsets, a high-priority, dedicated output task τDA

can be used to minimize the output jitter of control task τ1. This enforces a deadline on τ1.

1992]. The tasks have the same period, but τDA is released with a fixed offset O
relative to the release of τ1. A deadline D < O must be assigned to τ1 to ensure
that fresh output data will be available in the buffer when τDA starts its execution.
See [Audsley et al., 1993] for further details on offset scheduling. Different con-
trol structures, such as synchronized loops, cascaded loops, etc., may also enforce
additional time constraints, see [Sandström, 1999].

Truly hard deadlines in real-time control systems are studied in [Shin et al.,
1985]. There, hard constraints on the controlled variables (e.g. physical constraints)
are used to derive maximum allowable control latencies in different regions of the
state-space. It is also noted that the hard deadline may be a random variable due
to stochastic disturbances acting on the process. The approach is extended in [Shin
and Kim, 1992], where the stability of the closed-loop system is also considered.
In the examples given, the hard deadlines are typically found to be several times
longer than the sampling interval. This may not be so surprising. As pointed out,
the sampling period of a controller is not only chosen to satisfy Shannon’s sampling
theorem, but also to achieve the desired performance. Thus, a controller always has
some degree of robustness against variations in the sampling interval due to, for
instance, missed deadlines.

3. Analysis—A Two-Step Procedure

Investigating the effects of missed deadlines in control systems is a two-step proce-
dure, see Figure 3. Since control performance is a function of the sampling period,
the input-output delay, and the jitter, these, possibly stochastic, variables are first
obtained by scheduling analysis. The resulting control performance is then found
by control analysis. In the general case, both steps are very difficult to carry out,
and some approximations may be necessary.

Previous work [Eker and Cervin, 1999; Palopoli et al., 2000] has relied on co-
simulations of the real-time kernel and the continuous dynamics to determine the
performance of the controllers in the real-time system. While this approach can
provide important insight, it is also very time-consuming, especially when the per-
formance should be evaluated for a wide range of parameters. Also, simulations
cannot be used to prove stability or a minimum level of performance.

Task Set,
Scheduling

Policy

Periods,
Delays,

Jitter

Control
PerformanceAnalysis Analysis

Figure 3 Analysis of the effects of missed deadlines on the control performance is a two-step
procedure: scheduling analysis followed by control analysis.

3

3.1 Scheduling Analysis
The effect of missed deadlines depends not only on the scheduling policy used, but
also on the details in the real-time operating system. Often, deadlines are derived
and used in the scheduling design phase, but they are not necessarily enforced
during run-time. Hence, an overrun in one task may or may not disrupt the timing
of the other tasks.

Consider for instance a set of periodic control tasks that are described by the
following pseudo-code:

t = CurrentTime;
LOOP

AD-Conversion;
ControlAlgorithm;
DA-Conversion;
t = t + T;
WaitUntil(t);

END

Here, the only time constraint enforced during run-time is, that the task will never
be released prior to its nominal release time. If the control task does not meet its
design specifications during run-time, e.g. if the execution time of the control algo-
rithm is larger than the predicted worst-case execution time, other task instances
will be delayed.

The scheduling analysis methods available today do not allow for derivation of
the distribution of the input-output delay and the jitter, except for in very simple
cases. One solution could be to rely on simulations to find the approximate distri-
butions and on analysis to find the best-case and the worst-case values.

3.2 Deterministic Control Analysis
If the pattern of sampling periods and delays is deterministic, the control analysis
is straight-forward. A sampled plant, including a latency τ , where 0 < τ ≤ T, can
be written as (see e.g. [Åström and Wittenmark, 1997])

x(k+ 1) = Φx(k+ 1) + Γ0u(k) + Γ1u(k− 1).

A controller can be written on general state-space form:

xr(k+ 1) = Φrxr(k) + Γr y(k)
u(k) = Crxr(k) + Dr y(k)

Forming the closed-loop system, we get x(k+ 1)
u(k)

xr(k+ 1)

 =
Φ + Γ0 DrC Γ1 Γ0Cr

DrC 0 Cr

ΓrC 0 Φr

︸ ︷︷ ︸

Φcl

 x(k)
u(k− 1)

xr(k)

For a constant Φcl matrix, the closed-loop system is stable if and only if σ̄ (Φcl) < 1,
i.e. iff the spectral radius of Φcl is less than one. When Φcl varies according a
repeating pattern, Φcl1, Φcl2, . . . , Φcln, the closed-loop system is stable if and only
if σ̄ (Φcl1Φcl2 ⋅ ⋅ ⋅ Φcln) < 1.

4

3.3 Stochastic Control Analysis
When the actual sampling periods and delays are stochastic (as they are in the
general case, due to random execution times, etc.), the analysis is considerably
harder. One approach is to numerically evaluate a linear-quadratic cost function of
the form

J = lim
T→∞

1
T

E

{∫ T

0
(xT Q1x + uT Q2u)dt

}
,

where x is the state vector, u is the control signal, and Q1 and Q2 are weighting
matrices. The cost function measures the variance of different signals in the control
system. With proper choices of weighting matrices, stability can be concluded if
J < ∞. Furthermore, J is a measure of the performance of the controller.

Theory developed in [Nilsson, 1998; Lincoln and Bernhardsson, 2000] permits
evaluation of the cost J of any linear controller for stochastic, independent delays
from sampling to actuation. Aborted computations (modeled as infinite delays) can
also be accounted for. Work in progress aims at evaluating the cost also in the
presence of sampling jitter.

4. Two Examples

Two examples are given that demonstrate the type of analysis that can be carried
out today. The first example assumes fixed execution times and investigates stability
under overload conditions under different scheduling policies. The second example
assumes a random execution time and demonstrates how a soft deadline can be
assigned to maximize the control performance.

4.1 Example 1: Overloaded System
Consider a set-up where two mechanical servos,

G1,2(s) = 1000
s(s+ 1) ,

should be controlled by two PD (proportional-derivative) controllers that execute as
two tasks in a computer. The controllers have been tuned to give good performance
in simulations, and suitable sampling periods have been found to be T1 = 6 ms and
T2 = 4 ms. It is assumed that D = T for both tasks. Unfortunately, the execution
time of the control algorithm is longer than anticipated, C = 3 ms. The requested
CPU utilization is

U = C
T1
+ C

T2
= 1.25.

Since U > 1, the system is overloaded, and no scheduling algorithm can guarantee
that all deadlines will be met. This says very little about the performance of the
controllers, however.

We analyze stability of the controllers under rate-monotonic (RM) and earliest-
deadline-first (EDF) scheduling. Assuming that the tasks are implemented accord-
ing to the pseudo-code in the previous section, we first derive the actual sampling
periods and the actual input-output latency of the controllers. We then apply sta-
bility analysis to the controllers.

5

Rate-Monotonic Scheduling The performance under rate-monotonic (RM)
scheduling is investigated first. Task 2 is given priority over Task 1 since T2 < T1.
The first part of the resulting schedule, when both tasks are released at time zero,
is shown in Figure 4. Because of preemption, Task 1 misses all its deadlines. The

Time [ms]

New period Missed deadline ControlSample

15 201050

τ1

τ2

Figure 4 The first part of the schedule under RM scheduling. Task 1 misses all its deadlines.

regularity of the schedule makes it easy to determine the actual sampling period,
T , and the actual input-output latency, L, of the controllers. By inspection, they are
found to be constant (jitter-free) and equal to T1 = 12 ms, L1 = 9 ms, T2 = 4 ms,
and L2 = 3 ms.

Applying the deterministic stability analysis to Controller 1, we find that σ̄ (Φcl) >
1, so the controller is unstable. For Controller 2, we have σ̄ (Φcl) < 1, so the con-
troller is stable.

A simulation of the complete set-up is shown in Figure 5. The performance
of Controller 2 is good, as expected. Controller 1, however, loses stability due to
the long sampling period and the long latency, which the controller has not been
designed for.

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y2 (full), reference r2 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u2

Time [s]

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y1 (full), reference r1 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u1

Time [s]

Figure 5 Step responses under RM scheduling for Controller 1 (left) and Controller 2
(right). Controller 1 loses stability due to the long actual sampling period and the long actual
input-output latency.

6

Earliest-Deadline-First Scheduling Next, the performance under earliest-
deadline-first (EDF) scheduling is investigated. The tasks execute in the order of
their absolute deadlines. Ties can be broken arbitrarily—assume that Task 1 gets
to execute before Task 2 in those cases. The first part of the resulting schedule,
when both tasks are released at time zero, is shown in Figure 6. After an initial

Time [ms]
151050 20

τ1

τ2

Figure 6 The first part of the schedule under EDF scheduling. After an initial transient,
all deadlines are missed.

transient, all deadlines are missed. This is due to the well-known domino effect.
There is no preemption in the resulting schedule so the actual input-output latency
is always equal to L = 3 ms for both controllers. The actual sampling periods are
no longer constant, but they exhibit periodic behavior. By inspection, T1 is found
to exhibit the cycle {6, 9} ms while T2 exhibits the cycle {6, 6, 3} ms.

In this case, we are switching between different sampling intervals, which
gives different Φcl matrices. Applying the stability analysis, we find that for Con-
troller 1, σ̄ (Φcl1Φcl2) < 1, so this controller is stable. For Controller 2, we have
σ̄ (Φcl1Φcl1Φcl2) < 1. so this controller is also stable.

A simulation of the set-up is shown in Figure 7. The systems are stable and the
performance is satisfactory for both controllers, despite the missed deadlines. The
jitter due to the varying sampling periods is clearly visible in the control signals.

The example shows that control performance and scheduling performance are
completely different things. It also displays that EDF scheduling distributes the
available computing resources more evenly in overload situations than RM schedul-
ing does.

4.2 Example 2: Optimal Deadline Assignment
Consider a set-up where an inverted pendulum,

G(s) = 1
s2 − 1

,

should be controlled by a linear-quadratic controller. The sampling period is chosen
as T = 0.2 s. The execution-time of the control task is described by the probability
distribution function shown in Figure 8. The long tail of the distribution could for
instance be the result of hardware interrupts, data dependencies, or cache misses.

An output buffer (a high-priority task) is used to minimize output jitter, see
Figure 2. The output task executes with a fixed offset L compared to the controller.
This enforces the deadline D = L on the control task. If the output value is put in
the buffer after the deadline has expired, the control signal will be lost.

The controller is designed taking into account a fixed delay L and minimizing
the cost function

J = lim
T→∞

1
T

E

{∫ T

0
(y2(t) + u2(t))dt

}
. (1)

7

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y2 (full), reference r2 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u2

Time [s]

0 0.05 0.1 0.15 0.2

0

0.5

1

Servo position y1 (full), reference r1 (dashed)

Time [s]

0 0.05 0.1 0.15 0.2
−2

−1

0

1

2
Control signal u1

Time [s]

Figure 7 Step responses under EDF scheduling for Controller 1 (left) and Controller 2
(right). Both systems are stable despite the fact that, after an initial transient, all deadlines
are missed. The sampling interval jitter is clearly visible in the control signals.

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Execution time

P
ro

ba
bi

lit
y

Figure 8 The probability distribution of the execution time of the pendulum controller.

The problem is to find the optimal value of L. If we choose L = T, all computations
will finish in time, but we will also have a long delay, which is bad from a control
performance perspective. If we choose a value L < T, the delay may be shorter on
average, but some computations will also be aborted. If we choose L = 0, the task
will never finish before its deadline and, without any control signals, the system
will of course be unstable.

The optimal deadline assignment can be found by computing the cost J for
different values of the deadline L. The plot is shown in Figure 9. In this case
the optimal deadline assignment turns out to be L = 0.08, in which case about
10% of the deadlines are missed. The result depends strongly on the execution-time
distribution, however. The penalty for aborted computations is quite high, so a more
uniform execution-time distribution would push the deadline towards L = T. Still,
the example shows that, even in the case of aborted computations, we can gain
control performance by allowing some percentage of the deadlines to be missed.

8

0 0.05 0.1 0.15 0.2
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

L

J

Figure 9 The cost J as a function of the deadline L for the inverted pendulum controller.
The optimal deadline assignment is L = 0.08.

5. Conclusions

Relaxing the nominal requirements on hard deadlines in real-time control systems
is motivated from a resource utilization viewpoint. Modern computing hardware
tends to be optimized for high average-case performance rather than guaranteed
worst-case performance. Also, many control algorithms display considerable varia-
tions in their execution-time demands. Taken together, scheduling based on worst-
case execution times and hard deadlines may be infeasible for a large set of control
applications.

Exploring the consequences of overruns is necessary in order to make the correct
co-design trade-offs. For instance, it may be beneficial to decrease the average period
of a controller, and allow it to miss a few deadlines, as long as the worst-case latency
does not exceed a certain bound.

In the suggested analysis, the first step is to determine what the actual sampling
period and the actual input-output latency will be for the different control tasks.
These quantities will be random variables in the general case, depending on the task
execution-time distributions, the scheduling algorithm, the mechanisms in the real-
time operating system, the controller structure, etc. The next step is to determine
what the impact on the control performance will be. Future work will extend the
stochastic control performance analysis to handle sampling jitter.

6. References

Åström, K. J. and B. Wittenmark (1997): Computer-Controlled Systems, third
edition. Prentice Hall.

Audsley, N., K. Tindell, and A. Burns (1993): “The end of the line for static cyclic
scheduling.” In Proceedings of 5th Euromicro Workshop on Real-Time Systems.

Eker, J. and A. Cervin (1999): “A Matlab toolbox for real-time and control systems
co-design.” In Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications, pp. 320–327. Hong Kong, P.R. China.

9

Lincoln, B. and B. Bernhardsson (2000): “Optimal control over networks with
long random delays.” In Proceedings of the International Symposium on
Mathematical Theory of Networks and Systems.

Liu, C. L. and J. W. Layland (1973): “Scheduling algorithms for multiprogramming
in a hard-real-time environment.” Journal of the ACM, 20:1, pp. 40–61.

Locke, C. D. (1992): “Software architecture for hard real-time applications: Cyclic
vs. fixed priority executives.” Real-Time Systems, 4, pp. 37–53.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD thesis ISRN
LUTFD2/TFRT--1049- -SE, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

Palopoli, L., L. Abeni, and G. Buttazzo (2000): “Real-time control system analysis:
An integrated approach.” In Proceedings of the IEEE Real-Time Systems
Symposium, Orlando, Florida.

Ramamritham, K. (1996): “Where do time constraints come from and where do they
go?” International Journal of Database Management, 7:2.

Sandström, K. (1999): Modeling and Scheduling of Control Systems. Licentiate
thesis ISRN KTH/MMK/R--99/5--SE, Mechatronics Laboratory, Department of
Machine Design, Royal Institute of Technology, Stockholm, Sweden.

Shin, K. G. and H. Kim (1992): “Derivation and application of hard deadlines
for real-time control systems.” IEEE Transactions on Systems, Man, and
Cybernetics, 22:6, pp. 1403–1413.

Shin, K. G., C. M. Krishna, and Y.-H. Lee (1985): “A unified method for evauating
real-time computer controllers and its applications.” IEEE Transactions on
Automatic Control, 30:4, pp. 357–366.

Stankovic, J., M. Spuri, K. Ramamritham, and G. Buttazzo (1998): Deadline
Scheduling for Real-Time Systems. Kluwer Academic Publishers.

Tindell, K., A. Burns, and A. Wellings (1994): “An extendible approach for analyzing
fixed priority hard real-time tasks.” Real-Time Systems, 6:2, pp. 133–151.

Törngren, M. (1998): “Fundamentals of implementing real-time control applications
in distributed computer systems.” Real-time systems, 14:3.

10

Simulation-Based Debugging and Pro�ling of Soft Real-Time

Applications

Lars Albertsson

Computer and Network Architectures Laboratory

Swedish Institute of Computer Science

Box 1263, SE-164 29 Kista, Sweden

lalle@sics.se

Abstract

We present a temporal debugger, capable of examin-
ing time ow of soft real-time applications. The de-
bugger is attached to a simulator modelling an entire
workstation in suÆcient detail to run commodity op-
erating systems and workloads. Whereas traditional
debuggers need to interfere with program execution,
thereby changing the temporal behaviour, a debugger
operating on a simulated system does not disturb the
timing of the target program. The temporal debugger
therefore allows non-intrusive and reproducible de-
bugging of real-time applications in general-purpose
operating systems.

We have implemented the temporal debugger by
modifying the GNU debugger to operate on appli-
cations running in a simulated machine. Debugger
implementation is diÆcult because the debugger ex-
pects application-related data, whereas the simulator
provides low-level data. We introduce a technique,
virtual machine translation, for mapping simulator
data to the debugger by parsing operating system
data structures in the simulated system.

The debugger environment allows execution time
measurement and collection of statistics from mul-
tiple levels of the system: hardware, operating sys-
tem, and application. We show how this pro�ling
data can help a programmer explain missed dead-
lines; the statistics are correlated to deadline viola-
tions, thereby exposing di�erences between execu-
tions when deadlines are met and when they are

missed.
The temporal debugger is demonstrated with a de-

bugging session of an MPEG video decoder running
in a Linux system. We show how the debugger can be
used to detect that the decoder fails to render some
frames in time, and how the causes for deadline vio-
lations are found by correlating rendering time with
runtime statistics.

Keywords: Complete System Simulation,

GDB, Linux, Operating Systems, Real-Time

Profiling, Simics, Soft Real Time Systems,

Temporal Debugging

1 Introduction

Applications demanding short response times and
throughput guarantees are increasingly common in
general purpose computing environments. These so
called soft real-time applications include video de-
coders, games, and online trading systems. They
need to provide both high throughput performance
and service requests in predictable time. Unfortu-
nately, it is diÆcult to program applications to meet
these requirements. The diÆculty of the task is com-
pounded by the fact that there are few tools available
to aid the programmer.

Conventional tools in mainstream systems have no
support for analysing real-time requirements and gen-
erally ignore the fact that application correctness
depends on execution time. Tools speci�cally tar-

1

geting soft real-time applications are needed in or-
der to help the programmer minimise the number of
missed deadlines occurring during execution. Such
tools should locate missed deadlines, explain why the
program did not meet performance expectations and
provide guidelines for correcting the problem. As
the perceived quality of soft real-time applications
depends on temporal correctness, they are sensitive
to time variations during execution. The tools must
therefore keep time distortion low and should be able
to display time ow in detail.

The debugger is one of the most important tools
for computer programming. Traditional debuggers,
however, are inadequate for real-time applications, as
they lack a notion of temporal correctness and inter-
fere with program execution. In embedded real-time
system design, these problems have been addressed
by simulator-based debuggers [2, 22]. Historically,
embedded systems have been so much slower than en-
gineering workstations that temporally accurate sim-
ulation has been feasible. Until recently, it has not
been practical to use simulators to study commodity
desktop and server computer systems, as the simula-
tors have been too slow.

Advances in simulation technology have resulted in
simulators providing an approximate, but reasonably
accurate timing model while executing roughly 50-
200 times slower than native execution [8, 11]. These
simulators, referred to as complete system simula-
tors, model an entire workstation at the instruction
set level, and run unmodi�ed operating systems and
workloads. A complete system simulator that is de-
terministic addresses the two major problems in real-
time analysis: lack of reproducibility and time distor-
tion resulting from intrusion. The characteristics of
complete system simulators make them excellent can-
didates for building a temporally correct debugger
for real-time systems. Furthermore, as the simula-
tors execute both application and operating system,
they provide an authentic model of performance and
timing factors caused by the operating system.

In this paper, we present a temporal debugger for
soft real-time applications. The debugger is based
on the GNU debugger [6], modi�ed to debug Linux
applications running on a complete system simula-
tor. As the target program and operating system

are executed in an arti�cial environment, they can
be suspended and probed without a�ecting the exe-
cution. Thus, the debugger allows non-intrusive and
reproducible application debugging. The debugger is
also able to present the time ow of the simulated sys-
tem using the simulator's time model. Figure 1 shows
the debugger user interface. The window in the back-
ground is the simulated console, showing output from
UltraSPARC Linux during boot.

Figure 1: Temporal debugger user interface.

We have earlier studied temporal debugging of op-
erating systems [1]. An operating system executes
directly on the physical machine, which corresponds
to the model provided by the simulator. It is there-
fore straightforward to debug operating systems by
using services provided by the simulator. Debugging
user level applications, however, is non-trivial. Unix
programs execute inside protected environments, pro-
vided by the operating system. These environments
are referred to as virtual machines. As a debugger ex-
pects information related to a process, it is necessary
to map physical data, as presented by the simulator,

2

to process-related data. The information necessary
to perform this mapping in a robust manner exists
only in the operating system running in the simu-
lated machine. We have therefore invented a tech-
nique, virtual machine translation (VMT), for read-
ing memory and register contents of Linux processes
by parsing kernel data structures.

We also describe how the services of the tempo-
ral debugger can be used to pro�le real-time appli-
cations. The debugger facilitates the explanation of
deadline misses by providing measurements of system
metrics, for example counts of hardware and operat-
ing system events, application variables, and execu-
tion time of functions. This allows a programmer
to compare measurements and �nd di�erences in ex-
ecution between successful iterations and iterations
where a deadline was missed.

Section 2 provides some background on complete
system simulation and the bene�ts of using it for
real-time analysis. A description of the design and
implementation of the temporal debugger, including
the virtual machine translation, is presented in Sec-
tion 3. It also contains an example debugging ses-
sion of an MPEG video decoder running in a Linux
system. In Section 4, we describe how the debug-
ger allows measurement of system metrics and how
the results are used for pro�ling the video decoder.
Section 5 contains a short survey of related work in
real-time debugging and simulation. Conclusions and
future work are presented in Section 6.

2 Complete system simulation

Many design and research areas bene�t from simu-
lation of computer systems. Thus, the level of de-
tail provided by simulators range from models of mi-
croprocessor chip logic to coarse models of an exe-
cution environment including operating system and
libraries. The simulator used in this paper is a com-
plete system simulator. It provides a model of a ma-
chine at the instruction set level, which represents the
well-de�ned border between hardware and software.
It models all the hardware in a system, and only the
hardware. As the simulation model is functionally
identical to a real system, the simulator runs unmod-

i�ed operating system and application software. This
limits the sources of errors to those introduced by the
hardware model, and by models of simulation input
feed.

2.1 Simulation model

The model provided by a simulator can be thought of
as having two components, functional and temporal.
The simulator must provide an almost exact func-
tional model to be able to run unmodi�ed software.
In contrast, the accuracy of the temporal model can
be compromised without breaking the operating sys-
tem and applications. It is therefore possible to trade
accuracy for speed by using approximative models.
The appropriate degree of approximation depends on
the size of the workload and the time scale of its dead-
lines. For large workloads, a reasonably accurate time
model is usually suÆcient to obtain a coarse under-
standing of the timing behaviour in the system.

2.2 Reproducibility

A simulated computer is purely arti�cial and deter-
ministic. Thus, a simulated system starting execu-
tion in a known state will always execute along the
same path. This property is essential, both for exper-
iments and debugging, as it is possible to reproduce
a state reached in execution. A user of a temporal
debugger may detect that excessive time has passed
at one point in execution, and restart the simulation
to examine recently executed routines more carefully.
This technique is similar to the methodology used
for debugging logical correctness of conventional pro-
grams. As time is part of the state the user wishes
to verify, it is crucial that temporal behaviour is pre-
served between debugging sessions.

Execution is reproducible only if all input to the
simulator is deterministic. As the physical world
is inherently unpredictable, the simulator must not
communicate with real, unpredictable input sources.
Instead, all input sources must be modelled, with
traces, synthetic models, or other simulators. In or-
der to obtain a realistic input feed, the simulator may
be connected to the real world once, with record-
ing enabled. Further experiments can then use the

3

recorded trace.

2.3 Probe immunity

In physical systems, measurement of the system gen-
erally a�ects its behaviour. This is referred to as
probe e�ect. Although measurements change time
ow in the system, soft real-time applications tend
to have deadlines separated by long intervals, and
are therefore not very sensitive to these changes. The
probe e�ect does, however, put a limit on the amount
of measurement. Nevertheless, a temporal debug-
ger requires non-intrusive probing to achieve repro-
ducible execution. Even a minimal change in execu-
tion time ow could a�ect decisions in the applica-
tions and the operating system, resulting in a com-
pletely di�erent execution path.

In a simulated system, the time scale of the sys-
tem under study is decoupled from the time scale of
the system running the simulator. When the user
stops execution, simulation is suspended, and simu-
lated time is frozen. Time distortion due to the probe
e�ect is thereby eliminated.

2.4 Simics

The simulator used for this work is Virtutech
Simics [21]. Simics simulates the SPARC V9 instruc-
tion set and models single or multiprocessor systems
corresponding to the sun4u architecture from Sun Mi-
crosystems, for example the Enterprise 3500.

Simics consists of a core interpreter that o�ers ba-
sic services such as an instruction set interpreter, a
general event model, and a module for simulating and
pro�ling memory activity. A programming interface
allows the addition of device models, which may be
connected to the \real world" or models thereof.

Simics supports a simple time model in its default
con�guration. This model approximates time by
de�ning a cycle as either an executed instruction or a
part of a memory or device stall. In this mode, Simics
has a rather simple view of the timing of a modern
system, and assumes a linear penalty for events such
as translation look-aside bu�er (TLB) misses, data
cache misses, and instruction cache misses. Simics
supports eÆcient programming of models for the

components most important for performance mod-
elling: cache hierarchies, synchronisation in multi-
processor machines, and I/O devices.

Simics's programming interface allows the user to
add more detailed timing models. If an application is
constrained by a particular bottleneck in the system,
the user can program a detailed model of that part
and trade some simulation performance for a better
model. The performance impact can be signi�cant if
the user adds an ineÆcient timing model for a central
component, such as the CPU pipeline. In this case,
performance can be improved by switching models at
runtime. Examples of simulation model tradeo�s and
dynamic switching of models have been presented by
Herrod [8].

3 Debugging real-time applica-

tions

A debugger allows a programmer to inspect program
state. In order for the debugger to be useful, it
must not a�ect correctness by changing program be-
haviour. Also, as debugging is a repetitive task, the
user must be able to repeat sessions, and observe
identical execution each time. For programs whose
correctness depend only on predictable input, meet-
ing these requirements is straightforward. A debug-
ger for real-time programs, however, must be able to
capture and replay program time ow without chang-
ing it. In this section we describe how a debugger
based on complete system simulation allows correct
debugging of real-time applications.

3.1 Simulation-based debugging

A complete debugger setup consists of the debugger
program and a target machine running the debugged
program. Figure 2 shows the di�erent parts of a de-
bugger setup. We refer to the debugger program itself
as front-end and to the target machine/program tu-
ple as back-end. Examples of such tuples are: Unix
programs running in the virtual machine provided by
the operating system, or an embedded operating sys-
tem on a separate target board.

4

command line interface

symbols

program

debugger

machine

front-end

back-end

Figure 2: Debugger structure.

A debugger requires a certain set of primitives for
probing and controlling the target machine. Such
primitives include reading memory, reading registers,
single stepping, and setting breakpoints. Adapting a
simulator to the primitives required by a speci�c de-
bugger enables symbolic debugging of the simulator
workload.

In addition to primitives required by a debugger
front-end, the simulator provides services not nor-
mally available in a debugger. The service most rel-
evant for real-time analysis is the ability to present
current time with cycle count granularity. It enables
the user to step through a portion of code, checking
for both functional and temporal errors.

3.2 User process debugging

In time sharing operating systems, such as Linux,
each program runs in a protected environment, with
private registers, memory, and operating system re-
sources. This is referred to as a virtual machine. In
order for a debugger to debug a program, it needs to
control execution and probe state of the correspond-
ing virtual machine. A traditional debugger does not
implement this controlling mechanism. Instead, it
uses an interface provided by the operating system,
illustrated in Figure 3. The operating system per-
forms necessary administrative tasks, such as virtual
memory translation and virtual register lookups. It
thereby exports an image of a consistent virtual ma-
chine to the debugger.

program

process control interface

debugger

operating system

Figure 3: Traditional debugger.

As a simulation-based debugger runs in a di�erent
operating system than the target process, it cannot
use operating system services to probe the target,
and is restricted to simulator services. The simula-
tor provides primitives for probing hardware state,
such as register, memory, and disk contents. This
information is useful for probing the operating sys-
tem itself, which is the program running directly on
the hardware. Without post-processing, however, the
information is not useful for analysing user space pro-
cesses.

In order to support debugging of processes in the
simulated system, we introduce an intermediate �lter
between the debugger and the simulator, the virtual
machine translator (VMT). The VMT answers a de-
bugger's queries for virtual machine state. Queries
for memory content refer to virtual addresses, and
must be translated to physical addresses. The VMT
performs this translation, which is normally provided
by the operating system. It starts by looking up the
head of the process list, which is a global variable
whose address is found in the kernel symbol table.
It �nds the appropriate process entry by following
pointers referring to data structures in the simulated
memory. It proceeds in the same way in the process's
page table until the mapping for the virtual address
is found. If the page resides in physical memory, the
VMT queries the simulator for the contents and re-
sponds to the debugger. If the sought page is paged
out to disk, the VMT needs to walk the kernel data
structures further to �nd which disk block it was writ-
ten to and query the simulator for disk contents.

The debuggers are separate programs, communi-

5

Linux

Simics

debugger
broker

gdbvirtual
machine
translator

gdb
gdb

applications

Figure 4: Simulation-based debugger. Arrows represent

directions of data queries.

cating with the VMT via a proxy, a debugger bro-
ker, which supports concurrent debugging of multiple
processes in the simulated system. The broker keeps
state for each debugger connected and maps debug-
ger queries to the corresponding virtual machine. It
controls simulator execution, stepping forward only
when all connected debuggers are ready to execute.
The setup is shown in Figure 4. The debugger bro-
ker also makes sure all debugger breakpoints refer to
physical memory. It maintains a list of breakpoints
in use and inserts (removes) simulation breakpoints
when code pages are mapped (unmapped) to physical
memory.

3.3 Virtual machine translator imple-

mentation

Writing code for parsing data structures of a simu-
lated system is a tedious and error-prone process. In
order to simplify and automate the task, a few engi-
neering tricks have been employed.

The symbol table for the operating system kernel
contains information on the size and memory layout
of all types de�ned in the kernel source code. We
have implemented a meta-tool that uses a symbolic
debugger to parse a symbol table, and then gener-
ates a C++ class for each type found in the table.
The code generated includes routines for construct-
ing objects by probing simulated memory. This code
generator provides a programming environment with
strong typing, enabling compile time checking for
simple mistakes. It also facilitates performance op-
timisations, for example cached variable lookups or
lazy memory probing. Moreover, the Linux kernel is
written in C, which is a subset of C++. Therefore,

de�nitions from the kernel source code can be reused
with little or no modi�cation. The dependencies be-
tween VMT modules are illustrated in Figure 5.

Linux kernel

Simics

kernel probe

kernel symbols

probe
generator

Linux kernel
data parser

Virtual machine translator

Figure 5: Implementation of the virtual machine trans-

lator. Solid arrows represent data queries.

The dashed arrow represents code generation.

The Linux-speci�c module for parsing kernel struc-
tures uses the generated code whenever it needs to
probe kernel memory. It is therefore independent of
the exact code layout, and needs to query the sim-
ulator directly only occasionally. This independence
provides some portability and robustness when port-
ing to new architectures or kernel versions.

3.4 Real-time debugging example

As a demonstration of debugging soft real-time appli-
cations, we present examples from a debugging ses-
sion of the MPEG video decoder mpeg play [13]. The
decoder displays a video clip with a frame rate of 30
frames per second. In this example, Simics is used to
model an UltraSPARC workstation. The simulated
machine boots from a disk image containing an instal-
lation of UltraPenguin Linux 1.1. The system is con-
�gured to run the MPEG decoder at boot. The sys-
tem also runs standard Unix daemons and, in order
to make the workload more complex, a CPU-bound
background task with low priority. The startup se-
quence is shown in Figure 1.

We have executed simulation forward until the
video decoder is started, and attached GDB to the
mpeg play process. In order to present simulated
time ow, the modi�ed GDB provides a magic vari-
able, sim time. Whenever the variable is referenced,
GDB queries the simulator for the number of cycles
executed since boot. As the variable is integrated into

6

GDB, it can be used as any other program variable,
for example in GDB scripting or conditional break-
points. Other types of simulator information, such
as hardware or operating system statistics, can be
presented in a similar fashion.

Listing 1 shows how we set a breakpoint at the
routine ExecuteDisplay, which is called at the end
of the rendering loop. We use the sim time variable
to check whether the deadline was met for each frame.
The machine runs at 225 simulated megahertz, and
must therefore render a frame in less than 7.5 million
cycles to meet the deadline. A short GDB command
sequence locates the �rst missed deadline for us.

Listing 1 Example of locating a missed deadline.

(gdb-sim) break ExecuteDisplay
Breakpoint 1 at 0x200cc: file gdith.c, line 942.
(gdb-sim) continue
Continuing.

Breakpoint 1, ExecuteDisplay (vid_stream=0x11a160,
frame_increment=1, xinfo=0x116654) at gdith.c:942

942 if (xinfo!=NULL) display=xinfo->display;
(gdb-sim) display $sim_time
$1 = 979949561
(gdb-sim) set $start = $sim_time
(gdb-sim) commands 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>silent
>printf "Frame completed at %d, in %d cycles\n", $sim_time,

$sim_time - $start
>if $sim_time - $start > 7500000
>printf "Deadline missed\n"
>else
>set $start = $sim_time
>continue
>end

>end
(gdb-sim) continue
Continuing.
Frame completed at 980856912, in 907351 cycles
Frame completed at 981744876, in 887964 cycles
Frame completed at 989462277, in 7717401 cycles
Deadline missed
(gdb-sim)

When a missed deadline is found, the user can
restart the session and investigate the unsatisfactory
behaviour in detail. As the simulated machine is de-
terministic, an identical execution will be observed.

4 Pro�ling real-time applica-

tions

A pro�ling tool assists a programmer in deciding
where in a program to make optimisations. The most
common type of pro�ling tool is the performance pro-
�ler. It measures execution time spent in di�erent
code sections, and shows the programmer where the
majority of execution time is spent. This gives the
programmer a hint on where to concentrate his e�orts
to improve program performance. Certain advanced
pro�lers also collect statistics on how well hardware
or operating systems resources are used. Such statis-
tics may explain why a program fails to meet perfor-
mance expectations, and are used to suggest to the
programmer how to modify the program.

When optimising soft real-time applications, the
programmer aims to minimise the number of missed
deadlines. Traditional pro�ling tools are inadequate
for this purpose, as they present total time spent in
a code block, measured over the whole execution. In-
stead, a real-time pro�ler should present di�erences
in execution times between iterations when the dead-
line was missed and iterations when the deadline was
met. This presentation gives the programmer a hint
as to which routines he should modify to eliminate
deadline misses.

4.1 Source code pro�ling example

In order to explain why the video decoder missed
some deadlines in the example in Section 3.4, we will
measure and compare time spent in a subroutine.
By running mpeg play in a conventional performance
pro�ler, we observe that most of the execution time
is spent in the function OrderedDitherImage. We
set breakpoints at the start and end of this function
and measure execution time for each iteration with
a simple script (similar to that in Listing 1). The
results are shown in Figure 6. The axes correspond
to execution time spent in OrderedDitherImage and
rendering time for the whole frame. Surprisingly,
OrderedDitherImage executes in constant time |
except for a few odd values, caused by interrupts and
page faults | and there is no correlation between a

7

deadline miss and execution time spent in this func-
tion.

0

1

2

3

4

5

6

7

8

9

332 334 336 338 340 342

Ite
ra

tio
n

tim
e

(m
ill

io
n

cy
cl

es
)

OrderedDitherImage time (thousand cycles)

deadline

Figure 6: Correlation to OrderedDitherImage execution

time.

We could continue searching for causes of missed
deadlines by measuring execution time spent in other
functions, hoping they would show better correlation.
Instead, we will present how to perform instrumented
pro�ling by correlating deadline violations with other
metrics.

4.2 Instrumented pro�ling

Execution time for a code section may di�er between
iterations, even though the program executes along
identical paths. In a general purpose operating sys-
tem, the stochastic behaviour of the memory hier-
archy, I/O devices, and competing processes a�ects
execution time in unpredictable ways.

Variations in execution time between iterations
may be explained by counting system events, and
comparing event statistics for each iteration with exe-
cution time. We collect statistics from di�erent levels
in the system using di�erent methods.

� Hardware level. The simulator counts perfor-
mance related hardware events occurring in the
simulated machine. Events counted include
cache misses, TLB misses, and I/O transactions.

� Operating system level. The virtual machine

translator is able to collect three types of statis-
tics.

{ Event count. Some operating system
events, such as page faults and context
switches, have great impact on perfor-
mance. These are counted by inserting a
breakpoint in a corresponding kernel rou-
tine, for example the scheduler. When-
ever the breakpoint is triggered, the event
counter is incremented.

{ Kernel variable values. Kernel variables
may be sampled by reading simulated mem-
ory, and the addresses are found in the ker-
nel symbol table. The process id of the cur-
rent task is an example of a useful kernel
variable.

{ Computed kernel variables. Variable values
that are not available immediately in mem-
ory are calculated using a speci�c routine
for each variable. A traditional debugger
would execute code in the target machine to
perform such computations. This method
is unacceptable for a simulation-based de-
bugger, as it would modify the simulation
and make it non-deterministic. Instead, the
user must implement a lookup routine for
each computed variable. The length of the
run queue is an example of a computed ker-
nel variable.

� Application level. The user may choose to in-
clude statistics from application events and vari-
ables in the same way as for the operating sys-
tem. Routines for collecting application statis-
tics are best implemented on top of the debug-
ger interface, as the debugger services are nec-
essary. The code generation techniques used for
implementing the virtual machine translator (de-
scribed in Section 3.3) are applicable also for pro-
gramming application level probing.

The ability to collect execution statistics from mul-
tiple levels in a computer system is very useful. It
allows eÆcient problem solving without requiring
knowledge about the nature of the problem. Most

8

performance tools collect data from a single level, and
therefore require that the programmer knows which
tool to use and where to look.

4.3 Instrumented pro�ling example

We can now proceed to try to explain the missed
deadlines in the MPEG video decoder by correlating
statistics from the application and operating system
level.

Listing 2 Reading application variables.

(gdb-sim) list video.h:100
97 /* Macros for picture code type. */
98
99 #define I_TYPE 1
100 #define P_TYPE 2
101 #define B_TYPE 3
(gdb-sim) break ExecuteDisplay
Breakpoint 1 at 0x200cc: file gdith.c, line 942.

(gdb-sim) set $start = $sim_time
(gdb-sim) commands 1
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
>silent
>printf "Frame number %d", TotalFrameCount
>printf ", type %d", vid_stream->picture.code_type
>printf ", %d cycles\n", $sim_time - $start
>set $start = $sim_time
>continue
>end
(gdb-sim) continue
Continuing.
Frame number 9, type 1, 7933769 cycles
Frame number 10, type 3, 7179460 cycles
Frame number 11, type 3, 6730860 cycles
Frame number 12, type 2, 7364510 cycles
Frame number 13, type 3, 6062254 cycles
Frame number 14, type 3, 6742310 cycles
Frame number 15, type 1, 7897064 cycles

An MPEG stream contains a compressed represen-
tation of video frames. For some frames, the whole
frame is encoded as a JPEG picture. These are re-
ferred to as I frames. Other frames are represented
only by the di�erence to past or future frames (P
and B frames). The decoder handles each frame type
in a di�erent way. Thus, decoding time is probably
dependent on the frame type. In order to �nd out
whether most deadline violations occur for a particu-
lar frame type, we instruct the debugger to break at
each iteration and print the variable containing the
frame type code. The debugger commands are shown

0

1

2

3

4

5

6

7

8

9

I P B

Ite
ra

tio
n

tim
e

(m
ill

io
n

cy
cl

es
)

Frame type

deadline

Figure 7: Correlation to MPEG frame type.

in Listing 2.

The results, shown in Figure 7, indicate that most
deadline violations occur while decoding I and P
frames. This implies that the programmer of mpeg -

play should concentrate optimisation e�orts on the
code executed during I and P frame decoding. Op-
timising code performance is often diÆcult, however,
and the programmer may want to tune other system
parameters to improve application quality. Figure 7
shows that rendering time varies, even for frames
of the same type. We suspect that this variance is
caused by the background load. In order to mea-
sure the amount of CPU resources consumed by the
competing program, we instruct the simulator to in-
sert a breakpoint at the point where Linux returns
from kernel to user space, and inform us whenever a
new process is scheduled. This procedure is shown in
Listing 3. A comparison of rendering time and time
spent in other processes is shown in Figure 8, indi-
cating a clear correlation. Therefore, limiting CPU
usage of other processes, for example by using a real-
time scheduling policy, may improve application per-
formance in the scenario presented. The correlation
may also be a side-e�ect, if the application spends a
large amount of time waiting for I/O. By measuring
time spent on blocking system calls, the programmer
can �nd out whether the application misses deadlines
because of I/O wait. He can continue validating his
theories this way, through further measurements and
correlations, until he has obtained suÆcient under-

9

standing of the causes of deadline violations.

Listing 3 Measuring context switches.

(gdb-sim) break ExecuteDisplay
Breakpoint 1 at 0x200cc: file gdith.c, line 942.
(gdb-sim) set sim os-context-switches on
(gdb-sim) continue
Continuing.
Context switch from 105 to 106 at 981749467.
Context switch from 106 to 105 at 987309788.

Breakpoint 1, ExecuteDisplay (vid_stream=0x11a160,
frame_increment=1, xinfo=0x116654) at gdith.c:942

q942 if (xinfo!=NULL) display=xinfo->display;
(gdb-sim)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7

Ite
ra

tio
n

tim
e

(m
ill

io
n

cy
cl

es
)

Time spent in other processes (million cycles)

deadline

Frame type
I
P
B

Figure 8: Correlation to time spent in other processes.

5 Related work

In many existing real-time operating systems and en-
vironments, only conventional, non-real-time debug-
ging tools are available. These systems may only
be used for validating and debugging functional, not
temporal, correctness. There are however vendors
providing support for alternative debugging methods.
Some of these methods are discussed below.

Developers of programs for small embedded sys-
tems commonly use an emulator (tool for execut-
ing programs in foreign environments) as debugging
back-end. Emulators generally focus on the func-
tional model and do not provide a time model, which

is necessary to avoid intrusion and to reproduce ses-
sions. Some vendors, for example Motorola [2] and
Wind River [22], provide simulators with models of
caches and CPU pipeline, resulting in good execution
time modelling. The tools generally available are ei-
ther too incomplete to run general-purpose operating
systems or too slow to run desktop applications.

Support for non-interactive debugging of real-time
programs may be provided by logging execution to a
trace, which is sent over a network to a separate sys-
tem. The trace may be generated by dedicated hard-
ware [7, 16, 20] or additional program code [4, 15].
Both approaches are inconvenient, and the amount
of monitoring is limited. Furthermore, data explo-
ration is limited to the data subset collected.

The R2D2 debugger [17] is based on monitoring
of software generated traces. It has been extended
with a low priority task in the target system to an-
swer queries from the debugger in case the system is
idle. This provides some support for interactive de-
bugging. Sessions cannot be authentically repeated,
however, and the target system may be unable to
provide information when it is under stress.

Mueller and Whalley [14] propose debugging of
real-time applications using execution time predic-
tion. The application is executed in a conventional
debugger, supported by a cache simulator. Time
elapsed is predicted by the simulator and reported
during debugging. This prediction does not take op-
erating system e�ects into account and works best for
small programs.

The work in this paper is made possible by many
di�erent advances in simulator implementation tech-
nology [3, 5, 8, 9, 10, 19]. A few simulator research
groups have managed to model a complete hard-
ware system with suÆcient detail and eÆciency to
run commodity operating systems with large work-
loads [5, 11]. The SimOS project [8] has made similar
achievements, although the simulator presented does
not model a complete binary interface and requires
operating system modi�cations. Due to the accurate
timing model provided, complete system simulators
have proven to be e�ective tools for performance pro-
�ling [8, 12, 18].

10

6 Conclusions

The primary contribution of this paper is the tem-
poral debugger, an important tool for development
of soft real-time applications. The temporal debug-
ger implementation is based on the GNU debugger,
modi�ed to connect to a simulator modelling a com-
plete workstation. The simulator runs unmodi�ed
operating system and application software and allows
reproducible analysis of system time ow.

The major diÆculty in debugger implementa-
tion is the mapping of low-level simulation data to
application-related data useful to the debugger. We
address this problem using a new technique, virtual
machine translation, which operates by traversing
data structures in the operating system kernel. This
technique has been implemented for UltraSPARC
Linux systems.

We demonstrate how the temporal debugger can be
used to detect missed deadlines in an MPEG video
decoder, running in Linux. We also show how the
debugger makes application and operating system
internals visible during simulation, enabling collec-
tion of runtime statistics from di�erent system lev-
els. The statistics are correlated to deadline misses
in the video decoder, thereby explaining the causes
of deadline violations.

Currently, the temporal debugger environment
supports manual examination, or simple automated
operations using GDB scripts. A programmer would
bene�t more from an automated pro�ler, visualising
correlations between missed deadlines and many dif-
ferent types of statistics, for example cache misses,
function call arguments, page faults, and branch de-
cisions. As the debugger environment allows non-
intrusive probing, an automated tool can measure
large amounts of data eagerly, without compromis-
ing accuracy.

References

[1] Lars Albertsson and Peter S. Magnusson. Using
complete system simulation for temporal debug-
ging of general purpose operating systems and
workloads. In Proceedings of MASCOTS 2000.

IEEE Computer Society, IEEE Computer Soci-
ety Press, August 2000.

[2] William Anderson. An overview of Motorola's
PowerPC simulator family. Communications of
the ACM, 37(6):64{69, June 1994.

[3] Robert C. Bedichek. Some eÆcient architecture
simulation techniques. In USENIX Association,
editor, Proceedings of the Winter 1990 USENIX
Conference, January 22{26, 1990, Washington,
DC, USA, pages 53{64, Berkeley, CA, USA, Jan-
uary 1990. USENIX.

[4] Monica Brockmeyer, Farnam Jahanian, Con-
stance Heitmeyer, and Bruce Labaw. An ap-
proach to monitoring and assertion-checking of
real time speci�cations in Modechart. In Pro-
ceedings of the Second IEEE Real-Time Technol-
ogy and Applications Symposium, Boston, USA,
June 1996. IEEE Computer Society.

[5] J. K. Doyle and K. I. Mandelberg. A portable
PDP-11 simulator. Software Practice and Expe-
rience, 14(11):1047{1059, November 1984.

[6] The GNU debugger, version 5.0.
http://sources.redhat.com/gdb.

[7] F. Gielen and M. Timmerman. The design of
DARTS: A dynamic debugger for multiproces-
sor real-time applications. In Proceedings of
1991 IEEE Conference on Real-Time Computer
Applications in Nuclear, Particle and Plasma
Physics, pages 153{161, Julich, Germany, June
1991.

[8] Stephen Alan Herrod. Using Complete Machine
Simulation to Understand Computer System Be-
havior. PhD thesis, Stanford University, Febru-
ary 1998.

[9] Peter Magnusson and Bengt Werner. EÆcient
memory simulation in SimICS. In Proceedings of
the 28th Annual Simulation Symposium, 1995.

[10] Peter S. Magnusson. EÆcient instruction
cache simulation and execution pro�ling with
a threaded-code interpreter. In Proceedings of
Winter Simulation Conference 97, 1997.

11

[11] Peter S. Magnusson, Fredrik Dahlgren, H�akan
Grahn, Magnus Karlsson, Fredrik Larsson,
Fredrik Lundholm, Andreas Moestedt, Jim
Nilsson, Per Stenstr�om, and Bengt Werner.
SimICS/sun4m: A Virtual Workstation. In Pro-
ceedings of the 1998 USENIX Annual Technical
Conference, 1998.

[12] Johan Montelius and Peter Magnusson. Using
SimICS to evaluate the Penny system. In Jan
Ma luszy�nski, editor, Proceedings of the Interna-
tional Symposium on Logic Programming (ILPS-
97), pages 133{148, Cambridge, October 13{16
1997. MIT Press.

[13] The Berkeley MPEG player, version 2.3.
http://bmrc.berkeley.edu/frame/research/-
mpeg/mpeg play.html.

[14] Frank Mueller and David B. Whalley. On de-
bugging real-time applications. In ACM SIG-
PLAN Workshop on Language, Compiler, and
Tool Support for Real-Time Systems, June 1994.

[15] Edgar Nett, Martin Gergeleit, and Michael
Mock. An adaptive approach to object-oriented
real-time computing. In Kristine Kelly, edi-
tor, Proceedings of First International Sympo-
sium on Object-Oriented Real-Time Distributed
Computing (ISORC`98), pages 342{349, Kyoto,
Japan, April 1998. IEEE Computer Society,
IEEE Computer Society Press.

[16] Bernhard Plattner. Real-time execution mon-
itoring. IEEE Transactions on Software Engi-
neering, SE-10(6):756{764, November 1984.

[17] The R2D2 debugger, Zentropix.
http://www.zentropix.com.

[18] Mendel Rosenblum, Edouard Bugnion, Scott
Devine, and Stephen Alan Herrod. Using the
SimOS machine simulator to study complex
computer systems. ACM Transactions on Mod-
eling and Computer Simulation, 7(1):78{103,
January 1997.

[19] Mendel Rosenblum, Stephen A. Herrod, Emmett
Witchel, and Anoop Gupta. Complete computer

system simulation: The SimOS approach. IEEE
parallel and distributed technology: systems and
applications, 3(4):34{43, Winter 1995.

[20] Je�ery J. P. Tsai, Kwang-Ya Fang, and Horng-
Yuan Chen. A noninvasive architecture to mon-
itor real-time distributed systems. Computer,
23(3):11{23, March 1990.

[21] Virtutech Simics v0.97/sun4u.
http://www.simics.com.

[22] Wind River. http://www.windriver.com.

