
AIDA II Progress Report
Towards a Co-simulation Environment for 

Computer Control Systems 

Jad El-khoury

KTH, Department of Machine design,
Mechatronics lab, 100 44 Stockholm

jad@md.kth.se

ABSTRACT

Modern machinery, such as automobiles, trains and aircraft, are equipped with embedded dis-
tributed computer control systems where the software implemented functionality is steadily in-
creasing. The development of such systems, however, is still a relatively new and young
discipline. There is consequently a lack of tools, methods and models to support, in particular,
the early architectural design stages.

Closely associated with the design of a distributed control system are design decisions on the
overall system structure, function triggering and synchronization, policies for scheduling, com-
munication and error handling. These parameters to a large extent determine the resulting sys-
tem timing and dependability, and hence, impact the control application performance and
robustness.

The primary target for the research described here is the development of executable models to
support architectural design. The report describes earlier efforts in this direction including
case studies in the DICOSMOS and AIDA projects. Experiences from the studies are discussed
including aspects on modelling to support interdisciplinary design, modeling abstraction and
accuracy, and tool implementation.

A state of the art survey of related modelling efforts reveals that very little appears to have been
done in terms of modelling and simulation that involves simulation of the environment with the
computer control system. In addition, the treatment of distributed computer systems, redundant
systems, and error scenarios in this context appear to be scarce.

The possibilities for extending the simulation models to arrive at a ready to use library to sup-
port the design of distributed control systems are discussed. This work is already under way.
Remaining work includes to verify the developed simulation models, and to evaluate the models
and their usage in case studies. One related topic for further work includes integrating the sim-
ulation models with the AIDA modeling framework. A longer term aim is that the models and
simulation features should form part of a larger toolset supporting also earlier and later devel-
opment stages, thus providing more comprehensive analysis and synthesis support.

1. INTRODUCTION

This report is a summary of an internal report developed at the mechatronics lab in order to iden-
tify the short and long-term research work to be done in the AIDA II project. Please refer to
(Törngren, 2001) for more detailed information.

1.1. Background: embedded control systems, trends and challenges 

Machinery, such as automobiles, trains and aircraft, are increasingly being equipped with em-



bedded control systems that are based on distributed computer systems. In these systems the
functionality is steadily increasing due to the possibilities enabled by software and networks for
information exchange. The computer system is typically composed of a number of networks
that connect the different nodes of the system. A node typically includes sensor and actuator in-
terfaces, a microcontroller, and a communication interface to the broadcast bus. From a control
function perspective, such machines can be said to be controlled by a hierarchical system, where
subfunctions interact with each other and through the vehicle dynamics to provide the desired
control performance.

However, a number of challenges face the developers of such machinery in order to really be
able to benefit from the technology advances:

• The need to cope with the dramatic increase in system (software) complexity. Apart from the
sheer amount of new functionality, complexity also arises from different types of interfer-
ence between functions partly arising from their usage of shared computer system resources.

• Managing and exploiting multidisciplinarity. The development of embedded control systems
requires knowledge in, and cooperation between, several different scientific and engineering
disciplines. 

• Verification and validation of dependability requirements. The main challenge here is that
of developing mechatronic (software based) systems that are safer and more reliable than
their mechanical counterparts. Albeit the advantages, software easily becomes very complex
and is difficult to verify and validate. In addition, the distributed computer systems where the
software is implemented add “new” failure modes.

1.2. Modelling and simulation in the context of architectural design

The development of embedded computer control systems is still a relatively new and young dis-
cipline. Consequently, there is a lack of tools, methods and models to support, in particular, the
early so called architectural design stages. The primary target for the research described here is
the development of models to support architectural design. In the context of designing a distrib-
uted computer control system, architectural design is here used to refer to decisions on the:

• Overall system structure, including both functional, software and computer structure (These
issues include deciding on allocation and partitioning)

• Function triggering, synchronization, and policies for scheduling all resources
• Communication principles
• Policies for error handling, and the mechanisms used for error detection. 
Choices of these “design parameters” to a large extent determine the resulting system reliability,
safety, and timing, and impact the control application performance and robustness.

The very basic idea is to develop models that can be used to analyse different architectural pro-
posals, simulation is the analysis approach taken in this work. In a longer term perspective, the
aim is that the models and simulation features should form part of a larger toolset being devel-
oped at the mechatronics lab; a toolset that supports the design of embedded control systems in
order the meet the main identified challenges: complexity, multidisciplinarity and dependabili-
ty.

Some of the requirements on the models are as follows (the reader is referred to Törngren (1995)
and Redell (1998) for more detail and background):

• The models should allow both functionality, to be implemented in a computer system, and
the computer systems to be represented.



• The models should allow co-simulation of functionality, as implemented in a computer sys-
tem, together with the controlled continuous time processes and the behavior of the computer
system.