12

Methods for Increasing Software Testability

Extended abstract

Birgitta Lindstr�om, Jonas Mellin, and Sten Andler

Testing is the act of executing a system
or application, in order to show the pres-
ence of faults. The con�dence in the sys-
tem can thereby increase as faults are re-
moved. It can, however, never be used to
prove that the system is correct. The rea-
son for this is that it is generally infeasi-
ble to conduct exhaustive testing, since the
number of test cases to test all possible out-
comes is too high. It is a well-known fact in
software engineering that the cost for test-
ing of software often is 50% or more of the
development costs. Hence, methods to im-
prove testability, i.e., to reduce the e�ort
required for testing, have a very large po-
tential to decrease development costs.

In this paper, controllability and observ-
ability, (Sch�utz 1993), are considered nec-
essary prerequisites for testability. With-
out the ability to control test execution,
and the ability to observe important out-
comes such as state transitions, it is not fea-
sible to reach a high level of testability. A
system, which lacks controllability and ob-
servability, is always diÆcult to test. How-
ever, testability also depends on the num-
ber of possible execution orders (i.e., inter-
leavings of threads). An often neglected cir-
cumstance which is especially important for
distributed or real-time systems. The rea-

son for this dependency is that observability
and controllability only apply to test cases
that are actually executed. Given a cer-
tain amount of test e�ort, the test cover-
age decreases with an increase in the num-
ber of distinct execution orders and hence,
test cases. Achieving higher test coverage
(i.e., executing a higher ratio of all possible
test cases) increases the required test e�ort,
since it requires designing, executing, and
analyzing more test cases (Birgisson, Mellin
and Andler 1999).

As we have shown that testability is de-
pendent of the number of distinct execution
orders, it is a natural step to investigate the
execution environment and its impact on
the number of execution orders. Which exe-
cution orders are allowed depends to a large
degree on processor scheduling and concur-
rency control policies. In a survey and anal-
ysis of current methods for improving testa-
bility (Lindstr�om 2000), several such meth-
ods are investigated and their properties
with respect to processor scheduling and
concurrency control analyzed. Especially,
their impact on the number of distinct ex-
ecution orders is discussed. The survey re-
veals that (i) there are few methods which
explicitly address software testability, and
(ii) methods that concern the execution en-

vironment for real-time systems require or
favor a time-triggered design.
Kopetz (1991) points out that testabil-

ity depends on the architecture and must
be considered during the design phase.
The �rst comparison of time-triggered
and event-triggered systems with respect
to testability is made by Sch�utz (1993).
Sch�utz shows that the e�ort to test an
event-triggered real-time system is inher-
ently higher than that of a time-triggered
real-time system. This is due to the dy-
namic nature of event-triggered systems,
which makes the number of distinct exe-
cution orders high in comparision to time-
triggered systems.
A time-triggered design is, however, not

always suitable. The reasons to choose an
event-triggered design include the need for
a exible system in unpredictable environ-
ments. Usually there is a need for graceful
degradation. Therefore, it is an interesting
issue to investigate which properties of the
execution environment in event-triggered
systems that lead to high or low levels of
testability. Some of these properties are
identi�ed by Lindstr�om (2000) and others
remain as open problems. These properties
are used to de�ne categories, which form a
basis of taxonomy for testability.
It is important to note here that we

have no intention to discriminate between
good and bad solutions based on testability
alone. We are, however, interested in the
impact on testability from di�erent prop-
erties of the execution environment, as de-
sign is always a matter of trade-o� deci-
sions. The important thing is that these de-
cisions should be based on as much informa-
tion about the consequences of the choices
as possible.

The scheduling properties that are inves-
tigated by Lindstr�om (2000) are preemption
policy, task priority policy, and observation
policy. It is shown that there is a signi�cant
inuence on testability from the choice of
scheduling properties. One example is the
priority policy, which has two dimensions of
complexity that do have an impact on the
test e�ort:

1. Whether the task priority is unique
during the execution of the task,

2. Whether the priority ordering between
two tasks can switch during task exe-
cution (e.g., priority ceiling protocol)

A priority policy that guarantees unique
priorities during execution does not increase
the test e�ort, since for each given set of
tasks we will have exactly one distinct exe-
cution order. However, if the priorities are
non-unique, the number of potential exe-
cution orders for a set of k tasks equals k!
given a non-preemptive scheduling policy.
The proof is trivial, consider the case when
all k tasks are assigned the same priority.
In this worst case, the execution order is
totally arbitrary which means that all per-
mutations of k are possible. In a more av-
erage case, we might have a distribution of
the tasks over levels of priorities. Suppose
we have three levels of priorities, then for
each set of tasks we will have x!*y!*z! dis-
tinct execution orders, where x, y, and z are
the number of tasks in the set with priority
level 1, 2, and 3 respectively. The ques-
tion of whether priorities are guaranteed to
be unique is of signi�cant importance for
the system testability. It separates the sys-
tems into two di�erent degrees of testability
where the number of test cases either grows

2

with combinations of the number of tasks
or permutations of the number of tasks.

A priority policy that allows the priority
order between tasks to be changed arbitrar-
ily during the execution has a negative in-
uence on testability. The change can be
regarded as an event that changes the ex-
ecution order for the set of current tasks.
If these changes are arbitrary, all execution
orders are possible for a given set of tasks.
Hence, this is also a property that separates
systems into two di�erent levels of testabil-
ity.
Similar results have been shown for sev-

eral other execution environment proper-
ties. The conclusion is that there is an ob-
vious impact on testability from the exe-
cution environment. Further investigations
are necessary to identify other properties
that are important for testability. It is also
of central importance to determine the mag-
nitude of inuence from the di�erent prop-
erties on testability and any interrelation-
ships between them that might a�ect their
inuence. Of course, some combinations of
properties may not be meaningful.
The completion of the initiated research

into properties that a�ect testability will
lead to a taxonomy of testability. The ben-
e�t of such a taxonomy is that it enables de-
signers of event-triggered systems to regard
testability when making informed trade-o�
decisions.

References

Birgisson, R., Mellin, J. and Andler, S.
(1999). Bounds on Test E�ort for
Event-Triggered Real-Time Systems,
The 6th International Conference on

Real-Time Computing Systems and
Applications (RTCSA'99).

Kopetz, H. (1991). The Design of Real-
Time Systems, Software Enginering
Journal 6(3): 72{82.

Lindstr�om, B. (2000). Methods for increas-
ing software testability, Master's the-
sis, HS-IDA-MD-00-017, University of
Sk�ovde.

Sch�utz, W. (1993). The Testability of Dis-
tributed Real-Time Systems, Kluwer
Academic Publishers.

3

Test-Case Generation for Testing of Timeliness�

Robert Nilsson, Sten F. Andler and Jonas Mellin

February 27, 2001

Abstract

In complex distributed real-time systems the temporal correctness is imperative for de-
pendability. Industrial practice has few methods for testing of temporal correctness and the
methods that exist are often ad-hoc. A problem associated with testing real-time is that their
timeliness depends on the execution order of tasks. This is particularly problematic for event-
triggered real-time systems where the system continuously is noti�ed of events that inuence
the execution order. Further, real-time systems may behave di�erently depending not only
on time dependencies in program logic but also on di�erences in execution times. This paper
investigates how existing test-case generation methods take these factors into consideration
and explains the opportunity to construct better methods and metrics for their evaluation.

An analysis of current methods for generating test cases for testing temporal properties of
real-time systems is presented. The methods are classi�ed according to their characteristics
and analyzed in relation to the requirements of an event-triggered system model. The aim
of the classi�cation is to detect similarities between di�erent test-case generation methods so
that the characteristics that have an impact on the applicability of the method when testing
timeliness can be determined. We conclude that existing work only consider a subset of the
factors that inuence timeliness, and therefore propose research activities that take these
factors into consideration during test-case generation.

1 Introduction

Modern real-time systems tend to be increas-
ingly complex. This is particularly true for
distributed real-time systems, where the com-
plexity of both distribution and real-time issues
need to be considered. Moreover, real-time sys-
tems generally must be dependable and there-
fore temporal correctness of the software is im-
perative. These characteristics imply that there
is a need for rigorous veri�cation methods to
detect temporal faults that could lead to criti-
cal failures. Industrial practice has few meth-
ods for verifying temporal correctness of com-
plex systems such as distributed real-time ap-
plications, and the methods that exist are often
case-speci�c or ad-hoc [Sch94, BJ00].

Testing is a method to dynamically verify
software by execution in order to detect errors
and failures [Lap94]. Test-case generation is the
process of selectively generating test cases that
exercise system behaviors likely to reveal errors.

This paper focuses on selective generation
of test cases for distributed real-time systems.
There exist generally accepted methods for gen-
eration of test cases for sequential software,
based on, for example, speci�cations or code
structure [Bei90]. Real-time systems are often
concurrent; this complicates generation and se-
lection of suitable test cases because system be-
havior is dependent on the non-deterministic or-
der in which tasks execute (cf. [TH99]). Fur-
ther, real-time systems may behave di�erently
depending on time dependencies in program
logic and di�erences in execution times. In
particular, we investigate how existing test-case
generation methods to a varying degree take
these factors into consideration for testing time-

liness, which is the ability of the system to ful�ll
its time constraints.

The investigated test-case generation meth-
ods have been classi�ed according to their char-
acteristics and analyzed in relation to the re-
quirements of an event-triggered system model.

�This work is funded by the national Swedish Real-Time Systems research initiative ARTES (www.artes.uu.se),
supported by the Swedish Foundation for Strategic Research.. Submitted for publication

More speci�cally, our model of the target sys-
tem adopts the event-triggered design paradigm
as presented by Kopetz et al. [KZF+91], and
constrains the execution environment to in-
crease testability, as described by Birgisson et
al. [BMA99]. The aim of our classi�cation
is to reveal similarities between di�erent test-
case generation methods and allow determina-
tion whether a certain type of characteristics has
an impact on the applicability of the method to
testing of timeliness. Furthermore, the result of
the classi�cation is analyzed against the require-
ment of our model of the target system in order
to highlight issues that have not been covered
in existing research.

2 Test-Case Generation

Model

Test-case generation is based on application
knowledge such as speci�cation, code structure,
and system design (see �gure 1). This informa-
tion is used to selectively generate a set of test
cases, sometimes referred to as a test suite, that
has high probability of revealing a speci�c class
of errors or deviations from the expected behav-
ior [Lap94].

An execution environment, in this context, is
the architecture in which the tested applications
run. This includes real-time operating system
services, communication primitives, and prop-
erties of underlying hardware. The execution
environment gives certain constraints on appli-
cability of di�erent test methods, e.g. required
contents of the test cases. Hence, we suggest
that properties of the execution environment
should be considered in the test-case generation
process.

Test cases are generated in accordance with
the test-case selection criterion, which depend
on the speci�c test method that is being used.
In this paper a test coverage criterion denote
the level of ambition for a test method, i.e., test
coverage criterion sets a goal of when an appli-
cation has been tested suÆciently. A test-case

selection criterion is related to this { a criterion
for selecting test cases that eventually will ful�ll
the test coverage criterion.

When a test suite has been prepared, it is
executed on the system under test. The test-
case execution phase requires that the execution
environment is suÆciently controllable and ob-

servable so that the desired test scenario can be
enforced and executed. The term observability

denotes how well the system provides facilities
for monitoring or observing the execution of ap-
plication programs during testing [Sch93]. Con-
trollability is associated with how well a tester
can control the behavior of the system under
test [Sch93].

Test evaluation is the process of comparing
the result of test-case execution with the ex-
pected result. Test evaluation also incorporates
evaluation against the test coverage criterion to
determine if suÆcient test coverage has been at-
tained.

3 Generating Test Cases

for Testing of Timeliness

This section presents the state-of-the-art in
test-case generation for testing of time
constraints in real-time systems. We argue a
study of this area is interesting and what
problems are solved by the analysis. The
methods that are relevant, from a timeliness
perspective, are classi�ed according to a set of
attributes in section 4. These attributes and
the criteria for classi�cation are explained in
section 3.2.

3.1 The need for Testing of

Timeliness

There is a plethora of articles describing dif-
ferent methods for generating or selecting tests
for various target systems and frameworks. As a
developer in the domain of complex distributed
real-time systems, it is hard to know what test-
case generation methods are meaningful for the
properties that one wants to test in this domain.
Timeliness is one of the most important proper-
ties of real-time systems. Few articles consider
testing of timeliness, but refer to formal proofs,
static analysis and scheduling theory to guar-
antee timeliness. Such analysis often requires
exact estimations of worst-case execution times,
known load patterns, and o�-line scheduling.
However, event-triggered real-time systems of-
ten allow a task load with mixed criticality and
dynamic scheduling policies to be more exible.
This complicate analysis and proofs while test-
ing becomes necessary in order to achieve con-
�dence in the temporal correctness. By inves-
tigating and classifying methods for generating
test cases from the timeliness perspective it is
possible to determine what aspects already have

2

Application
Knowledge :
- Specifation
- Design
- Code

Test Cases
Test Case
Execution

Selective
Generation
 + ordering

Test
Evaluation

Exec. Env.
Specification results

expected results

Figure 1: High-level testing model

been addressed and what aspects needs further
consideration and research when generating test
cases for dependable real-time systems (see also
[Nil00]).

3.2 Classi�cation Attributes

The methods that have been encountered in lit-
erature are classi�ed in relation to each other,
forming a taxonomy over test-case generation
methods for testing of temporal properties. The
attributes have been selected so that they should
apply to all test generation methods that con-
sider time constraints.

3.2.1 Speci�cation Type

This attribute classi�es the methods by the type
of speci�cation from which test cases are de-
rived. A speci�cation in this context is any
model that incorporates the expected temporal
behavior of a real-time system. Four main cate-
gories of speci�cation type have been identi�ed;
process algebra, �nite state machines, tempo-
ral logic, and Petri-net speci�cation. The aim
for this classi�cation is to identify if a test-case
generation method requires a speci�cation type
that has inherent advantages or problems when
used for testing of timeliness.

Some test-case generation methods, used for
testing temporal properties, are independent of
the speci�cation. These methods often rely on
some other, possibly manual, method for veri-
fying temporal correctness. Examples of such
methods are included in this article for com-
pleteness but will not be classi�ed by this at-
tribute.

3.2.2 Test-Case Contents

Di�erent methods supply various degree of test-
case detail. Some methods supply only "test-
data" and rely on some other mechanism to
verify the implementation against a temporal
speci�cation. These methods are not speci�-
cally aimed at testing temporal correctness; thus
when the execution time of a task depends on
the input data, appropriate input data for such
testing must be speci�ed.

Other methods aim at generating complete
execution sequences with series of input events
and expected output events. This class of test
data is denoted as "event sequences" in this
work. A special version of event-sequence repre-
sentation is executable "test processes", which
are run in parallel with the application, supply-
ing inputs at certain points in the execution and
responses to outputs from the system. A test
process can potentially incorporate timed input
events, input data, and expected results.

Another category is test cases that include
a speci�cation of the initial internal state of the
system from which the event sequence should
be applied as discussed by Birgisson et al.
[BMA99].

3.2.3 Time Base

From the timeliness perspective, the time base
used in test-case generation is interesting. A
continuous time base makes it possible to spec-
ify time constraints in a more precise way than
in its discrete counterpart. However, this ability
makes the number of test cases in�nite.

Some methods assume a discrete time base,
where there is a constant period between time

3

instants, which simpli�es testing. This may be a
valid assumption, since all currently used com-
puter systems operate with a discrete time base
at the lowest level, i.e., at the level of hardware
clock cycles.

3.2.4 Degree of Automation

From a timeliness testing perspective a high de-
gree of automation is desirable to reduce the
test e�ort, and thus, to be able to execute more
system-level tests in a limited time. Most meth-
ods for test-case generation recognize the need
for automation and tool support for generating
test-suites. In some cases, the methods support
fully automated test-case generation. In other
methods a tool allows the tester to specify as-
pects that needs to be tested, and the gener-
ation of test cases is then performed in semi-
automated interaction with this tool. Some
methods do not consider automation explicitly
but do have the required properties needed to
support an automated solution. Hence, four
possible categories have been identi�ed; "Auto-
mated", "Semi-Automated", "Potentially Auto-
mated", and "Not Automated".

4 Test-Case Generation

Methods

This section presents the most signi�cant
test-case generation methods from the
timeliness perspective. The layout of this
section follows the categories of the
"speci�cation type" attribute.

4.1 Methods Based on Process

Algebra Speci�cations

An example of a method based on process alge-
bra is presented by Clarke and Lee [CL97]. In
this paper they introduce a framework for test-
ing time constraints of real-time systems. The
time constraints are speci�ed in a constraint
graph that speci�es intervals in which events can
occur and dependencies between events. The
graph is translated to processes in the algebra of
communicating shared resources (ACSR). Test
processes produced from the process algebraic
speci�cations can be used to verify the speci�ca-
tion model of the system as well as be converted
to test cases for the actual software implementa-
tion. The test processes are run in parallel with

the system under test to supply timed inputs to
the system and intercept outputs. The article
provides a taxonomy of timing-constraint faults
and a set of coverage criteria for detecting vari-
ous types of implementation faults. The recom-
mended test case generation method focuses on
deriving test cases close to the end-points of the
intervals at which events are speci�ed to occur.

The target system for the presented is real-
time systems and protocols. The generated
test cases are primarily aimed at testing of
ASCR speci�cations, but the authors conjec-
ture that test cases can be reused for testing of
actual software implementations. This method
is interesting from the perspective of our tar-
get model since input occurs continuously and
time constraints are speci�ed in a well-formed
way. However, the focus of this test-case gener-
ation method is to test "behavioral constraints"
{ time constraints on the input to the system.
No method for generation of test cases for test-
ing of time constraints on the output values is
presented.

Cleveland and Zwarico [CZ91] propose a
method that incorporates a framework for
generating \behavioral preorders", which is a
speci�cation in process algebra that is suitable
for reasoning about real-time characteristics of
reactive systems. They are mainly concerned
with the problems arising when describing
timed systems in a process algebraic notation.
No concrete method for test-case generation
for real-time software systems is provided.

4.2 Methods Based on State

Machine Speci�cations

A �nite state machine is a well-known ab-
straction of computer systems. An interesting
property of real-time systems is that a point in
time can be viewed as an event that may cause
a transition in a �nite state model. When test-
ing systems for non-temporal properties, meth-
ods based on �nite-state-machine representa-
tions have already been exploited for test-case
generation, e.g., [FBK+91]. In this section,
methods for testing temporal properties based
on three di�erent avors of state machine mod-
els are presented.

A common problem in �nite-state-machine
representations is the state explosion problem.
This problem often occurs when the number of
states in the actual implementation is greater
than the number of states in the �nite state

4

model. Another problem with these models are
events that could lead to more than one state,
i.e., non-determinism [FBK+91].

4.2.1 Timed I/O Automaton

Petitjean and Fochal [PF99a] propose a test ar-
chitecture for testing of timed systems. A timed
system is described as a timed automaton that
can be expressed as a region graph. This work is
built on the timed- I/O automaton theory pro-
posed by Alur and Dill [AD94]. In their model
every automaton has a set of states and a set of
clocks. The clocks are represented by real num-
bers that proceed at the same rate and can be
reset by any transition in the system. The re-
�nement of this model by Petitjean and Fochal
are clock regions that allow time constraints to
be represented by a region graph where the num-
ber of clock regions becomes smaller than in the
original model by Alur and Dill.

The Petitjean and Fochal paper further de-
scribes how test cases are exercised in the system
under test. The architecture takes the manage-
ment of clocks away from the implementation
and lifts it to the level of the tester, because
it must use timers that correspond to the real-
valued clocks in the speci�cation. Thus, real-
value clocks are kept within a read-only module
of the test-driver, equivalent with the clock rep-
resentation in the system. When the system un-
der test generates output events, the test driver
veri�es these against the clock zones. However,
it is inconclusive how eÆcient this test case gen-
eration method is

In order to get suÆcient test coverage, test
cases are selected from each vertex that makes
up a clock region in the region graph. This pol-
icy guarantees that at least one test case has
been exercised for each combination of time con-
straints. We believe this approach to be promis-
ing for generating test suits for testing tim-
ing constraints. However, the method abstract
away from properties in the execution environ-
ment and it is inconclusive if the generated test
cases can be used in our target model, this issue
needs investigation.

4.2.2 Timed Transition Systems

Another method which takes a �nite-state-
machine approach is Cardell-Oliver and Glover
[COG98]. The purpose of their article is to
present a practical and complete method for
generating conformance tests for real-time sys-

tems. The paper starts from a formal-methods
perspective, where software speci�cations is it-
eratively re�ned and formally veri�ed at each
step. The authors note that the last step from
symbol manipulation to an actual hardware and
software implementation requires testing since
the implementation no longer is a provable de-
scription.

According to Cardell-Oliver and Glover, a
formal test method has four stages; checking
of the test hypothesis, generating test cases,
running the tests, and evaluating the test re-
sults. The test hypothesis de�nes the assump-
tions about the property under test so that cor-
rect conclusions from the test results can be
drawn. This method requires that the system
under test can be viewed, at some level of ab-
straction, as a deterministic �nite state automa-
ton. According to the paper, a test method is
complete if \its test generation algorithm de-
termines a �nite set of test cases suÆcient to
demonstrate that the formal model of the imple-
mentation under test is equivalent to its speci�-
cation". The speci�cation language used in this
method is Timed Transition Systems (TTS), but
the authors claim that the method is adaptable
to other formal languages such as timed CSP.

The basic idea of the method is to generate
test cases that exercise all transitions between
states and compares observable variables with
their speci�cation counterparts. Each transition
in the TTS speci�cation has an associated clock
guard in discrete time units that is used for ex-
pressing time constraints. The required input
for this method is a speci�cation of the system
as a TTS process as well as a speci�cation of
its environment. From these models, a timed
action automaton is derived by symbolic execu-
tion. The test-case generation algorithm takes
the timed action automaton associated with a
TTS speci�cation and constructs a �nite set of
test cases that will test each timed action edge of
the automata. Each test is a sequence of timed
actions.

The authors note that their method results
in a large number of test cases, but suggest that
other methods should be applied to eliminate
redundancy. They also claim that if a unique se-
quence of output events can identify each state,
the number of required test cases for confor-
mance testing can be decreased.

5

4.2.3 Extended Timed Input-Output
State Machines

Kon�e [Kon95] introduces a method for designing
tests for time constraints. However, the main
contributions of his work are a formal approach
to modeling and a theory for testing of time de-
pendencies in system behavior. The approach
will not be described in detail here since it is
similar to the methods described above and does
not handle test-case generation for software ex-
plicitly. However the article is mentioned in this
context since it is one of the seminal works in
the area.

Laurencot and Castanet [LC97] show di�er-
ent existing methods to integrate time in ex-
isting formal modeling languages so that it is
possible to test time constraints. The article
also aims to show how the notion of time can
be integrated in test cases for distributed sys-
tems and protocols. The importance of time in
test cases for time-dependent systems is high-
lighted. Three formal speci�cations from other
authors are presented in their overview and the
notion of time in each of them is discussed. The
di�erent speci�cations are the automata of Alur
and Dill [AD94], Timed Transition Models (e.g.,
[COG98]), and Extended Time Input Output
State Machine (ETIOSM) [Kon95]. Based on
the latter notation, a canonical "tester" that
handles time is presented. The method de-
composes timed formal models, in this case
ETIOSM, into sub-models for each real-valued
timer. These are then analyzed according to a
set of rules and used for building the tester that
incorporates time. According to the paper, test
cases given by this method can be formulated
in TTCN test language. An interesting issue
is it that the authors claim that their tester is
very well suited for testing distributed systems
or protocols, because of the use of a transition
for each transmission and reception. In addi-
tion, propagation delay is part of the models.

4.3 Methods Based on Temporal

Logic Speci�cations

Mandrioli et al. [MMM95] suggest a method
for functional testing of real-time systems based
on speci�cations of system behavior in TRIO.
TRIO is an extension of a temporal-logic lan-
guage de�ned to deal explicitly with strict time
requirements. A speci�cation of behaviors is
decomposed into elemental test-case fragments

that later can be recombined to form test cases
consisting of combinations of timed inputs and
corresponding outputs. A test generation tool
helps a test engineer to device test cases and
includes history generator/checker components.
The history generator is used for deriving all el-
ementary test cases satisfying a TRIO formula
at a given time instant. The elemental test cases
are timed input-output pairs. These pairs can
be combined and shifted in time to create a large
number of partial test cases. In order to get a
manageable test suite, a heuristic function com-
bined with human guidance is used for select-
ing which elemental test cases should be com-
bined in order to satisfy some test coverage cri-
terion. The authors claim that most coverage
criteria can be used with this method. A prob-
lem with this method, however, is how to relate
actual output events instances to multiple spec-
i�ed output events of the same type. This prob-
lem is partly solved by a history checker that an-
alyzes the generated history from the system un-
der test. Further, this method assumes that all
system behavior can be speci�ed with logic spec-
i�cations; for system level testing the number
and complexity of logic formulas will increase
and it is inconclusive how the method scales.

In a more recent work, SanPietro et al.
[SMM00] expand the work by Mandriolli et
al. to incorporate high-level, structured spec-
i�cations that can be combined with the low-
level speci�cations proposed in the earlier work.
The main di�erence in this work is that the
language allows modularization and presents
a graphical notation of modules and compo-
nents. The structured model is translated to a
graph which is traversed by an algorithm to con-
struct execution sequences for the overall system
(cf. [MMM95]). The test-case generation semi-
automatically constructs execution sequences in
accordance with some coverage criterion. In our
opinion, this extension increases the applicabil-
ity of the method presented by Mandrioli et al.
It would be interesting to further evaluate this
method in the context of testing of timeliness
and for example the e�ect of constraining the
observation granularity.

4.4 Methods Based on Timed

Petri-Net Speci�cations

Braberman et al. [BFM97] introduces a method
for generating test cases for real-time systems
based on timed Petri-nets. The method aims at

6

extracting knowledge not only from the speci�-
cation or code, but from all steps during devel-
opment, e.g. design. The article suggests the
use of a design notation SA/SD-RT for speci-
fying the behavior of a real-time system. For
test purposes, this design speci�cation is trans-
lated to a high level, timed Petri-net notation
from which a timed reachability tree (TRT) can
be derived. Each path from root to leaf in this
tree represent a "situation" that in itself rep-
resent a potentially unlimited number of test
cases due to a continuous time base. These "sit-
uations" are the base for generating test cases.
The authors present di�erent reduction schemes
that can be applied to reduce the number of test
cases resulting from each situation. The higher-
level adequacy criteria presented in the paper
are based on "situation" coverage, e.g. "one is
enough" is satis�ed if one test execution from
each situation is executed. Listed future work is
to create a tool which helps to manage and auto-
mate the method, an extension for applying the
method on isolated components, and also to in-
vestigate how architectural information, such as
scheduling policies, can be taken into account
during test-case generation. An identi�ed but
unsolved problem with this method is that there
is no way for deriving actual input test data,
only temporal information about sequences of
events can be produced, e.g. what timed input
sequences are needed to test all situations. We
believe that the method by Braberman et al. is
one of the most promising methods in this sur-
vey. We share the opinion with the authors that
it is of great importance to take advantage of
the additional architectural design information
during test-case generation.

In an earlier paper, Morasca and Pezze
[MP90] propose a method for testing concur-
rent and real-time systems that uses high-level
Petri-nets for speci�cation and implementation.
The Petri-nets proposed in their article are Er-
nets, which can handle concurrency, where time
is modeled as a special property associated with
the transitions in the model. Problems with
testing of concurrent and real-time systems are
presented, high-lighting the problems with non-
determinism and combinations of test-scenarios.
Also, this paper presents a number of test cri-
teria for selecting test cases for this kind of sys-
tems. This article takes problems with concur-
rency into consideration, but testing of the time
constraints is not explicitly considered. Further,
it is hard to determine how applicable it is for

implementations that do not use Er-nets.

4.5 Methods for Enforcing Tem-

poral Behaviors

Methods that are not based on a speci�cation
are generally not applicable for test-case gener-
ation aimed at testing temporal properties. The
reason for this is that in order to determine if
some transaction violates a time constraint, e.g.
misses its deadline, the constraint must be spec-
i�ed in some way.

From our perspective, such test-case genera-
tion methods can still be helpful in �nding test
data that inuence the temporal behavior of a
transaction in a speci�c way. There exist other
methods than test-case generation for �nding
data that cause the maximum execution time
of a task, for example static analysis of code
[PS91] and measurement [PF99b]. However, in
static analysis, the value of the estimated maxi-
mum execution time is often pessimistic [MW98]
and assumes that components such as caches
and pipelines are turned of.

Wegener et al.[WSJE97] propose a method
that uses genetic algorithms to generate test
data for testing temporal properties of real-time
systems. The heuristic method aims to �nd the
longest and shortest execution paths of real-time
programs. The paper shows that the genetic al-
gorithm method easily outperforms a random
method in �nding the longest and shortest exe-
cution paths, measured in the number of clock
cycles of program execution. The �tness func-
tion is supplied by a simulation tool, which
counts the number of executed machine level in-
structions and summarizes the associated cycle
times. This is only an approximation of the real
execution time and the article states that tem-
poral testing must be repeated for each platform
where the software will run; this further empha-
size the importance of automation. One prob-
lem is that there is no guarantee that a heuristic
approach can �nd the extremes, the decision on
when to stop the search for them is arbitrary.

4.6 Analysis and Classi�cations

Papers describing methods for test-case gener-
ation aimed for testing temporal properties are
listed above. The result of our classi�cation of
these methods is shown in table 1.

Assuming that these papers represent all or
most current methods aimed at testing time

7

Authors [Reference] Speci�cation Test Cases Time Base Automation

Clarke and Lee [CL97] Process Algebra Test Process Discrete Automated
Cleaveland and Zwarico
[CZ91]

Process Algebra Test Process Discrete Not Automated

Mandrioli et al.
[MMM95]

Temporal logic Event Sequence Discrete Semi-Automated

SanPietro et al.
[SMM00]

Temporal logic Event Sequence Discrete Semi-Automated

Braberman et al.
[BFM97]

Petri-nets Event Sequence Continuous Semi-Automated

Morasca and Pezze
[MP90]

Petri-nets Event Sequence Continuous Potentially Auto-
mated

Laurencot and Castanet
[LC97]

ETIOSM Test Process Continuous Semi-Automated

Petitjean and Fochal
[PF99a]

Timed Input Output
Automata

Test Process Continuous Potentially Auto-
mated

Cardell-Oliver and
Glover [COG98]

Timed Transition
Systems

Test Process Discrete Automated

Kon�e [Kon95] ETIOSM Test Process Continuous Not Automated

Wegener et al. [WSJE97] N/A Test Data Discrete Automated

Table 1: Classi�cation of Test-case Generation Methods

constraints, an observation is that the type of
speci�cation has inuence on the contents of
produced test cases. For example, temporal
logic and Petri-net speci�cations generally gen-
erates test cases that consist of event sequences
whereas test cases generated from some �nite
state machine or process algebra often are spec-
i�ed as test processes. None of the methods in-
clude information about internal states of the
execution environment in the test cases and,
thus, it is impossible to get full test coverage
of non-deterministic internal behaviors.

Another observation from the table is that
the time base used in these methods appears to
be unrelated to the speci�cation language or test
case-type. A note to this classi�cation is that in
the method that use genetic algorithms for de-
riving input data [WSJE97], we have assumed
that they use a discrete time base, e.g., clock cy-
cles for measuring execution times. However, it
is not relevant to these methods, since they rely
on some other mechanism to verify time con-
straints and are only concerned with forcing a
task to a speci�c temporal behavior.

One mayor conclusion that can be drawn
from the presented methods is that very few
consider internal states of the system when gen-
erating test cases. The only approaches that
consider any form of such states at all are meth-
ods based on �nite-state machines or Petri-nets.
However, in these representations it is diÆcult

to maintain a relationship between the states
of the automata and the internal states of the
computer system because the approach with
these modeling methods often abstract too far
away from mechanisms in the execution environ-
ment. Further, if non-determinism is allowed,
�nite-state-machine methods seldom apply due
to state explosion problems.

Other methods consider the system as a
black-box and only verify that the time from
when input events are supplied to the time
where output is signaled corresponds to the con-
straints in the speci�cation. This is indeed an
applicable method in some systems, but for de-
pendable systems with non-deterministic execu-
tion times and execution orders, it is generally
not suÆcient to supply di�erent sets of timed
inputs to guarantee timeliness. Parameters and
internal states are bound to have an impact on
timeliness, i.e. di�erent paths in the code are
executed for di�erent classes of input data, and
thus, must be tested.

A related, important, observation is that
very few of the speci�cation based testing meth-
ods supply input parameters. The only input
that is assumed is events and timing between
events. This may be suÆcient in some control
applications, but in general, a real-time system
has to read data values from sensors in its envi-
ronment and may act di�erently upon di�erent
data values.

8

An interesting observation is that most
methods assume an event-triggered paradigm;
none of the test-case generation methods as-
sume that input events are constrained in any
way. The only constraint on system behavior
in this context is that some of the works as-
sume a discrete time base. A disadvantage with
this is that it is hard to determine the impact
of a constrained execution environment in ex-
isting methods. Hence, it would be interesting
to investigate if constraints, such as the ones
presented in [Mel98] could be used with these
test-case generation methods to reduce the size
of the test suite. For example, a lot of input se-
quences may be considered equivalent in a more
sparsely observed environment.

The only method that considers distributed
systems explicitly is Laurencot and Castanet
[LC97]. Their approach is �nite state machine
based. It is inconclusive how well this method
scales to large real-time systems and how the
states in the speci�cation can be mapped to in-
ternal states of the system. Nevertheless, it is in
our opinion a promising research direction. The
fact that this is the only test-case generation
method found in the survey that considers dis-
tribution explicitly is surprising, since distribu-
tion is an inherent aspect of real-time systems.

5 Conclusions

This section summarizes the material presented
in this article. First, the state-of-the-art and
general impressions of the area are briey dis-
cussed. Second, the contributions from the clas-
si�cation and analysis are highlighted. Third,
some future research directions are suggested
that would remedy a few of the identi�ed prob-
lems.

5.1 Discussion

The area of testing of real-time properties
is slowly beginning to get more attention in
academia and industry; the reasons for this we
believe is that real-time systems are becom-
ing increasingly complex. The static analysis
methods and formal veri�cation methods have
trouble keeping up with the required exibility,
diversity of applications, immense parallelism,
and distribution of the next generation of em-
bedded systems. Hence, practitioners and re-
searchers turn to testing in hope of �nding a

simpler way to verify overall correctness. Unfor-
tunately, testing cannot provide absolute guar-
antees of correctness; the number of test cases
needed to completely verify even a medium-
sized real-time system is too large to even con-
sider. However, if we take testing in considera-
tion when designing systems by avoiding mech-
anisms that result in unnecessary test complex-
ity, we believe that it is possible to construct
test-case generation methods that exploit this
to give con�dence in any given degree of cor-
rectness while not loosing the desired properties
of exible real-time systems.

One may ask if testing is a useful technique
for verifying the correctness of real-time systems
in safety-critical environments. In such envi-
ronments, it can be argued that functional and
temporal correctness is so important that well-
known, time-triggered systems with static o�-
line scheduling and formal proofs should always
be used to guarantee timeliness. It is true that
static architectures are more suitable for safety-
critical environments. However, we believe there
are many application areas of dependable sys-
tems where timeliness is important, but where
exibility and performance requirements call for
a exible, event-triggered architecture.

5.2 Contributions

This article presents an analysis of approaches
for generating test cases for testing of time
constraints. All encountered methods for test-
ing of time constraints seems to be based on
some structured or formal speci�cation. Di�er-
ent speci�cation notations give di�erent advan-
tages but also limitations and problems. Meth-
ods based on di�erent notations are analyzed
and their properties evaluated from the perspec-
tive of testing timeliness in distributed event-
triggered real-time systems.

A classi�cation of test-case generation meth-
ods relating to testing of temporal properties
has been presented, complementing the classi-
�cation of test methods presented by Laprie et
al. [Lap94]. The classi�cation is general enough
so that all methods that aim to test time con-
straints should be easy to add as they arise.

The characteristics and contents of di�er-
ent test-cases produced by the di�erent meth-
ods are described and evaluated against the re-
quirement of our target model. The conclu-
sion is that none of the methods consider inter-
nal states of the execution environment in the

9

test-cases, and hence, they allow temporal non-
determinism. That is, the same test case may
result in very di�erent response-times in consec-
utive executions.

A related contribution is the identi�cation
of a need for special test criteria for selecting
test cases for testing of real-time systems. None
of the encountered selection criteria take ad-
vantage of constraints in the execution environ-
ment. Instead selection criteria are often based
on the properties in the speci�cation notation,
e.g., transition coverage.

Furthermore, the methods has been classi-
�ed according to their degree of automation and
time-base, these attributes indicate which of the
methods that are most probable of producing
test suites with a realistic associated test-e�ort.

5.3 Future Research Directions

This section summarizes, in our opinion, the
most important of the identi�ed problems and
proposes future research directions in this area
that aim to solve these problems.

5.3.1 A Selective Test-Case Generation
Method for Real-Time Systems

A test generation method for real-time systems
must take time constraints into consideration,
both for testing that input events are handled
in a correct way and that the output of a system
always is within a speci�ed interval, i.e., time-
liness. To verify the latter property, we believe
that testing must be conducted on two levels.
On a higher level, the tested event scenario must
cause the worst-case internal behavior in block-
ing, synchronization, and arrival time of events.

On a lower level the input parameters and data
from shared resources must cause the worst-case
execution time of transactions.

Our analysis has concluded that existing
methods for test-case generation produce either
event sequences or test data, but there exist
very few methods that can supply both. An
interesting problem for research is to combine
a speci�cation-based testing technique, where
event sequences and their time constraints are
generated from a formal speci�cation, with a
temporal behavior enforcing testing technique,
such as described in section 4.5.

Furthermore, the test cases produced by
the method should support test execution
under speci�c internal conditions, e.g., by
providing the internal state from where test
execution begins (cf. [Nil99]).

5.3.2 A Test Coverage Criterion for
Testing of Timeliness

No work encountered in the survey takes ad-
vantage of constraints in the execution environ-
ment for limiting the number of test cases. We
believe that it is possible to eliminate many re-
dundant test cases by taking such constraints
into consideration. Hence, a future work is to
further re�ne these ideas into more formal cov-
erage criteria for testing timeliness in real-time
systems.

Preferably, this should result in a hierarchy
of coverage criteria attaining increasing degrees
of test coverage. Such criteria must be evalu-
ated against other approaches on real-life ap-
plications in order to determine it the criteria
ensures high quality applications.

References

[AD94] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183{235,
1994.

[Bei90] B. Beizer. Software Testing Techniques. Von Nostrand Reinhold, 1990.

[BFM97] V. Braberman, M. Felder, and M. Marr�e. Testing timing behavior of real-time software. Inter-
national Software Quality Week, 1997.

[BJ00] B. Bereza-Jarocinski. Automated testing in daily build. Technical Report ISSN 1493-6444,
Swedish Engineering Industries, 2000.

[BMA99] R. Birgisson, J. Mellin, and S. F. Andler. Bounds on test e�ort for event-triggered real-time
systems. In In Proc. 6th Int'l Conference on Real-Time Computing, Systems and Applica-
tions (RTCSA'99), pages 212{215. Department of Computer Science, University of Sk�ovde,
December 1999.

10

[CL97] D. Clarke and I. Lee. Automatic generation of tests for timing constraints from requirements.
In Proceedings of the Third International Workshop on Object-Oriented Real-Time Dependable
Systems, Newport Beach, California, February 1997.

[COG98] R. Cardell-Oliver and T. Glover. A practical and complete algorithm for testing real-time
systems. Lecture Notes in Computer Science, 1486:251{261, 1998.

[CZ91] R. Cleveland and A. E. Zwarico. A theory of testing for real-time. IEEE Computer Society
Press, pages 110{119, 1991.

[FBK+91] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test selection based
on �nite state models. IEEE Transactions on software engineering, 17(6):591{603, june 1991.

[Kon95] O. Kon�e. Designing tests for time dependent systems. Seoul, South Korea, 1995. IFIP Inter-
national conference on Computer Communications.

[KZF+91] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and W. Sch�utz. An engineering
approach to hard real-time system design. pages 166{188, Milano, Italy, 1991. In proc. of the
Third European Software Engineering Conference, ESEC ' 1991.

[Lap94] J. Laprie, editor. Dependability : Basic Concepts and Terminology. Springer-Verlag for IFIP
WG 10.4, August 1994.

[LC97] P. Laurencot and R Castanet. Integration of time in canonical testers for real-time systems.
California, 1997. 1997 Workshop on Object-Oriented Real-time dependable Systems, IEEE
Computer Society Press.

[Mel98] J. Mellin. Supporting system level testing of applications by active real-time databases. In
Proc. 2nd Int'l Workshop on Active, Real-Time, and Temporal Databases, ARTDB-97, number
1553 in LNCS. Springer-Verlag., 1998.

[MMM95] D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real-time systems from
logic speci�cations. ACM Transactions on Computer Systems, 4(13):365{398, Nov 1995.

[MP90] S. Morasca and M. Pezze. Using high level petri-nets for testing concurrent and real-time
system. Real-Time Systems : Theory and Applications, pages 119{131, 1990. Amsterdam
North-Holland.

[MW98] F. M�ueller and J. Wegener. A comparison of static analysis and evolutionary testing for the
veri�cation of timing constraints. 1998.

[Nil99] R. Nilsson. Automated test case execution for real-time systems that are constrained for
improved testability. Technical Report HS-IDA-EA-99-118, Department of Computer Science,
University of Sk�ovde, 1999.

[Nil00] R. Nilsson. Automated selective test case generation methods for real-time systems. Master's
thesis, University of Sk�ovde, September 2000.

[PF99a] E. Petitjean and H. Fochal. A realistic architecture for timed testing. In Proc. of Fifth IEEE
International Conference on Engineering of Complex Computer Systems, USA, Las Vegas,
October 1999.

[PF99b] S. M. Petters and G. F�arber. Making worst case execution time analysis for hard real-time
tasks on state of the art processors feasible. Hong Kong, 1999. RTCSA99.

[PS91] P. P. Puschner and A. V. Schedl. Computing maximum task execution times - a graph based
approach. 1991. Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

[Sch93] W. Sch�utz. The Testability of Distributed Real-Time Systems. Kluwer Academic Publishers,
1993.

[Sch94] W. Sch�utz. Fundamental issues in testing distributed real-time systems. Real-Time Systems,
7(2):129{157, September 1994.

[SMM00] P. SanPietro, A. Morzenti, and S. Morasca. Generation of execution sequences for modular
time critical systems. IEEE Transactions on Software Engineering, 26(2):128{149, feb 2000.

[TH99] H. Thane and H. Hansson. Towards deterministic testing of distributed real-time systems.
Swedish National Real-Time Conference SNART'99, August 1999.

[WSJE97] J. Wegener, H. H. StHammer, B. F. Jones, and D. E. Eyres. Testing real-time systems using
genetic algorithms. Software Quality Journal, 6(2):127{135, 1997.

11

Fixed-Priority Preemptive Multiprocessor Scheduling:
To Partition or not to Partition

Björn Andersson and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology

SE–412 96 G̈oteborg, Sweden
{ba,janjo}@ce.chalmers.se

Abstract
Traditional multiprocessor real-time scheduling parti-

tions a task set and applies uniprocessor scheduling on each
processor. By allowing a task to resume on another proces-
sor than the task was preempted on, some task sets can be
scheduled where the partitioned method fails.

We address fixed-priority preemptive scheduling of peri-
odically arriving tasks onm equally powerful processors.
We compare the performance of the best algorithms of the
partitioned and non-partitioned method, from two different
aspects. First, an average-case comparison, using an ideal-
ized architecture, shows that, if a system has a small num-
ber of processors, then the non-partitioned method offers
higher performance than the partitioned method. Second,
an average-case comparison, using a realistic architecture,
shows that, for several combinations of preemption and mi-
gration costs, the non-partitioned method offers higher per-
formance.

1 Introduction
Shared-memory multiprocessor systems have recently

made the transition from being resources dedicated
for computing-intensive calculations to common-place
general-purpose computing facilities. The main reason for
this is the increasing commercial availability of such sys-
tems. The significant advances in design methods for par-
allel architectures have resulted in very competitive cost–
performance ratios for off-the-shelf multiprocessor sys-
tems. Another important factor that has increased the avail-
ability of these systems is that they have become relatively
easy to program.

Based on current trends [1] one can foresee an increas-
ing demand for computing power in modern real-time ap-
plications such as multimedia and virtual-reality servers.
Shared-memory multiprocessors constitute a viable remedy
for meeting this demand, and their availability thus paves
the way for cost-effective, high-performance real-time sys-

tems. Naturally, this new application domain introduces a
new intriguing research problem of how to take advantage
of the available processing power in a multiprocessor sys-
tem while at the same time account for the real-time con-
straints of the application.

Fixed-priority scheduling of tasks on such systems is
typically solved using one of two different methods based
on how tasks are assigned to the processors at run-time.
In the partitioned method, all instances of a task are ex-
ecuted on the same processor. The processor used for
the execution of a task is determined before run-time by
a partitioning algorithm. In thenon-partitionedmethod, a
task is allowed to execute on any processor, even when re-
suming after having been preempted. For the partitioned
method, a plethora of mature algorithms and analyses have
been proposed, something that has contributed to the wide-
spread use of the method in multiprocessor-based real-time
systems. In contrast, the non-partitioned method has re-
ceived much less attention, mainly because it is believed to
suffer from scheduling- and implementation-related short-
comings, but also because it lacks support for more ad-
vanced system models, such as the management of shared
resources.

Many operating systems for shared-memory multipro-
cessors support fixed-priority scheduling with both the par-
titioned and the non-partitioned method. In order to know
which of the methods should be used in practice, it is im-
portant to know their ability to schedule an arbitrary task
set on a fixed number of processors. So far, the only pre-
vious evaluation of fixed-priority preemptive multiproces-
sor scheduling claims that the average-case performance
of the non-partitioned method is lower than the average-
case performance of the partitioned method [2]. It has
also been shown that the worst-case performance of the
non-partitioned method using the rate-monotonic priority
scheme is poor [3]. We believe that these comparisons
are not complete, because (i) recently a novel priority as-

signment for the non-partitioned method [4] was proposed
which alleviates the scheduling-related shortcoming, and
(ii) the previous evaluation considered the cost of preemp-
tion and migration to be zero. It is not clear how preemp-
tion and migration costs will affect performance of the par-
titioned and non-partitioned methods.

In this paper, we compare the novel non-partitioned
priority-assignment scheme against the best partitioning al-
gorithms. We demonstrate that the partitioned method is
not necessarily the best approach. To this end, we make
two main research contributions.

C1. We show that, on an idealized architecture, the non-
partitioned method offers higher average-case perfor-
mance than the partitioned method. We also show that,
even if a necessary and sufficient schedulability test is
used for the partitioning algorithms, then the best par-
titioned method performs only slightly better than the
non-partitioned method.

C2. We show that, on a realistic architecture, the non-
partitioned method can provide higher performance
than the partitioned method when both an improved
dispatcher is used and the additional cost of a migra-
tion is no greater than the cost of a preemption.

The rest of this paper is organized as follows. In Sec-
tion 2, we review previous work in fixed-priority preemptive
multiprocessor scheduling and define concepts and system
models used. Section 3 shows the average-case behavior
of the partitioned and non-partitioned method, and in Sec-
tion 4, we discuss and show the architectural impact on the
average-case performance. We discuss other aspects of the
scheduling problem in Section 5, and summarize our results
in Section 6.

2 Background
Recall that there are two methods that are used to solve

the multiprocessor scheduling problem, namely the parti-
tioned and the non-partitioned method1. In this section, we
first discuss in more detail the capabilities and problems of
these methods, and then define concepts and system models
used in this paper.
2.1 Previous work

For fixed-priority preemptive scheduling of periodically-
arriving tasks on a multiprocessor system, both the parti-
tioned and the non-partitioned method have been addressed
in previous research. Important properties were presented
in a seminal paper by Leung and Whitehead [5]. In par-
ticular, they showed that the problem of deciding whether a
task set is schedulable (that is, all tasks will meet their dead-
lines at run-time) is NP-hard for both the partitioned method

1Some authors refer to the non-partitioned method as “dynamic bind-
ing” or “global scheduling”.

and the non-partitioned method. They also observed that no
method dominates the other in the sense that there are task
sets which are schedulable with an optimal priority assign-
ment with the non-partitioned method, but are unschedula-
ble with an optimal partitioning algorithm and conversely.

Among the two methods, the partitioned method has re-
ceived the most attention in the research literature. The
main reason for this is that the partitioned method can eas-
ily be used to guarantee run-time performance (in terms of
schedulability). By using a uniprocessor schedulability test
as the admission condition when adding a new task to a pro-
cessor, all tasks will meet their deadlines at run-time. Now,
recall that the partitioned method requires that the task set
has been divided into partitions, each having its own dedi-
cated processor. Since an optimal solution to the problem
of partitioning the tasks is believed to be computationally
intractable, many heuristics for partitioning have been pro-
posed (see for example [3, 6, 7, 8, 9, 10]). All of these
bin-packing-based partitioning algorithms provide perfor-
mance guarantees, they all exhibit fairly good average-case
performance, and they can all be applied in polynomial time
(using sufficient schedulability tests).

The non-partitioned method has received considerably
less attention, mainly because of the following limitations.
First, no efficient schedulability tests currently exist for the
non-partitioned method. The only known necessary and
sufficient schedulability test for the non-partitioned method
has an exponential time-complexity [11]. The complexity
can be reduced with sufficient schedulability tests to a poly-
nomial [12, 2, 13, 14] or pseudo-polynomial [13] time com-
plexity. However, the test in [14] becomes pessimistic when
the number of tasks increases, and the tests in [12, 2, 13] be-
come pessimistic when the number of processors increases.
Second, no efficient optimal priority-assignment scheme
has been found for the non-partitioned method. The rate-
monotonic priority assignment (RM) [15], which is optimal
on a uniprocessor, is not optimal for multiprocessors using
the non-partitioned method [3, 5]. Even worse, task sets
with a very low utilization can be unschedulable with RM
[3]. We refer to the latter asDhall’s effect.

In a recent comparison of the partitioned and non-
partitioned method, it was claimed that, even if one is will-
ing to use a necessary and sufficient schedulability test
for the non-partitioned method, the non-partitioned rate-
monotonic is inferior to the partitioning algorithms [2, Sec-
tion 3.5]. We believe that this comparison is not com-
plete for two reasons. First, the previous evaluation did not
consider a recently-proposed priority assignment scheme,
adaptiveTkC[4], in which the highest priority is assigned
to the taskτi which has the leastTi − k ∗ Ci, where
k = 1

2 · m−1+
√

5 m2−6 m+1
m (m is the number of proces-

sors). As shown in [4], the value ofk is selected to counter
two effects that occur atk = 0 and k → ∞. The case

wherek = 0 is equivalent to RM, which is known to suffer
from Dhall’s effect. The other case,k → ∞, gives highest
priority to the task with the longest execution time, which
can make task sets unschedulable at arbitrary low utiliza-
tion. The second reason why the previous evaluation is not
complete is that it considered the cost of preemption and
migration to be zero. It is not clear how preemption and
migration costs will affect performance of the partitioned
and non-partitioned methods. Because of these shortcom-
ings, we believe that it is necessary to take a new look at the
question of whether to partition or not to partition.
2.2 Concepts and System model

We consider the problem of scheduling a task setτ =
{τ1, τ2, . . . , τn} of n independent2, periodically-arriving
real-time tasks onm identical processors. A task arrives
periodically with a period ofTi. Each time a task arrives,
a newinstance of the task is created. Each instance has a
constant execution time ofCi. Each task has a prescribed
deadline, which is the time of the next arrival of the task.
Themeta periodof the task set is the least common multi-
ple ofT1, T2, . . . , Tn.

For the partitioned method the system behaves as fol-
lows. Each task is assigned to a processor, and then as-
signed a local (for the processor), unique and fixed priority.
With no loss of generality, we assume that the tasks on each
processor are numbered in the order of decreasing priority,
that is,τ1 has the highest priority. On each processor, the
task with the highest priority of those tasks which has ar-
rived, but not completed, is executed.

For the non-partitioned method the system behaves as
follows. Each task is assigned a global, unique and fixed
priority. With no loss of generality, we assume that the tasks
in τ are numbered in the order of decreasing priority, that is,
τ1 has the highest priority. Of all tasks that have arrived, but
not completed, them highest-priority tasks are executed3 in
parallel on them processors.

The utilization ui of a taskτi is ui = Ci/Ti, that is,
the ratio of the task’s execution time to its period. The uti-
lization U of a task set is the sum of the utilizations of the
tasks belonging to that task set, that is,U =

∑n
i=1 Ci/Ti.

A task isschedulableif all its instances completes no later
than their deadlines. A task set is schedulable if all its tasks
are schedulable.

To understand the basic performance characteristics, we
initially assume the following simple system model.

A1. Tasks are independent, arrive periodically, and can al-
ways be preempted. Hence, at every moment, a dis-
patcher determines which task to execute. In prac-

2That is, there are no precedence constraints on the arrival time of the
tasks.

3At each instant, the processor chosen for each of them tasks is arbi-
trary. If less thanm tasks should be executed simultaneously, some pro-
cessors will be idle.

tice, some operating systems use tick driven schedul-
ing, where the ready queue is only inspected at certain
times.

A2. Tasks do not require exclusive access to any other re-
source than a processor.

A3. The cost of preemption is zero. We will use this as-
sumption even if a task is resumed on another proces-
sor than the task was originally preempted on (that is,
the cost of migration is also assumed to be zero).

A4. The cost when a task arrives is zero because we con-
sider cache misses that occur when a task arrives to be
included in the execution time. We will use this as-
sumption even if a task executes after arrival on a pro-
cessor on which it has never executed. These assump-
tions should be reasonable since worst-case execution
time analysis tools typically consider uninterrupted ex-
ecution of a task that starts in an “empty state” (e.g., all
cache lines are empty).

To investigate more realistic characteristics of the sys-
tem, we will relax A3 later in this paper (in Section 4).

3 Average-Case Behavior
In this section, we will conduct an average-case per-

formance evaluation of the non-partitioned and partitioned
methods, assuming an idealized architecture with no over-
head of task preemption or migration. Our evaluation
methodology, which will be described in Section 3.1, is
based on simulation experiments using randomly-generated
task sets. The rationale for using simulation of synthetic
task sets is that it more easily reveals the average-case per-
formance and robustness of a scheduling algorithm than can
be achieved by scheduling a single application benchmark.
Section 3.2 presents the results from the simulations.

3.1 Experimental setup
Unless otherwise stated, we conduct the performance

evaluation using the following experimental setup.
Task sets are randomly generated and their scheduling is

simulated with the respective method onm = 4 processors.
The number of tasks,n, follows a uniform distribution with
an expected value ofE[n] = 8, a minimum of0.5E[n],
and a maximum of1.5E[n]. The period,Ti, of a taskτi is
taken from a set{100, 200, 300, 400, 500, . . . , 1600}, each
number having an equal probability of being selected. The
utilization,ui, of a taskτi follows a normal distribution with
an expected value ofE[ui] = 0.5 and a standard deviation
of stddev [ui] = 0.4. If ui < 0 or ui > 1, then a newui is
generated. The execution time,Ci, of a taskτi is computed
from the generated utilization of the task, and the execution
time is rounded down to the next lower integer. If the exe-
cution time becomes zero, then the task is generated again.

The priorities of tasks are assigned with the respective
priority-assignment scheme, and, if applicable, tasks are
partitioned and assigned to processors. All tasks arrive at
time0 and scheduling is simulated during one meta period4.
Scheduling decisions are only taken when a task arrives or
completes.

We usesuccess ratioas the performance measure for
average-case performance. The success ratio is the frac-
tion of all generated task sets that are successfully scheduled
with respect to an algorithm. The success ratio is computed
for each point in a plot as an average of 2,000,000 task sets5.
In the evaluation of the partitioned method, we consider a
task set as successfully scheduled if and only if the number
of processors required according to the bin-packing algo-
rithm is no greater thanm. In the evaluation of the non-
partitioned method, we consider a task set as successfully
scheduled if the task set is schedulable, that is all task in-
stances in the task set simulated during a meta period com-
pleted no later than their deadlines.

Two non-partitioned priority-assignment schemes are
evaluated, namely RM [15] and adaptiveTkC [4]. Two bin-
packing-based partitioning algorithms are studied, namely
RM-FFDU [8], and R-BOUND-MP [9]. The reason for se-
lecting these two latter algorithms is that we have found that
they are the partitioning algorithms which provide the best
performance in our experimental environment (other algo-
rithms, such as RRM-BF [7] and RMGT [6] offer lower
performance). For all partitioning algorithms, we use the
corresponding sufficient schedulability test.

We have also evaluated a hybrid partitioned/non-
partitioned algorithm, which we will call RM-
FFDU+adaptiveTkC. The reason for considering a
hybrid solution is that we may be able to increase processor
utilization with the use of non-partitioned tasks, without
jeopardizing the guarantees given to partitioned tasks. The
RM-FFDU+adaptiveTkC scheme operates in the following
manner. First, as many tasks as possible are partitioned
with RM-FFDU on the given number of processors, and
are given local priorities. Then, the remaining tasks (if any)
are assigned global priorities according to the adaptiveTkC
priority-assignment scheme. Each processor has a local
ready queue for the partitioned tasks and there is a global
ready queue for the non-partitioned tasks. A processor
executes a task from its local ready queue, if the local ready
queue of that processor is non-empty. A processor executes

4The reason for scheduling during a meta period is because for the non-
partitioned method, the response time of a task is not necessarily maxi-
mized when a task arrives at the same time as its higher priority tasks [4].
We therefor select small values ofE[n] to avoid that the meta period grows
too large, causing simulations to take too long time. We also select small
values ofm sincem must be less thann to make the scheduling problem
non-trivial.

5With 95% confidence, we obtain an error of the success ratio that is
less than 0.1%.

a task from the global ready queue, if the local ready queue
of that processor is empty.

3.2 Performance comparison
Figure 1 shows the results of the simulation experiment.

We make three observations.
First, RM offers the worst performance. However, it is

not as bad as suggested by previous studies [3]. The reason
for this is of course that Dhall’s effect, although it exists,
does not occur frequently. This observation also corrobo-
rates a recent study [2].

Second, adaptiveTkC offers the best performance, no
matter how we vary the parameters (the number of pro-
cessors, the expected value of the number of tasks, the ex-
pected value of task utilization and the standard deviation
of the task utilization). The reason for this is that adap-
tiveTkC takes advantage of the salient property of the non-
partitioned method, namely the ability to schedule tasks in
slots of unused time on different processors (as RM does).

Third, the hybrid partitioned/non-partitioned algorithm
consistently outperforms the corresponding partitioning al-
gorithms. This indicates that such a hybrid scheme is
a viable alternative to use in multiprocessor systems that
mixes real-time tasks of different criticality. The reason
for the good performance is that the hybrid partitioned/non-
partitioned algorithm can schedule all task sets that the cor-
responding partitioned method can schedule, but the hy-
brid partitioned/non-partitioned algorithm can also sched-
ule some tasks in slots of unused time on different proces-
sors.

For all partitioning algorithms, sufficient schedulability
tests were originally proposed to be used. Now, if we in-
stead use a necessary and sufficient schedulability test based
on response-time analysis [16] for the partitioning algo-
rithms, the success ratio can be expected to increase, al-
beit at the expense of a significant increase in computational
complexity. Recall that response-time analysis has pseudo-
polynomial time complexity, while sufficient schedulabil-
ity tests typically have polynomial time complexity. Fig-
ure 2 shows the simulation results when the partitioning al-
gorithms use response-time analysis. Here, we make the
following observation. RM-FFDU with response-time anal-
ysis only provides a slightly higher success ratio than adap-
tiveTkC while other partitioning algorithms still have a
lower success ratio than adaptiveTkC. Note that this means
that, even if the best partitioning algorithm (R-BOUND-
MP) use response-time analysis, it still performs worse than
adaptiveTkC. This should not come as a surprise, since for
R-BOUND-MP, the performance bottleneck is the partition-
ing and not the schedulability test [9].

4 Architectural Impact
From the results in Section 3, we observed that adap-

tiveTkC performed well under the assumption of an ideal-

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

su
cc

es
s

ra
tio

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

RM
adaptiveTkC

RM-FFDU
RM-FFDU+adaptiveTkC

R-BOUND-MP

(a) Success ratio as a function of the number of processors.

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12 13 14

su
cc

es
s

ra
tio

E[n]

[m=4,E[u]=0.5,stddev[u]=0.4]

RM
adaptiveTkC

RM-FFDU
RM-FFDU+adaptiveTkC

R-BOUND-MP

(b) Success ratio as a function of the number of tasks.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

su
cc

es
s

ra
tio

E[u]

[m=4,E[n]=8,stddev[u]=0.4]

RM
adaptiveTkC

RM-FFDU
RM-FFDU+adaptiveTkC

R-BOUND-MP

(c) Success ratio as a function of the expected value of utilization of tasks.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

su
cc

es
s

ra
tio

stddev[u]

[m=4,E[n]=8,E[u]=0.5]

RM
adaptiveTkC

RM-FFDU
RM-FFDU+adaptiveTkC

R-BOUND-MP

(d) Success ratio as a function of the standard deviation of utilization of
tasks.

Figure 1: Success ratio for different scheduling algorithms when the partitioning algorithms use a sufficient schedulability
test (polynomial time complexity).

ized architecture. Now, in order to evaluate the performance
of a realistic system we must incorporate some architectural
costs. In this section, we will study the impact of two archi-
tectural costs, namelypreemptionandmigration.

It is tempting to believe that the non-partitioned method
causes a larger amount of (and more costly) preemptions6

than the partitioned method, and that this makes more task
sets schedulable with the partitioned method than with the

6A task is preempted if it has remaining execution time but does not
immediately continue to execute on the same processor.

non-partitioned method. We will now show that such state-
ments cannot easily be made. First, we will propose a
dispatcher for the non-partitioned method that reduces the
number of preemptions by analyzing the current state of
the schedule. We will then show that the average num-
ber of preemptions generated by the best non-partitioned
method using the new dispatcher is significantly less than
that of the best partitioning algorithm. Finally, we will
evaluate the schedulability of the non-partitioned and parti-
tioned method when the costs of preemption and migration
are accounted for.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

su
cc

es
s

ra
tio

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

adaptiveTkC
RM-FFDUrespan

R-BOUND-MPrespan

(a) Success ratio as a function of the number of processors.

0

0.2

0.4

0.6

0.8

1

4 5 6 7 8 9 10 11 12 13 14

su
cc

es
s

ra
tio

E[n]

[m=4,E[u]=0.5,stddev[u]=0.4]

adaptiveTkC
RM-FFDUrespan

R-BOUND-MPrespan

(b) Success ratio as a function of the number of tasks.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

su
cc

es
s

ra
tio

E[u]

[m=4,E[n]=8,stddev[u]=0.4]

adaptiveTkC
RM-FFDUrespan

R-BOUND-MPrespan

(c) Success ratio as a function of the expected value of utilization of
tasks.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

su
cc

es
s

ra
tio

stddev[u]

[m=4,E[n]=8,E[u]=0.5]

adaptiveTkC
RM-FFDUrespan

R-BOUND-MPrespan

(d) Success ratio as a function of the standard deviation of utilization
of tasks.

Figure 2: Success ratio for different scheduling algorithms when the partitioning algorithms use a necessary and sufficient
schedulability test (pseudo-polynomial time complexity).

4.1 Improved Dispatcher

Recall that the non-partitioned method using fixed-
priority preemptive scheduling only requires that, at each
instant, them tasks with the highest priorities are executed;
it does not require a task to run on a specific processor.
As long as the cost of a preemption is zero, the task-to-
processor assignment at each instant does not affect schedu-
lability. However, on real computers the time required for
a preemption is non-negligible. If the task-to-processor
assignment is selected arbitrarily, it could happen that all
m highest-priority tasks execute on another processor than

they did the last time they were dispatched, even if thesem
tasks were the same ones that executed last. With the orig-
inal dispatcher, this would have serious consequences for
the schedulability of the system. Hence, to reduce the risk
of unnecessary preemptions, we need a dispatcher that not
only selects them highest-priority tasks, but also selects a
task-to-processor assignment such that the number of pre-
emptions is minimized.

We now propose a heuristic for the task-to-processor as-
signment that will reduce the number of preemptions for
the non-partitioned method. The basic idea of the task-to-
processor assignment algorithm is to determine which of the

Algorithm 1 Task-to-processor assignment algorithm for
the non-partitioned method.

Input : Let τbefore be the set of tasks that just executed on the
m processors. On each processorpi, a (possibly non-existing)
taskτij,before executed. Letτhighest be the set of tasks that are
selected for execution.
Output : On each processorpi, a (possibly non-existing) task
τij,after should execute.

1: E = {pi : (τij,before 6= non− existing) ∧ (τij,before ∈
τhighest)}

2: for each pi ∈ E
3: remove τij,before from τhighest

4: τij,after ← τij,before

5: for each pi /∈ E
6: if τhighest 6= ∅
7: select an arbitrary τj from τhighest

8: remove τj from τhighest

9: τij,after ← τj

10: else
11: τij,after ← non− existing

tasks that must execute now (that is, have the highest prior-
ity) have recently executed, and then try to execute those
tasks on the same processor as in their previous execution.
The algorithm for this is described in Algorithm 1. In the re-
mainder of this paper, we will refer to this dispatcher as the
preemption-awaredispatcher. We letadaptiveTkCunaware
denote adaptiveTkC together with a dispatcher where the
task with the highest priority is assigned to the processor
with the least index, unaware of the preemptions it will
generate. Correspondingly, we letadaptiveTkCawarede-
note adaptiveTkC together with the preemption-aware dis-
patcher. In the remainder of this section, we will assume
that, whenever the non-partitioned method is used, adap-
tiveTkCaware is used. AdaptiveTkCunaware will only be
used as a baseline algorithm.

4.2 Number of Preemptions
To demonstrate that the preemption-aware dispatcher is

effective, we will start by showing its performance in terms
of the number of preemptions generated. To this end, it
would be natural to simulate scheduling and count the total
number of preemptions generated during a meta period and
use that number as a measure of the number of preemptions.
However, if many task sets are simulated, and we take the
sum of the preemptions in all task sets, then task sets with a
large meta period would be biased in that they would have a
higher impact on the total number of preemptions. To make
each task set equally important, we have therefore chosen
to usepreemption densityas the measure of the number of
preemptions. Preemption density of a scheduled task set is
defined as the number of preemptions generated during a
meta period divided by the length of the meta period.

To reveal which of the two methods (partitioned or non-
partitioned) that generates the highest number of preemp-

tions, we have simulated scheduling of randomly-generated
task sets and computed the preemption density for each of
these task sets. Since, in this subsection, we are only in-
terested in the number of preemptions — not their impact
on schedulability — we assume that the cost of preemp-
tion and the cost of migration is zero. We simulate schedul-
ing using adaptiveTkCaware, adaptiveTkCunaware and R-
BOUND-MP because they are the best (as demonstrated in
Section 3.2) schemes for the non-partitioned method and
the partitioned method, respectively. We use the same ex-
perimental setup as described in Section 3.1. We varied the
number of tasks and simulated 5,000 task sets for each point
in a plot. We then computed the preemption density only
for those task sets for which both adaptiveTkCaware, adap-
tiveTkCunaware and R-BOUND-MP were schedulable.

The results from the simulations are shown in Figure 3.
We observe that, on average, the preemption density of the
best non-partitioned method (adaptiveTkCaware) is lower
than the preemption density of the best partitioned method
(R-BOUND-MP). The reason for this is that, for the parti-
tioned method, an arriving higher-priority task must always
preempt an executing lower-priority task on the same pro-
cessor. With the non-partitioned method, a higher prior-
ity task can sometimes execute on another idle processor,
thereby avoiding a preemption. Figure 4 illustrates a situa-
tion where the non-partitioned method with the preemption-
aware dispatcher causes the number of preemptions to
be less than the number of preemptions of a partitioned
method.

Note that, in Figure 3(a), increasing the number of pro-
cessors gives a different effect on the preemption density for
adaptiveTkCaware than for adaptiveTkCunaware. It can be
explained as follows. When the number of processors in-
creases, there will be more tasks executing in parallel and it
is more likely that, during a time interval, a task completes
its execution. Consider which processor a low-priority task
executes on when a higher-priority task completes it exe-
cution. For adaptiveTkCaware, the lower-priority task will
continue to execute on the same processor as it did before
the higher priority task completed. Hence no preemption
occurs. However, for adaptiveTkCunaware (as defined in
Section 4.1), the lower priority task will continue its execu-
tion on another processor with a lower index. That is, with
our definition, a preemption.

4.3 Average-Case Behavior
With the new dispatcher at hand, we are now in position

to assess the schedulability of a system with non-negligible
preemption and migration cost. We will model the preemp-
tion cost and migration cost of a uniform-memory access
shared-memory multiprocessor with caches.

For the assumed system, the cost of a preemption in-
cludes the following terms: time to acquire the ready queue,
time to save and restore a task’s environment (e.g., registers,

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

2 3 4 5 6

pr
ee

m
pt

io
n

de
ns

ity

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

adaptiveTkCaware
adaptiveTkCunaware

R-BOUND-MP

(a) Preemption density as a function of the number of processors.

0

0.005

0.01

0.015

0.02

0.025

0.03

4 5 6 7 8 9 10 11 12 13 14

pr
ee

m
pt

io
n

de
ns

ity

E[n]

[m=4,E[u]=0.5,stddev[u]=0.4]

adaptiveTkCaware
adaptiveTkCunware

R-BOUND-MP

(b) Preemption density as a function of the number of tasks.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

pr
ee

m
pt

io
n

de
ns

ity

E[u]

[m=4,E[n]=8,stddev[u]=0.4]

adaptiveTkCaware
adaptiveTkCunaware

R-BOUND-MP

(c) Preemption density as a function of the expected value of utilization
of tasks.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.5 1 1.5 2 2.5

pr
ee

m
pt

io
n

de
ns

ity

stddev[u]

[m=4,E[n]=8,E[u]=0.5]

adaptiveTkCaware
adaptiveTkCunware

R-BOUND-MP

(d) Preemption density as a function of the standard deviation of uti-
lization of tasks.

Figure 3: Preemption density of different scheduling algorithms.

P2

preemption
P1

τ1

τ3
τ2

τ1

τ2 τ1

τ2τ1

τ3 τ1

τ3 τ2

(a) AdaptiveTkCaware

preemptions
P1

P2

τ1
τ2
τ3

τ1τ1

τ2 τ3

τ1 τ3

τ2

τ1 τ2

τ2

τ2

τ3

(b) AdaptiveTkCunaware

P1

P2

preemptions

τ1
τ2
τ3

τ1 τ1τ1 τ1

τ2τ3 τ3 τ3τ2 τ2

(c) R-BOUND-MP

Figure 4: Preemptions for the non-partitioned method and partitioned method when scheduling the task set{(T1 = 3, C1 =
2), (T2 = 4, C2 = 2), (T3 = 12, C3 = 6)} on m = 2 processors. The non-partitioned method, with adaptiveTkCaware,
generates the least number of preemptions.

memory mapping) and the cost of cache misses due to cache
reloading when the task resumes. In the evaluation in this
section, we will assume that the time to acquire the ready
queue and time to save and restore a task’s state is zero.
We do this for three reasons, namely (i) these costs depend
heavily on the implementation (hardware/software) and
mechanism to protect the ready queue (fine-grained/course-
grained locking/wait-free/lock-free), (ii) it has been found
that the time to execute kernel code constitute only a frac-
tion of the total cost of a context switch [17], and (iii) the
trend of faster processors and (relatively) slower memories
will make the cache reload effect an even more dominant
term in the cost of preemption.

Our simulated system model is now changed as follows.
When a task is resumed, we add a cost ofpreempt.ratio ·
E[u] · E[T] to its remaining execution time because of
cache reloading. If a task is resumed on another proces-
sor than it was preempted on we add yet another cost of
mig.ratio ·E[u] ·E[T] to its remaining execution time be-
cause of cache reloading due to the migration. We use the
same experimental setup as described in Section 3.1, but
simulated 5,000 task sets for each possible combination of
preemption ratio, migration ratio, and the number of pro-
cessors.

The results from our simulations are shown in Figure 5.
We observe that, when the migration and preemption costs
are high, adaptiveTkCaware has higher success ratio than
adaptiveTkCunaware. This indicates that the preemption-
aware dispatcher is effective. We can also see that the par-
titioned method becomes more favorable when the migra-
tion ratio is large, because no migrations can occur for that
method. On the other hand, the non-partitioned method be-
comes more favorable when the preemption ratio increases,
because the preemption-aware dispatcher can reduce the
number of preemptions. However, when there are only
two processors available (see Figure 5(a)), the preemption-
aware dispatcher becomes less effective, because it has only
one alternative processor to try to schedule a task on to re-
duce the number of preemptions.

5 Discussion
From the previous sections, we have learned that the

relative performance of the partitioned and non-partitioned
method varies depending on the system models and perfor-
mance measures used. However, the decision whether to
partition or not to partition may also need to consider other
aspects than comparing success ratio. Below we list some
interesting aspects.

The non-partitioned method is the best way of maximiz-
ing the resource utilization when a task’s actual execution
time is much lower than its stated worst-case execution time
[2]. This situation can occur when the execution time of a
task depends highly on user input or sensor values. Since
the partitioned method is guided by the worst-case execu-

tion time during the partitioning decisions, there is a risk
that the actual resource usage will be lower than anticipated,
and thus wasted if no dynamic exploitation of the spare ca-
pacity is made. Our suggested hybrid approach hence offers
one solution for exploiting processors efficiently, while at
the same time providing guarantees for those tasks that re-
quire so. The hybrid solution proposed in this paper applies
the partitioned method to the task set until all processors
have been filled. The remaining tasks are then scheduled us-
ing the non-partitioned approach. An alternative approach
would be to partition only the tasks that have hard real-time
constraints, and then let the tasks with soft constraints be
scheduled by the non-partitioned method.

The partitioned method has the advantage of having a
low computational complexity of the schedulability test,
something that is important for, e.g., online admission tests
and QoS negotiation [18]. There is also a complexity as-
sociated with the algorithm that reschedules a task set that
has changed. The non-partitioned method has lower com-
putational complexity for rescheduling than the partitioned
method if the partitioned method use the response-time
analysis. However, even if sufficient schedulability tests
are used for the partitioned method, the non-partitioned
method has a slightly lower computational complexity of
rescheduling (O(n log n) for adaptiveTkC) than the parti-
tioned method (O(nm + n log n) for R-BOUND-MP and
O(nm+n log n) for RM-FFDU). For systems that resched-
ule frequently, but do not rely on schedulability tests,
e.g., feedback control scheduling [19], the non-partitioned
method, with its slightly higher success ratio and its slightly
lower computational complexity of rescheduling, becomes
a viable alternative. Also, since these systems are likely to
be used when the execution time varies, the advantage of
reclaiming resources in the non-partitioned method gives a
further performance increase.

6 Conclusions
It has been believed that the non-partitioned method is

inferior to the partitioned method. In this paper, we have
shown through two evaluations that by using a better prior-
ity assignment scheme and an improved dispatcher, such a
belief is not necessarily true. First, an average-case com-
parison using an idealized architecture, showed that, if a
system has a small number of processors, then the non-
partitioned method offers higher performance than the parti-
tioned method. Second, an average-case comparison using
a realistic architecture, showed that, for several combina-
tions of preemption and migration costs, the non-partitioned
method offers higher performance.

Acknowledgement
This work is funded by the national Swedish Real-Time

Systems research initiative ARTES (www.artes.uu.se), sup-
ported by the Swedish Foundation for Strategic Research.

preempt. ratio
mig. ratio 1 % 5 % 10 % 20 % 50 %

1 % 0.05 0.04 0.03 0.02 0.01

0.05 0.03 0.02 0.01 0.00

0.04 0.04 0.03 0.02 0.01

5 % 0.05 0.04 0.03 0.02 0.01

0.03 0.02 0.01 0.00 0.00

0.04 0.04 0.03 0.02 0.01

10 % 0.05 0.04 0.03 0.02 0.01

0.02 0.01 0.01 0.00 0.00

0.04 0.04 0.03 0.02 0.01

20 % 0.04 0.03 0.02 0.02 0.01

0.01 0.01 0.00 0.00 0.00

0.04 0.04 0.03 0.02 0.01

50 % 0.02 0.02 0.01 0.01 0.01

0.00 0.00 0.00 0.00 0.00

0.04 0.04 0.03 0.02 0.01

(a)m = 2

preempt. ratio
mig. ratio 1 % 5 % 10 % 20 % 50 %

1 % 0.21 0.19 0.16 0.13 0.08

0.19 0.11 0.07 0.02 0.00

0.18 0.16 0.13 0.09 0.05

5 % 0.20 0.18 0.15 0.12 0.08

0.12 0.08 0.04 0.01 0.00

0.18 0.16 0.13 0.09 0.05

10 % 0.18 0.16 0.14 0.12 0.07

0.07 0.05 0.02 0.01 0.00

0.18 0.16 0.13 0.09 0.05

20 % 0.15 0.14 0.13 0.10 0.07

0.02 0.01 0.01 0.00 0.00

0.18 0.16 0.13 0.09 0.05

50 % 0.11 0.10 0.09 0.08 0.05

0.00 0.00 0.00 0.00 0.00

0.18 0.16 0.13 0.09 0.05

(b) m = 3

preempt. ratio
mig. ratio 1 % 5 % 10 % 20 % 50 %

1 % 0.40 0.37 0.33 0.29 0.21

0.36 0.23 0.17 0.12 0.12

0.35 0.32 0.27 0.22 0.16

5 % 0.38 0.35 0.32 0.28 0.21

0.24 0.18 0.14 0.12 0.12

0.35 0.32 0.27 0.22 0.16

10 % 0.36 0.33 0.31 0.26 0.20

0.17 0.14 0.13 0.12 0.12

0.35 0.32 0.27 0.22 0.16

20 % 0.31 0.30 0.27 0.24 0.20

0.13 0.12 0.12 0.12 0.12

0.35 0.32 0.27 0.22 0.16

50 % 0.24 0.23 0.22 0.21 0.18

0.12 0.12 0.12 0.12 0.12

0.35 0.32 0.27 0.22 0.16

(c) m = 4

preempt. ratio
mig. ratio 1 % 5 % 10 % 20 % 50 %

1 % 0.76 0.72 0.67 0.60 0.49

0.67 0.45 0.36 0.34 0.34

0.69 0.62 0.54 0.46 0.38

5 % 0.73 0.69 0.65 0.58 0.49

0.45 0.37 0.35 0.34 0.34

0.69 0.62 0.54 0.46 0.38

10 % 0.69 0.66 0.62 0.56 0.48

0.36 0.35 0.34 0.34 0.34

0.69 0.62 0.54 0.46 0.38

20 % 0.63 0.60 0.57 0.53 0.47

0.34 0.34 0.34 0.34 0.34

0.69 0.62 0.54 0.46 0.38

50 % 0.52 0.50 0.49 0.47 0.44

0.34 0.34 0.34 0.34 0.34

0.69 0.62 0.54 0.46 0.38

(d) m = 6

Figure 5: Success ratio for scheduling algorithms as a function of the number of processors, preemption costs and migration
costs. Each square shows adaptiveTkCaware (upper), adaptiveTkCunaware (middle), R-BOUND-MP (lower). The shaded
regions indicate where the non-partitioned method (with adaptiveTkCaware) performs better than the partitioned method
(R-BOUND-MP).

References
[1] K. Diefendorff and P. K. Dubey. How multimedia workloads

will change processor design.IEEE Computer, 30(9):43–45,
September 1997.

[2] S. Lauzac, R. Melhem, and D. Mossé. Comparison of global
and partitioning schemes for scheduling rate monotonic tasks
on a multiprocessor. In10th Euromicro Workshop on Real
Time Systems, pages 188–195, Berlin, Germany, June 17–19,
1998.

[3] S. K. Dhall and C. L. Liu. On a real-time schedul-
ing problem. Operations Research, 26(1):127–140, Jan-
uary/February 1978.

[4] B. Andersson and J. Jonsson. Some insights on fixed-priority
preemptive non-partitioned multiprocessor scheduling. In
Proc. of the IEEE Real-Time Systems Symposium – Work-
in-Progress Session, Orlando, Florida, November 27–30,
2000. Also in TR-00-10, Dept. of Computer Engineering,
Chalmers University of Technology.

[5] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks.Performance
Evaluation, 2(4):237–250, December 1982.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New strate-
gies for assigning real-time tasks to multiprocessor systems.
IEEE Transactions on Computers, 44(12):1429–1442, De-
cember 1995.

[7] Y. Oh and S. H. Son. Allocating fixed-priority periodic tasks
on multiprocessor systems.Real-Time Systems, 9(3):207–
239, November 1995.

[8] Y. Oh and S. H. Son. Fixed-priority scheduling of periodic
tasks on multiprocessor systems. Technical Report 95-16,
Department of Computer Science, University of Virginia,
March 1995.

[9] S. Lauzac, R. Melhem, and D. Mossé. An efficient
RMS admission control and its application to multiprocessor
scheduling. InProc. of the IEEE Int’l Parallel Processing
Symposium, pages 511–518, Orlando, Florida, March 1998.

[10] S. Śaez, J. Vila, and A. Crespo. Using exact feasibility tests
for allocating real-time tasks in multiprocessor systems. In
10th Euromicro Workshop on Real Time Systems, pages 53–
60, Berlin, Germany, June 17–19, 1998.

[11] J. Y.-T. Leung. A new algorithm for scheduling periodic,
real-time tasks.Algorithmica, 4(2):209–219, 1989.

[12] B. Andersson. Adaption of time-sensitive tasks on shared
memory multiprocessors: A framework suggestion. Mas-
ter’s thesis, Department of Computer Engineering, Chalmers
University of Technology, January 1999.

[13] L. Lundberg. Multiprocessor scheduling of age contraint
processes. In5th International Conference on Real-Time
Computing Systems and Applications, Hiroshima, Japan, Oc-
tober 27–29, 1998.

[14] C. L. Liu. Scheduling algorithms for multiprocessors in a
hard real-time environment. InJPL Space Programs Sum-
mary 37-60, volume II, pages 28–31. 1969.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment.Journal of
the Association for Computing Machinery, 20(1):46–61, Jan-
uary 1973.

[16] M. Joseph and P. Pandya. Finding response times in a real-
time system. Computer Journal, 29(5):390–395, October
1986.

[17] V. Padmanabhan and D. Roselli. The real cost of context
switching. Technical report, CS Division, University of Cal-
ifornia at Berkeley, November 1994.

[18] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS ne-
gotiation in real-time systems and its application to auto-
mated flight control. InProc. of the IEEE Real-Time Technol-
ogy and Applications Symposium, pages 228–238, Montreal,
Canada, June 9–11, 1997.

[19] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design
and evaluation of a feedback control EDF scheduling algo-
rithm. In Proc. of the IEEE Real-Time Systems Symposium,
Phoenix, Arizona, December 1–3, 1999.

Solving Embedded System Scheduling Problems using

Constraint Programming

Cecilia Ekelin and Jan Jonsson

Department of Computer Engineering

Chalmers University of Technology

SE{412 96 G�oteborg, Sweden

fcekelin,janjog@ce.chalmers.se

Abstract

Static scheduling of tasks in embedded distributed real-time systems often implies a tediuos iterative design process. The reason

for this is the lack of exibility and expressive power in existing scheduling frameworks, which makes it di�cult to both model

the system accurately and provide correct optimization guidelines in a �rst attempt. The most detrimental e�ect this has on

the scheduling process is that the real-time tasks are over-constrained due to a careless use of rules-of-thumb.

We have developed a scheduling framework based on constraint programming which attempts to tackle these de�ciencies.

First, the framework allows for expressing the scheduling problem in terms much closer to the actual system requirements. This

is because of the support provided by the framework for modeling constraints that are usually not handled by existing scheduling

tools, for example, di�erent types of task allocation constraints such as clustering and proximity to resources. A second strong

feature of the framework is that it supports di�erent strategies for single- and multi-objective optimization, something that

is very important in the design of embedded real-time systems. An evaluation study encompassing a set of applications with

typical embedded system constraints suggests that our approach does in fact provide the salient features necessary.

1 Introduction

Real-time system design is becoming increasingly dependent on exible scheduling frameworks to cope
with the size and complexity of contemporary applications. This is most apparent in the design of em-
bedded distributed real-time systems where the scheduling framework must possess two salient features,
namely (a) support for a large variety of application constraints to handle scheduling of distributed tasks
and dedicated resources, and (b) support for advanced optimization capabilities to concurrently account for
system requirements on predictability, reliability, and hardware performance, as well as various aspects of
total system cost. As a basis for constructing a scheduling framework, real-time literature proposes several
scheduling algorithms that present solutions to di�erent aspects of the scheduling problem. Unfortunately,
most existing scheduling algorithms only solve stand-alone problems (for example, focusing only on unipro-
cessor systems, one type of task model, and a single optimization criterion). This makes construction of a
scheduling framework particularly di�cult because there may exist a discrepancy between the theoretical
scheduling problem and the practical aspects of the real-time system being designed, which gives rise to
two major problems.

First, there is the problem of using constraints that are as close as possible to the original system
requirements. Since many scheduling algorithms are de�ned with \hard-coded" assumptions regarding task
and systemmodels, it is easy to believe that it su�ces to devise constraints that �t the scheduling algorithm.
However, such an approach would modify the semantics of the original system requirements, and typically
lead to the introduction of arti�cial constraints without any direct connection to the original scheduling
problem [1, 2]. Such design approaches are very error-prone since the ad hoc constraint construction often
leads to an over-constrained and infeasible system. This turns scheduling into a tedious design process
since the designer must suggest suitable changes in the speci�cation, implementation and/or systemmodels.

Hence, instead of adapting the problem to the scheduling algorithm, the scheduling algorithm should be
adapted to the problem in the sense that it should be capable of accounting for as many natural and
implementation-based constraints as possible.

Second, even if a feasible schedule is found by the scheduling framework, the suggested solution may
still be considered invalid by the system designer since requirements like cost and hardware resources
usually cannot be accounted for in most scheduling algorithms. This makes it necessary for the designer
to manually verify a schedule with respect to these requirements, and suggest suitable design changes.
Hence, a scheduling framework with a notion of multi-objective optimization would shorten the process
cycle. Moreover, it would increase the ability for real-time system developers to provide cost-e�ective
solutions. This is particularly useful as the trend in embedded real-time system design is moving towards
open systems [3]. Apart from making the scheduling process more e�ective, we also believe that by using
constraints that are semantically closer to the requirements, the scheduling search space can be reduced.
The rationale for this is that, when constraints are more close to the original requirements, the scheduling
algorithm can operate in a more intelligent way since it has more knowledge of the problem (see, for
example, recent results for branch-and-bound algorithms [4, 5]).

In this paper, we propose a scheduling framework that possesses all the salient features discussed
above. While many other proposed scheduling approaches for distributed real-time systems (for example,
simulated annealing or branch-and-bound) have similar features, it is well-known that they require a large
amount of �ne-tuning to perform well. In contrast, our framework is based on the concept of constraint
programming , which means that constraints can be introduced in the framework in a exible and natural
way, and that the optimization features do not require tedious manual interaction.

Organization of this paper: This paper addresses how to build a scheduling framework based on con-
straint programming. The rest of our presentation is organized as follows. In Section 2, we describe typical
requirements for embedded distributed real-time systems, and recollect methods for automated constraint
derivation and scheduling of distributed systems. In Section 3, we summarize a set of constraints typically
found in embedded distributed real-time system design. We present the underlying practical motivation
for these constraints, and identify problems in using the constraints with existing scheduling algorithms. In
Section 4, we present di�erent generic strategies for single- and multi-objective optimization. We demon-
strate how these techniques can be applied to scheduling of embedded distributed real-time systems, and
how di�erent strategies for constraining the scheduling problem can lead to improved scheduling perfor-
mance. In Section 5, we introduce the constraint-programming paradigm and show how it can be used for
building a scheduling framework that supports all identi�ed constraints (from Section 3) as well as single-
and multi-objective optimization. In Section 6, we demonstrate the practical usefulness of the framework
by performing several case studies and evaluating di�erent aspects of the framework's scheduling perfor-
mance. Finally, in Section 7, we discuss our results and suggest future directions, while our �ndings are
summarized in Section 8.

2 Background

The design of real-time systems encompasses three important phases. From the speci�cation of the system,
it must be possible to identify the requirements on the system in terms of functionality, performance, and
cost. Based on the system speci�cation, an implementation phase then follows wherein the designer makes
a choice of programming environment, run-time system and hardware architecture. From the choice of
implementation, it is possible to identify the concrete tasks that the application is required to perform,
and the resource that are available for its execution. Finally, the designer schedules the application tasks
on the available resources. This is done by using a scheduling framework that automates the scheduling
and allocation of the task, and also veri�es that all requirements of the application are met. In order to
do this, however, it is necessary to use models of the application tasks and the system architecture.

In the scheduling phase, it is possible to identify two potential caveats in the modeling of the tasks
and the architecture. First, it is necessary (for practical reasons) to abstract away some implementation
details and replace them with quantitative measures; for example, program code stretches and processor
hardware mechanisms are typically analyzed separately in order to derive a worst-case execution time of

each task. These abstractions su�er from a potential risk of being overly pessimistic since embedded real-
time systems often contain strict timing constraints. Second, in order to convey the system requirements
to the scheduling framework, it is necessary to introduce a set of constraints that models system require-
ments into a manageable form for the scheduling algorithm. Since the scheduling framework is used to
validate that the system requirements are actually met by the implementation, the methodology used for
constructing constraints must be cognizant of the practical application domain as well as the theoretical
scheduling domain. In our methodology, the constraints must (a) reect the intended behaviour of the
system, (b) be derived in natural way without overconstraining the system, and (c) be fully supported by the
scheduling framework . In the following subsections, we describe the state-of-the art in practical real-time
system design with respect to these three features.

2.1 Requirements

The system requirements for an embedded distributed real-time system can be divided into di�erent groups
which each impose a number of constraints on the scheduling problem.

The functional behavior of a real-time system is determined by the tasks and resources that constitute
the system. Typical functional behavior requirements are those that control task execution order or task
allocation, that is, how a task should execute. A real-time system also have temporal behavior requirements
in addition to the functional ones. The temporal behavior of a task depends mainly on the environment
(sensors, actuators or other tasks) that the task interacts with, that is, when a task should execute. These
requirements directly a�ect the modeling of the application tasks and consequently the construction of the
scheduling constraints.

Most real-time systems are also safety-critical in the sense that a failure in a processor could be catas-
trophic. To avoid such failures the embedded system must often also be fault tolerant. Fault tolerance is
achieved by introducing redundancy in the system, for example, using additional processors and/or copies
of tasks. Hence, it is clear that the requirement of making a system fault tolerant a�ects the implementation
of the system, and consequently also the construction of scheduling constraints.

Apart from mere software requirements, it is also a practical consideration that the development of
embedded real-time systems is made cost-e�ective so as to allow for mass-production of the system. That
is why development using o�-the-shelf hardware components has become a viable alternative in modern
designs. Other practical aspects of embedded system design encompass the introduction of weight and
power-consumption requirements. This means that cost, performance and various physical characteristics
of the hardware components (processors, memory and busses) need to be conveyed to the constraint
construction process.

2.2 Constraint derivation

Recent analyses [1, 2] have indicated that most constraints are artifacts of the design. This does not
come as a surprise since they are a necessary consequence of the models used for tasks, run-time system
and architecture. However, since the modeling process often has to be done manually, constraints should
be constructed according to suitable guidelines or otherwise serious drawbacks will result. For example,
an ad hoc constraint derivation is likely to lead to an over-constrained system which may prevent the
scheduling algorithm from �nding the best (or any) solution. On the other hand, if the system is too
loosely constrained, �nding the optimal solution might by too computationally intractable in practice.
Furthermore, the semantics of the original requirements may be lost in the process, which from a practical
point of view means that it will be hard to detect performance bottlenecks in the case of a failed scheduling
attempt [6].

To overcome these problems, many researchers have recently proposed automated methods for con-
straint derivation. An example (taken from [1]) of a design ow for constraint derivation is illustrated in
Figure 1. As indicated in the �gure, there are basically two types of constraint derivation that can be
performed: (a) derivation of system-level end-to-end constraints from performance requirements, and (b)
derivation of task-level constraints from the end-to-end constraints.

The �rst type of constraint derivation means translating performance requirements, such as maximum
steady-state error or maximum transient overshoot, into system-level end-to-end constraints that describe,

System-Level Constraints

Performance Requirements

Task-Level Constraints

Modify Constraints

Scheduling

Figure 1: Constraint-derivation ow.

for example, maximum sensor-to-actuator latency, minimum sampling periods, or maximum output jitter.
To that end, several techniques for system-level constraint derivation have been proposed in the context
of control systems (see, for example, [7, 8, 9]).

The second type of constraint derivation means translating the end-to-end constraints into task-level
timing and execution constraints. One of the most re�ned techniques for this type of constraint derivation
is the period calibration method (PCM) proposed by Gerber, Hong and Saksena [10, 11]. The PCM works
in a two-stage fashion. First, task periods are derived from given end-to-end system constraints. Deadlines
and release times are then assigned to individual tasks using the derived periods1. While several other
techniques exist for deriving task-level deadlines and release times (see, for example, [13, 14, 15, 16, 17, 18]),
few techniques actually exist for deriving other types of task-level constraints. However, Ramamritham
[19] and Abdelzaher & Shin [20] propose techniques that generate task clustering recommendations based
on heuristic analyses of inter-task communication needs and task periods, respectively.

All of these constraint derivation techniques assume a subsequent scheduling stage which means that
constraint derivation is primarily performed with the objective of increasing the likelihood of succeeding
with the scheduling attempt. In fact, most techniques are tailored for a speci�c scheduling policy in order
to generate good results2. It should also be noted that, with few exceptions, all techniques for derivation
of task-level timing constraints work under the assumption that tasks have been assigned to processors in
advance, which clearly limits their applicability to larger distributed systems. As we will see later in this
paper, the constraint-programming paradigm does not su�er from this limitation.

2.3 Scheduling approaches

Recall that a scheduling framework for embedded system design should include a scheduling algorithm
that is capable of accounting for various types of constraints. It is also desired that the algorithm should
�nd a \good" or even optimal schedule using advanced single- or multi-objective optimization strategies.
Unfortunately, most scheduling algorithms proposed in the real-time research literature fail to satisfy both
of these requirements. In fact, there are very few scheduling approaches that even claim to solve this
complex problem. However, there are three scheduling approaches that do have the potential to provide
the capabilities necessary.

Simulated annealing is a local search technique that has been applied to real-time allocation and
scheduling by Tindell, Burns and Wellings [22]. The method attempts to minimize a so-called energy
function which describes the quality of a schedule. The algorithm o�ers great exibility but since the

1In a recent paper, Nilsson et al. [12] presented an application of PCM on an avionics control software using constraint
programming.

2An integrated constraint-derivation and scheduling approach is proposed in the holistic approach by Tindell et al. [21].

energy function contains both the constraints and the scheduling objective it can be troublesome to balance
these factors correctly. The stochastic nature of simulated annealing reduces the computational complexity
since only portions of the search space are examined but this also means that there is no guarantee that
the resulting schedule is optimal.

Branch-and-bound (B&B) systematically explores the search space in a tree-like fashion (branching).
The search space is reduced by pruning branches in the tree that can not improve the solution found so far
(bounding). For this method to be e�ective the search-tree should be subject to a lot of pruning. However,
the computation of an accurate pruning rule is about as complex as solving the problem in the �rst place.
The use of B&B in the context of scheduling for distributed real-time systems have been investigated by
several researchers (see, for example, [23, 24, 25, 26, 4]).

Constraint programming is a technique which has been used with great success to solve scheduling prob-
lems within operations research and arti�cal intelligence. The scheduling problem is expressed as variables
and constraints which are handled by a constraint solver. The method has been shown to be promising
also for real-time scheduling by Schild and W�urtz [27]. We extend this work by considering additional
real-time constraints and also adding support for di�erent scheduling objectives. This is discussed in more
detail in Section 5.

3 Identi�cation of Constraints

An important issue in the design of embedded real-time systems is what task-level constraints exist for
that particular domain. In this section, we look closer at these constraints and attempt to justify the
presence of each constraint construct by examining its origin. We also discuss how constraints relate to
each other, and, based on this information, attempt to identify a minimal set of necessary constraints to
be implemented in a scheduling framework.

The system model assumed in this paper has been chosen to reect a typical embedded system. The
hardware architecture consists of a number of nodes which are connected via a bus, and each node contains
one or more processors. The application includes a set of tasks that execute on the processors and possibly
communicate by message passing on the bus. Each node has a number of resources that can be used locally
by tasks at that node, or globally by all tasks in the system.

3.1 System constraints

System constraints are imposed by the selected hardware architecture of the system. How the hardware
is composed depends on functional or economical reasons, which means that the system con�guration is
typically �xed. The con�guration includes information on the number of processors and other resources in
the system (that is, a model) as well as their performance and capacities (that is, properties). Hence, the
system con�guration can be expressed using model and property constraints.

Processors have di�erent speed which means that the worst-case execution time of a task depends
on which processor it is scheduled to execute on. Hence, in a distributed system the actual execution
time for a task has to be dynamically calculated during the scheduling. Each processor is also subject
to a context-switch cost which usually is assumed to be small enough to be neglected or, in the case of
non-preemptive scheduling, assumed to be included in the task's worst-case execution time. However, for
preemptive scheduling, where it is not known beforehand how many times a task will be preempted, this
approximation is not desirable. In this case, worst-case execution time and context-switch cost have to be
handled separately during scheduling.

Resources other than processors have di�erent limited capacities which restrict the number of tasks that
can simultaneously access a resource. For example, a processor might have a RAM of 16 kbytes. Assume
there are three tasks T1; T2 and T3 which each use 4, 8 and 12 kbytes, respectively, during execution.
Then T1 and T2 are allowed to execute concurrently as well as T1 and T3, whereas T2 and T3 are not. A
special case is a critical section which can be modelled as a resource with capacity 1. Tasks which share
a particular critical section are then de�ned to require usage of 1 entity from this resource during their
execution.

The communication on the bus can be modeled using a transmission delay which reects the time to
transmit messages. The transmission delay ctransmit is expressed as:

ctransmit = cspeed � csize + coverhead + cdelay

where cspeed is the data rate of the bus, csize the size of a message to transmit, and coverhead and cdelay
are overheads pertaining to the message queuing/retrieval and bus scheduling strategy, respectively. There
are a number of bus scheduling strategies which each gives di�erent cdelay in the formula above. A linear
model causes no delay since it is assumed that the message always can be delivered whenever requested
because there is no contention from other messages. In a contention-based model (such as the one used by
Mecel's BASEMENT architecture [28]) the bus is regarded as an additional processor and the messages
as tasks be to scheduled on the bus. The delay then depends on what other messages that simultaneously
contend for the bus. If the bus uses a time-triggered protocol, for example, DACAPO [29] or TTP [30],
messages can only be sent in dedicated time slots. The delay then depends on how long time it is to the
next available time slot. In a priority-based communication protocol, such as CAN, the delay is caused
by higher-priority messages being sent [31]. It is clear from this discussion that the transmission delay for
each message has to be dynamically calculated during the scheduling.

3.2 Task constraints

Task constraints are the restrictions that control the timing and execution behavior of the tasks and concern
both the behavior of a single task (intra-task) as well as interaction between tasks (inter-task).