• The models should support interdisciplinary design, thus taking into account different sup-
porting methods, modelling views, abstractions and accuracy, as required by control, system
and computer engineers.

• The models should be useful also for a descriptive framework, visualising different aspects
of the system, as well as being useful for other types of analysis such as scheduling analysis.

1.3. Why model based architectural design?

By model based design we primarily refer to models that are sufficiently formal to allow anal-
ysis to be carried out. Early architectural analysis allows the solution space to be explored, and
at the same time provides a better opportunity for the early detection of erroneous requirements
and design bugs. Clearly, such mistakes are very costly if detected late. Compared to traditional
testing, the approach allows different failure modes to be approached and analysed one at a time,
progressing the verification through the development in an iterative and incremental fashion.

A strong advantage of model based design used in the context of early analysis, is the ability to
evaluate alternative architectures with very few restrictions. Compared to traditional integration
testing, or hardware in-the-loop simulation where the complete environment of a node is simu-
lated in real-time, model based design and analysis provides additional advantages including the
ability to easily and with low cost change the design, and the possibility to instrument and ana-
lyse the internals of the distributed computer system. This is not to say that model based design
can replace the others, but the tasks of for example the system integrator can be made much eas-
ier given that some aspects of the system, such as its timing behavior, have been analysed thor-
oughly earlier. A strong point of the modelling activity is that it is a very useful process that can
reveal a number of aspects, such as missing requirements and design bugs.

The investigation of computer system models, at different levels of abstraction with different
accuracy/complexity, is an educative process that we hope can provide additional understanding
to support interdisciplinary design. The model and tool prototypes are also very important as
part of the research because they enable different forms of feedback.

2. ACCOMPLISHMENTS IN MODELLING AND SIMULATION AT THE 
MECHATRONICS LAB

2.1. Early work on modelling and simulation in the DICOSMOS project

An early investigation of “timing problems” was carried out in the DICOSMOS project, see
Wittenmark et al. (1995), Törngren (1995), Nilsson (1996). Here the effects of time-varying
feedback delays, sampling period jitter and data loss in feedback control systems were investi-
gated. Inspired by earlier work along the lines of Ray (1988), cosimulation was one approach
taken in DICOSMOS towards analysing the timing problems. Special Simulink (www.math-
works.com) blocks were developed to model time-varying delays, sampling instant jitter, vacant
sampling and sample rejection (data-loss through over-writing of data), Törngren (1995). A
feedback control system, as modelled in Simulink, could then be instrumented with these blocks
to come one step towards modelling a distributed computer implementation. The approach
turned out to be useful for illustrating the effects of the timing problems and for analysing them,
e.g. for comparing the effects of sampling period jitter vs. a time varying delay, or for analysing
the sensitivity of a particular control design.



2.2. The AIDA modelling framework

The basis for developing the modelling framework was to determine the information needed in
the context of the early stages of design of distributed control systems. The models were target-
ed towards motion control applications implying the need to be able to model time- and event-
triggered, multirate, control systems with different modes of operation. These control systems
are to be implemented on distributed heterogeneous hardware with both serial and parallel com-
munication links interconnecting the processing elements. There is a need for modelling the var-
ious system specific overheads, scheduling policies, error handling etc. The derived
requirements and the AIDA modelling framework are thoroughly described by Redell (1998),
Törngren and Redell (2000).

2.3. Modelling and simulation of the SMART satellite fault-tolerant computer system

During very early design stages of the development of the distributed computer control system
of the SMART satellite, to be launched in 2002 by the European Space Agency, the Swedish
Space Corporation needed to analyse and verify the use of the Controller Area Network (CAN)
in the on-board satellite computer control system. In particular the error handling of CAN in
conjunction with the chosen design for a fault tolerant network was of concern. This work was
partly carried out by the authors of this report, and included assessing the design by means of
modelling and simulation. The main aim of the simulation was to verify that the given rules for
redundancy are not conflicting, and that the system can recover from a single permanent fault.
For more information on the simulation models the reader is referred to Törngren and Fredriks-
son (1999).

2.4. Cosimulation within the DICOSMOS2 project

Sanfridson (1999 & 2000) describes a co-simulation of a truck and semi-trailer using a CAN
bus for the on-board distributed control system in order to investigate the performance of con-
trol applications and adjust control periods and message priorities on-line. The simulations have
been implemented in Matlab/Simulink. The model of the CAN bus is fairly detailed which gives
a realistic timely behaviour of the network communication. The major drawback is the amount
of processor time required to carry out the simulation at this detailed level. 

3. THE STATE OF THE ART

Various simulation tools have been developed to tackle some of the issues discussed in this re-
port. A small survey has been performed in order to evaluate these tools, with an earlier com-
plementing survey given by Redell (1998). What was common between these tools is the fact
that they are developed with the aim of simulating real-time computer systems. However, each
tool is focused on particular aspects of such systems. 