3.2.1 Intra-task timing constraints

In this group, we �nd constraints that restrict the time limits within which a single task should execute.
The period determines how frequently a task should execute and is linked to how accurate the system

needs to be in the interaction with its environment. From a pure functionality point of view it is likely
that the required period not is completely �xed, but rather is expressed as an interval (sometimes called a
separation constraint). To guarantee the responsiveness required by the system, a task is also subject to
a deadline that de�nes an upper limit on the �nish time of the task. On the other hand, a task must not
start too soon. For example, a task might require a sensor value which is not immediately available at the
beginning of the task's period. Hence, the release time of the task also has to be constrained. Note that
periods are related to both deadlines and release times in that the kth invocation of a task must typically
be completed before invocation k + 1, thus imposing deadlines and release times for each invocation.

Besides release time and deadline, the start and �nish times of a task can also be constrained by input
or output jitter constraints. Input jitter is the di�erence between the release time and the actual start
time of the task. Similarly, output jitter is the di�erence between the deadline and the actual �nish time
of the task. The main reason to limit the amount of jitter is when a task is required to execute at regular
intervals, which is the case in control applications.

As mentioned earlier, many scheduling algorithms require that deadlines and release times are de�ned
for each task in order to solve a certain scheduling problem. If only end-to-end deadlines are given for the
application, these deadlines must be split into shorter deadlines which are assigned to each task. In a similar
fashion, release time constraints are typically imposed as a way to obtain mutual exclusion between tasks
that access the same resource. However, the introduction of such forced arti�cial task-level constraints may
put an unnecessary strain on the task set, and hence a�ect schedulability. To avoid this, the semantics
of mutual exclusion and end-to-end deadlines should be modeled using more exible constraints, such as
resource-usage and precedence constraints.

3.2.2 Inter-task timing constraints

This group includes constraints that express time limits within which two tasks should execute in relation
to each other.

Interacting tasks are subject to three types of constraints that originate from the application require-
ments, namely distance constraints (due to transmission delay or input/output delays in a control system),

freshness constraints (due to aging of data in, for example, database applications) and correlation con-
straints (due to limits on the allowed time-skew in concurrent operations, for example fault-tolerance
voting). There is also another type of inter-task timing constraint, but which originates from the im-
plementation of the system, namely harmonicity constraints. These constraints are mainly imposed to
simplify the implementation of communicating tasks. It is desired that the period of the receiver task is
exactly divisible by the period of the sender task since this simpli�es the procedure of identifying received
messages. Depending on the run-time scheduler used, this constraint may or may not be needed. For ex-
ample, in a priority-driven scheduler the harmonicity constraints are necessary since the order of execution
for two tasks of di�erent periodicity is not predictable. On the other hand, if a time-driven scheduler is
used, it is possible to guarantee (using precedence constraints) that the order of execution between two
such tasks is always the same.

3.2.3 Intra-task execution constraints

This group includes constraints that are local to a single task and determine on what processor and with
what resources the task should execute.

If a task uses a resource, the set of nodes that the task can be allocated to is automatically restricted
since the resource must be present at the node and have enough capacity. We distinguish between the cases
where the resource is always required (static) and where the resource is required only during execution
(dynamic). Examples of these cases are ROM and RAM, respectively. Tasks can also be directly allocated
to a certain node using locality constraints which often are implementation recommendations made by
the designer, and less frequently given in the speci�cation. Another implementation issue is whether all
invocations of a task have to execute on the same processor (a�nity), which is most likely desired in a
distributed system because the cost of migrating the task is too high. It also has to be decided whether
tasks are allowed to interrupt each other (preemption). By allowing preemption it might be possible to
�nd schedules for designs that are otherwise infeasible.

3.2.4 Inter-task execution constraints

This group includes constraints that determine in what order, on what processor, and with what resources
two or more tasks should execute in relation to each other.

A speci�c function in the system is often modeled as a sequence of operating tasks. Hence, tasks should
execute in a certain order which is typically expressed by precedence constraints. In case data should be
exchanged between tasks, communication constraints are used to model a precedence constraint as well
as an amount of data to communicate3. It is worth noting that distance constraints can actually be used
to model precedence (assume a \distance" equal to 0) as well as communication constraints (assume a
\distance" equal to a �xed transmission delay).

In some distributed systems, clustering is used to assign communicating tasks onto the same node in
order to limit the cost for the communication network or to increase the schedulability. Another rationale
for clustering is when the system has di�erent modes for which di�erent task sets are active. Now, if only a
few tasks are active in one mode, it could be a good idea to save power by turning o� all nodes that do not
contain any active tasks. Hence, tasks that are active in the same mode should be allocated to the same
node. Such an example is the computer system of a car which operates di�erently depending on whether
the car is turned on (driving) or o� (parked) and where the system should not consume too much power
while parked. The opposite of clustering, anti-clustering, refers to the case when a set of tasks cannot
execute on the same node. The typical application for this constraint is when tasks have been replicated
to achieve fault-tolerance and the replicas must be allocated to di�erent nodes.

In systems where it is necessary to prevent simultaneous access to indivisible resources, such as critical
sections and I/O-devices, exclusion constraints determine whether two tasks are allowed to execute con-
currently. It should be noted that this is an arti�cial constraint, the existence of which is merely due to
the lack of support for more natural constraints (such as resource-usage constraints) in existing scheduling
algorithms.

3Note that the communication constraint becomes a pure precedence constraint if the tasks are located on the same node
since the transmission delay will be zero.

Constraint System Task Origin

Model Property Timing Execution Natural Implementation Arti�cial

Inter Intra Inter Intra

Processors X X

Resources X X

Context switch X X

Transmission delay X X

Resource capacity X X

Execution times X X

Deadlines X X x

Release times X X

Periods X X x

Jitter X X

Distance X X

Freshness X X

Correlation X X

Harmonicity X X

Preemption X X x

A�nity X x X

Locality X X x

Resource usage X X

Precedence X X

Communication X X

Clustering X x X

Anti-clustering X X

Exclusion X X

Table 1: Constraint taxonomy showing which groups a constraint mostly (X) and sometimes (x) belongs
to.

3.3 Constraint taxonomy

The constraints and the groups they are divided into constitute a constraint taxonomy which is summarized
in Table 1. The table shows whether a constraint is natural, implementation-based or arti�cial. Natural
constraints are directly derived from the system requirements while implementation-based constraints are
imposed as a consequence of the choice of hardware architecture and run-time scheduling strategy. Arti�cial
constraints are typically a result of adapting to limitations in existing scheduling algorithms or to control
the scheduling of the tasks.

We believe that the constraint taxonomy can aid the system designer in the process of modeling
the scheduling problem. With knowledge of common constraint de�nitions, it becomes easier to identify
constraints from the system requirements. Furthermore, the identi�cation becomes more exact which
makes the model more accurate, thus increasing schedulability.

4 De�nition of Optimality

Optimization of a schedule is possible and desirable since the speci�cation does not completely determine
the system. To be able to determine whether a schedule is optimal or not, we need to identify a measure
for the quality of a schedule. This measure can involve one or more metrics which each provide information
about the schedule's quality. We refer to these two cases as single-objective andmulti-objective optimization
problems.

4.1 Single-objective optimization

Single-objective optimization requires that we de�ne an object function which computes the value of a
schedule. That is, if x is a feasible schedule and f is the object function, then f(x) is the value of the

schedule. In this section, we describe some object functions for single-objective optimization that are
relevant in the design of embedded distributed real-time systems.

A traditionally-used optimization criterion for hard real-time systems is the maximum lateness, which
is the same as the shortest slack in the �nal schedule. The rationale for using lateness as the optimization
criterion is made clear by noting that the lateness will never exceed 0 for a feasible schedule.

In a system with a �xed number of processors, a commonly-used optimization criterion is the load
balance. This optimization strategy means distributing the tasks between the processors such that they
have approximately the same amount of load4, which makes the most use of the available resources.

If the hardware architecture has not been �xed, on the other hand, it could instead be important to
minimize the number of processors used in order to keep hardware costs down. To this end, the number of
processors could be regarded as unknown and be subject to minimization. However, in reality parameters
such as number of processors and other resources are not exible enough to allow for optimization. Instead,
an incremental approach, where various system con�gurations are manually evaluated, is likely to be more
suitable.

For distributed systems, it is sometimes also necessary to optimize with respect to communication, that
is, the amount of messages sent on the network. In embedded systems, the main arguments for minimizing
the time required for message passing are that a low bus utilization may (a) enable the system designer to
use a cheaper bus with less communication bandwidth, and (b) reduce the total amount of cabling in the
system, thus reducing weight. If contention-based message scheduling is used it is typically desired to group
the messages into frames, of a certain size, which are then used to transmit the messages. The objective
of such a strategy is that it will minimize the overhead associated with sending/receiving messages.

In control systems, minimizing jitter is typically used as the optimization criterion. Note that jitter
can be considered as a scheduling objective as well as a constraint. Minimizing jitter means minimizing
the drift in the task invocations.

Since many embedded real-time systems are also dependable, it may be necessary to maximize the
reliability of the system. That is, given the failure rate of each hardware component, the probability of a
system failure is minimized.

4.2 Multi-objective optimization

Multi-objective optimization is necessary when we have several object functions which we want to optimize
at the same time. In contrast to the single-objective case, we are now confronted with the problem of
combining these functions such that a returned solution will be in line with what is considered optimal.
We will now discuss some possible combinations.

The simplest approach is to make a single-objective function which is the sum of the participating
functions, that is, f(x) =

P
fi(x). The major disadvantage with this approach is that, if the variation in

the values of the di�erent functions is large, some functions may dominate others. For example, assume
f1(x) 2 [0; 2] and f2(x) 2 [0; 42]. Then, if f1(x) = 2; f2(x) = 21 we obtain f(x) = 23 which should be
considered to be better than the case where f1(x) = 1; f2(x) = 28 (which gives f(x) = 29) because f1(x)
is maximized for the former case. However, the latter case has a greater single-objective value (assuming
maximization) and will be considered the best solution for this optimization approach. A way to overcome
this disadvantage is to assign weights to the functions [32]. It can be di�cult, though, to come up with
well-working weights.

Another way to solve the unbalance in the summarization approach is to make sure that the value
ranges of the object functions are the same [33]. This can be achieved by mapping the original values into
ranges of equal size, for example, [0; 100]. Our previous example would then give f1(x) = 2! 100; f2(x) =
21 ! 50; f(x) = 150 which is better than f1(x) = 1 ! 50; f2(x) = 28 ! 67; f(x) = 117. The size of
the mapped range should correspond to the largest value range among the object functions. Otherwise, a
(small) increase in its value might fail to increase its mapped value.

If the value ranges are equal yet another approach can be taken. Instead of a sum, the combined value
is chosen to be the minimum of all object function values. This value is then to be maximized. This
approach tries to balance the function values even further since a function far away from its optimum is
more likely to be increased than one that is close.

4By 'load' of a processor, we mean the sum of the task execution times on that processor.

It could also be argued that the optimization should be performed in priority order. That is, �rst
optimize on the most important function, and then optimize on the next second most important function
under the assumption that value of the �rst function is maintained. This procedure is then repeated for
all object functions. An example where this approach may be applicable is in communication scheduling.
In this case the bus utilization is �rst minimized to determine which messages should be sent. Then, these
messages should be formed in as few groups as possible in order to make the transmission less expensive.

5 Constraint Programming Framework

Most proposed real-time scheduling algorithms are \hard-coded" with respect to the constraints, task
properties, resources and optimization criteria they can handle. Although a speci�c method in most cases
outperforms a generic one, the former soon becomes quite complex and it becomes di�cult to include
new features. The constraint programming approach allows constraints to be speci�ed in terms closer to
the requirements. The included constraint solver then provides techniques to automatically perform the
constraint derivation as well as the scheduling.

5.1 Introduction to constraint programming

The problems addressed using the constraint programming paradigm are called constraint satisfaction
problems (CSP). A CSP consists of variables with associated domains and constraints between the variables.
A solution to a CSP is an assignment of values to the variables such that all constraints are satis�ed. The
programming of a CSP can be described in three steps:

(1) Declare the variables (and their domains)

(2) Post the problem constraints

(3) Search for a feasible or optimal solution

The constraint solver uses propagation in order to reduce the search space. That is, by considering the
constraints the domains of the variables are narrowed by removing values that cannot be part of a solution.
However, propagation alone is usually not enough to �nd a solution, but backtrack searching is also required.

The tool that we have based our framework on is SICStus Prolog [34] and its associated constraint solver
for �nite domains [35]. An interesting feature of this tool is the possibility to guide the search algorithm by
varying the search parameters. By using suitable parameters the search time can be signi�cantly reduced.
The translation of the constraints into the code format internal to the solver is fairly straightforward and
several examples of how constraints and applications are modeled can be found in [36].

5.2 Problem feasibility

In our case, a schedule is feasible if there exists a solution to the corresponding CSP. It is desired that
a feasible schedule is found quickly. Not only from the users point of view, but also in the context of
optimization. This schedule is then used as a starting point for further re�ned attempts to �nd an optimal
solution. In order to speed up the search we aid the constraint solver by supplying heuristics. Intuitively,
tasks should be balanced between the nodes in order to increase the chances of meeting their deadlines.
However, this is not visible to the solver. Therefore, we pre-assign the tasks to di�erent nodes before the
actual search begins. This assignment is undone if it turns out to make the problem infeasible.

5.3 Problem optimality

The optimization algorithm (for minimization) used in the framework can be described as follows:

(1) Find a feasible schedule, xi
(2) If a schedule is found then add the constraint f(x) < f(xi) else xi�1 is optimal

(3) Increase i and go to (1)

Solution Loosely constrained Tightly constrained

Feasible Easy since many solutions exist Harder since propagation usually can not reduce the
search space enough

Optimal Can be harder since many candidate solutions exist Can be easier since the search space is smaller

Table 2: Complexity relationship (of original problem).

This algorithm applies directly to single-objective optimization. For the multi-objective case the object
functions are mapped into new ones with range [0; 100] which represents percentage of the optimal solution.
We then use a combination of summarization and maximizing minimum. That is, for each function fj the
inequality fj(x) � minffj(xi)g should hold as well as the inequality

P
fj(x) >

P
fj(xi). The framework

also supports priority-ordered optimization which is treated as consecutive single-objective optimizations.
Hence, once a feasible schedule is found the search is restarted but with additional constraints. These

optimality constraints does not only state that a better solution is required but also prunes the search
space due to constraint propagation.

5.4 Problem complexity

The complexity involved in �nding a feasible solution versus �nding an optimal solution to a CSP depends
on the tightness of the problem, that is, the relation between the number of solutions and the size of the
search space. The relationship is illustrated in Table 2 which was presented by Tsang in [37].

We can see that, since our constraint derivation approach does not make the problem tighter than
necessary, we should be able to quickly locate of a feasible schedule. Furthermore, once a solution is found,
our optimization algorithm increasingly tightens the problem and thus continuously decreases the search
space.

6 Performance Evaluation

To validate the quality of our approach we will now evaluate the scheduling framework using a set of
realistic examples. This will stress both the modeling and scheduling capabilities of the framework. To
this end we have studied the following applications:

� A mobile base-station [38] which includes 3 processors and 17 tasks with precedence, communication,
clustering, locality and release time constraints. There is one end-to-end deadline.

� A control application [16] which includes 4 processors and 22 tasks with precedence, communication,
clustering and locality constraints. There are 5 end-to-end deadlines.

� A safety-critical application [19] which includes 3 processors and 12 tasks with communication and
anti-clustering constraints. There are 2 end-to-end deadlines.

6.1 Framework setup

We con�gured the scheduling framework to model time-driven, non-preemptive task scheduling with a�nity
(no migration) and contention-based message scheduling.

Each application was tested for feasibility as well as for applicable aspects of optimality. For the
single-objective optimization, we have used the objectives that were originally proposed in conjunction
with the applications, namely lateness (for the base-station and control applications) and communication
(for the safety-critical application). The multi-objective optimization was performed on lateness, load
balance and communication. The estimated proximity to the optimum for lateness and communication
were given by the constraint solver, while, for load balance, we optimistically divided the tasks between the
processors such that the maximum load was minimized. The priority-order optimization was performed
in the following order: communication, load balance and lateness. This choice of optimization order is
used to reect that, in a distributed embedded system, the communication may be considered to be the
major bottle-neck. Once the communication has been determined, it could then be interesting to make the

Problem Feasible Single-objective Multi-objective Priority order

objective result performance

Base-station 0.11/6 lateness -199 0.14/11 0.18/11 0.29/25

Control 0.10/0 lateness -21 0.19/5 0.20/5 0.32/7

Safety-critical 0.11/7 communication 20 2.5/1463 1.8/345 4.0/2298

Table 3: Scheduling performance (secs/backtracks).

Solution Function values Estimated proximity to optimum

communication load balance lateness communication load balance lateness sum

1 32 32 -1 46 92 10 148

2 26 44 -4 56 69 40 165

3 22 44 -4 63 69 40 172

4 20 39 -9 66 78 90 234

Table 4: Multi-objective search trace for the safety-critical example.

best use of the available resources. Finally, lateness can be used to distinguish between otherwise equal
solutions.

The examples were scheduled using an Ultra Sparc 10 with 128 M bytes of primary memory.

6.2 Results

The scheduling results are listed in Table 3. Performance is given as x=y where x is the time in seconds
and y is the number of backtracks in the constraint solver.

Mainly, the number of backtracks gives information about the di�culty of the problem. The time,
however, also depends on the number of constraints and variables which were created, that is, the size
of the problem. The di�erences in the number of backtracks for an example reect the tightness of the
problem. For instance, the number of backtracks required to �nd an optimal solution for the control
application using single-objective optimization (5) is only slightly higher than for a feasible solution (0).
Hence, the application constraints almost completely determine the problem which results in a small search
space. In contrast, the safety-critical application is subject to a large di�erence between the number of
backtracks used to �nd the feasible (7) and single-objective (1463) solutions. Hence, this problem is
less constrained which results in a large search space. These observations consequently corroborate the
relationships listed in Table 2.

Table 4 shows how the search progresses in the multi-objective optimization of the safety-critical ap-
plication. In the table it can be seen that in the �rst found solution, the load-balancing objective is
estimated to have reached 92 percent of its optimal value while the lateness only has reached 10 percent.
The constraint solver then tries to �nd a solution where all objectives have reached at least 10 percent and
where the sum of the estimated proximity values is larger than the current sum (148 percent). In the next
found solution, the lateness and the communication have increased their percentage at the cost of the load
balance. However, since the total sum is greater (165 percent) than before this new solution is regarded
as a better one. After four iterations optimum (of the estimated proximity) is obtained despite a rather
low proximity of optimum for the individual functions. The main reason for this is that the estimation
mechanisms used are too weak, something we will elaborate further on in Section 7.

6.3 Complexity comparison

To demonstrate how a problem is a�ected when additional constraints are introduced, we solve the schedul-
ing problem for the control application using the DACAPO communication model [29]. The DACAPO
model is more restrictive than the contention-based model used so far since communication must now be
synchronized with time slots. The DACAPO model assumes that each processor is given dedicated time
slots where tasks on that processor are allowed to send messages. The time slots are of �xed size and

Strategy Slot size Backtracks Optimal result

Contention - 5 -21

DACAPO 1 13 -20

DACAPO 2 1 -16

DACAPO 5 1 no solution

Table 5: E�ects of over-constraining in the control application.

are divided equally between the processors. It is assumed that the least common period (length of the
schedule) is a multiple of the number of processors. Furthermore, the total amount of transmission time
for a processor should be a multiple of the size of the time slots. A message must �t into one time slot.
The slots are assigned to the four processors in a round-robin order5.

As can be seen in Table 5, the use of the DACAPO model transforms the original problem into a
non-optimal (or even infeasible) one. The table also demonstrates that, for a slot size of 2, the complexity
was reduced, while, for a slot size of 1, the complexity was increased. Whether a constraint decreases
or increases the complexity depends on its strength, that is, how much the constraint solver can reduce
the search space due to constraint propagation in relation to the number of solutions. For example, a
DACAPO slot size of 1 probably only restricts the number of solutions, while a slot size of 2 also restricts
the search space as indicated in the table. A slot size of 5 seems to restrict the search space as well, but
unfortunately also over-constrains the problem so that no solution is found at all.

7 Discussion

Constraint programming is a declarative approach where it su�ces to express what constitutes a solution.
The constraint solver then handles the actual search. However, this search can be signi�cantly improved by
using knowledge about the problem as guidance. The SICStus Prolog constraint solver o�ers the possibility
to supply search heuristics. So far, we have not looked much into this, but we believe that by tailoring the
search algorithm to the speci�c problem, complexity can be signi�cantly reduced. Previous work for the
B&B algorithm has shown that this is a viable approach [4, 5].

A CSP can usually be modeled in many di�erent ways. How a problem is modeled a�ects the complexity
of solving it. By remodeling or supplying redundant constraints the constraint propagation can be more
e�ective which reduces the search space. It would be interesting to see if such reformulation is possible.

As can be seen in Table 4, the multi-objective optimization strategy obtains an optimal value (20)
of the communication. However, the estimated proximity of the communication in the optimal solution
is only 66 percent. Since this is the lowest value among all estimated values in the fourth iteration, no
solution with a lower estimated proximity value for the communication will be accepted. On the other
hand, if that value had been more accurate (for example, close to 100 percent), a decrease in the estimated
proximity for the communication would be tolerable if the other proximity values increased, resulting in
a better solution. Hence, it would be of great value to have a tight estimation of optimum since this is
essential to make our multi-objective optimization approach work well and also reduce the problem search
space. Thus, further investigation on how to obtain fast, but accurate, estimations of the optimal value is
desired.

8 Conclusions

Scheduling of real-time tasks in an embedded distributed system is a di�cult problem since such systems
not only have standard task-level timing constraints (such as periods and deadlines) but also have more
advanced constraints such as locality (what processor to execute on) and clustering (what other tasks to
execute with). Unfortunately, few existing scheduling algorithms are capable of accounting for such diverse
set of constraints. Moreover, scheduling of embedded systems often requires multi-objective optimization

5In our test run we used the slot-order f3; 4; 1; 2g. However, other slot orders were found to produce similar results.

in order to simultaneously account for requirements such as schedulability, reliability, power consumption
and economic cost.

In this paper, we have proposed a scheduling framework based on constraint programming that is
capable of providing these features. One main advantage of the constraint programming paradigm is that
it su�ces to specify what de�nes an acceptable solution, instead of having to provide guidelines on how
to �nd it. We have argued that, by using this framework, it is easy to model relevant constraints as well
as perform single- and multi-objective optimization for embedded distributed real-time systems. To this
end, the applicability of the framework was evaluated using a set of realistic applications with non-trivial
constraints.

References

[1] M. Saksena, \Real-Time System Design: A Temporal Perspective," Proc. of IEEE Canadian Conference on
Electrical and Computer Engineering, Waterloo, Canada, May 1998, pp. 405{408.

[2] K. Ramamritham, \Where do Time Constraints Come From and Where do They Go?," International Journal
of Database Management, vol. 7, no. 2, pp. 4{10, 1996.

[3] J. A. Stankovic, \Strategic Direction in Real-Time and Embedded Systems," ACM Computing Surveys, 50th
Anniversary Issue, vol. 28, no. 4, pp. 751{763, Dec. 1996.

[4] J. Jonsson, \E�ective Complexity Reduction for Optimal Scheduling of Distributed Real-Time Applications,"
Proc. of the IEEE Int'l Conf. on Distributed Computing Systems, Austin, Texas, May 31 {June 5, 1999, pp.
360{369.

[5] I. Ahmad and Y.-K. Kwok, \Optimal and Near-Optimal Allocation of Precedence-Constrained Tasks to Parallel
Processors: Defying the High Complexity Using E�ective Search Techniques," Proc. of the Int'l Conf. on Parallel
Processing, Minneapolis, Minnesota, Aug. 10{14, 1998, pp. 424{431.

[6] G. Fohler, \Dynamic Timing Constraints | Relaxing Overconstraining Speci�cations of Real-Time Systems,"
Proc. of the IEEE Real-Time Systems Symposium { Work-in-Progress Session, San Francisco, California, Dec. 3{
4, 1997, pp. 27{30.

[7] M. Ryu, S. Hong, and M. Saksena, \Streamlining Real-Time Controller Design: From Performance Speci�ca-
tions to End-to-End Timing Constraints," Proc. of the IEEE Real-Time Systems Symposium, San Francisco,
California, Dec. 3{5, 1997, pp. 91{99.

[8] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, \On Task Schedulability in Real-Time Control Systems," Proc.
of the IEEE Real-Time Systems Symposium, Washington, D.C., Dec. 4{6, 1996, pp. 13{21.

[9] D. Seto, J. P. Lehoczky, and L. Sha, \Task Period Selection and Schedulability in Real-Time Systems," Proc.
of the IEEE Real-Time Systems Symposium, Madrid, Spain, Dec. 2{4, 1998, pp. 188{198.

[10] R. Gerber, S. Hong, and M. Saksena, \Guaranteeing Real-Time Requirements with Resource-Based Calibration
of Periodic Processes," IEEE Trans. on Software Engineering, vol. 21, no. 7, pp. 579{592, July 1995.

[11] M. Saksena and S. Hong, \Resource Conscious Design of Distributed Real-Time Systems: An End-to-End
Approach," Proc. of the IEEE Int'l Conf. on Engineering of Complex Computer Systems, Montreal, Canada,
Oct. 21{25, 1996, pp. 306{313.

[12] U. Nilsson, S. Strei�ert, and A. T�orne, \Detailed Design of Avionics Control Software," Proc. of the IEEE
Real-Time Systems Symposium, Madrid, Spain, Dec. 2{4, 1998, pp. 82{91.

[13] H. Chetto, M. Silly, and T. Bouchentouf, \Dynamic Scheduling of Real-Time Tasks under Precedence Con-
straints," Real-Time Systems, vol. 2, no. 3, pp. 181{194, Sept. 1990.

[14] B. Kao and H. Garcia-Molina, \Deadline Assignment in a Distributed Soft Real-Time System," Proc. of the
IEEE Int'l Conf. on Distributed Computing Systems, Pittsburgh, Pennsylvania, May 25{28, 1993, pp. 428{437.

[15] R. Bettati and J. W.-S. Liu, \End-to-End Scheduling to Meet Deadlines in Distributed Systems," Proc. of the
IEEE Int'l Conf. on Distributed Computing Systems, Yokohama, Japan, June 9{12, 1992, pp. 452{459.

[16] M. Di Natale and J. A. Stankovic, \Dynamic End-to-End Guarantees in Distributed Real-Time Systems," Proc.
of the IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, Dec. 7{9, 1994, pp. 216{227.

[17] J. J. Guti�errez Garc��a and M. Gonz�alez Harbour, \Optimized Priority Assignment for Tasks and Messages in
Distributed Hard Real-Time Systems," Proc. of the IEEE Workshop on Parallel and Distributed Real-Time
Systems, Santa Barbara, California, Apr. 25, 1995, pp. 124{132.

[18] J. Jonsson and K. G. Shin, \Robust Adaptive Metrics for Deadline Assignment in Distributed Hard Real-Time
Systems," Real-Time Systems: The International Journal of Time-Critical Computing Systems, 2000, (to
appear).

[19] K. Ramamritham, \Allocation and Scheduling of Precedence-Related Periodic Tasks," IEEE Trans. on Parallel
and Distributed Systems, vol. 6, no. 4, pp. 412{420, Apr. 1995.

[20] T. F. Abdelzaher and K. G. Shin, \Period-Based Load Partitioning and Assignment for Large Real-Time
Applications," IEEE Trans. on Computers, vol. 49, no. 1, pp. 81{87, Jan. 2000.

[21] K. Tindell and J. Clark, \Holistic Schedulability Analysis for Distributed Hard Real-Time Systems," Micro-
processing and Microprogramming, vol. 40, no. 2/3, pp. 117{134, Apr. 1994.

[22] K. W. Tindell, A. Burns, and A. J. Wellings, \Allocating Hard Real-Time Tasks: An NP-Hard Problem Made
Easy," Real-Time Systems, vol. 4, no. 2, pp. 145{165, June 1992.

[23] T. Shepard and J. A. M. Gagn�e, \A Pre-Run-Time Scheduling Algorithm for Hard Real-Time Systems," IEEE
Trans. on Software Engineering, vol. 17, no. 7, pp. 669{677, July 1991.

[24] J. Xu, \Multiprocessor Scheduling of Processes with Release Times, Deadlines, Precedence, and Exclusion
Relations," IEEE Trans. on Software Engineering, vol. 19, no. 2, pp. 139{154, Feb. 1993.

[25] D. Peng, K. G. Shin, and T. Abdelzaher, \Assignment and Scheduling of Communicating Periodic Tasks in
Distributed Real-Time Systems," IEEE Trans. on Software Engineering, vol. 23, no. 12, pp. 745{758, Dec. 1997.

[26] C.-J. Hou and K. G. Shin, \Allocation of Periodic Task Modules with Precedence and Deadline Constraints in
Distributed Real-Time Systems," IEEE Trans. on Computers, vol. 46, no. 12, pp. 1338{1356, Dec. 1997.

[27] M. Schild and J. W�urtz, \O�-Line Scheduling of a Real-Time System," Proc. of CP97 Workshop on Industrial
Constraint-Directed Scheduling, Schloss Hagenberg, Austria, Oct. 1997.

[28] H. A. Hansson, H. W. Lawson, M. Str�omberg, and S. Larsson, \BASEMENT: A Distributed Real-Time Archi-
tecture for Vehicle Applications," Real-Time Systems, vol. 11, no. 3, pp. 223{244, Nov. 1996.

[29] B. Rostamzadeh, H. L�onn, R. Snedsb�ol, and J. Torin, \DACAPO: A Distributed Computer Architecture for
Safety-Critical Control Applications," Proc. of the IEEE Int'l Symposium on Intelligent Vehicles, Detroit,
Michigan, Sept. 25{26 1995, pp. 376{381.

[30] H. Kopetz and G. Gr�unsteidl, \TTP { A Protocol for Fault-Tolerant Real-Time Systems," IEEE Computer,
vol. 27, no. 1, pp. 14{23, Jan. 1994.

[31] K. W. Tindell, H. Hansson, and A. J. Wellings, \Analysing Real-Time Communications: Controller Area
Network (CAN)," Proc. of the IEEE Real-Time Systems Symposium, San Juan, Puerto Rico, Dec. 7{9, 1994,
pp. 259{263.

[32] C. C. Amaro, R. Nossal, and A. D. Stoyen, \On Cost Function Synthesis For Multi-Objective Design Decisions
in Complex Real-Time Systems," Proc. of Int'l Conference on Engineering of Complex Computer Systems, Las
Vegas, Nevada, Oct. 18{21, 1999, pp. 86{97.

[33] P. J. Bentley and J. P. Wake�eld, \An Analysis of Multiobjective Optimization within Genetic Algorithms,"
Tech. Rep. ENGPJB96, Division of Computing and Control Systems Engineering, The University of Hudders-
�eld, Hudders�eld HD1 3DH, U. K., 1996.

[34] Intelligent Systems Laboratory, SICStus Prolog User's Manual, Swedish Institute of Computer Science, 1995.

[35] M. Carlsson, G. Ottosson, and B. Carlson, \An Open-Ended Finite Domain Constraint Solver," Proc. of the
Int'l Symposium on Programming Languages: Implementations, Logics, and Programs, H. Glaser et al., Eds.,
Southampton, UK, Sept. 3{5, 1997, vol. 1292 of Lecture Notes in Computer Science, pp. 191{206, Springer
Verlag.

[36] C. Ekelin and J. Jonsson, \A Modeling Framework for Constraints in Real-Time Systems," Tech. Rep. 00-9,
Dept. of Computer Engineering, Chalmers University of Technology, S-412 96 G�oteborg, Sweden, May 2000,
Available at http://www.ce.chalmers.se/~cekelin/constraints.us.ps.gz.

[37] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

[38] Y. Zhao, \Derivation of Local Timing Constraints in Early Design Stages," Master's thesis, Dept. of Computer
Engineering, Chalmers University of Technology, G�oteborg, Sweden, 1999.

Memory and Time-Efficient Schedulability Analysis of
Task Sets with Stochastic Execution Time

Sorin Manolache, Petru Eles, Zebo Peng

{sorma, petel, zebpe}@ida.liu.se

Department of Computer and Information Science,
Linköping University, Sweden

Abstract

This paper presents an efficient way to analyse the per-
formance of task sets, where the task execution time is
specified as a generalized continuous probability distribu-
tion. We consider fixed task sets of periodic, possibly
dependent, non-pre-emptable tasks with deadlines less
than or equal to the period. Our method is not restricted to
any specific scheduling policy and supports policies with
both dynamic and static priorities. An algorithm to con-
struct the underlying stochastic process in a memory and
time efficient way is presented. We discuss the impact of
various parameters on complexity, in terms of analysis
time and required memory. Experimental results show the
efficiency of the proposed approach.

1 Introduction
Embedded systems are digital systems meant to

perform a dedicated function inside a larger system. Most
embedded systems are also real-time systems. Hence, their
validation has to take into consideration not only the
functional aspect but also timeliness.

A typical digital systems design flow starts from an
abstract description of the functionality and a set of
constraints. Subsequent steps partition the functionality,
allocate processing units, map the functionality to the
allocated processing units and, finally, select a scheduling
policy and perform timing analysis.

In safety-critical applications missing a deadline can
have disastrous consequences. Hence, a conservative
model for task scheduling is adopted, the worst-case
execution time (WCET) model. Such systems are designed
to perform according to hard time constraints even in rare
borderline cases. This leads to a processor underutilization
for most of the operation time.

There are several opportunities to relax some of the
conservative assumptions typical to hard real-time
systems. This is the case for applications where missing a
deadline causes an overall quality degradation, but it is still
acceptable provided that the probability of such misses is
below a certain limit. Such applications are, for example,
multimedia and telecommunication systems.

Another opportunity to relax the WCET model is during
the early design stages. For instance, in transformational
design approaches, the design phases may not be per-
formed in the simplistic waterfall sequence described

above. It may happen that information about a schedule fit-
ness would be needed without knowing exactly the proces-
sor on which a certain task will be executed. The processor
itself could be still under design and, thus, no exact infor-
mation concerning execution time would be available.

Tia et al. [11] provide an example where the maximum
processor utilizations are around 145%, whereas the aver-
age utilizations do not exceed 25%. The large variation in
utilizations stems from the large variation of task execu-
tion times. This could be due to several reasons: architec-
tural factors (dynamic features like caches and pipelines),
causes related to functionality (data dependent branches
and loops), external causes (network delays), and depend-
encies on input data (very strong in multimedia applica-
tions). Another source of non-exact execution time
specification is the limited amount of information availa-
ble. This could be the case at early design phases or with
designs integrating third party components, or other cus-
tomer blocks with secret functionality and insufficiently
specified non-functional interfaces.

Typically, by using variable execution time models,
considerable savings in system (hardware) cost can be
expected. The functionality can be implemented on less
powerful and cheaper processors, leading to a higher
processor utilization. In the case of overload, some tasks
will, most likely, fail their deadlines. The designer has to
be provided with analysis tools in order to guide his or her
decisions and to estimate the trade-off between cost and
quality, the failure likeliness and the failure consequences.
Thus, new execution time models and analysis techniques
have to be developed.

Approaches based on the average case or on probabili-
ties uniformly distributed between the best and worst case
execution time have the advantage of simplicity. However,
their use is limited, as they do not give information on the
likeliness of particular cases. More accurate models are
based on execution time probability distributions. Those
distributions can be derived from statistical models of the
variation sources, from legacy designs, code analysis,
simulations and profiling. One of the main difficulties with
probabilistic models is their solving complexity.

The aim of this work is to provide a performance anal-
ysis method for task schedules considering probabilistic
models of task execution times. The methodology is not
specific to any particular execution time probability distri-

bution class or scheduling policy and, thus, it is adaptable
to various applications. The result of the application anal-
ysis is the ratio of missed deadlines per task or task graph.
In order to cope with the complexity problem typical to
such an analysis, we have considered both execution time
and memory aspects. The algorithm is efficient in both
regards and can be applied to the analysis of large task sets.
We have also investigated the impact of the task set param-
eters (e.g. periods, dependencies, and number of tasks) on
the complexity of the analysis in terms of time and memory.

The rest of the paper is structured as follows. Section 2
surveys some related work. Section 3 details our
assumptions and gives the problem formulation. Section 4
introduces the underlying stochastic process and illustrates
its construction and analysis on an example. Section 5
presents the analysis algorithm and in section 6 we
evaluate our approach experimentally. The last section
draws some conclusions.

2 Related work
Much work has been done in the field of task scheduling

with fixed parameters (periods, execution times, etc.).
Results are summarized in several surveys such as those by
Stankovic et al. [10], Fidge [5], and Audsley et al. [3].
However, only recently researchers have focused on
scheduling policies, schedulability analysis and perform-
ance analysis of tasks with stochastic parameters.

Atlas and Bestavros [2] extend the classical rate
monotonic scheduling policy with an admittance
controller in order to handle tasks with stochastic
execution times. They analyse the quality of service of the
resulting schedule and its dependence on the admittance
controller parameters. The approach is limited to rate
monotonic analysis and assumes the presence of an
admission controller at run-time.

Abeni and Butazzo’s work [1] addresses both schedul-
ing and performance analysis of tasks with stochastic
parameters. Their focus is on how to schedule both hard
and soft real-time tasks on the same processor, in such a
way that the hard ones are not disturbed by ill-behaved soft
tasks. The performance analysis method is used to assess
their proposed scheduling policy (constant bandwidth ser-
ver), and is restricted to the scope of their assumptions.

Spuri and Butazzo [9] propose five scheduling
algorithms for aperiodic tasks. The task model they
consider is one with aperiodic tasks but with fixed, worst-
case execution time.

Tia et al. [11] assume a task model composed of
independent tasks. Two methods for performance analysis
are given. One of them is just an estimate and
demonstrated to be overly optimistic. In the second
method, a soft task is transformed into a deterministic task
and a sporadic one. The latter is executed only when the
former exceeds the promised execution time. The sporadic
tasks are handled by a server policy. The analysis is carried
out on this model.

Zhou et al. [12] root their work in Tia’s. However, they

do not intend to give per-task guarantees, but characterize
the fitness of the entire task set. Because they consider all
possible combinations of execution times of all requests up
to a time moment, the analysis can be applied only to small
task sets due to complexity reasons.

De Veciana et al. [4] address a different type of problem.
Having a task graph and an imposed deadline, they
determine the path that has the highest probability to
violate the deadline. The problem is then reduced to a non-
linear optimization problem by using an approximation of
the convolution of the probability densities.

Lehoczky [8] models the task set as a Markovian
process. The advantage of such an approach is that it is
applicable to arbitrary scheduling policies. The process
state space is the vector of lead-times (time left until the
deadline). As this space is potentially infinite, Lehoczky
analyses it in heavy traffic conditions, when the system
provides a simple solution. The main limitations of this
approach are the non-realistic assumptions about task
inter-arrival and execution times.

Kalavade and Moghe [7] consider task graphs, where
the task execution times are arbitrarily distributed over dis-
crete sets. Their analysis is based on Markovian stochastic
processes too. Each state in the process is characterized by
the executed time and lead-time. The analysis is performed
by solving a system of linear equations. Because the exe-
cution time is allowed to take only a finite (most likely
small) number of values, such a set of equations is small.

Besides the differences in assumptions, our work
diverges from Kalavade and Moghe’s in the sense that we
use pseudo-continuous execution time distributions
(discretized continuous distributions) instead of being
restricted to discrete sets. As the number of possible
execution times becomes very high, it is infeasible to
consider individual times as states. Our solution is to group
execution times in equivalence classes. As a consequence,
we have to use probability density convolutions for the
analysis. In order to reduce the complexity in terms of
memory space, the stochastic process is never stored
entirely in memory, but we both construct and analyse the
process at the same time.

3 Preliminaries and problem formulation
The system to be analysed is represented as a set of task

graphs. A task graph is an acyclic graph with nodes repre-
senting tasks and edges capturing the precedence con-
straints among tasks. Precedences can be induced, for
example, by data dependencies (a task processes the out-
put of its predecessor). All tasks are executed on one single
processor. They are assumed to be non-pre-emptable.

Let N be the number of tasks and let ti, 0 ≤ i < N, denote
a task. Let M be the number of task graphs and let gi, 0 ≤ i
< M denote a task graph.

Each task is characterized by its period (inter-arrival
time), assumed to be fixed, its deadline, and its execution
time probability density. Let pi and di, 0≤ i < N, denote the
period and deadline of task ti, where di ≤ pi. P, the applica-

tion period, is the least common multiple of all task periods.
The period of a task has to be a common multiple of the pe-
riods of its predecessors. The period of a task graph equals
the least common multiple of the periods of its composing
tasks. Let Gi, 0≤ i < M, denote the period of the task graph
gi. A task graph gi is activated every Gi time units.

A task consists of an infinite sequence of activations
called jobs. In the sequel, we will say that a task is running
when one of its jobs is running. Similarly, a task is ready
when one of its jobs is ready, and a task is discarded when
one of its jobs was discarded.

The task tk ∈ gi is ready (pending, waiting) if and only
if each of its predecessors tj has run pk/pj times during the
current activation of task graph gi. If any of the jobs in a
current activation of a task graph has missed its deadline,
then the current task graph activation is said to have failed.

A probabilistic guarantee given for a taskt is expressed
as the ratio between the number of jobs belonging tot that
miss their deadlines and the total number of jobs of the task
t. A probabilistic guarantee given for a task graphg is
expressed as the ratio between the number of the task
graph’s activations that fail and the number of all
activations of the task graphg.

Figure 1 depicts a task set consisting of three task
graphs g0, g1, and g2. For each task and task graph the
respective period is shown.

Let ei, 0 ≤ i < N, be the execution time probability
density function (ETPDF) of task ti. ei is represented as a
set of samples resulting from the discretization of the
density curve. The discretization resolution is left to the
designer’s choice. We assume generalized probability
densities of the task execution times. Figure 2 illustrates
some possible ETPDFs. Density e1 could happen if, for
example, the task has only three computation paths and the
variation around them is caused by hardware architecture

factors. e2 is a deterministic density (a Dirac impulse).
When a job of a task t misses its deadline it is discarded.

If t has a successor in the task graph then two different
policies are considered for the analysis among which the
designer can choose:
1. The whole task graph is discarded. This means that

all the jobs belonging to the current activation of the
task graph are discarded. These are the ones already
arrived but not yet completed and the ones that will
arrive before a new activation of the task graph. This
strategy is adopted in the case when the computed
value of a job is critical for the continuation of the
tasks in the task graph and it is a meaningful value
only if the job met its deadline. In this case, it is mean-
ingless to give per task guarantees and only per task
graph guarantees will be produced as a result of the
analysis. In the example in Figure 1 assume that two
jobs of task A have successfully executed and B and C
are now ready. Assume that B executes and misses its
deadline. Then g0 is discarded and no jobs of any of
its tasks are anymore accepted until a new arrival of
the entire task graph at a time moment multiple of G0.

2. Only the missing job is discarded, but the rest of the
task graph is activated normally. The successor tasks
will consume either a partial result or the result from
a previous execution of the discarded task. In this
case, it is important to provide not only per task graph
but also per task guarantees.

Task execution is considered to be non-pre-emptable.
However, a method to work this around, if needed, is to de-
fine pre-emption points inside a task. For analysis, the task
will be replaced by several dependent tasks with the same
period and deadline as the original one, as shown in Figure
3. Letτi

q , 0≤ i < S be S tasks that resulted from task tq, and
πi

q be their respective periods,δi
q their deadlines andεi

q

their ETPDFs. Thenπi
q=pq andδi

q=dq, 0 ≤ i < S. The con-
volution (denoted by *) of the execution time probability
density functionsεi

q has to be equal to eq. Due to the fact
that the tasksτi

q are dependent and have the same period,
the consequence of such a task decomposition on the anal-
ysis complexity is limited, as will be shown later.

Problem formulation
The input to the analysis algorithm is a set of task

graphs and a scheduling policy. The task graphs are given

Figure 1. Set of task graphs

A

B C

I

E F

G H

D

J

g0

g1

g2

set of task graphs

p0=2

p1=4 p2=4

p3=12

p4=60 p5=24

P =360
G0=120

G1 = 15

p6=3 p7=5

p8=15

p9=9

G2 = 9

Figure 2. Exec. time probability density function s
e0 e1 e2

probability probability probability

exec. time exec. time exec. time

Figure 3. Introducing pre-emption points

pre-emption
point

pre-emption
point

pre-emption
point

task tq analysis model

πi
q =pq

δi
q =dq

ε0
q

* ε1
q

... εS-1
q = eq

τ0
q

τ1
q

τS
q
-1

according to the assumptions discussed previously. The
scheduling policy is given as an algorithm to choose a next
job knowing the set of ready jobs, their deadlines and the
current time.

The analysis produces per task and per task graph
probabilistic guarantees, as defined above.

4 The stochastic process
The analysis methodology for task sets with stochastic

execution times relies on the underlying stochastic proc-
ess. A stochastic process is a mathematical abstraction that
characterizes a random process which proceeds in stages.
The set of all possible stage outcomes in every stage forms
the stochastic process state space. A stochastic process can
be represented graphically in a similar manner as finite
state machines. The difference is that a next state is known
only probabilistically. It is assumed that the next state tran-
sition probabilities are known once the current and past
states are known. If the next states and their corresponding
transition probabilities depend only on the current state,
then the process exhibits the Markovian property. The dis-
crete time stochastic process that results from sampling the
state space of the underlying continuous time stochastic
process, at the time moments immediately following a job
arrival or a job completion, forms the embedded stochastic
process.

For the sequel, “process” will refer to the underlying
stochastic process, and “state” will refer to the stochastic
process state.

In order for the embedded process to be Markovian,
certain information have to be available in a process state.
A straightforward solution would be to characterize a state
by the currently running task, the ready tasks and the start
time of the running job. A state change would occur if the
running task finished execution for some reason. The ready
tasks can be deduced from the old ready tasks and the jobs
arrived during the old task’s execution time. The new
running job can be selected considering the particular
scheduling policy. In principle, there may be as many next
states as many possible execution times the running job
has. Hence, one factor that influences the stochastic
process size is the task execution time span. This is the
approach followed by Kalavade and Moghe [7] and leads
to tree-like stochastic processes. Except the case that only
a very small number of discrete execution times are
allowed for each task, such an approach leads to an
extremely huge state explosion. In our approach, we have
grouped time moments into equivalence classes and, by
doing so, we limited the process size explosion. Thus,
practically a set of equivalent states is represented as a
single state in the stochastic process. Even so, the
application size is still limited by the amount of memory
available for analysis. Therefore, we propose a way to
perform the construction and the analysis of the process
simultaneously. Consequently only a part of the process is
stored in memory at any time during the analysis.

Due to the assumption that the tasks are discarded when

they miss their respective deadlines, the analysis is per-
formed over the interval [0, P), where P is the application
period (the least common multiple of all task periods).

In the following, an example is used in order to illustrate
the construction and the analysis of the stochastic process.
Let t0 and t1 be two independent tasks scheduled according
to an earlier deadline first (EDF) policy. Let p0 = 3 and p1
= 5 be their periods and let d0 = p0 and d1 = p1. P is then
15. The execution time probabilities are distributed as
depicted in Figure 4. For simplicity, the densities were not
depicted as discretized. Note that e0 contains execution
times larger than the deadline.

As a first step to the analysis, the interval [0, P) is
divided in disjunct intervals, the so-calledpriority
monotonicity intervals (PMI). A PMI is delimited by the
time moments a job may arrive or may be discarded.
Figure 5a depicts the PMIs for the example above. If the
deadlines were d0 = 2 and d1 = 4, then the PMIs would be
as depicted in Figure 5b.

Next, the stochastic process is constructed and analysed
at the same time. Let us assume the straightforward
approach mentioned earlier. In this case, a stochastic proc-
ess state would be characterized by the index of the task
the currently running job belongs to, the start time of this
job and the indexes of the waiting tasks (see Figure 6a).τ1,
τ2, …, τq in Figure 6a are possible finishing times for the
job of task t0 and, implicitly, possible starting times of the
waiting job of task t1. The number of next states equals the
number of possible execution times of the running job in
the current state. The resulting process is extremely large
(theoretically infinite, practically depending on the discre-
tization resolution) and, in practice, unsolvable. Therefore,
we would like to group as many states as possible in one
equivalent state and still preserve the Markovian property.

Consider a state s0 characterized by {i, t, w}: the current

Figure 4. ETPDFs for tasks t 0 and t 1

1 2 3 4 501 2 3 40

e0 e1

probability probability

time time6

0 3 5 6 9 10 12 15

0 1 2 3 54 6

Figure 5. Priority monotonicity intervals

a)

0 2 3 4 5 6 8 9 10 11 12 14 15

period 3

period 5

0 1 2 3 4 5 6 7 8 9 10 11PMIs

b)

PMIs

job belongs to task ti, it has been started at time t, and the
waiting jobs belong to the tasks in set w. Let us consider
the next states derived from s0: s1 characterized by {j,τ1,
w1} and s2 with {k, τ2, w2}. Let τ1 andτ2 belong to the
same PMI. This means that no job has arrived or finished
in the time interval betweenτ1 andτ2, no one has missed
its deadline, and the relative priorities of the tasks inside
the set w have not changed (see Section 5.1). Thus, j=k=
the index of the highest priority task in the set w;
w1=w2=w\{t j}. It follows that all states derived from state
s0 that have their timeτ belonging to the same PMI have
an identical current job and identical sets of waiting jobs.
Therefore, instead of considering individual times we con-
sider time intervals, and we group together those states that
have their associated start time inside the same PMI. With
such a representation, the number of next states of a states
equals the number of PMIs the possible execution time of
the job that runs in states is spanning over.

We propose a representation in which a stochastic proc-
ess state is a triplet {r, pmi, w}, where r is the running task
index, pmi is the index of the PMI containing the running
job’s start time, and w the set of ready task indexes. When
there is no running task, then r = -1. In our example, the ex-
ecution time of task t0 (which is in the interval [2, 3.5]) is
spanning over the PMIs 0 and 1. Thus, there are only two
states emerging from the initial state, as shown in Figure 6b.

Let ℘i, the set of predecessor states of a statesi, denote
the set of all states that havesi as a next state. The set of

successor states of a statesi consists of those states that can
be reached directly from state si. With our proposed sto-
chastic process representation, the time moment a transi-
tion to a statesi occurred is not determined exactly, as the
task execution times are known only probabilistically.
However, a probability density of this time can be
deduced. Let zi denote this density function. Then zi can be
computed from the functions zj, where sj ∈ ℘i, and the
ETPDFs of the tasks running in the states sj ∈ ℘i.

Figure 7 depicts a part of the stochastic process
constructed for our example. The initial state is s0: {0, 0,
{1}}. The first field indicates that a job of task t0 is
running. The second field shows the current pmi (0), and
the third field denotes that task t1 is waiting. If the job of
task t0 does not complete until time moment 3, then it will
be discarded. The state s0 has two possible next states. The
first one is state s1: {1, 0, {}} and corresponds to the case
when the job completes before time moment 3. The second
one is state s2: {1, 1, {0}} and corresponds to the case
when the job was discarded at time moment 3. State s1
indicates that a job of task t1 is running (it is the job that
was waiting in state s0), that the pmi is 0 and that no job is
waiting. Consider state s1 to be the new current state. Then
the next states could be state s3: {-1, 0, {}} (task t 1
completed before time moment 3 and the processor is
idle), state s4: {0, 1, {}} (task t 1 completed at a time
moment somewhere between 3 and 5), or state s5: {0, 2,
{1}} (the execution of task t1 reached over time moment 5,
and hence it was discarded at time moment 5). The
construction procedure continues until all possible states
corresponding to the time interval [0, P) have been visited.

The transition time probability density functions z1, z2,
z3, z4, and z5 are shown in Figure 7 to the left of their
corresponding states. The transition from state s3 to state
s4 occurs at a precisely known time instant, time 3, at
which a new job of task t0 arrives. Therefore, z4 will
contain a Dirac impulse at the beginning of the
corresponding PMI. The probability density function z4
results from the superposition of z1 * e1 (because task t1
runs in state s1) with z2 * e1 (because task t1 runs in state

Figure 6. State encoding

... ...

{0, 0, {1}}

{1, τ2, {}} {1, τk, {}} {1, τm, {0}} {1, τq, {0}}{1, τ1, {}}

{0, 0, {1}}

{1, 0, {}} {1, 1, {0}}

a)

b)

{1, 1, {0}}
s2

Figure 7. Stochastic process example

{0, 0, {1}}

{1, 0, {}}

{-1, 0, {}} {0, 1, {}} {0, 2, {1}}

s0

s1

s3 s4
s5

0 1 2 3 4

0 1 2 3 4 3 4 5 6 3 4 5 6

0 1 2 3 4

z1

z3 z4

z2

2
z5

pr
ob

ab
ili

ty

time

time time

time

time

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

s2 too) and with the aforementioned Dirac impulse over the
PMI 1, i.e. over the time interval [3, 5).

The embedded process being Markovian, the probabili-
ties of the transitions out of a statesi are computed exclu-
sively from the information stored in that statesi. For
example, the probability of the transition from state s1 to
state s4 (see Figure 7) is given by the probability that the
transition occurs at some time moment in the PMI of state
s4 (the interval [3, 5)). This probability is computed by
integrating z1 * e1 over the interval [3, 5). The probability
of a task missing its deadline is easily computed from the
transition probabilities of those transitions that correspond
to a job discarding (the thick arrows in Figure 7).

As it can be seen, by using the PMI approach, some
process states have more than one incident arc, thus
keeping the graph “narrow”. This is because, as
mentioned, one process state in our representation captures
several possible states of a representation considering
individual times (see Figure 6a).

Because the number of states grows rapidly and because
each state has to store its probability density function, the
memory space required to store the whole process can be-
come prohibitively large. Our solution to mastering mem-
ory complexity is to perform the stochastic process
construction and analysis simultaneously. As each arrow
updates the time probability density of the state it leads to,
the process has to be constructed in topological order. The
result of this procedure is that the process is never stored
entirely in memory but rather that a sliding window of
states is used for analysis. For the example in Figure 7, the
construction starts with state s0. After its next states (s1 and
s2) are created, their corresponding transition probabilities
determined and the possible discarding probabilities ac-
counted for, state s0 can be removed from memory. Next,
one of the states s1 and s2 is taken as current state, let us
consider state s1. The procedure is repeated, states s3, s4
and s5 are created and state s1 removed. At this moment,
the arcs emerging from states s2 and s3 have not yet been
created. Consequently, one would think that any of the
states s2, s3, s4, and s5 can be selected for continuation of
the analysis. Obviously, this is not the case, as not all the
information needed in order to handle states s4 and s5 are
computed (in particular those coming from s2 and s3).
Thus, only states s2 and s3 are possible alternatives for the
continuation of the analysis in topological order. In Sec-
tion 5 we discuss the criteria for selection of the correct
state to continue with.

5 Stochastic process construction and analysis
The analysis of the stochastic task set is performed in

two phases:
1. Divide the interval [0, P) in PMIs.
2. Construct the stochastic process in topological order

and analyse it.

5.1 Priority monotonicity intervals
The concept of PMI (called in their paper “state”) was

introduced by Zhou et al. [12] in a different context,

unrelated to the construction of a stochastic process.
Let Ai denote the set of time moments in the interval [0,

P) when a new job of task ti arrives and let A denote the
union of all Ai. Let Di denote the set of absolute deadlines1

of the jobs belonging to task ti in the interval [0, P), and D
be the union of all Di. Consequently,

If the deadline of a certain task ti equals its period, then Ai
= Di (the time moment 0 is considered, conventionally, to
be the deadline of the job arrived at time moment -pi).

Let H = A ∪ D. If H is sorted in ascending order of the
time moments, then a priority monotonicity interval is the in-
terval between two consecutive time moments in H. The last
PMI is the interval between the greatest element in H and P.

The only restriction imposed on the scheduling policies
accepted by our approach is that inside a PMI the ordering
of tasks according to their priorities is not allowed to
change. The consequence of this assumption is that the
next state can be determined no matter when the currently
running task completes within the PMI. All the widely
used scheduling policies we are aware of (RM, EDF,
FCFS, etc.) exhibit this property.

5.2 The construction and analysis algorithm
The algorithm proceeds as discussed in Section 4. An

essential point is the construction of the process in
topological order, which allows only parts of the states to
be stored in memory at any moment.

The algorithm for the stochastic process construction is
depicted in Figure 8. All states belonging to the sliding
window are stored in a priority queue. The key to the proc-
ess construction in topological order lies in the order in
which the states are extracted from this queue. First, ob-
serve that it is impossible for an arc to lead from a state
with a PMI number u to a state with a PMI number v so that

1. Except here, whenever we use the term “deadline”, we consider rel-
ative deadlines.

Ai x x k pi 0 k P pi⁄<≤,⋅={ }
Di x x di k pi 0 k P pi⁄<≤,⋅+={ }

=
=

Figure 8. Construction and analysis algorithm

put first state in the queue;
while queue not empty do

sj = extract state from the queue;
t i = s j .running; -- field r of state s j

 distribution = convolute(ei , z j);
nextstatelist = next_states(s j);

-- consider task dependencies!
for each sk ∈ nextstatelist do

compute probability of the transition
from sj to sk using distribution ;

 update discarding probabilities;
 update zk;

if sk is not in the queue then
 put sk in the queue;

end if ;
end for ;

 delete state s j ;
end while ;

v < u (there are no arcs back in time). Hence, a first crite-
rion for selecting a state from the queue is to select the one
with the smallest PMI number. A second criterion deter-
mines which state has to be selected out of those with the
same PMI number. Note that inside a PMI no new job can
arrive, and that the task ordering according to their priorities
is unchanged. Thus, it is impossible that the next state sk of
a current state sj would be one that contains waiting tasks
of higher priority than those waiting in sj. Hence, the second
criterion reads: among states with the same PMI, one should
choose the one with the waiting task of highest priority.

Figure 9 illustrates the algorithm on the example given
in Section 4 (Figure 7). The shades of the states denote
their PMI number. The lighter the shade, the smaller the
PMI number. The numbers near the states denote the
sequence in which the states are extracted from the queue
and processed.

6 Experimental Results
The most computation intensive part of the analysis is

the computation of the convolutions. In our implementa-
tion we used the FFTW library [6] for performing convo-
lutions based on the Fast Fourier Transform. The number
of convolutions to be performed equals the number of
states of the stochastic process. The memory required for
analysis is determined by the maximum number of states
in the sliding window. The main factors on which the sto-
chastic process depends are P (the least common multiple
of the task periods), the number of PMIs, the number of
tasks, and the task dependencies.

As the selection of the next running task is unique, given
the pending jobs and the time moment, the particular
scheduling policy has a reduced impact on the process
size. On the other hand, the task dependencies play a
significant role, as they strongly influence the set of ready
tasks and by this the process size. Additionally, they
generate a smaller number of PMIs as they impose a
certain harmony among the task periods.

In the following, we report on three sets of experiments.
The aspects of interest were the stochastic process size, as
it determines the analysis execution time, and the
maximum size of the sliding window, as it determines the
memory space required for the analysis. All experiments
were performed on an UltraSPARC 10 at 450 MHz.

In the first set of experiments we analysed the impact of
the number of tasks on the process size. We considered
task sets of 10 up to 19 independent tasks. P, the least
common multiple of the task periods, was 360 for all task
sets. We repeated the experiment four times for average

values of the task periodsα = 15.0, 10.9, 8.8, and 4.8
(keeping P=360). The results are shown in Figure 10.
Figure 11 depicts the maximum size of the sliding window
for the same task sets. As it can be seen from the diagram,
the increase, both of the process size and of the sliding
window, is linear. The steepness of the curves depends on
the task periods (which influence the number of PMIs). It
is important to notice the big difference between the
process size and the maximum number of states in the
sliding window. In the case for 19 tasks, for example, the
process size is between 64356 and 198356 while the
dimension of the sliding window varies between 373 and
11883 (16 to 172 times smaller). The reduction factor of
the sliding window compared to the process size was
between 15 and 1914, considering all our experiments.
Because of space limitation, for the rest of paper we will
concentrate only on the process size.

In the second set of experiments we analysed the impact
of the application period P (the least common multiple of
the task periods) on the process size. We considered 784
sets, each of 20 independent tasks. The task periods were
chosen such that P takes values in the interval [1, 5040].
Figure 12 shows the variation of the average process size
with the application period.

With the third set of experiments we analysed the
impact of task dependencies on the process size. A task set
of 200 tasks with strong dependencies (28000 arcs) among
the tasks was initially created. The application period P
was 360. Then 9 new task graphs were successively

Figure 9. State selection order

>4

0

1 3

2 4

Figure 10. Experiment 1, stochastic process size

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 11 12 13 14 15 16 17 18 19

nu
m

be
r

of
 s

ta
te

s

number of tasks

α=15.0
α=8.8

α=10.9
α=4.8

α=8.8

Figure 11. Experiment 1, sliding window size

0

2000

4000

6000

8000

10000

12000

10 11 12 13 14 15 16 17 18 19

sl
id

in
g

 w
in

d
o

w
 s

iz
e

 [
n

u
m

b
e

r
o

f
st

a
te

s]

number of tasks

α=15.0

α=10.9
α=4.8

derived from the first one by uniformly removing
dependencies between the tasks until we finally got a set of
200 independent tasks. The results are depicted in Figure
13 with a logarithmic scale for the y axis. The x axis
represents the degree of dependencies among the tasks (0
for independent tasks, 9 for the initial task set with the
highest amount of dependencies). In this set of
experiments, we used the first of the two policies defined
in Section 3 for handling task graphs with dependencies.

As mentioned, the execution time for the analysis
algorithm strictly depends on the process size. Therefore,
we showed all the results in terms of this parameter. For the
set of 200 independent tasks used in the last experiment
(process size 1126517) the analysis time was 745 seconds.
In the case of the same 200 tasks with strong dependencies
(process size 2178) the analysis took 1.4 seconds.

Finally, we considered an example from the mobile
communication area. A set of 8 tasks co-operate in order
to decode the digital bursts corresponding to a GSM 900
signalling channel. In this example, there are two sources
of variation in execution times. One task has both data and
control intensive behaviour, which can cause pipeline haz-
ards on the deeply pipelined DSP it runs on. Its execution
time probability density is derived from the input data
streams and measurements. Another task will finally
implement a deciphering unit. Due to the lack of knowl-
edge about the deciphering algorithm (its specification is
not publicly available), the deciphering task execution

time is considered to be uniformly distributed between an
upper and a lower bound. When two channels are sched-
uled on the same DSP, the ratio of missed deadlines is 0 (all
deadlines are met). Considering three channels assigned to
the same processor, the analysis produced a ratio of missed
deadlines, which was below the one enforced by the
required QoS. It is important to note that using a hard real-
time model with WCET, the system with three channels
would result as unschedulable on the selected DSP. The
underlying stochastic process for the three channels had
130 nodes and its analysis took 0.01 seconds. The small
number of nodes is caused by the strong harmony among
the task periods, imposed by the GSM standard.

7 Conclusions
This work proposes a method for performance analysis

of task sets with probabilistically distributed execution
times. The tasks are scheduled according to an arbitrary
scheduling policy. The method is based on the construction
of the underlying stochastic process and the analysis of
this process. The stochastic process is constructed and
analysed in a memory- and time-efficient way making the
method applicable to large task sets. Experimental results
show a very good scaling of the algorithm both in terms of
memory space and execution time.

As a future work, we intend to extend our approach in
order to handle sets of tasks distributed over multiproces-
sor systems.

References
[1] L. Abeni, G. Butazzo, “Integrating Multimedia

Applications in Hard Real-Time Systems”, Proc. of the
Real-Time Systems Symposium, 1998, pp. 4–13

[2] A. Atlas, A. Bestavros, “Statistical Rate Monotonic
Scheduling”, Proc. of the Real-Time Systems Symposium,
1998, pp. 123–132

[3] N. C. Audsley, A. Burns, R. I. Davies, K. W. Tindell, A. J.
Wellings, “Fixed Priority Pre-emptive Scheduling: An
Historical Perspective”, Journal of Real-Time Systems, v8,
1995, pp. 173–198

[4] G. De Veciana, M. Jacome, J.H. Guo,“Assessing
Probabilistic Timing Constraints on System Performance”,
Jour. of Design Autom. for Emb. Systems, v5, 2000, pp. 61–81

[5] C. J. Fidge, “Real-Time Schedulability Tests for Pre-
emptive Multitasking”, Journal of Real-Time Systems, v14,
1998, pp. 61–93

[6] M. Frigo, S. G. Johnson,“FFTW: An Adaptive Software
Architecture for the FFT”, Proc. Intl. Conf. of Acoustics,
Speech and Signal Processing, 1998, v. 3, p. 1381

[7] A. Kalavade, P. Moghe,“A Tool for Performance
Estimation for Networked Embedded Systems”, Proc. of the
Design Automation Conference, 1998, pp. 257–262

[8] J. P. Lehoczky,“Real-Time Queueing Theory”, Proc. of the
Real-Time Systems Symposium, 1996, pp. 186–195

[9] M. Spuri, G. Butazzo, “Scheduling Aperiodic Tasks in
Dynamic Priority Systems”, Journal of Real-Time Systems,
v. 10, no. 2, 1996, pp. 1979–2012

[10] J. A. Stankovic, M. Spuri, M. Di Natale, G. Butazzo,
“Implications of Classical Scheduling Results for Real-
Time Systems”, IEEE Computer, June 1995, pp. 16–25

[11] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, J. W.-S. Liu,“Probabilistic Performance Guarantee
for Real-Time Tasks with Varying Computation Times”,
Proc. of IEEE Real-Time Techn. and Applic. Symp., 1995

[12] T. Zhou, X. Hu, E. H.-M. Sha, “A probabilistic
performance metric for Real-Time System Design”, Proc. of
the Hardw/Softw. Co-Design Symposium, 1999, pp. 90–94

Figure 12. Experiment 2, stochastic process size

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

nu
m

be
r

of
 s

ta
te

s

application period

Figure 13. Experiment 3, stochastic process size

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7 8 9

nu
m

be
r

of
 s

ta
te

s

dependency degree

e-
nt

e-
for

ing
e

the
en
of

on

-
e,

s
ted
d

r-
et
ies
ow

an
re-

ion
or

ke
al
en
se

s for
tion

en

s in

On Energy Reduction for Hard Real-Time Tasks with
Stochastic Execution Times

Flavius Gruian
Department of Computer Science, Lund University, Box 118,

S-221 00 Lund, Sweden
<Flavius.Gruian@cs.lth.se>
Abstract This paper addresses energy reduction in hard
real-time systems, containing independent tasks running on
dynamic voltage supply processors. Since tasks with probabilistic
run times are more realistic, we focus on systems containing such
tasks. We show that both off-line and on-line scheduling may con-
tribute in reducing the energy consumption, if the probabilistic
behavior is taken into consideration. Stochastic data can be used
in deriving schedules both for task sets and individual tasks. We
also present a task-level scheduling method which reduces the
average energy consumption independent of the other tasks in the
system. The experimental results, although in an incipient phase,
are promising.

I. INTRODUCTION

Low energy consumption is today an important design
requirement for digital systems, with impact on operating time,
on system cost, and, of no lesser importance, on the environ-
ment. Reducing power and energy dissipation in digital
systems has long been addressed by several research groups.
With the advent of dynamic voltage supply (DVS) processors
[6,20], highly flexible systems can be designed, while still tak-
ing advantage of supply voltage scaling to reduce the energy
consumption. Since the supply voltage has a direct impact on
processor speed, classic task scheduling and supply voltage
selection have to be addressed together. Scheduling offers thus
yet another level of possibilities for achieving energy/power
efficient systems, especially when the system architecture is
fixed or the system exhibits a very dynamic behavior. For such
dynamic systems, various power management techniques exist
and are reviewed for example in [4,5]. Yet, these mainly target
soft real-time systems, where deadlines can be missed if the
Quality of Service is kept. Several scheduling techniques for
soft real-time tasks, running on DVS processors have already
been described [7,8,9]. Energy reductions can be achieved even
in hard real-time systems, where no deadline can be missed, as
shown in [10,11,12,13,14]. In this paper, we focus on hard real-
time scheduling techniques, where all deadlines have to be met.

Task level voltage scheduling decisions can reduce even fur-
ther the energy consumption. Some of these intra-task
scheduling methods use several re-scheduling points inside a
task, and are usually compiler assisted [16,17,18]. Alterna-
tively, fixing the schedule before the task starts executing as in
[11,14,19] eliminates the internal scheduling overhead, but
with possible affects on energy reduction. Statistics can be used
to take full advantage of the dynamic behavior of the system,

both at task level [18] and at task-set level [10]. We show th
importance of employing stochastic data in deriving efficie
voltage schedules at both task and task-set levels.

The rest of the paper is organized as follows. Section II pr
sents the scheduling alternatives taken at task-set level,
three cases, increasing in generality. A task-level schedul
method for low average energy is described in section III. W
give examples and some experimental results throughout
paper, in specific sub-sections, hoping to make our point ev
clearer. Our conclusions and future work make the subject
section IV.

II. TASK-SET LEVEL SCHEDULING DECISIONS

In this paper we address only independent tasks running
a single dynamic supply voltage processor. Each of theN tasks
in the task set is defined by a 4-tuple com
posed of the execution pattern, worst case execution tim
period, and deadline for task . The execution patternXi is a
random variable describing the number of clock cycle
required to execute the task. We will denote by the expec
value of the random variableXi. At the fastest processor spee
(clock frequency), the maximal value forXi is Ci.

The focus of this discussion is on the influence of conside
ing tasks with probabilistic execution pattern on the task-s
level scheduling strategies. The main goal of all the strateg
presented here is reducing the energy consumption. We sh
that scheduling policies considering only the tasks WCET c
be improved when stochastic data is used. We compute the
fore the following three measures. The worst case execut
speed,sWCE, which does not consider the stochastic behavi
of the tasks. The expected ideal speed,sideal, which assumes
that all tasks will always run at their expected time and can ta
full advantage of this knowledge. And, finally, the average re
speed,s, which is a estimate of the realistic case behavior, wh
the actual execution times are not known a priori. We can u
these three measures to compute the energy consumption
the worst, ideal, and average cases. The energy consump
for a given time interval [t0, t1] is defined as the integral of
power over time. Assuming a quadratic dependency betwe
power and speed, as in [10], we obtain the energy as:

(1)

What remains to be done is to find out the processor speed
every time moment.

τi Xi Ci T,
i

Di, ,()=

τi

Xi

E P s t()() td
t0

t1

∫ s t()()2
td

t0

t1

∫≅=

ks

ath-
he
uch
öy

xact
mal
g a
m-
ive
le 1
e

rom
ther
n-

for

e,
on.
the

is
me

mp-
s
et.

e
ge
es

ed.
sk
le
Because of the dynamic behavior of the system, we need to
address not only off-line scheduling methods, but also on-line
re-scheduling policies. Depending on the generality of the
problem, the complexity of the off-line and on-line policies
varies.

We address three cases, with increasing generality. First we
consider task sets with tasks having the same period and dead-
line. Next we analyze tasks having the same period, but
different deadlines. Finally, we consider task sets which have
both different periods and possibly different deadlines.

A. Unique Period, Unique Deadline

This is the simplest possible case, where the set of tasks has
to finish before a certain deadline, in no particular order. For-
mally we consider . When the
actual execution time of each task is known beforehand, the
optimal schedule from the energy point of view is given by uni-
formly stretching the tasks to exactly meet the deadline [14].
The worst case processor speed is then computed as:

(2)

while the ideal expected speed:
. (3)

Using only off-line decisions, one can always guarantee the
deadlines only by using the worst case speed. An on-line re-
scheduling algorithm may be used every time a task completes
its execution. In each of these scheduling points, a new
expected optimal processor speed can be computed as:

(4)

Note that the execution order of the tasks in this case becomes
important. Tasks which exhibit a large discrepancy between
their worst case execution and their expected (average) execu-
tion should be executed first. In this way, the tasks executing
later know if they can use up more processor time. To eliminate
the biggest uncertainties early, the tasks should therefore be
executed in an order according to the following priorities:

(5).
Having decided on the schedule, we can now compute the
energy consumption for each of the cases presented here. Note
that the processor speed is constant on intervals, and for the
WCE and ideal case there is a unique speed:

(6)

(7)

(8)

Note that the last energy value is dependent on the task order-
ing. This is were one can reduce the energy consumption by
using an optimal ordering.

Consider a simple task set, composed of three tas
{ , ; ,

; , }. The processor
speeds for four cases, plus the energy consumptions are g
ered in Table 1. The first two columns refer to the worst and t
ideal cases. The “worst case” decides an off-line speed s
that the tasks will always meet their deadlines, and uses on
that speed at runtime. The “ideal case” assumes that the e
execution times are known beforehand and decides an opti
processor speed for each period. The real case implies usin
runtime re-scheduling policy. The processor speed is reco
puted each time a task finishes execution, that is why we g
three speed values for the real case. The “best order” in Tab
is the order given by the priorities computed as in (5). Th
“reverse best” is when the task assume an inverse order. F
the table we can deduce that an on-line strategy reduces fur
the energy consumption. Moreover, a good ordering also co
tributes to energy reduction.

B. Unique Period, Different Deadlines

The problem becomes more complex when the deadlines
the tasks differ: , , . A dead-
line monotonic scheduling strategy would, in this cas
guarantee feasible schedules up to full processor utilizati
Considering the tasks ordered according to their deadlines,
processor speed for each task can be computed as in [10]:

(9)

and the ideal speed:
(10).

As for the on-line scheduling method, the processor speed
recomputed whenever a task finishes execution. The ti
moment when task j finishes is:

(11)

The following speed is then re-computed for the next task:
(12)

As in the previous case, the lowest average energy consu
tion would be achieved if the tasks with big uncertaintie
execute first. On the other hand, the deadlines have to be m
With this in mind, we present here an off-line preemptiv
scheduling strategy which attempts to obtain a low avera
energy consumption. The algorithm, presented in Fig. 1, us
an initial step in which WCE processor speeds are comput
The actual algorithm assigns time intervals for each task or ta
part, starting from the lowest priority task. We always schedu

Ti Di T j D j A= = = = τi τ j,()∀,

s
WCE

Ci
1 i N≤ ≤

∑
 A⁄=

s
ideal

Xi
1 i N≤ ≤

∑
 A⁄=

sj Ci
j i N≤ ≤
∑

 A Xk sk⁄()
1 k j<≤

∑–
 ⁄=

pi 1 Ci Xi–()⁄=

E
WCE

s
WCE()

2
Xi s

WCE⁄()
1 i N≤ ≤

∑=

Ci
1 i N≤ ≤

∑
 Xi

1 i N≤ ≤
∑

 ⋅
 A⁄=

E
ideal

A s
ideal()

2
Xi

1 i N≤ ≤
∑

 2
A⁄= =

E
real Xi

si
----- si

2⋅
1 i N≤ ≤

∑ Xi si⋅
1 i N≤ ≤

∑= =

Table 1: An example of case A

{τ1, τ2, τ3} WCE ideal

real expected

best order:
2, 3, 1

reverse best:
1, 3, 2

speed, s 0.90 0.68 0.90, 0.77, 0.55 0.90, 0.85, 0.67

normalized energy, E 1.324 1 1.114 1.182

τ1 X1 20 100 100, , ,()= X1 16= τ2 X2 30 100 100, , ,()=
X2 20= τ3 X3 40 100 100, , ,()= X3 32=

Ti T j A= = Di D j A≤≠ τi τ j,()∀

sj
WCE

Ci Di Ck sk⁄()
1 k j<≤

∑–
 ⁄

j i N≤ ≤
∑=

sj
ideal

Xi Di Xk sk⁄()
1 k j<≤

∑–
 ⁄

j i N≤ ≤
∑=

t j Xk sk⁄()
1 k j≤ ≤

∑=

sj 1+ Ci Di t j–()⁄()
j i< N≤
∑=

he
an

for
his,
e-
nd

at
.
he

of
ed-

ing

we
ed

,
the
e
e

ks.

2].

ro-

3
est
ro-

in
xe-
ergy.
en
tasks in bursts, between two consecutive deadlines, called
scheduling intervals. The tasks having the same deadline are
sorted according to priorities first introduced in sub-section A.
The tasks exhibiting the smallest discrepancy between their
WCET and their expected execution time are scheduled last.
Whenever a task does not fit entirely in the current scheduling
interval, it is split in two parts such that one of them fits. The
other part is treated as a new task, which has to be completed
before the current scheduling interval. The on-line re-schedul-
ing algorithm is the same as the one described previously, by
equation (12).

Having decided on the schedule, we can now compute the
expected energy consumption for all the cases presented here.
As in the previous case, the processor speed is constant on
intervals. For brevity we will not expand the expressions:

, ,

.

Note that in the last case the number of intervals with con-
stant speed can increase toM as a result of our off-line
preemptive scheduling algorithm.

C. Different Periods

Dealing with tasks which have different periods is an even
more complex problem. Formally, now , .
There are several approaches to scheduling in this situation.
One could use task hyperperiods, as in [11], and practically
return to the case described in sub-section B. Yet, for certain
task sets the complexity of the problem, given by the number
of instances that have to be analyzed, becomes huge. In the fol-
lowing we present an alternative approach, developed on the
fixed priority (rate or deadline monotonic) scheduling frame-
work. Our method consists as before, from an off-line step and
an on-line policy.

The off-line scheduling step.The scheduling condition pro-
posed by Liu and Layland [1] is a sufficient one and covers t
worst possible case for the task group characteristics. Yet,
exact analysis as proposed in [2] may reveal possibilities
stretching tasks and still keeping the deadlines. Based on t
[12] describes a method to compute the minimal required fr
quency (speed) for a task set. In similar way, we go further a
compute the minimal achievable processor speed
for each task in the task group . We consider th
the tasks in the group are indexed according to their priority

We compute the speeds in an iterative manner, from t
higher to the lower priority tasks. An indexq points to the latest
task which has been assigned a speed. Initially, . Each
the tasks has to be executed before one of its sch
uling points Si as defined in [2]:

, if . If ,
we only need to change the set of scheduling points accord
to . For each of this schedul-
ing points , task exactly meets its deadline if:

(13)

Note that for the tasks which already have assigned a speed
used that one, , while for the rest of the tasks we assum
they will all use the same and yet to be computed speed,
which is dependent on the scheduling point. For the task
best scheduling choice, from the energy point of view, is th
smallest of its . At the same time, from (13), this has to b
the equal for all tasks . There is a task with indexm
for which its lowest speed is the largest among all other tas
Note that this in not necessarily the last task,n. If , this
task sets the minimal clock frequency as computed in [1
Obtaining the indexm, all tasks betweenq andm will use the
same speed asm. With this an iteration of the algorithm for
finding the task speeds is complete. The next iteration then p
ceeds for . Finally the process ends whenq reachesn,
meaning all tasks have been given their own off-line speed.

A numerical example is given in Table 2. Note that tasks
and 4 can use a lower speed than 1 and 2, while 5 has the low
processor speed. As a result of slowing down the tasks, the p
cessor utilization changes from 0.687 to 0.994.

The on-line strategy.During runtime we exploit the stochas-
tic nature of the system. It is important to use the variations
execution length of the various task instances to be able to e
cute at lower processor speed and, thus, consume less en
In [12] the only situation when a task executes slower is wh

begin procedure OfflinePreemptiveSchedule
empty WorkList

forall deadlines D i , longest..shortest do
time := D i , empty NextWorkList
* put all tasks with deadline D i in WorkList
* order WorkList descending

using priorities p j := s j /(C j - Xj)
forall tasks τk in WorkList do

if C k/s k > (time - D i-1) then
* split τk:

NextWorkList.add(task with
C := C k - (time - D i-1)*s k,
D := D i-1 , X := min(C, Xk))

Also update C k := time - D i-1
end if
* schedule τk between [time - C k/s k, time)
time := time - C k/s k

end forall
* make NextWorkList the new WorkList

end forall
end procedure

Fig. 1. Off-line scheduling algorithm for reduced energy in the case of task
sets with unique period and different deadlines

E
WCE

Xi si
WCE⋅

1 i N≤ ≤
∑= E

ideal
Xi si

ideal⋅
1 i N≤ ≤

∑=

E
real

Xi si⋅
1 i M≤ ≤

∑=

Ti T j≠ τi τ j,()∀

Table 2: Numerical Example for Off-line Scheduling

Task τ Off-line Speed s

No. WCET (C) Period (T) value iterations needed

1 1 5 0.70 1

2 5 11 0.70 1

3 1 45 0.56 2

4 1 130 0.56 2

5 1 370 0.42 3

si{ }
1 i n≤ ≤

τi τi{ }
1 i n≤ ≤

q 0=
τi q i n≤<,

Si kTj 1 j i≤ ≤ 1; k Ti T j⁄≤ ≤{ }= Ti Di= Ti Di≠

Si' t t Si∈() t Di<()∧{ } Di{ }∪=
Sij Si∈ τi

1
sr
----Cr

Sij

Tr
------⋅

1 r q≤ ≤
∑ 1

sij
----- Cp

Sij

Tp
------⋅

q p< i≤
∑⋅+ Sij=

sr
sij

τi

sij
τi q i n≤<,

q 0=

q m=

tch
e

ion
re is
the
er-
se
ore
),
d a
tic
ote
ided
is
sk
ge.
sk
n
b-
r
is
n-
ch

in
e
0.

2,
if-
are
re-
ge
the

rgy
For
g
ing

n
a
e
t
es

s 9
3.

T

it is the only one running and has enough time until the next
task instance arrives. In all other situations tasks are executed
at the speed dictated by the off-line analysis. In [16] tasks are
slowed down to cover their WCET at runtime, independent of
other tasks, using several checking/re-scheduling points during
a task instance. Our method is perhaps most resemblant to the
optimal scheduling method OPASTS presented in [11]. Yet,
OPASTS performs analysis over task hyperperiods, which may
lead to working on a huge number of task instances for certain
task sets. Our method, briefly described next, keeps a low and
the same computational complexity, regardless of the task set.

An early finishing task may pass on its unused processor
time for any of the tasks executing next. But this time slack can
not be used by any task at any time since deadlines have to be
met. We solve this by considering several levels of slacks, with
different priorities, as in the slack stealing algorithm [3]. The
slack in each level is a cumulative value, the sum of the unused
processor times remaining from the tasks with higher priority.
Whenever a task finishes its execution early, it contributes to
the corresponding slack level with the amount of unused time.
This is then distributed to the lower priority tasks present in the
system, according to their expected execution time. The slack
distribution is performed such that the highest processor speeds
are reduced, lowering the energy consumption. We present a
more detailed description of the on-line strategy in [15]. We
also give a proof that our scheduling method using slack levels
meets all the deadlines.

III. T ASK LEVEL SCHEDULING DECISIONS

Task-level voltage scheduling has captured the attention of
the research community rather recently [19]. Fine grain sched-
uling, where several re-scheduling points are used inside a task
were presented in [16,18]. In [18] statistical data is used to
improve the task level schedule, by slowing down different
regions of a task according to their average execution time. Our
approach produces voltage schedules only when a task starts
executing, while using stochastic data more aggressively.

In our model a task can be executed in phases, at different
available voltages, depending on its allowed execution timeAi.
The ideal case states that the most energy is saved when the
processor uses the voltage for which the task exactly covers its
allowed execution time. This corresponds to an ideal voltage
which may not overlap with the available voltages. A close to
optimal solution is to execute the task in two phases at two of
the available voltages. These two voltages are the ones bound-
ing the ideal voltage [14,19].

An important observation is that tasks may finish, and in
many cases do finish, before their worst case execution time
(WCET). Therefore it makes sense to execute first at a low volt-
age and accelerate the execution, instead of executing at high
voltage first and decelerate. In this manner, if a task instance is
not the worst case, one skips executing high voltage regions.

In the following we will distinguish between three modes of
execution for a task, as depicted in Fig. 2. The ideal case (mode
1) is when the actual execution pattern (the number of clock

cycles) becomes known when the task arrives. We can stre
then the actual execution time of the task to exactly fill th
allowed time. This mode requires rather accurate execut
pattern estimates, depending on the input data, and therefo
rarely achievable in practice. The second mode (mode 2) is
WCE stretching - the voltage schedule for the task is det
mined as if the task will exhibit its worst case behavior. The
first two modes use at most two voltage regions, and theref
at most one DC-DC switch. The third mode (mode 3
described in more detail next, uses stochastic data to buil
multiple voltage schedule. The purpose for using stochas
data is to minimize the average case energy consumption. N
that the voltage schedules in all these three modes are dec
at a task instance arrival. Unlike in [16,17] no rescheduling
done while the task is executing. The only overhead during ta
execution is the one given by the changes in the supply volta

The stochastic voltage schedule (mode 3 in Fig. 2) for a ta
is obtained using the probability distribution of the executio
pattern for a task (the number of clock cycles used). This pro
ability distribution can be obtained off-line, via simulation, o
built and improved at runtime. The actual voltage schedule
obtained by minimizing the expected value of the energy co
sumption. We present adetailed description of computing su
a schedule in [15].

Two examples of stochastic voltage schedules are given
Fig. 3. We assumed a normal probability distribution with th
mean of 70 cycles, and standard deviation of 10. WCE is 10
Assuming we only have four available clock frequencies f, f/
f/3, and f/4, we give two voltage schedules obtained for two d
ferent values of the allowed execution time. The schedules
given in number of clock cycles executed at each available f
quency. The allowed execution time is reported in percenta
of the time needed for executing the worst case behavior at
highest clock frequency (f).

Next we present an experiment that examines the ene
gains of using a stochastic voltage schedule at task level.
this we considered a single task with execution time varyin
between a best case (BCE) and a worst case (WCE) accord
to a normal distribution. All distributions have the mea
(BCE+WCE)/2 and standard deviation (WCE-BCE)/6. For
several cases ranging from highly flexible execution tim
(BCE/WCE is 0.1) to almost fixed (BCE/WCE is 0.9) we buil
stochastic schedules for a range of allowed execution tim
(from WCE to 3x WCE). We assumed that our processor ha
different voltage levels, equally distributed between f and f/

τi

time

allow
ed tim

e

WCETactual ET

mode 1

mode 2

mode 3

Fig. 2. Voltage scheduling modes for tasks: 1) ideal schedule, 2) WCE
oriented schedule, 3) stochastic schedule.

Used
Energy

mp-

g
on

gh
ally
p-

g

g

ed

e,
e
ld-

of

al

r

ed
er

d

d

nd

y

S

l-

-

d

ly
For a large number of task instances generated according to the
given distribution we computed both the energy of the stochas-
tic schedule (mode 3 in Fig. 2) and the WCE-stretch schedule
(mode 2 in Fig. 2). We depict in Fig. 4 the average energy con-
sumption of the stochastic schedule as a part of the WCE-
stretch schedule. Note that when the allowed time approaches
either WCE or 3-times WCE, the energy consumptions become
equal. The lowest possible clock frequency is f/3 which any-
way means 3-times WCE, so there is no better schedule for
these cases. On the other hand when the allowed time closes
WCE, there is no other way but to use the fastest clock. Some-
where between the slowest and the fastest frequencies
(Allowed/WCE = 2) is the largest energy gain since the sto-
chastic schedule can use the whole spectrum of available
frequencies. Note that the energy gains become more important
when the task execution time varies much (BCE/WCE closes
0.1). Notice also that WCE-stretch already gains very much
energy compared to the non-scaling case. For example when
the allowed time is twice the WCE, the WCE-stretch energy is
around 25% of the no-scaling energy. A stochastic approach
contributes even more to these gains, as the figure shows.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we addressed scheduling methods targeting
energy reduction in hard real-time systems containing dynamic
supply voltage processors. Both task-set and individual task
level scheduling decisions were described. For task sets we
started from the simple case of tasks having the same unique
deadline and period. We then generalized the problem by con-
sidering different deadlines, and then different periods. In all
cases we showed that more efficient schedules, from the energy
point of view, can be derived when stochastic data is taken into
consideration. We also presented a task level stochastic voltage

schedule which is able to reduce the average energy consu
tion of a task even more, compared to classic approaches.

As future work, we plan to do extensive experiments usin
all the scheduling methods presented here, focusing more
the task-set level policies. We also want to perform a thorou
theoretical examination of the most general case and eventu
come up with realistic lower bounds for the energy consum
tion of systems containing stochastic task sets.

REFERENCES

[1] C.L. Liu and J.W. Layland, ”Scheduling algorithms for multiprograming
in a hard real time environment,”JACM 20 (1), 1973, pp. 46-61.

[2] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic schedulin
algorithm: exact characterization and average case behavior,”Proc. of
the Real-Time Systems Symposium 1989, pp. 166-171.

[3] J. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for schedulin
soft-aperiodic tasks in fixed-priority preemptive systems,“Proc. of the
Real-Time Systems Symposium 1992, pp. 110-123.

[4] L. Benini and G. DeMicheli, “System-level power optimization:
techniques and tools,”ACM Trans. on Design Automation of Electronic
Systems, No. 2, Vol. 5, April 2000, pp. 115-192.

[5] Pedram M., “Power optimization and management in embedd
systems,“Proc. of ASP-DAC 2001, pp. 239-244.

[6] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watanab
K. Matsuda, T. Maeda, and T. Kuroda, “A 300MIPS/W RISC cor
processor with variable supply-voltage scheme in variable thresho
voltage CMOS,”Proc. of the IEEE Custom Integrated Circuits
Conference 1997,pp. 587-590.

[7] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
dynamic voltage scaling algorithms,”Proc. of the ‘98 ISLPED, pp 76-81.

[8] A. Chnadrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven sign
processing: an approach for energy efficient computing,”Proc. of the ‘96
ISLPED,pp. 347-352.

[9] M. Weiser, B. Welch, A Demers, and S. Shenker, “Scheduling fo
reduced CPU energy,”Proc. of the First Symposium on Operating
Systems Design and Implementation, November 1994.

[10] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduc
CPU energy,”Proc. of the 36th Symposium on Foundations of Comput
Science,pp. 374-382, 1995.

[11] I. Hong, M. Potkonjak, and M.B. Srivastava, “On-line scheduling of har
real-time tasks on variable voltage processor,”Digest of Technical
Papers of the 1998 ICCAD, pp. 653-656.

[12] Y. Shin and K. Choi, “Power conscious fixed priority scheduling for har
real-time systems,”Proc. of the 36th DAC, 1999, pp. 134-139.

[13] Y.-H. Lee and C.M. Krishna, “Voltage-clock scaling for low energy
consumption in real-time embedded systems,“Proc. of the 6th
International Conference on Real-Time Computing Systems a
Applications, 1999, pp. 272-279.

[14] F. Gruian and K. Kuchcinski, “LEneS: task scheduling for low-energ
systems using variable voltage processors,”Proc. of ASP-DAC2001, pp.
449-455.

[15] F. Gruian, “Hard real-time scheduling using stochastic data and DV
Processors,” submitted for review.

[16] S. Lee and T. Sakurai, “Run-time voltage hopping for low-power rea
time systems,“Proc. of the 37th DAC, 2000, pp. 806-809.

[17] D. Shin, J. Kim, and S. Lee, “Intra-task voltage scheduling for low
energy hard real-time applications,”Special Issue of IEEE Design and
Test of Computers, October 2000.

[18] D. Mossé, H. Aydin, B. Childers, and R. Melhem, “Compiler-assiste
dynamic power-aware scheduling for real-time applications,”Worksop
on Compilers and Operating Systems for Low-Power, October 2000.

[19] T. Ishihara,H. Yasuura, “Voltage scheduling problem for dynamical
variable voltage processors,”Proc. of the ‘98 ISLPED, pp 197-202.

[20] http://www.transmeta.com

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

47@f/4 25@f/3 20@f

27@f/3 47@f/2 26@f

8 Allowed is 300%
of WCE at clock f

Allowed is 200%
of WCE at clock f

1-cdf function
for a normal
distribution
with mean 70
and standard
deviation 10.

Fig. 3. Examples of stochastic voltage schedules for a task with normal
distribution execution time and worst case behavior of 100 cycles

1 - cdf

Levels

 95.5%
 90.8%
 86.1%
 81.4%
 76.6%

0.1
0.3

0.5
0.7

0.9

11.522.53

70%
75%
80%
85%
90%
95%

100%

BCE/WCE

Allowed/WCE

S
to

ch
as

tic
 s

ch
ed

ul
e

en
er

gy
co

m
pa

re
d

to
W

C
E

-s
tr

et
ch

Fig. 4. The average energy consumption of a stochastic voltage schedule
compared to the energy consumption of a WCE- stretch schedule.

ABSTRACT
In this paper we present an approach to mapping and scheduling
of distributed embedded systems for hard real-time applications,
aiming at minimizing the system modification cost. We consider an
incremental design process that starts from an already existing sys-
tem running a set of applications. We are interested to implement
new functionality so that the already running applications are dis-
turbed as little as possible and there is a good chance that, later,
new functionality can easily be added to the resulted system. The
mapping and scheduling problem are considered in the context of a
realistic communication model based on a TDMA protocol.
Keywords: design space exploration, design reuse, distributed
real-time systems, process mapping and scheduling, methodology.

1. INTRODUCTION
Distributed embedded systems with multiple processing elements
are becoming common in various application areas [4]. In [12], for
example, allocation of processing elements, as well as process map-
ping and scheduling for distributed systems are formulated as a
mixed integer linear programming (MILP) problem. A disadvantage
of this approach is the complexity of solving the MILP problem.
Therefore, alternative problem formulations and solutions based on
efficient heuristics have been proposed [1, 2, 8, 14].

Although much of the above work is dedicated to specific
aspects of distributed systems, researchers have often ignored or
very much simplified issues concerning the communication infra-
structure. One notable exception is [13], in which system synthesis
is discussed in the context of a distributed architecture based on
arbitrated busses. Many efforts dedicated to communication syn-
thesis have concentrated on the synthesis support for the communi-
cation infrastructure but without considering hard real-time
constraints and system level scheduling aspects [6, 10, 9].

Another characteristic of research efforts concerning the code-
sign of embedded systems is that authors concentrate on the
design, from scratch, of a new system optimized for a particular
application. For many application areas, however, such a situation
is extremely uncommon and only rarely appears in design practice.
It is much more likely that one has to start from an already existing
system running a certain application and the design problem is to
implement new functionality (including also upgrades to the exist-
ing one) on this system. In such a context it is very important to
make as few as possible modifications to the already running appli-
cations. The main reason for this is to avoid unnecessarily large
design and testing times. Performing modifications on the (poten-
tially large) existing applications increases design time and, even
more, testing time (instead of only testing the newly implemented
functionality, the old application, or at least a part of it, has also to
be retested). However, this is not the only aspect to be considered.
Such an incremental design process, in which a design is periodi-
cally upgraded with new features, is going through several itera-
tions. Therefore, after new functionality has been implemented, the
resulting system has to be structured such that additional function-
ality, later to be mapped, can easily be accommodated.

We consider mapping and scheduling for hard real-time
embedded systems in the context of a realistic communication
model. Because our focus is on hard real-time safety critical sys-
tems, communication is based on a time division multiple access
(TDMA) protocol as recommended for applications in areas like,
for example, automotive electronics [7]. For the same reason we
use a non-preemptive static task scheduling scheme.

In this paper, we have considered the design of distributed
embedded systems in the context of an incremental design process as
outlined above. This implies that we perform mapping and schedul-
ing of new functionality so that certain design constraints are satisfied
and:

a. already running applications are disturbed as little as possible;
b. there is a good chance that new functionality can, later, easily

be mapped on the resulted system.
In [11] we have discussed an incremental design strategy

which excludes any modifications on already running applications.
In this paper we extend our approach in the sense that remapping
and scheduling of currently implemented applications are allowed,
if they are needed in order to accommodate the new functionality.
In this context, we propose a heuristic which finds the set of old
applications which have to be remapped together with the new one
such that the disturbance on the running system (expressed as the
total cost implied by the modifications) is minimized. Once this set
of applications has been determined, mapping and scheduling is
performed according to the requirements stated above.

Supporting such a design process is of critical importance for
current and future industrial practice, as the time interval between
successive generations of a product is continuously decreasing,
while the complexity due to increased sophistication of new func-
tionality is growing rapidly.

The paper is divided into 6 sections. The next section presents
some preliminary discussion. Section 3 introduces the detailed prob-
lem formulation and the quality metrics we have defined. Our map-
ping and scheduling strategies are outlined in Section 4, and the
experimental results are presented in Section 5. The last section pre-
sents our conclusions.

2. PRELIMINARIES
2.1 System Architecture
We consider architectures consisting of processing nodes connected
by a broadcast communication channel. Communication between
nodes is based on a TDMA protocol such as the TTP [7] which in-
tegrates a set of services necessary for fault-tolerant real-time sys-
tems. The communication channel is a broadcast channel, so a
message sent by a node is received by all the other nodes. Each
nodeNi can transmit only during a predetermined time interval, the
so called TDMA slotSi (Figure 1). In such a slot, a node can send
several messages packaged in a frame. A sequence of slots corre-
sponding to all the nodes in the architecture is called a TDMA
round. A node can have only one slot in a TDMA round. Several
TDMA rounds can be combined together in a cycle that is repeated
periodically.

We have designed a software architecture which runs on the
CPU in each node, and which has a real-time kernel as its main
component. Each kernel has a schedule table that contains all the
information needed to take decisions on activation of processes
and transmission of messages, based on the current value of time
[3].

Figure 1. Buss Access Scheme

TDMA Round
Cycle of two rounds

Slot

S0 S1 S2 S3 S0 S1 S2 S3
Frames

Minimizing System Modification in an
Incremental Design Approach

Paul Pop, Petru Eles, Traian Pop, Zebo Peng
Dept. of Computer and Information Science, Linköping University

{paupo, petel, trapo, zebpe}@ida.liu.se

2.2 The Process Graph
As an abstract model for system representation we use a directed,
acyclic, polar graphG(V, E). Each nodePi∈V represents onepro-
cess. An edgeeij∈E from Pi to Pj indicates that the output ofPi is
the input ofPj. A process can be activated after all its inputs have
arrived and it issues its outputs when it terminates. Once acti-
vated, a process executes until it completes. Each process graphG
is characterized by its periodTG and its deadlineDG ≤ TG. The
functionality of an application is described as a set of process
graphs.
2.3 Application Mapping and Scheduling
Considering a system architecture like the one presented in sec-
tion 2.1, the mapping of a process graphG(V, E) is given by a
functionM: V→PE, wherePE={N1, N2, ..,Nnpe} is the set of nodes
(processing elements). For aprocessPi∈V, M(Pi) is the node to
whichPi is assigned for execution. Each processPi can potentially
be mapped on several nodes. LetNPi⊆PE be the set of nodes to
which Pi can potentially be mapped. For eachNi∈NPi, we know
the worst case execution timetPi

Ni of processPi, when executed
onNi.

In order to implement an application, represented as a set of
process graphs, the designer has to map the processes to the sys-
tem nodes and to derive a schedule such that all deadlines are sat-
isfied. We first illustrate some of the problems related to mapping
and scheduling, in the context of a system based on a TDMA
communication protocol, before going on to explore further
aspects specific to an incremental design approach.

Let us consider the example in Figure 2 where we want to
map an application consisting of four processesP1 to P4, with a
period and deadline of 50 ms. The architecture is composed of
three nodes that communicate according to a TDMA protocol,
such thatNi transmits in slotSi. According to the specification,
processesP1 andP3 are constrained to nodeN1, while P2 andP4
can be mapped on nodesN2 or N3, but notN1. The worst case ex-
ecution times of processes on each potential node, the sizemi,j of
the messages passed betweenPi andPj, and the sequence and size
of TDMA slots, are presented in Figure 2 (message and slot sizes
are in time units).

In [3] we have shown that by considering the communication
protocol during scheduling, significant improvements can be made
to the schedule quality. The same holds true in the case of map-
ping. Thus, if we are to mapP2 andP4 on the faster processorN3,
the resulting schedule length (Figure 2a) will be 52 ms which does
not meet thedeadline. However, if we mapP2 andP4 on the slower
processorN2, the schedule length (Figure 2b) is 48 ms, which is
the best possible solution and meets the deadline. Note that the to-
tal traffic on the bus is the same for both mappings and the initial

processor load is 0 on bothN2 andN3. This result has its explana-
tion in the impact of the communication protocol.P3 cannot start
before receiving messagesm2,3 andm4,3. However, slotS2 corre-
sponding to nodeN2 precedes in the TDMA round slotS3 on
which nodeN3 communicates. Thus, the messages whichP3 needs
are available sooner in the caseP2 andP4 are, counter-intuitively,
mapped on the slower node.

But finding a valid schedule is not always possible, either
because there are not enough available hardware resources, or the
resources are not intelligently allocated to the already running
applications. Thus, in order to produce a valid solution, the
resources have to be reallocated through rescheduling and remap-
ping of some of the already running applications or, in the worst
case, the architecture has to be modified by adding new resources.

In Figure 3 we consider a single processor system with three
applications,A, B andC, each with a deadlineDA, DB andDC.
Application C is depicted in more detail, showing the two pro-
cessesP1 andP2 it is composed of. Let us suppose that the al-
ready running applications are A and B, and we have to
implement C as a new application. If A and B have been mapped
and schedules like in Figure 3a, we will not be able to map appli-
cation C (in particular, processP2). With a mapping of A and B
like in Figure 3b and c, we are able to map both processes of C,
but no schedule can be produced which meets the deadlineDC. If
A and B are implemented like in Figure 3d, application C can be
successfully implemented. Two aspects can be highlighted based
on this example:
1. If applications A and B are implemented like in Figure 3a (or

like in 3b or 3c), it is possible to correctly implement applica-
tion C only with modifying the implementation of application
B.

2. If during implementation of application B we would have tak-
en into consideration that sometimes in the future an application
like C will have to be implemented, we could have produced a
schedule like the one in Figure 3d. In this case, application C
could be implemented without any modification of an existing
application.

3. PROBLEM FORMULATION
We model an applicationΓcurrent as a set of process graphs
Gi∈Γcurrent, each with a periodTGi and a deadlineDGi≤ TGi. For
each processPi in a process graph we know the setNPi of poten-
tial nodes on which it could be mapped and its worst case execu-
tion time on each of these nodes. The underlying architecture is as
presented in section 2.1. We consider a non-preemptive static
cyclic scheduling policy for both processes and message passing.

Our goal is to map and schedule an applicationΓcurrent on a
system that already implements a setψ of applications, consider-
ing the following requirements:
Requirementa: constraints onΓcurrent are satisfied and minimal
modifications are performed to the applications inψ.
Requirementb: new applicationsΓfuture can be mapped on the
resulting system.

If it is not possible to map and scheduleΓcurrentwithout mod-
ifying the already running applications, we have to change the
scheduling and mapping of some applications inψ. However,
even with serious modifications performed onψ, it is still possi-
ble that certain constraints are not satisfied. In this case the hard-
ware architecture has to be changed by, for example, adding a
new processor. In this paper we will not discuss this last case, but
will concentrate on the situation where a possible mapping and

m1,2 m1,4

N1

N1
N3

N2

Bus

Bus

N1

a) Processes P2 and P4 are mapped on the fast node

b) Processes P2 and P4 are mapped on the slow node

P1

P2

P3

P4

m2,3 m4,3

P1

P2

P3

P4

P1 P2

P3

N2

N3

(slow)

(fast)

P1

P2

P3

P4

m1,2= m1,4= m2,3= m4,3= 4

N1 N2 N3

S1 = 4 S2 = 4 S3 = 4

4ms

12ms

8ms

-

12ms
4ms

8ms

-

--

TDMA

-

-

m1,2 m1,4 m2,3 m4,3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1S1 S2 S3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1S1 S2 S3

P4

Figure 2. Mapping and Scheduling Example

P1

P1

c)
b)
a)

A
B

C
P1
P2

Figure 3. Example for the First Design Criterion

Slackd)

DC DA=DB

scheduling which satisfies requirement a) can be found, and this
solution has to be further improved by considering requirement
b).

In order to achieve our goals we need certain information to
be available concerning the set of applicationsψ as well as the
possible future applicationsΓfuture. We consider thatΓcurrent can
interact with the previously mapped applicationsψ by reading mes-
sages generated on the bus by processes inψ. In this case, the
reading process has to be synchronized with the arrival of the
message on the bus, which is easy to solve during scheduling of
Γcurrent.
3.1 Characterizing Existing Applications
To perform the mapping and scheduling ofΓcurrent, the minimum
information needed on the existing applicationsψ consists of the
local schedule tables for each node. Thus, we know the activation
time for each process on the respective node and its worst case
execution time. As for messages, their length as well as their
place in the particular TDMA frame are known. However, if the
initial attempt to schedule and mapΓcurrentdoes not succeed, we
have to modify the schedule and, possibly, the mapping of
applications belonging toψ, in the hope to find a valid solution
for Γcurrent.

Our goal in this paper is to find that minimal modification to
the existing system that leads to a correct implementation ofΓcur-

rent. In our context, such a minimal modification means remap-
ping and rescheduling a subset of old applicationsΩ ⊆ ψ so that
the total cost of reimplementingΩ is minimized. We represent a
set of applications as a directed acyclic graphG(V, E), where each
nodeΓi ∈ V represents an application. An edge eij ∈ E from Γi to
Γj indicates that any modification toΓi would trigger the need to
also remap and scheduleΓj. Such a relation can be imposed by
certain interactions between applications1. In Figure 4 we present
the graph corresponding to a set of ten applications. Applications
Γ6, Γ8, Γ9 andΓ10, depicted in black, are frozen: no modifications
are possible to them. The rest of the applications have the remap-
ping cost Ri depicted on their left.Γ7 can be remapped with a cost
of 20. If Γ4 is to be reimplemented, this also requires the modifi-
cation ofΓ7, with a total cost of 90. In the case ofΓ5, although not
frozen, no remapping is possible as it would trigger the need to
remapΓ6 which is frozen. Given a subset of applicationsΩ ⊆ ψ,
the total cost of modifying the applications inΩ is .

To each applicationΓi ∈ V the designer has associated a cost
Ri of reimplementingΓi. Such a cost can typically be expressed in
hours needed to perform retesting ofΓi and other tasks connected
to the remapping and rescheduling of the application. Remapping
of Γi and the associated rescheduling can only be performed if the
process graphs that capture the applications and their deadlines
are available. However, this is not always the case, and in such sit-
uations the application is considered frozen.
3.2 Characterizing Future Applications
What do we suppose to know about the familyΓfuture of applica-
tions which do not exist yet? Given a certain limited application
area (e.g. automotive electronics), it is not unreasonable to assume
that, based on the designers’ previous experience, the nature of

expected futurefunctions to be implemented, profiling of previous
applications, available uncomplete designs for future versions of
the product, etc., it is possible to characterize the family of appli-
cations which could possibly be added to the current implementa-
tion. This is an assumption which is basic for the concept of
incremental design. Thus, we consider that, concerning the future
applications, we know the setSt={ tmin,...ti,...tmax} of possible
worst case execution times for processes, and the set
Sb={ bmin,...bi,...bmax} of possible message sizes. We also assume
that over these sets we know the distributions of probabilityfSt(t)
for t∈St and fSb(b) for b∈Sb. For example, we might have worst
case execution timesSt={50, 100, 200, 300, 500 ms}. Ifthere is a
higher probability of having processes of 100 ms, and a very low
probability of having processes of 300 ms and 500 ms, then our
distribution function fSt(t) could look like this: fSt(50)=0.20,
fSt(100)=0.50, fSt(200)=0.20,fSt(300)=0.05, andfSt(500)=0.05.

Another information is related to the period of process graphs
which could be part of future applications. In particular, the
smallest expected periodTmin is assumed to be given, together
with the expected necessary processor timetneed, and bus band-
width bneed, inside such a periodTmin. As will be shown later, this
information is used in order to provide a fair distribution of
slacks.

The execution times inSt as well astneedare considered rela-
tive to the slowest node in the system. All the other nodes are
characterized by a speedup factor relative to this slowest node.
3.3 Quality Metrics
A designer will be able to map and schedule an applicationΓfuture
on top of a system implementingψ andΓcurrent, only if there are
sufficient resources available. In our case, the resources are pro-
cessor time and the bandwidth on the bus. In the context of a non-
preemptive static scheduling policy, having free resources trans-
lates into having free time slots on the processors and having
space left for messages in the bus slots. We call these free slots of
available time on the processor or on the bus,slack. It is the size
and distribution of the slacks that characterizes the quality of a
certain design alternative from the point of view of its potential to
accommodate future applications. In this section we introduce
two criteria in order to reflect the degree to which one design
alternative meets the requirement b) presented at the beginning of
section 3.

Thefirst criterion reflects how well the resulted slack sizes fit
to a future application. The slack sizes resulted after implementa-
tion of Γcurrenton top ofψ should be such that they best accom-
modate a given family of applicationsΓfuture, characterized by the
setsSt, Sb and the probability distributionsfSt andfSb, as outlined
before. Let us consider the example in Figure 3, where we have a
single processor with the applicationsA andB implemented and a
future applicationC which consists of the two processes,P1 and
P2. It can be observed that the best configuration, taking in con-
sideration only slack sizes, is to have a contiguous slack. Such a
slack, as depicted in Figure 3c and d, will best accommodate any
future application. However, in reality, it is almost impossible to
map and schedule the current application such that a contiguous
slack is obtained. Not only is it impossible, but it is also undesir-
able from the point of view of the second design criterion, dis-
cussed below.

The secondcriterion expresses how well the slack is distrib-
uted in time. LetPi be a process with periodTPi that belongs to a
future application, andM(Pi) the node on whichPi will be
mapped. The worst case execution time ofPi is tPi

M(Pi) . In order
to schedulePi we need a slack of sizetPi

M(Pi) that is available
periodically, within a periodTPi, on processorM(Pi). If we con-
sider a group of processes with periodT, which are part ofΓfuture,
in order to implement them, a certain amount of slack is needed
which is available periodically, with a periodT, on the nodes
implementing the respective processes. During implementation of

1 If a set of applications have a circular dependence, such that the modifi-
cation of any one implies the remapping of all the others in that set, the
set will be represented as a single node in the graph.

R Ω() Ri
Γi Ω∈
∑=

Figure 4. Characterizing the Set of Existing Applications

Γ1 Γ2

Γ3

Γ4 Γ5

Γ6

Γ7
Γ8 Γ9 Γ10

150 70

50

70 50

20

Γcurrent we aim for a slack distribution such that the future appli-
cation with the smallest expected periodTmin and with the
expected necessary processor timetneed, and bandwidthbneed, can
be accommodated.

We have defined two metrics,C1 andC2, which quantify the
degree to which the first and second criterion, respectively, are
met. A detailed discussion about these metrics is given in [11].
3.4 Cost Function and Exact Problem Formulation
In order to capture how well a certain design alternative meets the
requirement b) stated in section 3, the metrics discussed before
are combined in an objective function, as follows:

C1
P andC2

P are those components of the two metrics that capture
the slack properties on processors, whileC1

m andC2
m are calcu-

lated for the slacks on the bus. Our mapping and scheduling strat-
egy will try to minimize this function.

The first two terms measure how well the resulted slack sizes
fit to a future application (first criterion), while the second two
terms reflect the distribution of slacks (second criterion). We call
a valid solutionthat mapping and scheduling which satisfies all
the design constraints (in our case the deadlines) and meets the
second criterion (C2

P ≥ tneed andC2
m ≥ bneed)

1.
At this point we can give an exact formulation to our problem.

Given an existing set of applicationsψ which are already mapped
and scheduled, and an applicationΓcurrent to be implemented on
top of ψ, we are interested to find the subsetΩ ⊆ ψ of old appli-
cations to be remapped and rescheduled such that we produce a
valid solution forΓcurrent ∪ Ω and the total cost of modification
R(Ω) is minimized. Once such anΩ is found, we areinterested to
minimize the objective functionC for the setΓcurrent∪ Ω, consid-
ering a family of future applications characterized by the setsSt
andSb, the functionsfSt and fSb as well as the parametersTmin,
tneed, andbneed.

4. MAPPING AND SCHEDULING STRATEGY
As shown in Figure 5, our mapping and scheduling strategy (MS)
has two steps. In the first step we try to obtain a valid solution for
Γcurrent∪ Ω so thatR(Ω) is minimized.Starting from such a solu-
tion, a second step iteratively improves on the design in order to
minimize the objective functionC.
4.1 The Initial Mapping and Scheduling
The first step of MS consists of an iteration that tries subsetsΩ ⊆
ψ with the intention to find that subsetΩ=Ωmin which produces a
valid solution forΓcurrent∪ Ω such thatR(Ω) is minimized. Given a
subsetΩ, the InitialMappingScheduling function (IMS) constructs a
mapping andschedule forΓcurrent ∪ Ω that meets the deadlines,
without worrying about the two criteria in section 3.3. For IMS
we used as a starting point the Heterogeneous Critical Path (HCP)
algorithm, introduced in [5]. HCP is based on a list scheduling
algorithm. We have modified the HCP algorithm to consider, dur-
ing mapping and scheduling, a set of previous applications that
have already occupied parts of the schedule table, and to schedule
the messages according to the TDMA protocol. Furthermore, for
the selection of processes we have used, instead of the CP (criti-
cal path) priority function, the (modified partial critical path)
MPCP priority function introduced by us in [3]. MPCP takes into
consideration the particularities of the communication protocol
for calculation of communication delays. These delays are not
estimated based only on the message length, but also on the time
when slots assigned to the particular node which generates the
message, will be available.

However, before using the IMS algorithm, two aspects have to

be addressed. First, the process graphsGi∈Γcurrent∪ Ω are merged
into a single graphGcurrent, by unrolling of process graphs and inser-
tion of dummy nodes [11]. In addition, we have to consider during
scheduling the mismatch between the periods of the already exist-
ing system and those of the current application. The schedule ta-
ble into which we would like to scheduleGcurrent has a length of
Tψ\Ω which is theglobal period of the systemψ after extraction of
the applications inΩ. However, the periodTcurrent of Gcurrent can
be different fromTψ\Ω. Thus, before schedulingGcurrent into the
existing schedule table, the schedule table is expanded to the least
common multiplier of the two periods. A similar procedure is fol-
lowed in the caseTcurrent > Tψ\Ω.
4.2 The Basic Strategy
If IMS succeeds in finding a mapping and schedule which meet
the deadlines, this is not yet a valid solution. In order to produce a
valid solution we iteratively try to satisfy the second design crite-
rion. In terms of our metrics, that means a mapping and schedul-
ing such thatC2

P ≥ tneedandC2
m ≥ bneed. Potential moves can be

the shifting of processes inside their [ASAP, ALAP] interval in
order to improve the periodic slack. The move can be performed
on the same node or to other nodes. Similar moves are considered
for messages.SelectMoveC2 evaluates these moves with regard to
the second design criterion and selects the best one to be per-
formed. Any violation of the data dependency constraints is recti-
fied by moving processes or messages concerned in an
appropriate way.

If Step 1 has succeeded, a mapping and scheduling ofΓcurrent
∪Ω has been produced which corresponds to a valid solution. In
addition,Ω is such that the total modification cost is as small as
possible. Starting from this valid solution, the second step of the
MS strategy, presented in Figure 5, tries to improve on the design
in order to minimize the objective functionC. In a similar way as
during Step 1, we iteratively improve the design by successive
moves.

In [11] we introduced a heuristic with the goal of guiding the
moves discussed above. Its intelligence lies in how the moves are
selected. For each iteration a set of potential moves is selected by
thePotentialMove function.SelectMove then evaluates these moves
with regard to the respective metrics and selects the best one to per-
form.
4.3 Minimizing the Modification Cost
The first step of our mapping strategy described in Figure 5 iter-
ates on subsetsΩ searching for a valid solution which also mini-
mizes the total modification costR(Ω). As a first attempt, the
algorithm searches for a valid implementation ofΓcurrent without
disturbing the existing applications(Ω=∅). If no valid solution is
found successive subsetsΩ produced by the functionNextSubset
are considered, until a terminating condition is met. The perfor-
mance of the algorithm, in terms of runtime and quality of the so-
lutions produced, is strongly influenced by the implementation of
the functionNextSubset and the termination condition. They de-
termine how the design space is explored while testing different
subsetsΩ of applications.
4.3.1 Exhaustive Search (ES)
In order to findΩmin, the simplest solution is to try successively
all the possible subsetsΩ ⊆ ψ. These subsets are generated in the
ascending order of the total modification cost, starting from∅.
The termination condition is fulfilled when the first valid solution
is generated. Since the subsets are generated in ascending order,
according to their cost, the subsetΩ that first produces a valid
solution is also the subset with the minimum modification cost.

The generation of subsets is performed according to the graph
G that characterizes the existing applications (see section 3.1).
Finding the next subsetΩ, starting from the current one, is
achieved by a branch and bound algorithm that in the worst case
grows exponentially in time with the number of applications. For
the example in Figure 4, the call toNextSubset(∅) will generate

1 This definition of a valid solution can be relaxed by imposing only the
satisfaction of deadlines. In this case, the algorithm in Figure 5 will look
after a solution which satisfies the deadlines and R(Ω) is minimized; the
two additional criteria are only considered optionally.

C w1
P

C1
P()

2
w1

m
C1

m()
2

w2
P
max 0 tneed, C2

P
–() w2

m
max 0 bneed, C2

m
–()+ + +=

{ Γ7} which has the smallest nonzero modification cost. The next
generated subsets, in order, together with their corresponding
total modification cost are:R({ Γ3})=50, R({ Γ3, Γ7})=70, R({ Γ4,
Γ7})=90 (the inclusion ofΓ4 triggers the inclusion ofΓ7), R({ Γ2,
Γ3})=120, R({ Γ3, Γ4, Γ7})=140, R({ Γ1})=150, and so on. The
total number of possible subsets according to the graphG is 16.

This approach, while finding the optimal subsetΩ, requires a
large amount of computation time and can be used only with a
small number of applications.
4.3.2 Ad-hoc Solution (AH)
If the number of applications is larger, a possible ad-hoc solution
could be based on a greedy strategy which, starting fromΩ=∅,
progressively enlarges the subset until a valid solution is pro-
duced. The algorithm looks at all the non-frozen applications and
picks that one which, together with its dependencies, has the
smallest modification cost. If the new subset does not produce a
valid solution, it is enlarged by including, in the same fashion, the
next application with its dependencies. This greedy expansion of
the subset is continued until the set is large enough to lead to a
valid solution or no application is left. For the example in Figure
4 the call toNextSubset(∅) will produceR({ Γ7})=20, and will be
successively enlarged toR({ Γ7, Γ3})=70, R({ Γ7, Γ3, Γ2})=140
(Γ4 could have been picked as well in this step because it has the
same modification cost of 70 asΓ2 and its dependenceΓ7 is
already in the subset),R({ Γ7, Γ3, Γ2, Γ4})=210, and so on.

While this approach finds very quickly a valid solution, if one
exists, it is possible that the total modification cost is much higher
than the optimal one.

4.3.3 Subset Selection Heuristic (SH)
An intelligent selection heuristic should be able to identify the rea-
sons due towhich a valid solution has not been found. Such a fail-
ure can have two possible causes: an initial mapping which meets
the deadlines has not been produced, or the second criterion is not
satisfied.

Let us investigate the first reason. If an applicationΓi is to meet
its deadlineDi, all its processesPj∈Γi have to be scheduled inside
their [ASAP, ALAP] intervals. InitialMappingScheduling (IMS)
fails to schedule a process inside its [ASAP, ALAP] interval if

there is not enough slack available on any processor, due to other
processes scheduled in the same interval. In this situation we say
that there is aconflict with processes belonging to other applica-
tions. We are interested to find out which applications are respon-
sible for conflicts encountered by ourΓcurrent, and not only that,
but also which ones areflexibleenough to move away in order to
avoid these conflicts.

IMS determines a metric∆i that characterizes the degree of
conflict and the flexibility of applicationΓi in relation toΓcurrent.
A set of applicationsΩ will be characterized, in relation toΓcur-

rent, by . The metric∆(Ω) will be used by our sub-

set selection heuristic if IMS has failed to produce a solution
which satisfies the deadlines. An application with a larger∆i is
more likely to lead to a valid schedule if included inΩ. In Figure
6 we illustrate how this metric is calculated. ApplicationsA, B
andC are scheduled on three processorsP1, P2 andP3, and our
goal is to implement the current applicationD. At a certain
moment IMS comes to the point to place processD1 ∈ D. How-
ever, it is not able to placeD1 inside its [ASAP, ALAP] interval I,
because there is not enough free slack available insideI on any of
the processors. We are interested to determine which of the appli-
cationsA, B and C are more likely to lend free slack forD1 if
remapped. Therefore, we calculate the slack resulted after we
move away processes from the intervalI. For example, the
resulted slack available after remapping applicationC (moving
processC1∈C either to the left or to the right inside its own
[ASAP, ALAP] interval) is of size|I| - min(|C1

L|, |C1
R|) . Thus, we

increment∆C with δC = |I| - min(|C1
L|, |C1

R|) - |D 1| . The incre-
mentsδB andδA to be added to∆B and∆A respectively, are also
presented in Figure 6. IMS continues with the other processes of
application D (after assuming that processD1 has been scheduled
at the beginning of intervalI). As result of the failed attempt to
mapD, IMS will produce the metrics∆A, ∆B, and∆C.

If the initial mapping was successful, the first step of MS
could fail during the attempt to satisfy the second criterion. In this
case, the metric∆i is computed in a different way. It will capture
the potential of an applicationΓi to improve the metricC2 if
remapped together withΓcurrent. Thus, for the improvement ofC2
we consider a totalnumber of moves from all the non-frozen appli-
cations (determined usingPotential-MoveC2(ψ)). For each move
that has as subjectPj∈Γi, we increment the metric∆i with the pre-
dicted improvement onC2.

MS starts by trying an implementation ofΓcurrentwith Ω=∅. If
this attempt fails, because of one of the two reasons mentioned
above, the corresponding metrics∆i are computed for allΓi∈ψ.
Our heuristic SH will then start by finding the ad-hoc solution
ΩAH produced by the AH algorithm (this will succeed if there ex-
ists any solution) with a corresponding cost RAH=R(ΩAH) and a
∆AH=∆(ΩAH). SH now continues by trying to find a solution with
a more favorableΩ (a smaller total cost R). Therefore, the thresh-
olds Rmax=RAH and∆min=∆AH/n (for our experiments we consid-
ered n=2) are set. For generating new subsetsΩ, the function
NextSubset now follows a similar approach like ES but in a re-
verse direction, towards smallersubsets, and it will consider only
subsets with a smaller total cost then Rmaxand a larger∆ then∆min
(a small∆ means a reduced potential to eliminate the cause of the

Figure 5. MS Strategy to Support Iterative Design

MappingSchedulingStrategy
Ω=∅
-- Step 1: try to find a valid schedule forΓcurrent that minimizesR(Ω)
repeat

succeeded=InitialMappingScheduling(ψ \ Ω, Γcurrent∪Ω)
-- compute ASAP-ALAP intervals
ASAP(Γcurrent∪Ω); ALAP(Γcurrent∪Ω)
if succeeded then

repeat -- try to satisfy the second design criterion
-- find moves with highest potential to maximize C2
move_set=PotentialMoveC2(Γcurrent∪Ω)
-- select and perform move which improves mostC2
move = SelectMoveC2(move_set); Perform(move)
succeeded = C2

P ≥tneed and C2
m ≥bneed

until succeeded or limit reached
end if
if succeeded and R(Ω) smallest so far then

Ωvalid=Ω; solutionvalid=solutioncurrent
end if
-- try another subset
Ω=NextSubset(Ω)

until termination condition
if not succeeded then modify architecture; go to step 1; end if
-- Step 2: try to improve the cost function C
solutioncurrent=solutionvalid; Ωmin=Ωvalid
repeat

-- find moves with highest potential to minimize C
move_set=PotentialMoveC(Γcurrent∪Ωmin)
-- select move which improvesC
-- and does not invalidate the second design criterion
move = SelectMoveC(move_set); Perform(move)

until C1 has not changed or limit reached
end MappingSchedulingStrategy

∆ Ω() ∆i
Γi Ω∈
∑=

A1 B1

C1

A3A2

D1

δA = max(|I| - |B1| - min(|A1
L|, |A1

R|), |I| -

δC = |I| - min(|C1
L|, |C1

R|) - |D1 |

δB = |I| - |A1| - min(|B1
L|, |B1

R|) - |D1 |

ASAP(D1) ALAP(D1)

|I| = ALAP(D1) - ASAP(D1)

ALAP(C1)ASAP(C1)

C1
RC1

L

P1

P3

Figure 6. Metric for the Subset Selection Heuristic

P2

 min(|A2
L|, |A2

R|) - min(|A3
L|, |A3

R|)) - |D1 |

0

200

400

600

800

1000

1200

320 400 480 560 640

AH

SH

ES

0

20

40

60

80

100

120

140

320 400 480 560 640

AH

SH

ES

A
ve

ra
ge

 M
od

ifi
ca

tio
n

C
os

tR
(Ω

)

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[m
in

]

Figure 7. Average Modification Cost (a) and Execution Time (b) for MS with the AH, SH and ES Approaches to Subset Selection

a) Number of processes (applications) inψ
320(6) 400(8) 480(10) 560(12) 640(14) 320(6) 400(8) 480(10) 560(12) 640(14)

b) Number of processes (applications) inψ

initial failure). Each time a valid solution is found, the current val-
ues of Rmax and∆min are updated in order to further restrict the
search space. The heuristic stops when no subset can be found
with ∆>∆min, or a certain imposed limit has been reached (e.g. on
the total number of attempts to find new sets).

5. EXPERIMENTAL RESULTS
For evaluation of the proposed strategies we first used process
graphs of 80, 160, 240, 320 and 400 processes, representing the ap-
plication Γcurrent, generated for experimental purpose. 30 graphs
weregenerated for each graph dimension, resulting in a total of 150
graphs. Weconsidered an architecture consisting of 10 nodes. For
the communication channel we considered a transmission speed of
256 kbps and a length below 20 meters. The maximum length of
the data field in a bus slot was 8 bytes. Experiments were run on a
SUN Ultra 10.

The first results concern the quality of the solution obtained
with our mapping strategy MS using the search heuristic SH com-
pared to the case when the ad-hoc approach AH and the exhaustive
search ES are used. For each of the five graph dimensions for
Γcurrent we have considered a set of existing applicationsψ con-
sisting of 320, 400,480, 560 and 640 processes, respectively. The
sets contained 6, 8, 10, 12 and 14applications, each application
with an associated modification cost assigned manually in the
range 10 to 100. The available slack is of about 50% of the total
schedule size. The dependencies between applications were such
that the total number of possible subsetsΩ resulted for each setψ
were 32, 128, 256, 1024 and 4096. We have considered that the
future applicationsΓfuture consist of a process graph of 80 pro-
cesses, randomly generated according to the following specifica-
tions:St={20, 50, 100, 150, 200 ms},ft(St)={10, 25, 45, 15, 5%},
Sb={2, 4, 6, 8 bytes},fb(Sb)={20, 50, 20, 10%},Tmin=250 ms,
tneed=100 ms andbneed=20 ms.

MS has been used to produce a valid solution for each of the
150 process graphs representingΓcurrenton the target systemψ us-
ing the ES, AH and SH approaches to subset selection. Figure 7a
compares the three approaches based on the total modification
cost needed inorder to obtain a valid solution. The exhaustive ap-
proach ES is able to obtain valid solutions with an optimal (small-
est) modification cost, while the ad-hoc approach AH produces in
average 3.12 times more costly modifications in order to obtain
valid solutions. However, in order to find the optimal solution ES
needs large computation times, as shown in Figure 7b. For exam-
ple, it can take more than 2 hours in average to find the smallest
cost subset to be remapped that leads to a valid solution in the
case of 14 applications (640 processes). We can see that the pro-
posed heuristic SH performs well, producing close to optimal re-
sults with a good scaling for large application sets. For the results
in Figure 7 we have eliminated those situations in which no valid
solution could be produced by MS.

Another important aspect to be proven by experiments is the
extent to which the mapping strategy proposed in the paper really
facilitates the implementation offuture applications. For these

experiments we have considered that no modifications are
allowed to the applications inψ. We have used an existing set of
applicationsψ consisting of 400 processes, with a schedule table
of 6s on each processor, and a slack of about 50% of the total
schedule size. Then, we have mapped graphs of 40, 80, 160 and
240 nodes representing theΓcurrentapplication on top of ψ.

After mapping and scheduling each of these graphs we have
tried to add a new applicationΓfuture to the resulted system (for
Γfuture we used the same experimental set as presented before).
The experiments have been performed two times, using first MS*

(we call MS* the version of MS in which no modification of
applications in ψ is allowed), and then anad-hoc mapping
approach (AM), for mappingΓcurrent. In both cases we were
interested if it is possible to find a valid implementation forΓfuture
on top ofΓcurrent, using the initial mapping algorithm IMS. The
AM approach is a simple, straight-forward solution to produce
designs which, to a certain degree, support an incremental
process. Starting from the initial valid schedule of lengthS
obtained by IMS for the graphG with N processes, AH uses a
simple scheme to redistribute the processes inside the [0,D]
interval, whereD is the deadline of the process graphG. AH
starts by considering the first process in topological order, let it be
P1. It introduces afterP1 a slack of size min(smallest process size
of Γfuture, (D-S)/N), thus shifting allP1’s descendants to the right.
The insertion of slacks is repeated for the next process, with the
current larger value ofS, as long as the resulted schedule has anS
≤ D.

Figure 8 shows the number of successful implementations in
the two cases. In the caseΓcurrenthas been mapped with MS*, this
means using the design criteria and metrics proposed in the paper,
we were able to find a valid solution for 65% of the total process
graphs considered. However, using AM to mapΓcurrent has led to
a situation where IMS is able to find schedules which satisfy the
deadlines for only 27.5% cases. WhenΓcurrent grows to 160 pro-
cesses, only MS* is able to find a mapping ofΓcurrent that sup-
ports an incremental design process, accommodating more that
60% of the future applications. If the remaining slack is very
small, after we map aΓcurrentof 240, it becomes practically impos-
sible to map new applications without modifying the current sys-
tem.

0

20

40

60

80

100

120

40 80 160 240

MH

AM

P
er

c.
 o

fΓ
fu

tu
re
 A

pp
lic

at
io

ns
 [%

]

Figure 8. Percentage ofΓfuture Apps. Successfully Mapped
Number of processes inΓcurrent

2401608040

MS*

If the mapping heuristic is allowed to modify the existing sys-
tem, as discussed in this paper, then we are able to increase the to-
tal number of successfully mapped applicationsΓfuture from 65%
with MS* to 77.5% with MS. For aΓcurrentwith 160 processes the
increase is from 60% to 92%. Such an increase is, of course, ex-
pected. The important aspect, however, is that it is obtained not by
randomly selecting old applications to be remapped, but by per-
forming this selection such that the total modification cost is min-
imized.

Finally, we considered an example implementing a vehicle
cruise controller (CC) modeled using one process graph. The
graph has 32 processes and it was to be mapped on an architecture
consisting of 4 nodes, namely: Anti Blocking System, Transmis-
sion Control Module, Engine Control Module and Electronic
Throttle Module. The period was 300 ms, equal to the deadline.
In order to validate our approach, we have considered the follow-
ing setting. The systemψ consists of 80 processes generated ran-
domly, with a schedule table of 300 ms and about 40% slack. The
CC is theΓcurrentapplication to be mapped. We have also generat-
ed 30 future applications of 40 processes each with the character-
istics of the CC, which are typical for automotive applications. By
mapping the CC using MS* we were able to later map 21 of the
future applications, while using AM only 4 of the future applica-
tions could be mapped. When modifications of the current system
were allowed, using MS, we are able to map 24 of the 30 future
applications.

6. CONCLUSIONS
We have presented an approach to the incremental design of dis-
tributed hard real-time embedded systems. Such a design process
satisfies two main requirements when adding new functionality:
already running applications are disturbed as little as possible, and
there is a good chance that, later, new functionality can easily be
mapped on the resulted system. Our approach assumes a non-pre-
emptive static cyclic scheduling policy and a realistic communi-
cation model based on a TDMA scheme.

We have introduced two design criteria with their correspond-
ing metrics that drive our mapping strategy to solutions support-
ing an incremental design process. Three algorithms have been
proposed to produce a minimal subset of applications which have
to be remapped and scheduled in order to implement the new
functionality. ES is based on a, potentially slow, branch and
bound strategy which finds an optimal solution. AH is very fast
but produces solutions that could be of too high cost, while SH is
able to quickly produce good quality results. Theapproach has
been validated through several experiments.

REFERENCES
[1] T. Blicke, J. Teich, L. Thiele, “System-Level Synthesis

Using Evolutionary Algorithms”, Des. Aut. for Emb. Syst.,
V4, N1, 1998, 23-58.

[2] B.P. Dave, G. Lakshminarayana, N.K. Jha, “COSYN: Hard-
ware-Software Co-Synthesis of Heterogeneous Distributed
Embedded Systems”, IEEE Trans. on VLSI Systems, March
1999, 92 -104.

[3] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with Bus
Access Optimization for Distributed Embedded Systems”,
IEEE Transactions on VLSI Systems, October 2000.

[4] R. Ernst, "Codesign of Embedded Systems: Status and
Trends", IEEE Design&Test of Comp., April-June, 1998, 45-
54.

[5] P. B. Jorgensen, J. Madsen, “Critical Path Driven Cosynthesis
for Heterogeneous Target Architectures,” Proc. Int. Work-
shop on Hardware-Software Co-design, 1997, 15-19.

[6] P.V. Knudsen, J. Madsen, "Integrating Communication Pro-
tocol Selection with Hardware/Software Codesign", IEEE
Trans. on CAD, V18, N8, 1999, 1077-1095.

[7] H. Kopetz, G. Grünsteidl, “TTP-A Protocol for Fault-Toler-
ant Real-Time Systems,” IEEE Computer, 27(1), 1994, 14-23.

[8] C. Lee, M. Potkonjak, W. Wolf, "Synthesis of Hard Real-Time
Application Specific Systems", Des. Aut. for Emb. Syst., V4,
N4, 1999, 215-241.

[9] S. Narayan, D.D. Gajski, "Synthesis of System-Level Bus
Interfaces", Proc. Europ. Des. & Test Conf, 1994, 395-399.

[10] R.B. Ortega, G. Borriello, "Communication Synthesis for
Distributed Embedded Systems", Proc. Int. Conf. on CAD,
1998, 437-444.

[11] P. Pop, P. Eles, T. Pop, Z. Peng, “An Approach to Incremen-
tal Design of Distributed Embedded Systems,” Submitted to
the Design Automation Conference, 2001.

[12] S. Prakash, A. Parker, “SOS: Synthesis of Application-Spe-
cific Heterogeneous Multiprocessor Systems”, Journal of
Parallel and Distrib. Comp., V16, 1992, 338-351.

[13] D. L. Rhodes, Wayne Wolf, “Co-Synthesis of Heterogeneous
Multiprocessor Systems using Arbitrated Communication”,
Proceeding of the 1999 International Conference on CAD,
1999, 339 - 342.

[14] T. Y. Yen, W. Wolf, "Hardware-Software Co-Synthesis of Dis-
tributed Embedded Systems", Kluwer Academic Publ., 1997.

Minimization of Execution Scenarios in Static

Priority Preemptive Scheduled Real-Time

systems

Anders Pettersson

Email : apo@mdh.se

Department of Computer Science and Computer Engineering

M�alardalen University

P.O. Box 883, SE-721 23 V�aster�as, SWEDEN

Abstract

In static priority preemptive real-time systems a large number of execution sce-
narios can occur. This can lead to that a lot of e�ort is put into testing of the system.
The reason for this can be that a certain degree of con�dence must be assured, and the
coverage criteria is set to test all possible execution scenarios. In distributed systems
the complexity increases with the amount of the scenarios produced. The e�ort in
testing of such system could be decreased if the number of execution scenarios were
reduced. In this paper we show results from simulations of jitter minimization in ex-
ecution time of tasks in static priority preemptive scheduled real-time systems. By
simulation of a real-time micro-kernel with support for jitter minimization we have
observed that reduction of execution scenarios can be acheived. This has been done
by adapting the worst case and best case execution time parameters. We have also
made some basic observation when there is only one execution scenario. Algorithms
revealing preemption points that a�ects the number of execution scenarios are pre-
sented. These algorithms can assist real-time systems developer to consider testability
at design time.

1

Deterministic Java in Tiny Embedded Systems

Anders Nilsson
Torbjörn Ekman

Department of Computer Science
Lund University, Sweden

{andersn | torbjorn}@cs.lth.se

Abstract

As embedded systems become more and more complex,
and the time to market becomes shorter, there is a need in
the embedded systems community to find better program-
ming languages that let the programmers develop correct
code faster. The programming languages used today—
typically C and/or Assemblers—are just too error-prone.
The Java technology has therefore gained a lot of interest
from developers of embedded systems in the last few years.

We propose an approach based on compiling Java into
native machine code via C as an intermediate language.
The C code generation process should also add close in-
teraction with a fully pre-emptive incremental garbage col-
lector and a small and efficient real-time kernel. Tests per-
formed on a small 8-bit microprocessor show that it is pos-
sible to use a modern object-oriented language with auto-
matic memory management—such as Java—and yet gen-
erate fully predictable code that can be run in very small
devices with severe memory constraints.

1. Introduction

Embedded systems are traditionally programmed in C or
Assembler, but as the systems grow more complex and the
time to market decrease, the need for a more secure and
structured language has increased.

In the last few years, the programming language Java
[11] has gained more and more interest among embed-
ded systems developers. The object-orientation, strict type
checking, and automatic memory management, are features
that make it easier to write large and complex systems with
less risk of introducing difficult bugs. It’s C-like syntax
also appeals to C programmers as it makes it easier for
them learn, as well as makes it easier to port legacy C code
to Java. In the area of automatic control, where domain-
specific languages and run-time systems [9, 1] are prefer-
ably used, our work supports more robust porting of such

systems to even small embedded devices.
However, some serious problems arise when one wants

to use Java in small embedded systems, where the most
significant ones have to do with the inevitable speed- and
memory constraints imposed by using a Java Virtual Ma-
chine (JVM). If hard real-time demands are to be fulfilled,
there are also problems with most garbage collectors not
being predictable with regard to non-preemptable execution
time. This can result in too much jitter in the accomplished
sampling interval of high priority threads, or even missed
samples or deadlines.

1.1. Problem area

Our work is directed towards a certain class of applica-
tions and systems where a traditional Java environment can-
not fulfill our application demands. Examples of such ap-
plications can be found in tiny embedded control devices
used in industrial processes. The demands on that kind of
embedded system are:

Correctness: The system must not crash due to some bug
causing a memory leak or pointer arithmetic failure,
for instance once every three months. Of course a pro-
gramming error can result in too much memory being
consumed, but in such a case controlled error handling
(exceptions) should enable graceful degradation.

Hard Real-Time: The physical process may be very sens-
itive to jitter in the sampling interval of the control-
ler. Too much jitter may cause the process to perform
badly, or even possibly become unstable[2].

Speed: Applications, such as a servo control, may need a
sampling interval down to a few milliseconds to per-
form well.

Cost: To be able to sell such systems, in some cases, we
cannot use anything more powerful than, say, a simple
8 bit micro-controller with less than 128KB of RAM.

The Correctnessdemand indicates that we should use a
modern language with strong typing and automatic memory
management, and only use C and assembler for isolated
functions and hardware interfaces. Of course an applic-
ation needs to be correctly written and tested in order to
really be correct. Using a safe1 language drastically im-
proves the development process. TheHard real-time de-
mand requires predictability in both run-time and garbage
collector. TheSpeedandCost demands indicates that we
must look for a reasonably effective solution so that cheap
micro-controllers can be used.

The correctness demand and the other three demands
have so far been contradictory. The topic of this paper
is to resolve that contradiction! On one hand, we want
to use Java, representing a safe object-oriented program-
ming language with many other nice features. On the other
hand, Java in it’s traditional—interpreted byte code—form
is neither predictable regarding timing nor can it be run on
small micro-controllers with very limited amounts of RAM.

We are also committed to not making any extensions to
the Java language as that would make it more difficult to
simulate the software with standard Java tools on a standard
workstation where all sorts of debugging tools are available.

From a pessimistic point of view, the Java language does
not support predictability and real-time programming, and
Java VMs and standard class libraries does not fit into very
small systems. From an optimistic point of view, however,
the Java language supports concurrency and it does not ex-
plicitly hinder utilization of real-time support from the un-
derlying system, and for development of embedded systems
we are free to use an appropriate (possibly our own) run-
time system. The following is based on the optimistic ap-
proach.

1.2. Approach

We propose an approach consisting of three parts work-
ing together:

Compiled Java: By compiling Java—via C as an interme-
diate language—we should be able to make typical ap-
plications sufficiently fast and memory effective.

Real-Time Kernel: A small real-time kernel which is
tailored for small micro-controllers and object-
oriented applications.

Predictable Garbage Collector: A predictable garbage
collector, which is integrated with the kernel, helps us
to fulfill also the hard real-time demand.

1By a safe languagewe mean a language that ensures that all possible
executions are expressed by the program itself. Specifically C and C++ are
unsafe, whereas Java is safe. C# is safe except where declared unsafe.

2. Compiling Java

To be able to meet the demands on speed and memory
consumption2, we need to compile our Java code into pro-
cessor specific machine code. There are basically two ways
to do this:

Native compiler: An ordinary compiler taking Java source
code, or byte code, and producing machine dependent
binary code.

Intermediate language: A tool for converting Java source
or byte code to some intermediate language. The in-
termediate representation can then be compiled with
a standard compiler for the specific machine architec-
ture.

2.1. Native Compiler

Using a native Java compiler seems at a first sight to
be the most straight-forward way to produce machine code
from Java source. There are some native compilers avail-
able, both as commercial packages and as open source.
Most of those are aimed at speeding up execution of large
Java applications, especially on the server side in a client-
server solution, see for example TowerJ3[25] or Jove[13].
WindRiver Inc. has developed a native Java compiler,
TurboJ[28], that produces object files which can be linked to
their real-time operating system VxWorks. They have how-
ever not dealt with the predictability problem incurred by
the automatic memory management, and thus recommend
that all critical real-time parts of an application should be
written in C/C++ as usual.

2.2. Intermediate language

There are some tools available today which can trans-
late Java to an intermediate language, usually C. Most of
them, for example Toba[20] and Harissa[17] take Java byte
code and converts it to C source code. The other type of
converter—going from Java source to C source—is repres-
ented by jcc[23]. There are good things and bad things in
both approaches. Converting byte code makes it easier to
use pre-compiled Java libraries or applications which may
not be available as source. On the other hand, the byte
code is tailored for a generic stack machine with no hard-
ware registers, which we think will harm the performance
compared to generating C code from Java source, at least
if no special optimization techniques are used. Converting
Java source code also produces a somewhat more readable

2The Java byte codes actually occupies less memory than machine
codes, but a JVM will take some memory space. Both in ROM for itself
and some extra RAM for it’s runtime. A JVM implemented in hardware
would need significantly less ROM, but that solution has other drawbacks.

C code, which makes debugging feasible also for the inter-
mediate code.

The biggest drawback of using Java source as input to the
C code converter is that many of the available Java packages
are only available as pre-compiled byte code. This intro-
duces the limitation that we can only compile Java programs
that are —in itself and for all dependencies—available as
source. However, preliminary tests with Java decompilers,
such as jad [15], shows that the byte code can quite well
be decompiled into Java source, then making our approach
feasible.

2.3. Our Compiler

For portability- and efficiency reasons we are focusing
on going via C as an intermediate language for compiled
Java, rather than implementing a compiler or adapt an ex-
isting compiler, for example GCC[7], to meet our needs. A
tool that converts Java source to C can also generate object
layout information and calls that makes predictable garbage
collection possible.

A tool called Java2C has been developed. Given Java
source as input, it generates the corresponding C code as
well as the necessary GC administrative calls and informa-
tion about the layout and size of objects.

The compiler: The Java2C tool is built in 100% pure
Java2, so it can be used on any platform that can run a
Java2 virtual machine. It also implies that the Java2C
tool could convert itself for native compilation and bet-
ter performance. A parser generator is used to build a
parser for the Java formal grammar. The parser can
then take any valid Java source code file and produce
an abstract syntax tree (AST). From this AST, the C
source code is then generated in one pair of files for
each Java class or interface (one .h and one .c file).

The compiler-compiler: The JavaCC compiler-compiler
[16] is a freely available parser generator written in
Java. It was originally written by Sun Microsystems
but is now freely available from Metamata Inc. Given a
grammar in a BNF-like form, it builds a parser in Java
and optionally also an AST from the parsed file. Each
node of this AST consists of a Java class all inherit-
ing a common ancestorSimplenode . This makes it
fairly easy to traverse the syntax tree by using method
overloading.

Code generationThe generation of C code is accom-
plished by traversing the AST of a class in two passes.
During the first pass information about inheritance,
field- and method declarations is gathered whereas
the actual code generation is accomplished during the
second pass.

2.4. Object model

Some works has been carried out at the department on
how to model compiled real-time Java [4]. An instance of
any object is represented by a pointer to an object instance
structure, see Figure 1.

gc data

super

methods
virtual table

virtual table
interfaces

inherited
static fields

specific
static fields

gc data

super

methods
virtual table

virtual table
interfaces

inherited
static fields

specific
static fields

structure
Super class

Instance
structure

Class
structure

Method 1

Object instance handle

gc data

class pointer

Inherited
instance fields

instance fields
Specific

Method 3

Method 2

Figure 1. Run-time model of an object.

Consider a very simple Java class with one constructor
and one method like:

class Dummy {
int a,b;
String name;

Dummy() {
a = 1;
b = 2;
name = new String("dummy");

}

String getName() {
return name;

}
}

This results in the following C code:

struct DummyClassStruct {

// GC data

// Super class ptr
struct ObjectClassStruct *super;

//methods virtual table ptr
void* (**methodTblPtr)();

//interfaces virtual table ptr
void* (**interfaceTblPtr)();

};
typedef struct DummyClassStruct DummyClass;

struct DummyInstanceStruct {

// GC data

// Class ptr
struct DummyClassStruct *classPtr;

// Primitive type fields
int a;
int b;

// Field of type String
REF(struct StringInstanceStruct) name;

};
typedef struct DummyInstanceStruct

DummyInstance;

TheREF(a) macro is explained in section 5.

3. Real-Time Kernel

The kernel made is a preemptive multi-threaded kernel
with a fixed priority based scheduler. Effort has been made
in creating predictable lower and upper bounds on each
function in the kernel. Worst case execution times of oper-
ations affecting context switch, interrupts, and initialization
of threads are made to be affected by the number of prior-
ity levels and not the number of currently running threads
to lower the jitter. Much of the kernel properties are stand-
ard, but the structure of the queues, with respect to priorities
and execution time, may not be new but we have not seen it
elsewhere.

3.1. Thread model

The kernel supports two different types of threads:

Ongoing threads Each ongoing thread has its own stack
space and will upon completion be removed from the
system. The thread will execute for a small period of
time and then be preempted by another thread. These
threads have no limitations on which kernel primitives
to use, or how common resources are shared.

Periodic threads These threads have a fixed period and
may not be preempted by threads that have the same
priority, and hence they may not share synchronization
primitives. These limitations makes it possible for all
periodic threads of the same priority to share a com-
mon stack which improves memory consumption.

These types of threads, but not their implementations, are
related to [4] which was inspired by [18].

3.2. Priority Queues

When a thread is in a suspended or in a ready state, it
is placed in a queue. We used the data structure depicted in
Figure 2. Thenext pointerreferences the next element in the
queue. Thelast pointerreferences the last thread in a group
with threads of the same priority. Within each priority level
we use the last-in-first-out strategy. To insert an element we
only have to go through all priority levels in the worst case,
regardless how many threads there are in the queue. We can
dequeue and enqueue all threads with the same priority in
constant time.

3.3. Scheduling

A thread is assigned a time-slice to execute by the ker-
nel, and control is transferred to that thread during a con-
text switch. The thread can be preempted either by using
a function in the kernel or when it has used its time slice.
The scheduler is then invoked and chooses the next thread
to execute.

The scheduler uses as many ready queues as there are
priority-levels in the kernel. Each queue is of FIFO type.
When a thread is preempted, after it has used its time slice,
it is inserted last in the queue of its priority class. The sched-
uler then chooses the next thread to execute, by selecting the
first element in the queue of highest priority. If the queue is
empty, the queue of second highest priority is used and so
forth.

3.4. Time

The kernel is interrupted at a given interval and at this
time the tick counter is updated. This period is also used as a
timeslice, so the kernel preempts the current running thread
and reschedules at this time too. There are three primitives
in the kernel for a user program to handle time. The tick
counter can be read as well as a fine-grained timer. The ker-
nel also provides a primitive for suspending a thread until a
certain time.

When the tick counter is increased the kernel also moves
any threads waiting for that tick from their suspended state
to ready state. A time queue that consists of several queues,

Next

Last

Pred

Next

Last

Pred

Next

Last

Pred

Next

Last

Pred

Next

Last

Pred

Priority nPriority n-1 Priority n+1

Figure 2. Queue data structure

like the one in Figure 2, are chained together to a long
queue. Each subqueue is sorted by priority and the sub-
queues are chained together in a low-to-hi time order. This
way threads of the same priority class that are waiting for
the same tick can be handled as a unit. We have balanced
the routine that moves threads from the time queue into the
different ready queues to always take the worst case execu-
tion time. This is done to lower the jitter.

3.5. Synchronization

Synchronization is supported in the kernel by semaphore
primitives. Other primitives can in turn be built from sem-
aphores. There exist both binary and counting semaphores.
Trying to take a semaphore which counter is zero suspends
the current running thread and the kernel reschedules.

To solve the well known problem with priority inversion
when using semaphores for mutual exclusion, a mutex form
of semaphore is supplied. The most commonly used priority
inheritance protocol to defeat priority inversion is the basic
priority inheritance protocol. This protocol does, however,
permit a thread to be blocked by several lower prioritized
threads. Both priority ceiling and immediate inheritance
protocol permit only one lower prioritized thread to block
another thread and also prohibit deadlock [21]. The mutex
primitive uses the immediate inheritance protocol as it is
cheaper to implement and has the same worst case behavior
as the more elegant priority ceiling protocol.

3.6. Interrupts

To each hardware interrupt a number of threads with
different priorities can be attached. When an interrupt is
triggered the kernel is invoked and the waiting threads are
moved from an interrupt queue to different ready queues
based on priority. The same type of queue as in Section 3.2
is used for interrupt queues. The kernel then reschedules,
and the selected thread’s context is restored.

4. Garbage Collector

The garbage collector (GC) in the run-time system needs
to have short predictable worst-case execution times at each

invocation to fulfill hard real-time requirements. A new
fine-grained incremental mark-compact algorithm, which
ensures no fragmentation as well as bounded worst case ex-
ecution times of all operations, is proposed. An introduction
to incremental mark-compact algorithms and GC in general
is available in [27]. This GC is described in detail in [10].

4.1. Introduction to the GC

References to the heap stored in processor registers, on
the program stack, or in global variables are calledroots.
All objects that are reachable directly through the roots or
through a chain of pointers from the roots are considered to
be live objects. The GC will trace the reachable objects and
mark them. The rest of the objects on the heap are garbage
and can be reclaimed.

Work done by the GC is interleaved with normal exe-
cution of the user program, often called themutator [26].
We will use the tri-color abstraction introduced in [8] to de-
scribe synchronization between the mutator and collector.
Each object on the heap is painted in one of three colors:

Black indicates that the object and its immediate descend-
ants have been visited.

Grey indicates that the object must be visited by the col-
lector. Either grey objects have been visited by the
collector but not all pointers are scanned, or their con-
nectivity to the rest of the graph has been changed.

White objects are unvisited and at the end of the marking
phase considered being garbage.

To make sure that the collector has a coherent view of
the heap during the marking phase the following invariant
must hold:

No pointer in a black object references a white object.

Coherence is maintained by barriers between the mutator
and the heap. These barriers can be either aread-barrier,
trapping reads, or awrite-barrier, trapping writes.

4.2. The marking phase

During the marking phase we start by coloring all ob-
jects referenced by the root pointers grey. We have a stack
of root pointers for each thread which is processed root by
root. Each object referenced by a root is inserted into a
marking list. The elements in the marking list are the grey
objects. We then visit all grey objects and mark the objects
referenced by them grey. All pointers in the object are pro-
cessed and then the visited object is colored black. The pro-
cedure is repeated for all grey objects. This way all objects
reachable from the roots are visited. In the end of the mark-
ing phase all objects are either black or white. As we don’t
want to risk overflowing the stack by recursively travers-
ing the graph we use Cheney’s, [6], non recursive marking
strategy with a marking list where the reference to the next
object to mark is placed in each object.

If the mutator, during the marking phase, tries to set a
pointer in a black object to reference a white object we im-
mediately color the referenced object grey to make the in-
variant hold. To ensure that this is done awrite barrier is
used that colors the white object grey by inserting it last in
the marking list.

4.3. The sweeping phase

During the sweeping phase all black objects are moved
into one continuous block at the top of the heap. Ascan
pointer is used, which is initially set to reference the last
allocated memory location, from the marking phase of the
previous cycle. All objects are processed in a top-down or-
der by decreasing thescan pointerwith the size of the cur-
rently scanned object. Black objects are moved to the top
of the heap, and white objects are reclaimed. To be able to
traverse the heap in either direction the object size is placed
in both the beginning and the end of the objects. When the
scan pointerreaches the bottom of the heap all objects are
processed, the current cycle completed, and the next initi-
ated. In the next cycle the heap is traversed in the opposite
direction.

4.4. Allocating new objects

New objects are allocated at the top of the heap. At the
end of the current cycle, these objects and the object moved
during the sweeping phase, are placed in one continuous
block at the top of the heap. These objects will be colored
and marked during the following collection cycle. When an
object is allocated we need to initialize all pointers in the
object to referencenull through a table. The use of a table
is discussed in Section 4.5.

4.5. Moving objects

When an object is moved to a new location we must en-
sure that all references to that object are changed to refer-
ence the new location. Moving the object and changing the
references must be done as an atomic operation, to make
sure that all accesses to an object are made to the correct
copy of the object. As the number of references to an ob-
ject is not known, we would not get a tight upper bound
for worst-case execution time of that operation. To get an
upper bound on moving an object we access referenced ob-
jects through a table. All pointers reference the target object
indirectly through the table. This way only the reference in
the table needs to be changed. This is theread barrier.

As the entire object needs to be moved all at once, the
kernel may be suspended for a too long time to meet hard
real-time requirements. We allow preemption during copy-
ing of an object, and if we are preempted we restart copying
the object when we resume. This is to ensure that the copy
of the object contains the most recent data.

4.6. Scheduling of GC work

To be sure that the collector will reclaim garbage at a
rate necessary for the mutator never to run out of memory,
we a priori calculate a minimum collection rate. As long
as the current collection rate is above the a priori calculated
worst case, we are ensured never to run out of memory. The
operation that can exhaust the heap is memory allocation,
and therefore we perform an increment of GC at each alloc-
ation. We can in this way make sure that there is space on
the heap for the new object. We also want to make sure not
to do more collection than necessary to interfere as little as
possible with the mutator.

To simplify the discussion we assume that all objects are
of the same size. This can quite easily be extended to differ-
ent sized objects as in our actual implementation. Through-
out this discussion we will use the following notation:

S total number of objects that the heap
can hold

W the amount of GC work done so far dur-
ing this cycle

Wmax the amount of GC work necessary dur-
ing one cycle in the worst case

Emax maximum number of live objects
Amax maximum number of new objects alloc-

ated during one cycle
Hmax maximum number of new objects alloc-

ated by high-priority threads
A number of objects allocated so far dur-

ing this cycle
Rmax maximum number of root pointers

We define the minimum GC rate,GCRmin as

GCRmin =
Wmax

Amax

and current garbage collection rate,GCR as

GCR =
W

A

As long asGCR > GCRmin we are ensured not to run out
of memory. The work that has to be done during one cycle
is divided in three parts: processing the roots, marking all
live objects, evacuating the marked objects. The maximum
work that has to be done can be written:

Wmax = � � Rmax + � �Emax +Emax

where the coefficients� and � compensate for different
costs in processing a root or marking an object compared
to evacuating an object. For a given hardware,� and� are
constant.

The workWmax has to be done during one GC cycle,
and how long this cycle is depends on how much memory
we have. At each allocation we let the collector perform an
increment of GC work. We will start by finding out how
long a cycle is. When finishing a collection cycle the max-
imum number of objects on the heap is the number of live
objects from last cycle,Emax, plus the maximum number
of new objects allocated during that cycle,Amax. During
the following cycle the mutator may allocate as many as
Amax new objects. The maximum total number of objects
on the heap is thereforeEmax + 2 � Amax. As we know
how big the heap is,S, we can easily calculate how many
allocations we can do in one cycle, without exhausting the
heap.

Amax =
S �Emax

2

We now have an expression for the minimum GC ratio ne-
cessary,GCRmin:

GCRmin = 2 �
� �Rmax + � � Emax +Emax

S �Emax

The current GC ratio,GCR, can be expressed as,

GCR = 2 �
� � i+ � � j + k

S �Emax

wherei is the number of processed roots,j the number of
marked objects, andk the number of evacuated objects. As
long asGCR � GCRmin we are ensured not to run out of
memory.

If we divide the maximum total work that has to be done,
Wmax, by the number of allocations we will do during a
cycle,Amax, we know how much work that will be done
at each allocation. The worst execution time for this work

can be calculated and added to the cost for allocating one
object.

Even if the amount of work that has to be done during
an allocation is small and bounded it can still be too long
for us to meet all deadlines. To improve the real-time cap-
abilities of the collector we use the technique proposed by
Henriksson, [12], and create a semi-concurrent GC. The
threads are divided into groups of high- and low-priority
threads. GC work is done interleaved with allocation for
the low-priority threads. To improve response time for the
high-priority threads we suspend the collector until after the
high prioritized threads have executed. We can view the col-
lector as a mid priority thread, that gets to execute after the
high prioritized threads. We need to make sure that there is
enough free space on the heap for the high-priority threads
to allocate new objects without exhausting the heap. We
denote the maximum number of objects allocated by high
priority threads, assuming they are all released at the same
time, Hmax. If we always have this much space free on
the heap we are ensured not to exhaust the heap, even if
we don’t perform any collection work during high-priority
thread allocations. The maximum total number of objects
on the heap is nowEmax + 2 � Amax + Hmax. The new
minimum GC ratio is:

GCRmin = 2 �
� � Rmax + � �Emax +Emax

S �Emax �Hmax

and the the current GC ratio is changed accordingly.

5. Integration

So far we have designed the kernel, the compiler and the
GC. But to make predictable garbage collection possible,
we need a tight coupling between the compiled application
and the garbage collector.

When using a preemptive mark-compact garbage col-
lector, great care must be taken when handling object ref-
erences as the currently running thread could be preempted
at virtually any time. We must assert that there are no de-
referenced object handles whenever the GC starts moving
objects around. To fulfill these demands, we must consider
all reference manipulations as atomic actions.

We must also inform the GC when new roots of object
trees are created, and when they are dismissed. This hap-
pens whenever a method is called. Consider the example
code below:

class Dummy {
public void aMethod(String s) {

String aString;
...

}
}

To register and unregister these two objects as roots in
the GC, we introduce the callsGC_PUSH(ref) and
GC_POP(nbr) which, respectively, pushes a referenceref
onto the GC stack and popsnbr references from the stack.
The code example above then results in the following gen-
erated code:

void Dummy_aMethod(REF(DummyInstance) this,
REF(StringInstance) s){

REF(StringInstance) aString;
GC_PUSH(this);
GC_PUSH(s);
GC_PUSH(aString);

...
GC_POP(3);

}

To implement the read-barrier we use a macroREF(a) , and
for the write-barrier we use a macroGC_SET(a, b) .

6. Experimental verification and experiences

We have run two types of tests to verify that our solution
is feasible. First, we have measured the predictable timing
for a multi-threaded application on a small microprocessor
typically found in small embedded systems. Second, we
have run some benchmarks on a normal desktop worksta-
tion to measure the efficiency of our generated code com-
pared to Java and C++.

6.1. Predictable timing

To verify our techniques, we have implemented a pro-
totype for a very limited target platform; the 8-bit Atmel
AVR RISC microcontroller [3]. This platform is very typ-
ical for tiny embedded systems, with only 128 KB ROM
and 64 KB RAM. The microcontroller used runs at 4 MHz
and approaches 1 MIPS per MHz. The kernel and garbage
collector allocates a footprint of less than 10 kbytes of ROM
and 1 kbyte of RAM. Worst-case execution times of opera-
tions in the kernel are summarized in Table 1. If we can pre-
dict worst-case execution times and worst-case memory de-
mands of the different threads, in combination with execu-
tion times of the kernel operations, we can use generalized
scheduling theory [22], to check if the system is schedulable
or not.

6.2. Comparison benchmarks

In order to get some kind of performance measurements
of the translated Java code, we have run some benchmark
tests on Java2C generated code as well as on a JVM and
compiled C++. The benchmarks presented are limited to
speed measurements on object allocation and methods call-
ing. So called “number crunching” is not that interesting as

Execution time in CPU cycles
Operation Worst Best

Context switch due to
timer interrupt

963 + 358 � k 889 + 346 � k

Context switch due to
voluntary

740 + 12 � k 728

suspension

Take a mutex 113 113
Give a mutex 1024 + 12 � k 1014

Create an object 234+78 �i+54 �n 234+78�i+54�n

Push a root 24 24
Popj roots 12 12
Referencenull 8 8
Read barrier 4 4
Write barrier 51 5

Process a root 83 64
Mark an object 110+78�i+118�n 110+78�i+60�n

Sweep an object 169 + 9 � s 104

Table 1. Measured performance with k priority
levels and object size s bytes with n pointers
divided into i groups. 1 CPU cycle is 0.25 �s.

Java2C translated arithmetic expressions code will perform
very close to the speed of hand-written C-code.

All execution time measurements were performed on a
Sun Ultra 5 workstation with 256MB of RAM memory run-
ning Solaris 7. The Java compiler used was jikes from
IBM and the virtual Java machine was Java HotSpot ver-
sion 1.3.0. G++ and GCC were of version 2.91.66.

The code generated with Java2C does not contain a
garbage collector. This because the GC developed is too
tightly coupled to the ARM microprocessor to be easily por-
ted to the SPARC. Adding our predictable garbage collector
would give some penalty on the measured execution times,
but the magnitude would not change.

The benchmarks were as follows:

Allocation. Allocate 2500 objects. The constructor of each
objects also allocates a byte array of size0� 5000.

Virtual methods. Make 1000000 calls to a small virtual
method.

Final methods. Make 1000000 calls to a small final
method.

Final methods. Make 1000000 calls to a small static
method.

The measured execution times are shown in Table 3.
From the results one can see that the performance of the

code from our translator is almost as fast as natively com-
piled C++ code, especially if we could allow some compiler
optimizations.

Execution time (ms)
Compiler/Run-time Allocation Virtual methods Final methods Static methods

java -Xint 350 13000 13450 11980
java 360 1180 1080 670

g++ 90 1720 960 1340
g++ -O2 90 970 70 310

Java2C / gcc 100 2280 2260 1380
Java2C / gcc -O2 100 1040 1000 140

Table 2. Measured execution times for some benchmarks.

What may seem astonishing is that the Java HotSpot per-
forms so well performing method calls. The explanation is
that because it is the same method that is called 1000000
times, HotSpot will soon perform JIT compilation.

7. Problems and Future Work

Problems concerning C as the intermediate language is
not so much about the C language— which is very allow-
ing, to say the least—but how the C compilers generate ma-
chine code. In the current implementation, the mandatory
atomicity of object reference manipulations is obtained by
using pre-emption points in the code, and by turning off all
compiler optimizations. A very interesting problem is to be
able to utilize compiler optimization techniques , but that is
outside the scope of this paper.

Another problem is to calculate a good upper bound on
the maximum number of live objects in the system. A guar-
anteed upper bound tends to be very pessimistic and will
degrade the performance of the system. There is, however,
recent work done [19] which provides a much better estim-
ate.

There is still some work to be done in the Java to C trans-
lator. Some of the more important features of the Java lan-
guage that is being implemented are interfaces and excep-
tions. The implemented object model is also, at the time of
writing, a somewhat simplified version of the one depicted
in Figure 2.4.

8. Related Work

There has been quite some work done on natively com-
piling Java, but not much on hard real-time Java for small
systems. Sun Microsystems Inc. has published a white
paper[24] on using the Java 2 Platform Micro Edition
(J2ME) for mobile devices. The J2ME is centered around
a small JVM called KVM and aimed at devices with a total
memory amount in the range of 128 - 512 KB. A J2ME ap-
plication can also be compiled to native code and linked to

the KVM for better performance. J2ME is, however, not yet
suited for use in systems with hard real-time demands.

Various issues concerning real-time behavior in Java
are dealt with inThe Real-Time Specification for Java[5].
There are significant drawbacks in this specification from
our point of view, specifically concerning memory manage-
ment. Instead of adopting a predictable run-time system, it
extends Java with a new memory organization. In addition
to the normalHeapMemory, it addsImmortalMemory, Im-
mortalPhysicalMemoryandScopedMemorymemory areas
which are all treated differently by the automatic memory
management system. These additions place responsibility
on the programmer to always do the right thing, since a
wrongly placed memory allocation type in an application
could totally void the real-time behavior of that application.

There has also been some work done on implement-
ing very small and memory efficient Java virtual machines
which can be deployed in systems with hard real-time de-
mands [14] but that requires more time and memory.

9. Conclusions

We have shown that it is possible to use Java as a
programming language for developing small embedded
systems with very limited resources of CPU power and
memory. Given a few assumptions on the memory usage
of an application, we can also show that hard real-time tim-
ing demands are met.

By choosing C as an intermediate language—and choos-
ing a suitable object representation model—we can achieve
the efficiency needed for running applications on very small
CPUs while still maintaining some platform independency.

By combining natively compiled Java with a very small
and efficient RT kernel and a pre-emtive garbage collector
we can write and test multi-threaded programs in a normal
Java runtime environment which can later be compiled for
small hard real-time systems.

10. Acknowledgments

VINNOVA (formerly NUTEK, the Swedish Board for
Tech. R&D) is acknowledged for financial support. We
are grateful for input and feedback from Anders Blom-
dell (@control.lth.se), and we thank Klas Nilsson (formerly
@control.lth.se and @abb.com, now @cs.lth.se) for inspir-
ing suggestions to work in this direction. We also thank
our GC-expert Roger Henriksson for many valuable com-
ments.

References

[1] IEC 1131-3, Programmable controllers, Part 3: Program-
ming Languages. International Electrotechnical Commis-
sion, 1992.

[2] K. J. Åström and B. Wittenmark.Computer Controlled Sys-
tems: Theory and Design. Prentice Hall, 3rd edition, Janu-
ary 1997.

[3] ATmega103(L) Preliminary (Complete), Jan. 2000.
http://www.atmel.com/acrobat/doc0945.ps.

[4] L. A. Bigagli. Real-time java, - a pragmatic approach. Mas-
ter’s thesis, Department of Computer Science, Lund Institute
of Technology, October 1998.

[5] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling,
D. Hardin, and M. Turnbull. The Real-Time Specification
for Java. Addison-Wesley, June 2000.

[6] C. J. Cheney. A non recursive list compacting algorithm.
Commmunications of the ACM, 13(11), 1970.

[7] Cygnus. The GNU compiler for the java language.
http://sourceware.cygnus.com.

[8] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: An exercise
in cooperation.Communications of the ACM, 21(11), 1978.

[9] J. Eker. A tool for interactive development of embedded
control systems. InPreprints 14th World Congress of IFAC,
Beijing, P.R. China, 1999.

[10] T. Ekman. A real-time kernel with automatic memory man-
agement for tiny embedded devices. Master’s thesis, Depart-
ment of Computer Science, Lund Institute of Technology,
November 2000.

[11] J. Gosling, B. Joy, and G. Steele.The Java Language Spe-
cification. The Java Series. Addison-Wesley, 1st edition, Au-
gust 1996.

[12] R. Henriksson.Scheduling Garbage Collection in Embed-
ded Systems. PhD thesis, Department of Computer Science,
Lund Institute of Technology / Lund University, 1998.

[13] Jove, super optimizing deployment environment for java,
July 1998. Instantiations Inc.http://www.instantiations.com.

[14] A. Ive. Implementation of an embedded real-time java vir-
tual machine prototype. Licentiate thesis, Department of
Computer Science, Lund Institute of Technology, 2001. In
preparation.

[15] P. Kouznetsov. Jad - the fast java decompiler, 2000.
http://www.geocities.com/SiliconValley
/Bridge/8617/jad.html.

[16] Java-cc parser generator. Metamata Inc.
http://www.metamata.com.

[17] G. Muller, B. Moura, F. Bellard, and C. Consel. Harissa: A
flexible and efficient java environment mixing bytecode and
compiled code.http://www.irisa.fr/accueil/index_uk.htm.

[18] K. Nilsen and S. Lee. Perc real-time api, July 1998.
[19] P. Persson. Predicting time and memory demands of object-

oriented programs. Licentiate thesis, Department of Com-
puter Science, Lund Institute of Technology, April 2000.

[20] T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hart-
man, T. Newsham, and C. A. Watterson. Toba: Java
for applications, aWay ahead of Time(wat) compiler.
http://www.cs.arizona.edu.

[21] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization.IEEE
Transactions on Computers, 39(9), 1990.

[22] L. Sha, R. Rajkumar, and S. S. Sathaye. Generalized rate-
monotonic scheduling theory: A framework for developing
real-time systems. InProceedings of the IEEE, volume 82,
1994.

[23] N. Shaylor. Jcc - a java to c converter.
http://www.geocities.com/
CapeCanaveral/Hangar/4040/jcc.html.

[24] Java 2 platform micro edition (j2me) technology for creating
mobile devices. http://www.java.sun.com, May 2000. Sun
Microsystems Inc. White Paper.http://www.java.sun.com.

[25] Deploying high-performance and flexible server-side applic-
ations, an introduction to towerj3. Tower Technology Cor-
poration.http://www.towerj.com.

[26] P. L. Wadler. Analysis of an algorithm for real time garbage
collection.Communications of the ACM, 19(9), 1976.

[27] R. R. Wilson. Uniprocessor garbage collection techniques.
In Proceedings of IWMM’92. Springer-Verlag, 1992.

[28] Turboj. WindRiver Inc.http://www.windriver.com.

Designing Agents for Systems with Adjustable

Autonomy

Paul Scerri and Nancy Reed

February 27, 2001

Intelligent agents are starting to assume more responsibility in more critical
tasks. Agents do not always work as required, however in some systems it is in-
feasible to simply \stop" an agent when its behavior is unsatisfactory. Instead it
is desirable to reduce the agent's autonomy and give control of the unsatisfactory
aspects of the agents task to a more competent entity. Adjustable Autonomy
(AA) is a recent idea that means that the autonomy of agents and humans in a
system can vary dynamically. In this paper we look at the relationship between
the design of agents and the design of AA for an intelligent system.

1 Intelligent Agents

Many of the recent, exciting developments in arti�cial intelligence (AI) have
centered around the concept of an agent. An agent is an autonomous entity
that senses its environment and acts intelligently and pro-actively towards its
goals[17, 2]. An important characteristic of an agent is that it has the ability to
take actions that a�ect its environment[7]. Some agents sense and act in purely
software environments (e.g. an operating system monitoring agent[16]), while
others have a physical embodiment and inhabit a physical environment (e.g. a
museum tour guide robot[3]). Because an agent can act, it can be assigned tasks
that can potentially be done more quickly, e�ciently, cheaply or safely than a
human can do them. Thus humans are freed from menial, dangerous and/or
boring tasks. Despite the long list of successful agent applications, it is likely
we have only scratched the surface of the possibilities intelligent agents have to
change the way we live our lives[6, 8]. In the future, autonomous agents will
take on more complex tasks and act more intelligently and more decisively.

An intelligent system is one consisting of intelligent agents and, possibly,
humans and/or other conventional software. Generally in an intelligent system
the assignment of responsibility and authority, i.e. autonomy, is either �xed
or switches between a small number of �xed con�gurations. In an intelligent
system with AA the system can exibly con�gure the assignment of autonomy
between the people and agents to best �t the situation.

1

2 Adjustable Autonomy

As AI technology develops, the autonomy agents have increases proportionally,
i.e. more capable agents are given more authority and more responsibility. In
most cases, once an agent's autonomy is determined by a system designer the
agent is left to ful�ll its responsibilities according to its speci�cation, within the
bounds imposed by its authority and capabilities. In complex environments, an
agent will be faced with a vast range of situations, in each of which it must
act correctly. However, it is unlikely that any agent has appropriate reason-
ing mechanisms, sensors and actuators to act appropriately in all situations it
could potentially face[15]. There will be some situations in which the agent will
make unacceptable decisions and, hence, take unacceptable actions { potentially
causing harm. Some situations are so unlikely that agent designers reasonably
ignore them, hence the agent is simply not designed to handle them properly.
Other situations might commonly occur but to build software or robotic hard-
ware to properly handle the situation may be considered too expensive or time-
consuming. Yet other situations will be unacceptably handled by an agent due
to \bugs" in its software. Importantly, the same reasons that cause an agent
to fail to handle a situation satisfactorily, may cause it to not even detect that
it has encountered a situation it is not capable of handling satisfactorily. For
example, an autonomous robot that cannot detect a wall to go around it may
not detect that it has bumped into the wall.

The more autonomy an agent has, over more complex and important tasks,
the more potentially serious the consequences are when its behavior is unac-
ceptable. However, because the agent is autonomous and because the agent
may not detect its own inadequacy, \killing" the agent may be the only way of
preventing the incorrect actions. Completely stopping an agent means another
entity needs to take over the agent's responsibilities, something that may be
unreasonable in a complex physical system (e.g. a spacecraft). A more desirable
scenario is if only incorrect parts of the agent's activity are taken over while
other parts continue to function normally.

Thus, agent developers are faced with a challenging dilemma. For some
applications, autonomous agents can be very useful in very many situations,
most of the time. But in a small number of situations, a small percentage
of the time, agent behavior will be unacceptable and potentially have serious
consequences.

Adjustable Autonomy (AA) is a recent idea meaning to dynamically change
the autonomy of the intelligent entities, both agents and humans, in a system.
Instead of the responsibility and authority of entities being �xed at design time,
they can be changed to best con�gure the system's autonomy to the current
situation. The idea is to dynamically assign autonomy to best leverage the con-
stituent entities' strengths and avoid their weaknesses. Thus, an AA system is
an intelligent system where the distribution of autonomy is changed dynamically
to optimize overall system performance. For example, if a human pilot notices
that a collision with a ock of rare ducks the agent cannot detect is imminent,
the pilot might like to slightly alter the aircraft's course without taking over all

2

the details of its functioning. Flexible assignment of autonomy means a system
can deal with a wider range of situations more e�ectively. Thus, AA allows the
intelligence and autonomy of agents to be fully exploited without being stuck
with their inadequate decision making when situations occur the agents cannot
handle (or humans could handle better).

3 Conceptual Model of AA

System

Environment

Entities

Adjustable
Autonomy

AA Reasoning

AA Information AA Actuation

Figure 1: The conceptual relationship between AA and an intelligent system.

A system with AA can dynamically change which entities are responsible
for the achievement of which goals by changing decision making responsibility
over time. Further, a system with AA can dynamically change the authority
constituent entities have to take on particular goals. AA mechanisms manage
the changing autonomy by determining appropriate changes in autonomy and
implementing those changes.

A key problem to be addressed when building AA is to determine an appro-
priate distribution of autonomy and provide mechanisms to realize the autonomy
changes.

The distribution of autonomy should change according to the current situa-
tion and sub-goals, recon�guring so as to best organize the system resources to
achieve the systems goals. Conceptually the task of changing autonomy can be
broken into three parts:

� AA Information (AAI) : Collection of the information relevant to the AA
decision making.

� AA Reasoning (AAR) : Reasoning about what autonomy changes could
or should be made.

3

� AA Actuation (AAA) : Realization of the decisions made by the AAR.

The conceptual AA model and its relationship to a system are shown in Fig-
ure 1. AAI provides information on prevailing environmental conditions and the
current system state and potential (referred to as context in [4]) as are relevant
to AAR. The AA reasoner determines what changes in the autonomy distri-
bution will lead to better system performance with respect to its goals. AAR
might be done either by a human or in software. Finally, the AAA provides the
mechanisms for implementing the decisions of the AA reasoning, i.e. it provides
the mechanisms for realizing changes in authority or transfer of responsibility.

The AAI and AAA tightly constrain the design and potential of AAR. Any
information not supplied by AAI cannot be used in determination of appro-
priate autonomy con�gurations. Likewise, any change that cannot be realized
by AAA should not be decided on by AAR. In turn AAI and AAA are both
tightly constrained by the services provided to them by the entities in the sys-
tem. Any information the entities cannot provide cannot be supplied by AAI to
AAR. Similarly, any autonomy change the entities cannot accept could not be
implemented by AAA. Hences the services provided by the entities are critically
important to the building of an AA system. Obviously, we are limited to de-
signing the services that software entities provide (as the services of the human
entities are �xed).

Consider an analogy to a management consultant at an organization. The
consultant's job consists of collecting information, making decisions about or-
ganizational changes and implementing those changes. No matter how good the
consultant is at their job they rely on employees in the organization to inform
them (either implicitly or explicitly) of the current running, goals, etc. of the
organization in order to make decisions. If the employees supply limited, in-
su�cient, incorrect or misleading information the consultant job is signi�cantly
harder and their results are likely to be disappointing. Once the consultant
makes a decision it needs to be implemented. No matter how good the decision,
if it is not accepted and appropriately implemented, the decision is worthless.
Implementation of AA works in the same way { if the entities do not supply
appropriate information and properly implement decisions, the best AAR is
useless.

4 Agent Design and AA

Agent designs di�er in the way that information is represented in the agent
and how easily it can be extracted in an understandable (to the AAR) manner.
Whether the AAI services are simple, just providing access to particular parts of
the agent's reasoning, or very complex, needing complex algorithms to extract
information from the agent, depends on the design of the agent. The AAI
guidelines presented below aim to guide designers to create agents where as
much useful, understandable information as possible can be gathered by simply
inspecting the data structures of a running agent. The guidelines try to avoid
the need for complex algorithms to extract information from a running agent.

4

AA Actuation services implement autonomy changes decided on by the AAR.
Only those autonomy changes that can be realized by AAA services can be
decided on by AAR. Hence, the limitations of the AAA services strictly limit
the useful conclusions possible by the AAR and the overall AA.

Further, the more elegantly and smoothly the agent incorporates any au-
tonomy changes decided on by AAR into its ongoing behavior, the better the
behavior of the overall system. For example, imagine a team of (human) furni-
ture removalists carrying a piano up a staircase. If their foreman yells out from
another room that one removalist is being re-assigned to another job he will
not (hopefully) simply let go of the piano and walk o� (leaving his colleagues
squashed under a piano at the bottom of the stairs!) but will make the piano
safe before moving on. Thus, the behavior of the overall \furniture removal"
system is successful because the worker changing tasks switches between tasks
in a reasonable manner. The same idea applies to AA where smooth auton-
omy changes mean better system behavior. If the agent could exhibit similar
\common sense" behavior to the furniture removalist the AAR's task is made
simpler because changes can be made without (unnecessary) consideration given
to transitions of the agent's behavior.

When designing intelligent agents many competing requirements need to be
reconciled. Not all the requirements are related solely to the observable behav-
ior of the agent. For example, there may be particular veri�ability, simplicity
or computational requirements on an agent[11]. Designers, implicitly or ex-
plicitly, follow guidelines when attempting to meet some requirement with a
design. A guideline is \a statement or other indication of policy or procedure
by which to determine a course of action"[1]. For example, a (simple) guideline
to minimize computational requirements for an agent might suggest avoiding
algorithms involving signi�cant amounts of search. By following appropriate
guidelines designers have a principled, justi�able reason for believing that their
design will meet its requirements. For example, if a design avoids extensive
use of search algorithms a designer can argue, with justi�cation, that once im-
plemented the design will be computationally e�cient (according to the above
guideline).

5 Guidelines

We capture our design knowledge of agents for AA systems gained via the
implementation of two complete AA systems[13, 10] in a set of guidelines. If
followed when designing agents for AA systems, the guidelines should lead to
agents with features that makes AA easy to implement.

Three guidelines provide advice for designing agents which will lead to easy
to build, high quality AAI:

� Explicit Information Guideline : Represent the agent's reasoning process
and reasoning state explicitly and in a format close to the format that will
used by AAR.

5

� Software Engineering Guideline : Following good software engineering
practices in agent design makes it easier to build AA.

� Design Information Guideline : Represent information above and beyond
the information needed by the reasoning process such that it explains
design decisions implicit in the reasoning process.

These guidelines summarize design strategies for building agents whose be-
havior can be most exibly and easily changed online:

� Deterministic Execution Guideline : Make the reasoning process of the
agent as deterministic (and hence predictable) as possible.

� Explicit Behavior Guideline : Represent behavior as explicitly as possible
and in a format that requires the least translation.

� Building Blocks Guideline : Divide overall behavior into small pieces that
are related to each other in a very semantically clear and simple way.

� No Extra Mechanisms Guideline : The AAA should not use mechanisms
other than the normal reasoning mechanisms used by the agents.

� Design for Failure Guideline : The agent should be designed so that if
any part of it fails at any time, its behavior will degrade gracefully.

6 Discussion

These ideas have been implemented in two systems. The �rst is a system for cre-
ating agents for interactive simulations called EASE[13, 14]. In EASE, the AA
is used to give a user runtime control over the agents in a simulation[12]. Two
domains are being investigated: air combat using Saab's air-combat simulator,
TACSI[9], and football using the RoboCup simulator[5].

The second implemented system is the E-Elves where intelligent agents are
used to help human users carry out every day tasks in a human organization[10].
The agents can look after tasks like reschedulingmeetings when a user is delayed,
ordering lunch and �nding presenters for meetings.

Assessing the utility of the guidelines is a two step process. First, we identify
the agent features that are a direct consequence of following the guidelines. For
example, a particular reasoning mechanism might be designed in a speci�c way
because of the advice of a particular guideline. Then we look at the impact of
that agent feature on the ease with which the AA was built. If agent features
that are a result of following the guidelines make building AA easier then the
utility of the guidelines is demonstrated.

Acknowledgments

This work is supported by The Network for Real-Time Research and Educa-
tion in Sweden (ARTES), Project no. 0055-22, Saab Corporation, Operational

6

Analysis Division, the Swedish National Board for Industrial and Technical De-
velopment (NUTEK) under grants IK1P-97-09677, IK1P-98-06280 and IK1P-
99-6166, and the Center for Industrial Information Technology (CENIIT) under
grant 99.7.

References

[1] The American Heritage Dictionary of the English Language. Houghton
Mi�in Company, 1996.

[2] Je�ery Bradshaw. An introduction to software agents. In Software Agents,
pages 3{49. MIT Press, 1997.

[3] Wolfram Burgard, Armin Cremers, Dieter Fox, Dirk H�ahnel, Gerhard Lake-
meyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. The interactive
museum tour-guide robot. In Proceedings of AAAI'98, pages 11{18, 1998.

[4] H. Hexmoor. Case studies of autonomy. In Proceedings of FLAIRS 2000,
pages 246{249, 2000.

[5] Itsuki Noda. Soccer server: A simulator of RoboCup. In Proceedings of AI
Symposium'95, Japanese Society for Arti�cial Intelligence, December 1995.

[6] B. Pell, E. Gamble, E. Gat, R. Keesing, J. Kurien, W. Millar, P. Nayak,
C. Plaunt, and B. Williams. A hybird procedural/deductive executive for
autonomous spacecraft. In Proceedings of the second international confer-
ence on autonomous agents, pages 369{376, 1998.

[7] S. Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach.
Prentice-Hall, Inc., 1995.

[8] P. Rybski, S. Stoeter, M. Erickson, M. Gini, D. Hougen, and N. Pa-
panikolopoulos. A team of robotic agents for surveillance. In Proceedings
of the fourth international conference on autonomous agents, pages 9{16,
2000.

[9] Saab AB, Gripen, Operational Analysis, Modeling and Simulation. TACSI
- User Guide, 5.2 edition, September 1998. in Swedish.

[10] P. Scerri, D. Pynadath, and M. Tambe. Adjustable autonomy in real-
world multi-agent environments. In Proceedings of the Fifth international
conference on autonomous agents (Agents'01), 2001. to appear.

[11] P. Scerri and N. Reed. Engineering characteristics of autonomous agent ar-
chitectures. Journal of Experimental and Theoretical arti�cial intelligence,
12(2):191{212, 2000.

[12] P. Scerri and N. Reed. Real-time control of intelligent agents. In Technical
Abstracts of Technical Demonstrations at Agents 2000, 2000.

7

[13] Paul Scerri and Nancy Reed. Creating complex actors with EASE. In
Proceedings of Autonomous Agents 2000, pages 142{143, 2000.

[14] Paul Scerri and Nancy Reed. The ease actor development environment. In
Proceedings of the Workshop of the Swedish AI Society, SAIS'2000, 2000.

[15] B. Shneiderman. Designing the User Interface. Addison Wesley, 1998.

[16] Hongjun Song, Stan Franklin, and Aregahegn Negatu.
Sumpy: A fuzzy software agent. on line at :
http://www.msci.memphis.edu/~songh/publications/sumpy.html, 1995.

[17] Michael Wooldridge and Nicholas Jennings. Intelligent Agents, chapter
Agent Theories, Architectures and Languages: A Survey. Springer-Verlag,
1994.

8

�

2Q�UHFRYHU\�DQG�FRQVLVWHQF\�SUHVHUYDWLRQ�LQ�
GLVWULEXWHG�UHDO�WLPH�GDWDEDVH�V\VWHPV�

�
Sanny Gustavsson, Sten F. Andler

Högskolan i Skövde
{sanny,sten}@ida.his.se

$EVWUDFW� Consistency preservation of replicated data in distributed databases is nowadays a well-
covered topic. Both pessimistic approaches (such as two-phase commit) and optimistic approaches
(such as eventual consistency) have been thoroughly investigated. A current research trend is to
move towards optimistic consistency preservation mechanisms, where immediate consistency at
each transaction commit is traded off for increased predictability, availability and performance. In
this paper, we consider the impact of optimistic consistency preservation techniques on the
recovery process in distributed real-time database systems. We identify uninvestigated problems
within this field, such as the absence of timely and optimistic recovery mechanisms, and our lack
of understanding of the requirements to be met by applications operating in eventually consistent
systems. We also suggest approaches for further research on these subjects.

��,QWURGXFWLRQ�
The distributed real-time database field of research
is interesting for several reasons. Not only is the
demand in industry for timely and dependable
database systems high, the inherent complexity of
distributed and concurrent systems coupled with the
need for predictability in real-time systems also
creates unique and interesting problems. The
project described herein addresses the problem of
recovering the contents of a crashed node in a
distributed real-time database. We are particularly
interested in recovery in eventually consistent
databases, i.e., databases where availability,
predictability and performance are improved by
allowing replicas to be temporarily inconsistent.
Such databases are interesting in that they must be
convergent, which means that if all transactions in
the systems are quiesced, all replicas must
eventually become consistent. Eventually consistent
databases also put restrictions on the applications
that use the database, since they must be tolerant of
stale data.

We argue that many systems today (e.g., banking
systems and base stations for mobile telephony)
must allow for temporary inconsistencies in order
to provide a reasonable level of availability. These
systems must, however, also be able to guarantee
that a consistent state will eventually be reached.

In the following section we describe the project
background and define the problem area. Section 3

lists the problems that we want to address, while
section 4 suggests some possible approaches to
solving these problems. Finally, section 5 contains
our conclusions, including a discussion on future
work and how our research fits in with other
projects within the same field.

��%DFNJURXQG�
A GLVWULEXWHG� V\VWHP consists of several
autonomous but interconnected processing
elements (denoted QRGHV), which work together to
achieve a common goal. Some important properties
of distributed systems are:

• /RFDOL]HG�SURFHVVLQJ�SRZHU��

Computations can be performed at the site
where they are needed, for example close to
sensors and/or actuators, which means that less
cabling is needed and that communication
costs are decreased compared to a centralized
system. This property is especially important in
embedded systems.

• +LJK�IDXOW�WROHUDQFH�

In a distributed system, it is possible to
replicate data and services, so that if a node
goes down, the data and services of that node
can still be available to the user on another
node. This is an important property for systems
that require high availability.

Many distributed systems contain some form of
database. In a GLVWULEXWHG� GDWDEDVH, the data is
dispersed on several different nodes. Of particular
interest to this paper is the concept of data
replication. In a distributed database, what is seen
by applications as a single, logical database object
can in fact be stored as several physical copies,
UHSOLFDV, of that object. These replicas may be
stored on different nodes to achieve a high degree
of fault-tolerance and availability.

In a UHDO�WLPH� V\VWHP, correct behavior implies not
only functional correctness, but also conformance
to timeliness requirements, such as task deadlines
and minimum delays. Many real-time systems are
also HPEHGGHG systems, which means that their
primary function is not information processing
(Burns & Wellings 1997). An example of such a
system is a microprocessor-controlled washing
machine.

A GLVWULEXWHG� UHDO�WLPH� V\VWHP must deal with not
only the issues inherited from both these system
classes, but also with several unique problems that
exist in few other system types, such as predictable
communication, multi-node load balancing, and
timely consistency management.

����&RQVLVWHQF\�SUHVHUYDWLRQ�

As discussed in the previous section, a database
object in a distributed database may be represented
by several physical replicas on different nodes in
the system. For the database to remain consistent,
all such replicas must be kept identical and adhere
to all constraints in the database specification. This
means that any updates on the logical object must
be reflected by all the physical replicas.

There are two main approaches to maintaining
consistency in a distributed database – pessimistic
and optimistic. We say that the pessimistic
approaches support immediate consistency, while
optimistic approaches only guarantee eventual
consistency. These concepts are elaborated in the
following two paragraphs.

• ,PPHGLDWH�FRQVLVWHQF\�

Pessimistic techniques for consistency
preservation ensure that all replicas of all
logical database objects accessed by a
transaction are consistent when that transaction
commits, i.e., consistency is LPPHGLDWHO\
achieved. There are several well-defined
techniques for this, the most basic and well
known of which is the WZR�SKDVH� FRPPLW
protocol (Gray & Reuter 1993).�

• (YHQWXDO�FRQVLVWHQF\�

Optimistic consistency preservation techniques
are based on the concept of HYHQWXDO
consistency. The idea is to trade off immediate
consistency at each transaction commit for

increased predictability, availability, and
performance. This means that a transaction
may commit updates to a local replica of a
logical database object without propagating the
updates to the nodes containing additional
replicas of that object. Thus, the local
performance and availability are increased,
since all overhead associated with
communication protocols and distributed
commit protocols is removed. Examples of
optimistic consistency preservation protocols
are Distributed Optimistic Two-phase Locking
(Carey & Livny 1991) and Lazy Replication
(Breitbart & Korth 1997).

������7KH�FRQVLVWHQF\�WUDGH�RII�

Although a large research effort has been put into
pessimistic consistency preservation techniques, the
field is moving towards optimistic techniques for
the performance benefits inherent in such
techniques. We argue that in many of today’s large-
scale systems, temporary inconsistencies are
inevitable. For example, although banking is a field
where the demands on consistency could be
assumed to be strict, extracting money from an
ATM would often be impossible (due to, e.g.,
network partitions) if details of the transaction
would have to be propagated to all nodes (i.e., bank
offices) in the system before any money could be
delivered. Thus, to increase the availability of the
ATMs, the node at which the transaction was
performed must be allowed to be temporarily
inconsistent with the rest of the nodes in the
system. In this type of system, eventual consistency
is required. In the ATM system, for example,
money must not be irrecoverably lost.

Since conflicts will occur in any eventually
consistent system (e.g. the last $100 may be
extracted from a given bank account
simultaneously at two different nodes), conflict
detection and resolution mechanisms must exist in
the system. Also, applications must be aware of
(and tolerate) the fact that they may be working
with stale or inconsistent data. We say that
applications must be convergent�

����'DWDEDVH�UHFRYHU\�

When a distributed database node crashes, its main-
memory contents are lost, and must somehow be
recovered. Traditionally, the most common method
is to keep, on stable storage, a ORJ of all updates
performed on the node’s data (Gray & Reuter
1993). When a node recovers, it reads and applies
all the log entries to the database. Since the log can
grow arbitrarily large, logging is nearly always
accompanied by the taking of periodic FKHFNSRLQWV,
i.e., complete database images written to stable
storage. Checkpointing optimizes the time needed
for recovery, since only the log records postdating

the most recent checkpoint have to be read during
the recovery process.�

������'LVWULEXWHG�UHFRYHU\�

In distributed databases, the consistency of the
recovered data must also be considered. If
immediate consistency is enforced, once the node is
reintegrated in the system, its data must be
consistent with the data on the other nodes. If only
eventual consistency is required, the reintegrated
node must still be in a state that is eventually
consistent, i.e., a state that would become consistent
after a bounded time period in a quiescent system.

'LVNOHVV�GLVWULEXWHG�UHFRYHU\�
For some embedded systems, such as those
working in environments with electromagnetic
radiation or heavy vibrations, it may not be
practical to use disks as permanent storage for
checkpoints and logs. Also, many disk drivers are
unpredictable, which makes them unsuitable for
real-time systems. In addition, disks add to the cost
of building the system. We thus see a need for
recovery mechanisms that do not depend on disks.

In a replicated database, the inherent redundancy in
the system can be used for recovery. Instead of
reading a checkpoint from disk, the contents of
another node in the system (the UHFRYHU\� source)
can be copied to the recovering node (the UHFRYHU\�
WDUJHW). If updates are performed at the recovery
source concurrently with the recovery process,
those updates must also be transferred to the
recovery target after the database image has been
copied (Leifsson 1999).

��3UREOHP�GHILQLWLRQ�
This section gives a brief introduction to the aspects
of diskless distributed recovery that we have chosen
to focus on. For a more in-depth description of
these topics, see Gustavsson (2000).

����7LPHO\�UHFRYHU\�

For a recovery technique to be suitable for a real-
time system, it must be timely. So far, few recovery
algorithms prioritize or even consider timeliness.
The only recovery algorithm designed for real-time
systems that we have found (Song et al. 1999) does
not consider consistency issues. We would like to
examine methods for recovery in eventually
consistent databases, focusing on their timeliness,
i.e., whether they can be made predictable and
sufficiently efficient for inclusion in a real-time
system.

����&RQVLVWHQF\�SUHVHUYDWLRQ�LQ�
UHFRYHU\�

Any recovery mechanism in a distributed database
must consider consistency preservation to ensure
that the node is integrated correctly with the rest of
the system once recovery is complete. The easiest
way to ensure consistency is to quiesce the rest of
the system while recovery is taking place.
However, this may not be an option in systems that
require high performance and availability.

If a diskless recovery mechanism (in section 2.2.1)
is used, special care must be taken to preserve
consistency, since the recovery source’s view of the
database may be updated as it is being sent to the
recovery target. We wish to investigate how this
affects the recovery process, especially in an
eventually consistent system.

����$SSOLFDWLRQ�FRQVWUDLQWV�

While eventual consistency improves several
important attributes of a system, it also restricts the
types of applications that may operate in the
system. As discussed in section 2.1.1, applications
in an eventually consistent system must be able to
tolerate the fact that they may be working with stale
or inconsistent data. We wish to establish a formal
definition of the necessary properties of convergent
applications.

��$SSURDFKHV�
In this section, we present some approaches that we
plan to take in tackling the problems of the previous
section.

����&UHDWLQJ�D�WD[RQRP\�

Initially, we aim to formulate a taxonomy for
distributed recovery in different kinds of systems.
For example, recovery (especially diskless
recovery) in a quiescent system differs significantly
from recovery in a non-quiescent, eventually
consistent database. We need to distinguish
different recovery scenarios by identifying the
system properties that affect the recovery
mechanism.

����0RGLI\LQJ�H[LVWLQJ�WHFKQLTXHV�

We intend to examine already existing recovery
techniques to see whether they can be refined for
use in a diskless and eventually consistent real-time
database system. Some initial work in this direction
has already been performed (Leifsson 1999,
Gustavsson 2000). For example, according to
Leifsson (1999), sending the data from a recovery
source to the recovery target in diskless recovery is

analogous to taking a fuzzy checkpoint (Li et al.
1995).

����$QDO\VLV�DQG�WKHRUHWLFDO�SURRIV�

To add weight to any claims that we make about a
recovery algorithm’s timeliness and/or non-
interference with conflict detection and conflict
resolution protocols, we need to logically prove that
it has those properties. For us to be able to perform
the required analysis and proofs, we need a way of
formally reasoning about these subjects. Finding
suitable methods to do this, or, if required, devising
new ones will be an important part of our project.

����'HH'6�LQWHJUDWLRQ�

Finally, we wish to verify the feasibility of the
diskless recovery algorithm by implementing it in a
real-world system and running benchmark tests.
DeeDS, a distributed real-time database system
prototype developed by the distributed real-time
systems research group at university of Skövde
(Andler et al., 1996), is well suited for such an
implementation.

��&RQFOXVLRQV�
This project is in its early stages. We have
completed an initial literature survey and analysis
(Gustavsson 2000) and are currently investigating
suitable methods. In the remainder of this section,
we briefly discuss our future work and how it
relates to existing research in this field.

����)XWXUH�ZRUN�

The research problems that we wish to investigate
are in three distinct categories:

• General problems in distributed recovery

- Finding timely recovery algorithms

- Exploring the relationship between
consistency preservation and recovery

• Eventual consistency problems

- Devising a recovery method for
eventually consistent databases that
does not interfere with consistency
preservation

- Defining constraints on applications
that operate in an eventually
consistent database

• Diskless recovery extensions

- Relaxing some of the assumptions
made by Leifsson (1999), such as

allowing multiple node failures or
incremental recovery

- Performing benchmark test of a real-
world implementation of the diskless
recovery algorithm

����5HODWHG�ZRUN�

Work exists on optimistic consistency preservation
approaches that are similar to our notion of
eventual consistency. For example, the independent
update algorithm briefly described by Ceri et al.
(1994) shares many aspects with eventual
consistency. Unfortunately, little is said about the
implications that using the independent update
algorithm has on the database system and its
applications. The only things mentioned by the
authors are that the reconciliation (conflict
resolution) algorithm should ensure one-copy
serializability, and that the applications must be
capable of handling stale data.

Concurrency control, which is similar to
consistency preservation, is also a well-covered
area. However, we have been able to find little or
no such research that focuses on the interaction
between these techniques and recovery.

We also argue that diskless recovery is a fresh and
interesting area that requires further exploration.
Also, there is, to our knowledge, no research on
application requirements for eventually consistent
databases.

����&RQWULEXWLRQV�

Our work focuses on aspects of distributed recovery
that have, so far, received very little attention. We
look at timely recovery, which should be
increasingly important as the number of systems
with demands on timeliness continues to grow.
Similarly, many embedded systems operate in
hostile environments, where the use of disks may
not be an option. In such systems, a diskless
recovery mechanism may eliminate the need for
stable storage, while decreasing the cost of the
system. Finally, the research community as a whole
is moving towards optimistic approaches for
consistency preservation, as we realize that in many
real-world systems, immediate consistency cannot
be enforced while meeting the high demands on
performance and availability. Therefore, node
recovery in an eventually consistent database is a
relevant and interesting topic.

$FNQRZOHGJPHQWV�
We extend our thanks to Jonas Mellin and Robert
Nilsson, who were both able to give us feedback on
short notice.

5HIHUHQFHV�
Andler, S., Hansson, J., Eriksson, J., Mellin, J., Berndtsson, M. & Eftring, B. (1996), DeeDS towards a
distributed and active real-time database system, SIGMOD Record 25(1), 38-40

Breitbart, Y. & Korth, H. (1997), Replication and consistency: Being lazy helps sometimes, in Proceedings of
the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 12-14,
Tucson, Arizona.

Burns, A. & Wellings, A. (1997), Real-Time Systems and Programming Languages, Addison-Wesley.

Carey, M & Livny, M. (1991), Conflict detection tradeoffs for replicated data, ACM Transactions on Database
Systems 16(4), 703-746.

Ceri, S., Houtsma, M., Keller, A. & Samarati, P. (1994), A classification of update methods for replicated
databases, Technical Report CS-TR-91-1392, Stanford University, Computer Science Department.

Gray, J. & Reuter, A. (1993), Transaction Processing: Concepts and Techniques, Morgan Kaufmann, chapter 10.

Gustavsson, S. (2000), On recovery and consistency preservation in distributed real-time database systems (HS-
IDA-MD-00-015), Master’s thesis, University of Skövde.

Li, X., Eich, M., Joseph, V., Gulzar, Z., Corti, C., Nascimento, M. & Peltier, A. (1995), Checkpointing and
recovery in partitioned main memory databases, in Proceedings of the International Conference on Intelligent
Information Management Systems, Washington, DC, June 7-9, pp. 59-63.

Leifsson, Æ. (1999), Recovery in distributed real-time database systems (HS-IDA-MD-99-009), Master’s thesis,
University of Skövde.

Song, E-M., Kim, Y-K., Ryu, C., Choi, M., Kim, Y-K., Jin, S-I., Han, M-K. & Choi, W. (1999), No-log recovery
mechanism using stable memory for real-time main memory database systems, in Proceedings of the Sixth
International Conference on Real-Time Computing Systems and Applications.

POSITION STATEMENT

Switched Real-Time Communication for Industrial Applications
Hoai Hoang (*)

School of Information Science, Computer and Electrical Engineering,
Halmstad University, Box 823, S-301 18 Halmstad, Sweden

email: Hoai.Hoang@ide.hh.se, Phone: +46 35 16 71 00, Fax: +46 35 12 03 48

1. Introduction

An important trend in the networking community is to involve more switches in the networks
(e.g., LAN, Local Area Networks) and pure switched-based networks becomes more and more
common. At the same time, the industrial communication community has a strong will to
adapt LAN technology (e.g. Ethernet) for use in industrial systems. The involvement of
switches does not only increase the performance; the possibility to offer real-time services is
also improved. Now when the cost of LAN switches has reached the level where pure
switched-based networks have become affordable, the collision possibility in IEEE 802.3
(Ethernet) networks can be eliminated and methods to support real-time services can be
implemented in the switches without changing the underlying wide-spread protocol standard.

This research aims to provide such methods with the focus on industrial applications. The
research is motivated by the large interest of using cheap and simple technology (like Ethernet)
in industrial and embedded systems. Ethernet has already today been introduced to these
applications but has, at the same time, introduced problems with (or lack of) real-time services
and analyzability.

The main research question is how to form methods to be able to support typical industrial
real-time traffic (e.g., small periodic messages) without changing the underlying protocols and
while still supporting existing higher-level protocols for non-real-time traffic (e.g., web based
maintenance which is highly desirable to coexist with the real-time traffic). Other important
research questions are what degree of service (throughput, latency, delay jitter etc.) one can
expect from these communication systems and how to form methods to increase analyzability
(e.g., by introducing determinism).

2. Applications

The research efforts on real-time communication over non-real-time LAN technologies have so
far been concentrated on multimedia and similar applications while there is a large need of
research efforts in the field of industrial systems. Our focus is on industrial and embedded
systems. Application examples are industrial automation, Computer Integrated Manufacturing
(CIM), radar signal processing systems, airplanes, process control, and telecommunication
equipment. Other applications which also might be of interest are home networks and
broadband access networks, were a mix of real-time and non-real-time traffic is expected.

(*) A large portion of this document is copied from the ARTES project application authored by Magnus
Jonsson and Bertil Svensson.

3. Plan of research

The research work can be described as two parallel tracks that run concurrently:

• Identify industrial application demands on real-time communication services, including
survey of real-time communication with focus on LAN-technology and switched
communication. Case studies of industrial applications are also planned.

• Develop and analyze how methods to support traffic with industrial real-time demands can
be implemented in switches and/or network interfaces to get as much functionality and
performance as possible at the same time as the use of standards like TCP/IP and Ethernet
is preserved.

4. Expected results and impact

As stated above we have specific ideas and we attempt to focus on real-time support for the
wide-spread Ethernet standard. However, it is important to stress that we have the ambition
of finding methods with general applicability in the area of real-time networking.

The main expected results are:

• Methods to support traffic with industrial real-time demands over non-real-time LAN-
technology, primarily over switched Ethernet, without loss of generality to use common
protocol suits like TCP/IP.

• General outlines of how to support traffic with industrial real-time demands over switched
system area networks.

• Performance analysis of proposed methods.

• Implementation experiments to demonstrate the practical feasibility of the developed
methods and to make performance measurements including implementation aspects.

• Case studies where the industrial applicability of the proposed methods is confirmed.

Fibre-Ribbon Pipeline Ring Network with
Distributed Global Deadline Scheduling

Carl Bergenhem1, Magnus Jonsson1, and Jörgen Olsson2

1. {carl.bergenhem, magnus.jonsson}@ide.hh.se, Computers and Communications lab, Halmstad University, Halmstad,
Sweden. Phone: +46-35-167100 Fax: +46-35-120348

2. jool@vtd.volvo.se, Volvo Technological Development Corporation, Göteborg, Sweden. Phone: +46-31-7724681

Abstract
This paper introduces a novel, fair medium access

protocol for a pipelined optical ring network. The
protocol provides global optimisation of deadline
constraints on a packet basis. Requests for sending
packets are sent by the nodes in the network to the
current master node. The master uses deadline
information in the requests to determine which request is
most urgent. Arbitration is done in two steps, collection
and distribution phases. The protocol is therefore called
two-cycle medium access (TCMA). The network is best
suited for LANs and SANs (system area networks) such
as a high speed network in a cluster of computers or
interconnection networks in embedded parallel
computers. Services possible in this network include best
effort messages, real-time virtual channels, functions
used in parallel processing such as barrier-
synchronisation, and functions for reliable transmission.
These are possible without additional higher level
protocol layers. A simulation analysis of the network
with the novel protocol is presented. Further analysis
shows worst case latency, minimum slot length, and
fairness of the protocol.

Keywords: Real-time communications, protocol, global
deadline optimisation, packet constraints, fibre-optic
interconnection network, embedded systems, parallel
processing

1 Introduction
The contribution put forward by this paper is a novel

medium access protocol that uses the deadline
information of individual packets, queued for sending in
each node, to make decisions, in a master node, about
who gets to send. The new protocol may be used with a
previously presented network topology; the control
channel based fibre ribbon pipeline ring (CC-FPR)

network [1]. Simulations of the protocol prove its
validity.

The proposed medium access protocol provides the
user with a service for sending best effort messages for
which the timing constraints are globally optimised.
Because of this property the protocol is suitable for real
time communication. Further more, the global
optimisation is a mechanism that is built into the network
protocol. No further software in upper layers is required
for this service. The scheme of globally optimising
deadline constraints presents an advantage over networks
that don’t arbitrate medium access on this property.
Some examples of this may be found in [1], [2], [3], [4],
[5]. However, these networks may have upper layer
protocol added to them to give them better
characteristics for real-time traffic but this increases the
complexity of the system. Also, it is hard to get fine
deadline granularity using upper layer protocols.

Real-time services in the form of best effort messages,
as mentioned above and real-time virtual channels
(RTVC) are supported for single destination, multicast
and broadcast transmission by the network. A service for
slot reservation, used for hard real-time traffic such as
RTVCs is also provided [1]. The network also provides
services for parallel and distributed computer systems
such as short messages, barrier synchronisation and
global reduction. Reliable transmission service (flow
control and packet acknowledgement) is provided as an
intrinsic part of the network [6], [7].

The network with the proposed protocol is best suited
for LANs and SANs (system area networks) where the
number of nodes and network length is relatively small.
This is important since the propagation delay adversely
affects the medium access protocol. An example of a
suitable application is in an embedded system, e.g., for
use as an interconnection network in a radar signal
processing system, or as a network for use in cluster
parallel computing. A problem with the original CC-FPR
protocol [1] is that a node does not consider the time
constraints of packets that are queued in downstream

nodes. The novel network presented here does not suffer
from this problem.

Novel optical components result in the possibility of
new network solutions for the increasing bit rate
demands of parallel and distributed systems. Motorola
OPTOBUS bi-directional links with ten fibres per
direction are used but the links are arranged in an
unidirectional ring architecture where only �N / 2� bi-
directional links are needed to close a ring of N nodes
(assuming that N is an even number). Fibre-ribbon links
offering an aggregated bit rate of several Gbits/s have
reached the market [8]. The increasingly good
price/performance ratio for fibre-ribbon links indicates a
great success potential for the proposed type of
networks.

The physical ring network is divided into three rings
or channels (see Figure 1). For each fibre ribbon link,
eight fibres carry data, one fibre is used to clock the data,
byte by byte, and one is used for the control channel.
Access is divided into slots like in an ordinary TDMA
(Time Division Multiple Access) network. The control
channel fibre is dedicated for bit-serial transmission of
control-packets, which are used for the arbitration of data
transmission in each slot. The clock signal on the
dedicated clock fibre, which is used to clock data, also
clocks each bit in the control-packets. Separating clock-
and control-fibres simplifies the transceiver hardware
implementation [9]. The control-channel is also used for
the implementation of low-level support for barrier-
synchronisation, global reduction, and reliable
transmission [6].

The ring can dynamically (for each slot) be
partitioned into segments to obtain a pipeline optical ring
network [2] where several transmissions can be
performed simultaneously through spatial bandwidth
reuse, thus achieving an aggregated throughput higher
than the single-link bit rate (see Figure 2 for an
example). Even simultaneous multicast transmissions are
possible providing multicast segments do not overlap.

The rest of the paper is organised as follows: Section
two briefly describes the original protocol since many
ideas are similar to the presented. Section three presents
the novel medium access protocol. Section four gives a
short description of RTVCs and how they are
implemented. Section five presents an analysis of worst
case latency and minimum slot time, and describes the
simulations carried out. These results are presented and
discussed. Conclusions are presented in section six.

2 Original protocol
The novel medium access protocol presented and

analysed in the following sections, use many ideas from
the CC-FPR protocol presented in [1]. Therefore some
details of the CC-FPR protocol are presented here.

The original CC-FPR network protocol is insensitive
to propagation delay in the sense that no feedback, from
nodes back to the master, is needed during arbitration of
the network. Arbitration is decentralised by having nodes
take equal, round-robin, turns to be master. The protocol
is based on the use of a control-packet that, for each slot,
travels almost one lap (over N−1 links) round the
control-channel ring. In the time domain the control-
packet always travels around the ring in the time-slot
preceding the time-slot for which it controls the
arbitration. The control-packet will hence always pass
each node one time-slot before the data-packet it is
related to passes.

At the beginning of each slot the master initiates a
control packet that contain its own needs for packet
transmission. Each node succeeding the master checks
the control-packet when it passes the node to see: (i) if it
will receive a data-packet in the next slot, and (ii) if a
data-packet will pass the node in the next slot. If no data-
packet will pass the node, i.e., the rest of the ring back to
the master is free, the node will have the possibility to

Node 3Node M

Node 4

Node 2

Node 5

Node 1

=Data

=Control

=Clock

Figure 1: A Control Channel based Fiber Ribbon
Pipeline Ring network.

Node 3

Node 4

Node 2

Node 5

Node 1

Link 1 Link 2

Link 4

Link 3Link 5

Figure 2: Example where Node 1 sends a
single-destination packet to Node 3, and Node
4 sends a multicast packet to Node 5 and
Node 1.

transmit a data-packet in the next slot in this segment of
the ring. The node signals this by changing the control
packet to reflect how it will send. Because all the nodes
succeeding the master repeat the procedure of checking
the control-packet for the possibility to send, multiple
transmissions in different segments of the ring might be
possible in the same slot. Observe that the control packet
does not return to the master and that a data packet
cannot be transmitted across the master node since the
clock is interrupted there.

A problem with the original CC-FPR protocol is that a
node does not consider the time constraints of packets
that are queued in downstream nodes. See Figure 2 for
an example described below. Node one decides that it
will send and books links one and two, regardless of
what Node two may have to send. This means that
packets with very tight deadlines may miss their
deadlines. For a further presentation of the original
protocol, refer to [1].

3 Two-cycle medium access protocol
The greatest difference in function between the new

and the old protocol of accessing the network is that
arbitration is done in two phases instead of one. The two
phases to medium access are collection phase and
distribution phase (see Figure 3). Therefore it is referred
to as the two-cycle medium access protocol, (TCMA
protocol). As can be seen, the protocol is time division
multiplexed to share access between nodes. The basic
time unit is called a slot and the minimum size of the slot
is analysed in section five.

As in the original medium access protocol, the role of
network master is cycled equally, round robin, around

the ring. Thus all nodes are identical. The role as master
is passed on to the next down stream node at the end of
the slot. Every node detects when the clock signal is
interrupted at the end of the slot and nodes have a
counter to determine who is next master.

There are two types of TCMA control packets, which
are used in each of the two phases (see Figure 4). A
complete collection phase packet will contain a start bit
and total of N-1 requests that are added one by one by
each node. The master receives it’s own request
internally. Each request consists of three fields. The
“prio”-field contains the priority level of the request. It is
further described below. Nodes use the link reservation
and destination fields to indicate destination node(s) and
which links must be traversed to reach the destination
node. Since a node may write several destination nodes
into the destination field, transmissions may be multicast
or broadcast. In the distribution phase packet the “result
of requests”-field contains the outcome of each nodes
request. This is the only field, in this phase, which
contains network arbitration information. The others are
used for services such as, e.g., reliable transmission
(“ACK/NACK”- and “flow control”-fields) and, e.g.,
global reduction and short messages (the “Extra
information”-field).

The time until deadline (referred to as laxity) of a
packet is mapped, with a certain function, to be
expressed within the four-bit limitation of the current
version of TCMAs priority field. A lower priority
implies a shorter laxity and thus a more urgent message.
The priority field is a central mechanism of the TCMA
protocol. The result of the mapping is written to the
priority field (see Figure 4). A wider field of bits would
provide higher resolution of priority and would probably
have an advantageous affect on performance. Further

Slot N Slot N+1 Slot N+2

Data-packet Data-packet Data-packet

Collection
phase

Distribution
phase

Time

Collection
phase

Distribution
phase

Figure 3: The two phases, collection and
distribution, of the TCMA protocol. Notice that the
network arbitration information, for data in slot
N+1, is sent in the previous slot, slot N. Observe
that the lengths of the phases, and placement in
time, in the diagram are not to scale.

TCMA Collection phase packet

TCMA Distribution phase packet
ACK/NACK

fieldStart Result of
requestsType Flowcontrol

field
Extra information

field

1 N N

Start Link reservation
field

Destination
fieldType

Nbr of
bits

Prio

4
node i node inode i

N1 N-1Nbr of
bits 4N 4N

Prio

4
node i+1

N N

Link reservation
field

node i+1 node i+1 etc.

Destination
field

Figure. 4: Contents of the TCM control packets.
Notice the possibility in the distribution phase
packet to send information other than for medium
access arbitration.

evaluation is out of the scope of this paper. Two
mappings between deadline and priority, logarithmic and
linear (see Figure 5), have been simulated. Results show
a negligible difference in performance of throughput,
packet-loss, and latency. Further evaluation of how the
performance is affected by different mappings is
therefore put beyond the scope of this paper. For the
simulations presented in section five, logarithmic
mapping is used. This mapping gives higher resolution of
laxity, the closer to its deadline a packet gets.

All nodes including the master, have information
about which slots have been reserved, e.g., for RTVCs
between pairs of nodes. This is because a request to
establish an RTVC is broadcast to all nodes. Therefore a
node will only send a request that may be possible to
fulfil regarding RTVCs in the own or other nodes that
would use links in the path of the packet that the node
would want to send. Observe that a node will not request
a transmission that would be “across” the master since
the clock signal is interrupted there. This implies that a
request will only be rejected if requests from other nodes
are more urgent. The node selects its most urgent
message as the request. In the case that there are several
messages that are equally urgent, the message that is
destined furthest and possible to transmit in the next slot
is selected. Slots belonging to RTVCs do not need to be
“requested” since they are already reserved (see section
four).

In the collection phase the node that is currently
master generates an empty packet and transmits it on the
control channel. Each node adds its request, in turn, for
sending in the next slot. A request packet that will be
added, by a node, to the packet from the master can be
generated and ready to be sent as soon as the node knows
the status of its queues so that only a very small delay is

incurred. The additional delay is caused when the
collection phase packet passes a node. It is assumed to
be one bit time. The same delay also applies to the
distribution phase packet. The request contains the
following information: priority, link-reservation and
destination field (see Figure 4). If the node has nothing
to send, it signals this to the master by using a reserved
priority level (15 in the proposed protocol) and zeros in
the other fields.

When the completed collection phase packet arrives
back at the master, the requests (including one request
from the master) are processed. There can only be N
requests in the master, as each node gets to send one
request per slot. The list of requests is sorted primarily
by priority and secondly by the distance to the
destination, i.e., furthest within segment (FWS)[2]. The
master traverses the list, starting with the request with
lowest priority (closest to deadline) and then tries to
fulfil as many of the N requests as possible. In case of
priority ties, the request with the largest distance to its
destination is chosen. If there still is a tie then the
master’s request has priority over other request. Because
of spatial slot reuse, several requests may be granted
permission to transmit in different segments, during the
same slot, providing that segments do not overlap. This
is also called pipelining of packets (see Figure 2).

When the master has scheduled the requests it
distributes the result to all nodes in the distribution
phase. In this phase the master node, and only the master
node, has possibility to make use of the “extra” fields in
the distribution phase packet such as sending
acknowledges for packets sent during previous slots. For
further explanation of this, see [6]. When all nodes have
received the results of the request, each node is ready for
the beginning of the next slot where data may be
transmitted. A request was granted if the nodes “request
result field”-bit in the distribution phase packet contains
a “1”. As in the collection phase, the distribution phase
packet is delayed when passing each node. Again, this
delay is assumed to be one bit time, although not as
important as for collection phase since the master does
not get feedback from nodes in the distribution phase.
The master receives the result of the requests internally.

The advantage of this protocol is that the deadline
requirements of all packets are taken into account and
considered at a global level. Since the packets deadline
information is collected into a “global queue” in the
master, packets from each node can be sent in an earliest
deadline first (EDF) fashion and the timing constraints of
the packets can be seen as globally optimised.

100 101 102 103 104
0

2

4

6

8

10

12

14

Deadline [slots]

P
rio

rit
y

Two deadline to priority transformations

Log. mapping
Lin. mapping

Figure 5: Two different deadline-to-priority
mappings that were tested. For the linear
transformation, deadlines longer than 14 slots
are all mapped to priority level 14.

0 40 80 120 160 200
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10-6

Total length of ring [m]

M
in

im
um

 s
lo

t d
ur

at
io

n
[s

]

32 nodes
16 nodes
8 nodes

Figure 6: The diagram shows the relation
between total network length and minimum slot
length, for three different numbers of nodes.

4 Real-time virtual channels
Logical connections with guaranteed bit rate and

bounded latency can be realised in the network by using
slot reserving. Such connections are referred to as
RTVCs. Either the whole ring is reserved for a specific
node in a slot, or one or more segments of the ring are
dedicated to some specific node(s). Slots are organized
into cycles with a set number of slots. Nodes keep track
of the current slot index in the cycles. A slot that has
been reserved for an RTVC, guarantees that transmission
is possible every cycle thus guaranteed bit rate. Several
slots may be reserved for an RTVC in order to increase
the guaranteed bit rate. Initially, each node has J non-
reserved slots where it is master, giving a cycle length of

JN ⋅ slots. So as to always have bandwidth for best
effort traffic controlled by the TCMA protocol,
described in section three, only J-1 slots are reserveable.

When a node wants to reserve a slot for an RTVC, it
searches for slots where the required links are free, so
allocation of a new segment can be done. First, the
node’s own slots are searched. If not enough slots could
be allocated for the reservation, the search is continued
in other nodes. In this case, the node broadcasts a packet
containing a request to all other nodes to allocate the
desired segment in their slots. The packet contains
information about the links required and the amount of
slots needed. Each node then checks if any of its own
slots have the required free links. All nodes sends a
packet back to the requesting node to notify which slots,
if any, that have been allocated. When the requesting
node has received the answers, it decides if it is satisfied
with the number of allocated slots. If not, it sends a
release packet. Otherwise, it can start using the reserved
slots immediately. If so, the node notifies other nodes by
broadcasts the details of the RTVC. It should also send a
release packet if more slots than needed were allocated.
A node wishing to set up an RTVC can thus “borrow”
slots from other nodes. A further, more detailed,
description of this is found in [6].

5 Implementation aspects
Ttcma is the time required to complete network

arbitration according the TCMA protocol. This also sets
the minimum possible slot length for the network. Ttcma,
scales for increasing network length and number of
nodes as follows:

ondistributiselectionpcollectiontcma TTTTT +++= (1)
and is explained below. The master requires a non-
infinite time for processing the collected requests to

select which requests may be sent. Part of this processing
is sorting the incoming requests. This can be done as
they arrive by checking them bit by bit and thus the
sorting time is incorporated in the time for the collection
phase, Tcollection. When requests have been sorted, the list
of requests has to be traversed to select which may be
sent. The time for this is denoted as Tselection and is
assumed to be 30⋅N ns. Propagation delay, Tp, is part
of arbitration since the master depends on feedback, i.e.,
the requests from the other nodes in the collection phase.
L is the total length of the ring. P is the propagation
delay through the optical fibre and is assumed to be 5
ns/m. The delay through each node (approximately 1 bit
time per node) is neglected in the propagation delay, thus
the total propagation delay around the ring is:

PLTp ⋅= (2)
From Figure 4 one can see the size of the fields in the
control packets which lead to:

C
NNTcollection

)1)(42(1 −++= (3)

and

C
NT ondistributi

10= (4)

where C is the bit rate of the links which is 800Mb/s for
the Motorola Optobus and N is the number of nodes. The
minimum slot length is plotted in Figure 6. As we can
see from the figure, the minimum slot length increases
with increased network length and number of nodes. This
is just as can be expected from a network that requires
feedback in its medium access protocol.

5.1 Worst-case analysis
From the point in time when a packet is generated the

delay until the packet may be sent consists of two
components. The first component is the delay because
other packets in the network are more urgent or have
equal priority but are destined further and thus have
priority. The second component is when no other packets
that are equally or more urgent on other nodes, i.e., the
packet is next in line to be sent. Only the second part of
the delay is analysed below. This component of the delay
is referred to as access to the network latency.

Two cases for worst case access to the network
latency are presented: when the packet is destined M=1
hops and when the packet is destined M=N-1 hops.
These two cases are explained in Figure 7. As we can see
in the figure both latencies are minimised by sending the
control phase (CP) packets as close as possible to the
next slot. The vertical lines denote the end and beginning
of slots. Since the clock is interrupted at the end of each
slot, it is impractical to have the CP packets be sent at
the end of one slot and continue into the next slot. As can
be seen in the figure, slot length also affects the latency.

When a node is master, it is always granted
transmission as long as no other node has a packet with a
lower priority level (closer to deadline). It is assumed
that a node is master every N slots and that no other node
has more urgent packets. The equations for the latency is
presented below:

skewcppslotlatency TTMT _+⋅= (5)
where

ntcmaskewcpp TTT +=_ (6)
and

B
NTn

1−= (7)

Tslot is the slot length, and Tn is the total extra delay
incurred to the control packet, compared to the data
packet, when passing through N-1 nodes. The extra delay
is assumed to be one bit-time in each node. Tcpp_skew is
the time from the start of the control phase until the start
of the data packet. This can be seen in Figure 7.
Remember that the control phase for the current slot
occurred in the previous slot.

As can be seen in Figure 7 the latency depends on
how far the node wishes to transmit, denoted M. The
importance of keeping note of M is that a node may not
transmit to another node that is “past” the master. This is
because the clock signal is interrupted at the master.
Transmissions destined for downstream neighbours
(M=1) are always possible whereas the chance to be able
to send decreases with increased number of hops. This
explains the M-term in Equation 5.

Equation 5 is plotted in Figure 8. Tslot is chosen to be
5 µs, see the previous section on minimum slot length.
As can be seen in the figure, there is a large difference in
latency depending on the destination of the transmission.
A user of the network can therefore gain in performance
by carefully optimising algorithms to take advantage of
this property, which is, sending to the next neighbour.
The reason that the plots in the figure are almost
horizontal, especially the plot for M=N-1 is that the slot
delay (slotTM ⋅) is a very small part compared to the rest
of the arbitration delay (Tcpp_skew).

0 20 40 60 80 100 120 140 160 180 200
1

1.2

1.4

1.6

1.8
x 10-5

Total length of ring [m], M=1

La
te

nc
y

[s
] 32 nodes

16 nodes
8 nodes

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4
x 10-4

Total length of ring [m], M=N-1

La
te

nc
y

[s
] 32 nodes

16 nodes
8 nodes

DP 1

CPP
1

Lwc_M=N-1

DP 2

CPP
2

DP N+1

CPP
1

CPP
2I'm

master!
I'm

master!

wc_M=1

F
M
p
a
d
a

Case 2

Case 1
L

Figure 8: The worst case latency for two cases:
M=1 hops and M=N-1 hops. The plots are made
using a slot length (Tslot)of 5 µµµµs, which seems to
be a realistic choice, see also Figure 6.

igure 7: Worst case latency for the two cases. 1:
=1 hops and 2: M=N-1 hops. Control phase
ackets are denoted CPP and imply both control
nd distribution phases. Data packets are
enoted DP. Note that the diagram is schematic
nd not to scale.

5.2 Simulation analysis
In addition to worst case performance analysis

reported on in the previous section, an average case
performance analysis for best effort traffic is also
presented. The analysis is done by discrete time
computer simulation. Networks of 8, 16, 32 and 64
nodes were simulated.

Packet in the system have soft real time constraints,
thus are not given any guarantee, at generation, that it
will be sent in a timely fashion. The packet is given a
relative deadline at generation which is decremented
each time slot. The packet is then queued until it is either
sent successfully or, when deadline reaches zero, is
deemed lost and removed from the queue. We also call
this type of communication, best effort messages [10].
The user sending packets with a best effort service
should not require any guarantees.

Some further assumptions for the simulations:
• Messages are one packet long and take one time slot

to send. The term packet and message is therefore
used synonymously.

• Uniform traffic is assumed, i.e., all nodes have equal
probability of message generation and uniformly
distributed destination addresses. This implies that,
on average, it is theoretically possible to transmit
two packets each slot, since the packet on average is
destined “half way” around the ring, which is N / 2
hops. However, this disregards protocol effects
which lowers the average utilisation which we will
see later. An example of protocol effect is that a
node may not send past the master since the clock is
interrupted there. The pipelined ring topology of the
network suggests that it be very effectively utilised
when traffic is mostly destined one hop to the next
neighbour such as in some types of radar signal
processing [11], [12]. If this special mode of traffic
were simulated, which it is not, the effect would
simply be higher throughput because of aggregation,
i.e., several packets would be sent during one slot.

• Messages were generated according to a poisson
process and all messages were of single destination
type.

• The deadline of all best effort packets is set at
generation to 800 slot times ahead, which would
equate to a deadline of 4ms with a slot time of 5 µs.

• Physical effects such as the propagation delay
through optical fibre and the time required to detect
the end of a slot was assumed to be less than one
slot time and is therefore neglected.

• Message latency is defined as the time elapsed from
the moment a message is generated until the entire
message is received in the receiver.

• Infinite size of message queues is assumed.
• The simulator is run for a total of 100 000 slot times

and starts to log statistics at 20 000 slot times.
• The “total packet generation intensity” is the

generation intensity for the network regarded as a
whole, not of the individual nodes.

Figure 9 shows the best effort packet latency for
varying levels of network throughput. At a useful level of
packet intensity the network has an average throughput
of approximately 1.6 packets per slot. This is 60% better
than the theoretical limit of one packet per slot for
networks without spatial reuse. Similar results for
varying number of nodes are obtained. Figure 9 shows
up to which level of throughput the network may be
useful. For a clearer view of throughput see also Figure
10.

Figure 10 shows the packet throughput against
packet generation intensity. Throughput has a linear
relation to packet intensity up to the point of saturation,
which can be seen in the figure as the point on the plot
where throughput starts to decrease with increasing
packet intensity. As packet intensity passes the point of
saturation it becomes increasingly difficult for the packet
transmission scheduler to effectively utilise the bit rate of
the network. This is because it is always increasingly
difficult to schedule packets the further their destination

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

20

25

30

35

40

45

50

Throughput [packets per slot]

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 [s

lo
ts

]

8 nodes
16 nodes
32 nodes
64 nodes

Figure 9. Best effort packet latency vs.
throughput for a varying number of nodes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Total packet generation intensity [packets per slot]

Th
ro

ug
hp

ut
 [p

ac
ke

ts
 p

er
 s

lo
t]

8 nodes
16 nodes
32 nodes
64 nodes

Figure 10: Total throughput of best effort
packets vs. packet generation intensity.

[2]. When the network is saturated each node will tend to
always contain far destined packets with short deadlines.
These cannot always be scheduled together with the
shorter destined packets because of conflicting links.
When two packets have the same priority level the
packets with the further destination has priority. Thus
slot utilisation will decrease which is expressed in the
decline of the throughput after the “summit” in the
figure. The simulation shows that the utilisation of slots
does not perform as well as may be theoretically
expected (two packets transmitted per slot, because of
pipelining). This is attributed to the policy of using
deadline to selecting packets for transmission. The policy
is not as bandwidth conserving as, e.g., the FWS policy
[2] which can achieve higher average throughput. This is
the cost of having good support for real-time traffic.

Figure 11 shows packet throughput and average
packet latency for each destination distance plotted
against packet generation intensity. The simulation is for
16 nodes. Concluded from this simulation is that TCMA
treats packets fairly regardless of the distance to the
destination even when the network approaches and is
saturated. Observe that there are 15 (for N-1 distances to
destination) plots for latency but that these overlap and
appear as one.

6 Conclusions
This paper presents an optical ring network medium

access protocol that globally optimises packet timing
constraints. Simulation results of the medium access
protocol have been presented. The protocol is shown to
be fair even when the network is saturated. The network
with the presented protocol is suitable for application
such as in embedded systems, e.g., for use as
interconnection network in a radar signal processing
system, or as a high performance network for a LAN.
Also worth mentioning is that the network can be built
today using fibre-optic off-the-shelf components

Acknowledgement
This work is part of M-NET, a project financed by

ARTES: A Real-Time network of graduate Education in
Sweden.

References
[1] M. Jonsson, “Two fibre-ribbon ring networks for parallel
and distributed computing systems,” Optical Engineering, vol.
37, no. 12, pp. 3196-3204, Dec. 1998.

[2] P. C. Wong and T.-S. P. Yum, "Design and analysis of a
pipeline ring protocol," IEEE Transactions on
communications, vol. 42, no. 2/3/4, pp. 1153-1161,
Feb./Mar./Apr. 1994.

[3] M. Conti, E. Gregori, L. Lenzini, “DQDB under heavy
load: performance evaluation and fairness analysis,”
INFOCOM '90, Proceedings of the 9th Annual Joint
Conference of the IEEE Computer and Communication
Societies, vol.1, pp. 313 –320, 1990.

[4] B. Raghavan, Y.-G. Kim, T.-Y. Chuang, B. Madhavan,
A.F.J. Levi, “A gigabyte-per-second parallel fiber optic
network interface for multimedia applications,” IEEE Network,
Volume: 13 Issue: 1 , Jan.-Feb. 1999 pp. 20 –28.

[5] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L.
Seitz, J.N. Seizovic, Wen-King Su, “Myrinet: a gigabit-per-
second local area network,” IEEE Micro, Volume: 15 Issue: 1,
Feb. 1995 pp. 29 –36.

[6] M. Jonsson, C. Bergenhem, and J. Olsson, "Fibre-ribbon
ring network with services for parallel processing and
distributed real-time systems," Proc. ISCA 12th International
Conference on Parallel and Distributed Computing Systems
(PDCS-99), Fort Lauderdale, FL, USA, Aug. 18-20, 1999, pp.
94-101.

[7] C. Bergenhem and J. Olsson, “Protocol suite and
demonstrator for a high performance real-time network,”
Master thesis, Centre for Computer Architecture (CCA),
Halmstad University, Sweden, Jan. 1999.

[8] D. Bursky, "Parallel optical links move data at 3 Gbits/s,"
Electronic Design, vol. 42, no. 24, pp. 79-82, Nov. 21, 1994.

[9] C. Bergenhem, “A demonstrator for a CC-FPR network,”
Techical report 0010, School of Information Science,
Computer and Electrical Engineering (IDE), Halmstad
University, Sweden, Feb. 2000. In Swedish.

[10] K. Arvind, K. Ramamritham, and J. A. Stankovic, “A
local area network architecture for communication in
distributed real-time systems,” Journal of Real-Time Systems,
vol. 3, no. 2, pp. 115-147, May 1991.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 [s

lo
ts

]

Total packet generation intensity [packets per slot]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Th
ro

ug
hp

ut
 [p

ac
ke

ts
 p

er
 s

lo
t]

+ Throughput

Figure 11. Packet throughput vs. packet
generation intensity for 16 nodes. The other
curves represent latency for the (15) different
distances between source and destination.

[11] M. Jonsson, B. Svensson, M. Taveniku, and A. Åhlander,
“Fiber-ribbon pipeline ring network for high-performance
distributed computing systems,” Proc. International
Symposium on Parallel Architectures, Algorithms and
Networks (I-SPAN’97), Taipei, Taiwan, Dec. 18-20, 1997, pp.
138-143.

[12] M. Taveniku, A. Åhlander, M. Jonsson, and B. Svensson,
“The VEGA moderately parallel MIMD, moderately parallel
SIMD, architecture for high performance array signal
processing,” Proc. 12th International Parallel Processing
Symposium & 9th Symposium on Parallel and Distributed
Processing (IPPS/SPDP98), Orlando, FL, USA, Mar. 30 –
Apr. 3, 1998, pp. 226-232.

Modeling and Analysis of Message-Queues in Multi-
Tasking Systems

Thomas Nolte, Hans Hansson

Mälardalens Högskola/IDT
thomas.nolte@mdh.se, hans.hansson@mdh.se

This paper presents work in progress on an analysis method for message queues
in a real-time multi-tasking system. This analysis will later be compared with
simulation results, in which variations/distributions of execution times, task
periods etc will be considered. The intention is to evaluate the level of
pessimism in the analytical worst-case analysis, compared to the execution
scenarios that actually occur in the real system. We will use these results as a
basis for future work in the ARTES project RATAD, which aims at developing
schedulability analysis with a wider applicability, by integrating reliability into
real-time scheduling theory. What we want is a method for integrating
reliability into classical real-time scheduling, so that we can guarantee, up to
some level, that our system is working properly. This is to be compared with
the classical 0/1 results of the schedulability theory.

1. Introduction

There is hardly any published work on schedulability analysis of message queues.
There is however related work on scheduling messages in communication networks,
including [2]. These models are however different from those needed for modeling
standard multi-tasking operating system message queues (e.g. those proposed for
POSIX [3]), in that the networking queues are separately scheduled resources,
whereas the handling of the OS queues is performed by a CPU shared by many types
of tasks, as well as the OS kernel.
Outline: In Section 2 we present our model and in Section 3 the method used for
analysis is described. Finally our conclusion and future work is described in Section
4.

2. Problem formulation and model

We are assuming a producer-consumer scenario with a pre-emptive fixed priority task
model. The inter-process communication is performed using message queues. Initially
we assume the queues to be FIFO, but later we will extend the model to also cover
priority queues.
The consumer has the following behavior

while(1){
É

receive(É); //blocking
É

}

Hence the consumer is blocked if nothing is to be received from the message queue.
When the consumer is allowed to execute, it will (in the worst case) execute for Cc

time units. This is repeated for every message that it consumes.
The producers are assumed to (in the worst case) behave as periodic tasks that at

the end of their execution queue a message.
This paper is restricted to a scenario where all communication and execution is

performed locally on a single node. We will for such a system consider a set of
message queues, each handled by a single consumer, to which a set of associated
producers queue messages as can be seen in Fig 1.

Producer

ConsumerProducer

Producer

Queue

Fig. 1. System containing a set of producers and consumers that are communicating via a
message queue.

The problem is here to calculate the worst-case end-to-end delay in a producer –
message – consumer transaction. We will additionally calculate an upper bound of the
message queue size.

The following terminology is used in this paper:

· T – The period of a task
· C – The worst case execution time of a task
· J – The jitter of a task. J = rmax – rmin, where r is the release time relative to the start

of the period associated with each task. If rmin = 0 then J = rmax, which is what we
will assume in the following.

· P – The priority of a task
· r – The release time
· #p – A term associated with the producer
· #c – A term associated with the consumer
· queuesize – The maximum buffer need for the queue
· R – The worst case end-to-end response time associated with a producer – queue –

consumer transaction

· { }n
cR
L0 – The response time to handle the n first messages in a busy period (a busy

period being a time period during which the queue is continuously non-empty).

3. Analysis of message queues

We are about to analyse message queues for inter-task communication on a single
node. We start this by a simple scenario, which we then extend to be more general
and more complex. We have a producer-consumer scenario, where initially the
consumer is blocked, waiting for a message to arrive in the message queue. Following
standard fixed-priority schedulability analysis practice [4] we assume the producer to
be released at most every Tp time units.

We will now derive some simple schedulability criteria and more detailed analysis
for the above type of systems. The formulas presented here may not terminate unless
load is less than 100%.

We begin with a single producer per queue and then extend to multiple producers
per queue.

3.1. Single producer

First, we assume that we have a producer with a period, T, a certain amount of release
jitter, J, execution time, C, and a priority, P. Further on we have a consumer with
execution time and a priority as can be seen in Fig 2.

Consumer
C, P

Producer
T, J, C, P

Queue

Fig. 2. The properties of the producer and the consumer task used in our model.

What we do now is to find out the worst end-to-end response time for this scenario. In
order to find this response time we have to find the maximum response time of all
messages produced within a Busy Period, i.e., the time it takes to completely empty
the queue in a worst case scenario.

If we use Rn to denote the response time for the consumer to consume the n:th
message, then the worst case end-to-end response time, R, is

)(max n
MBPn

RR
Î

= (1)

where MBP is the set of messages sent by all producers of a queue within the Busy
Period.
What we need to do is to calculate the end-to-end response times for all the messages
sent within the busy period. In order for the busy period to terminate, we require a
load that is less than 100%. We use an approach similar to the iterative method used
for analysis of task response times when deadline exceeds period [5] to iteratively

search for the maximum response time of the messages queued during the busy
period. This amounts to initially assume that a single message is queued, and then
calculate the response time for this message. If a second message has been queued
during this response time we can calculate the response time for this message by
analyzing the (in the response time sense) equivalent scenario when both messages
are queued initially (i.e. when the consumer needs to be executed twice). If a third
message is queued during the response time of the two messages, then we repeat the
procedure for three messages. This continues for four, five, etc. messages until we
reach a point when no new message is queued during the response time. That such a
situation exists follows by the assumption that we have a utilization that is less than 1.

In the worst case scenario we will number consecutive messages in increasing
order, starting with message 0.

We define the release time for a message as r. Then we assume that the message is
released as soon as the producer is activated. In this way we cover all cases of
messages being sent. The release time of message n is given by

() pp JTnr -= * (2)

Then we calculate the response time for the consumer using traditional exact analysis
methods [1].

()

{ }
c

n
c

j
taskshpj j

jc
c

c

wR

C
T

Jw
Cw

CnC

=

ú
ú
ú

ù

ê
ê
ê

é +
+=

+=

å
Î

L0

)(

*1

(3)

When we have the response time for the handling of the n first messages, { }n
cR
L0 , we

can calculate the response time associated with message n simply by subtracting the
release-time of the current message from the total response time.

{ } rRR n
cn -= L0 (4)

We have now gathered the response times for the n first messages and we must
investigate whether or not we have emptied the queue, since this is our termination
criterion for the busy period. To do this we investigate whether or not the following
condition is met, i.e., if the queue is not empty or not. If the following is true, (2)-(4)
is repeated for the next message.

()
{ }

ú
ú
ú

ù

ê
ê
ê

é +
<+

p

p
n

c

T

JR
n

L0

1 (5)

When we have emptied the queue we use (1) to find out the maximum response time
present in the Busy Period. When we have the maximum response time we can use it
to calculate the buffer need for the queue. The maximum queue size will be

ú
ú
ú

ù

ê
ê
ê

é +
=

p

p
size T

JR
queue (6)

Intuitively, this captures that the maximum queue size occurs when the worst-case
end-to-end response time for a message is present.

3.2. Multiple producers

We have now looked at scenarios where we have a single producer feeding the queue
with messages. We now extend this to handle multiple producers to a single queue.
We introduce a set M containing all producers associated with each queue, that is all
producers belonging to a certain queue. The procedure behaves the same as in the
single producer scenario. The only difference is that the queue is receiving messages
from multiple producers. If we first try to extract the worst end-to-end response time,
we do as in the single producer scenario. What we need to handle is the scenarios
where preemption involving several producers occurs, i.e., producers that gets
preempted by other producers. If we want to calculate the worst end-to-end response
time regardless of producer, all producers that are preempting us will in the worst case
always manage to send their messages before us, as illustrated in Fig 3. Here we can
see that if all higher priority producers will send their messages before us, we will be
consumed as the last one, and therefore we will experience the longest end-to-end
response time.

Task A

Task B

Task C t

First message

Second message

Third message

Preemption occurs

Fig. 3. The worst-case scenario regardless of which producer that is belongs to is always the
one created for the producer with the lowest priority.

In this way, it is always the producer, which has the earliest release time of its current
message that is interesting. What we need to do though, is to investigate whether or
not some other producers will preempt this producer. If this is the case, then we
always assume that the other producers, the ones that are preempting us, will produce
their message before us. That is, we will always produce the worst scenario this way.
If we do this, we can use similar methods to the ones used in the single producer
scenario.

The situation becomes slightly more complicated when we are to extract the
maximum end-to-end response time associated with a certain producer. This will
force us to produce different execution scenarios depending on which producer we are
interested in, since the actual time that each message is sent will influence the order of
messages in the queue. The different scenarios, when having three producers
associated with a queue, is the one described in Fig 3 (which is the worst case
scenario for Task C) and the ones described in Fig 4 and Fig 5.

Task A

Task B

Task C t

First message

Second message

Third message

Preemption occurs

Fig. 4. The worst-case scenario for producer B is that all task with lower priority that we are
preempting for the moment, actually has been able to already produce their messages. As usual,
all preempting producers with higher priority than us will produce their messages before us.

Task A

Task B

Task C t

First message

Second message

Third messagePreemption occurs

Fig. 5. The last scenario of our task set is when calculating the worst-case for the producer with
the highest priority. Here all producers that we have preempted will produce their messages
before us.

When we have taken these precautions, we need to modify our formulas used as the
termination criteria, i.e., when the queue is empty, and our formula used for
calculating the buffer need. What we will do is similar as for the single producer
scenario, i.e., we extract all response-times until (5) is not met anymore, but in order
to handle multiple producers we need to extend (5) to the following

()
{ }

å
Î ú

ú
ú

ù

ê
ê
ê

é +
<+

Mj j

j
n

c

T

JR
n

L0

1 (7)

When we are done, we can extract R using (1) in order to extract the maximum end-
to-end response time so that we can calculate the required queue size. We need to
modify (6) to handle multiple producers.

å
Î ú

ú
ú

ù

ê
ê
ê

é +
=

Mj j

j
size T

JR
queue (8)

4. Conclusion and future work

We have presented preliminary results from on-going work on including message
queues in schedulability modeling and analysis. Our initial experiments indicate that
it is not trivial to construct the worst-case scenario, especially when we are to collect
worst-case end-to-end response time associated with each producer. When this is
done though, we will extend the model to also cover messages with different
priorities. This is essential, since many of the operating systems used in industry
today, e.g. those that are POSIX compliant, support priority queues. When we have a
good analysis method we will compare the results with simulation results. These
results will then be integrated with some probabilistic model making it possible to
integrate reliability theory with schedulability analysis.

References

[1] M. Joseph and P. Pandya. “Finding response times in a real-time system”, BCS Computer
Journal, 29(5): 390-395, 1986

[2] Mikael Sjödin, “Predictable High-Speed Communications for Distributed Real-Time
Systems”, Ph.D. Thesis, Uppsala university, Information Technology, Department of
Computer Systems, May 2000

[3] IEEE Standard for Information Technology - Test Methods Specifications for Measuring
Conformance to POSIX/sup R/ - Part 1: System Application Program Interface [API] -
Amendment 1: Realtime Extension [C Language] IEEE Std 2003.1b-2000 , 2000

[4] Audsley, N.; Burns, A.; Richardson, M.; Tindell, K.; Wellings, A.J., “Applying new
scheduling theory to static priority pre-emptive scheduling”, Software Engineering Journal ,
Volume: 8 Issue: 5 , Sept. 1993, Page(s): 284 –292

[5] Tindell K, Hansson H, “Real Time Systems by Fixed Priority Scheduling”, Department of
Computer Systems, Uppsala University, 1996

Applications of Lock and Wait-free shared data structures to Real-Time
Systems.

Håkan Sundell
Chalmers University of Technology
Department of Computing Science

phs@cs.chalmers.se

Abstract:

I will talk about my current research with real-time operating systems and also
about shared data structures for concurrent programming. I will present the
commercial OSE operating system and ideas behind the inter-communication of
tasks. The drawbacks with the current approach will be highlighted and some
ideas for improvements using lock and wait-free data structures will be
presented.

I will briefly present the upcoming library tool-kit of shared data algorithms
called NOBLE, and its continuations within embedded systems. NOBLE is
mainly designed for fast performance parallel computer systems, but will also be
adopted for common microprocessors used in embedded systems.

I will give an overview of the current research of improving current lock and
wait-free algorithms, present the different approaches. I have recently looked on
how to improve wait-free algorithms using the timing information available in
real-time systems, for example to bound time-stamps.

27 Feb 2001

Non-blocking synchronization for soft real-time applications

Zhang Yi
yzhang@cs.chalmers.se

CS Department
Chalmers Technical University

Abstract

Non-blocking synchronization for real-time system has attract a lot of research efforts. However,
Previous researches mainly focus on hard real-time system. Previous results show that wait-free
mechanism is more favourable for hard real-time system than lock-free mechanism because wait-
free
easy the scheduling and provides worst-case execution time for data sharing. In soft
real-time application, tasks don't need to always guarantee to meet deadline. Although lock-free
has unbounded worst-case execution time, it guarantee the consistency of shared data object during
accessing the shared data object. So a task can quit from the critical section anytime it want and
without worry about the consistency of the shared data objects. We will look at how to apply
lock-free synchronization and what kinds of guarantee can be provided by lock-free
synchronization.

	Frontpage
	ARTES TODAY
	Participants
	Programme
	Presentations
	Jad El-khoury, AIDA II
	Anton Cervin, Analyzing the effects..
	Lars Albertsson, Simulation..
	Birgitta Lindström, Methods ...
	Robert Nilsson, Test-Case Generation...
	Björn Andersson, Fixed-Priority ...
	Cecilia Ekelin, Solving Embedded ...
	Sorin Manolache, Memory and Time-...
	Flavius Gruian, On Energy Reduction ...
	I. Introduction
	II. Task-Set Level Scheduling Decisions
	A. Unique Period, Unique Deadline
	Table 1: An example of case A

	B. Unique Period, Different Deadlines
	Fig. 1. Off-line scheduling algorithm for reduced energy in the case of task sets with unique per...

	C. Different Periods
	Table 2: Numerical Example for Off-line Scheduling

	III. Task Level Scheduling Decisions
	Fig. 2. Voltage scheduling modes for tasks: 1) ideal schedule, 2) WCET oriented schedule, 3) stoc...
	Fig. 3. Examples of stochastic voltage schedules for a task with normal distribution execution ti...
	Fig. 4. The average energy consumption of a stochastic voltage schedule compared to the energy co...

	IV. Conclusions and Future Work
	References
	On Energy Reduction for Hard Real-Time Tasks with Stochastic Execution Times

	Paul Pop, Minimizing System ...
	Anders Pettersson, Minimization of ...
	Anders Nilsson, Deterministic Java in ...
	Paul Scerri, Designing Agents ...
	Sanny Gustavsson, On recovery ...
	Hoai Hoang, Switched Real-Time ...
	Carl Bergenhem, Fibre-Ribbon ...
	Abstract
	Introduction
	Original protocol
	Two-cycle medium access protocol
	Real-time virtual channels
	Implementation aspects
	Worst-case analysis
	Simulation analysis

	Conclusions
	Acknowledgement
	References

	Thomas Nolte, Modeling ...
	Håkan Sundell, Applications of ...
	Zhang Yi, Non-blocking synchronization ...

	s9: page 9
	p: Page
	9: 9
	17: 17
	27: 27
	39: 39
	43: 43
	55: 55
	65: 65
	81: 81
	89: 89
	95: 95
	103: 103
	Page: Page
	105: 105
	115: 115
	123: 123
	129: 129
	131: 131
	141: 141
	149: 149
	151: 151
	p17: page 17
	p27: page 27
	p39: page 39
	p43: page 43
	p55: page 55
	p65: page 65
	p81: page 81
	p89: page 89
	p95: page 95
	p103: page 103
	p105: page 105
	p115: page 115
	p123: page 123
	p129: page 129
	p131: page 131
	p141: page 141
	p149: page 149
	p151: page 151