The following tools were evaluated: (See Törngren, 2001 for further details)

• RT/CS Co-design: A Matlab Toolbox for Real-time and Control Systems Co-design
• DRTSS: A Simulation Framework for Complex Real-time Systems
• STRESS - A Simulator for Hard Real-time Systems
• HaRTS: Design and Simulation of Hard Real-time Applications

4. SOME ESSENTIAL ISSUES IN MODELLING AND SIMULATION

4.1. Interdisciplinary design: modeling purpose, abstraction and accuracy

Good cooperation and interfaces between the involved engineers is essential to maintain con-



sistency between specifications, design and implementation. When developing a motion control
system for a machine, somehow the functions and elements thereof need to be allocated to the
nodes. This principally means that an implementation independent functional design needs to
be enhanced with new “system” functions that:

• Perform communication between parts of the control system.
• Perform scheduling of the computer system processors and networks.
• Perform additional error detection and handling.
This mapping will change the timing behavior of the functions due to effects such as delays and
jitter.

4.2. Issues related to system development and tool implementation

While developing distributed control systems, it would be advantageous to have a simulation
toolbox or library, in which the user can build the system based on prebuilt modules to define
things such as the network protocols and the scheduling algorithms. With such a tool, the user
can focus on the application details instead. Such a tool is possible since components like dif-
ferent types of schedulers and CAN network are well defined and standardised across applica-
tions. Such a tool will enforce a boundary between the application and the rest of the system.
This will speed up the development process, and gives the developers extra flexibility in devel-
oping the application.

Also, to be useful and cost-effective for system development, the usage of the models and the
simulation facilities need to be integrated into the development process.

5. FUTURE WORK

Investigating and extending the AIDA modeling framework. Some further ideas for devel-
oping the models are as follows:

• The developed simulation models should be integrated with the AIDA modelling frame-
work. Ideally, the same basic models should be useful for static analysis and for simulation.

• The simulation models do describe both system structure and behavior but they are not al-
ways very descriptive since they sometimes lack graphical views. Some proposals in this di-
rection have been made in the AIDA models (Redell, 1998).

• The semantics of pure simulation models (such as the ones in Simulink) inherently differ
from the timing behaviour of real-time execution, (Törngren et al., 1997). How can this se-
mantic gap be bridged?

• The simulation models and the AIDA framework need to be extended both upwards, to mod-
els used in earlier design stages, and downwards, towards the implementation. Basically, the
motivation is given by the need for a holistic design framework that enables models (and
work accomplished) to be reused, and used efficiently. Thus it would be desirable to be able
to refine the models such that they can be used not just in early design. In addition, work car-
ried out in configuring a computer node for example, should be reusable in later prototyping
and implementation stages.

• The use of the Unified Modelling Language (UML, 1997) and CODARTS models (Gomaa,
1993, a development of structured analysis models) in conjunction with the modeling frame-
work will be investigated. Key aspects here include assessing when and why to use object
models vs. functional (structured analysis) models, and how they map to other entities such
as tasks.



Developing a toolset for architectural analysis. This topic builds upon the ideas of the AIDA
project. The idea is to develop a toolset that provides comprehensive analysis and modelling
support for embedded control systems.

The following are some ideas for the implementation of a prototype toolset for research purpos-
es:

• The envisioned toolset concept is based on a number of well established engineering tools
that are complemented and extended with a number of functionalities. These functionalities
include additional models to enable important analysis and synthesis to be carried out. They
will also include necessary interfaces between tools. There are two strong reasons for this
structure; given limited research efforts, energy should not be spent on reinventing the wheel.
In addition, using available tools will make it easier to demonstrate and apply the toolset con-
cept in a realistic setting. It will also facilitate the pinpointing of the opportunities provided
by the complementing tools. As an example, there are tools around that can deal with mod-
elling and analysis of reliability, safety, control system design, finite state machines, timing
analysis, etc., but these tools are not integrated; and even if they were, can not provide the
functionality required for appropriately supporting the design of distributed real-time control
systems.

• The functionalities considered include support for overall system structuring in early design
stages (where reliability, safety, resource load and costs are evaluated), hazard and safety
analysis integrated with control system design, and control design complemented with sup-
port for distributed real-time system implementation where timing analysis is one important
part.

• Model reuse must be enabled by the envisioned toolset. Reuse can come in different forms.
One aspect of this is to be able to use a developed model throughout the life cycle of a product
in order to support product maintenance including upgrades. As discussed earlier, this re-
quires models to be refined during the development. Having developed a simulatable model,
it would be valuable to reuse this information, for example the computer system configura-
tion, in further prototyping and development work.

Many interesting issues exist and will arise in the development of this type of toolset.This in-
cludes how to manage the different types of models and how to use the toolset facilities in sys-
tem development. The toolset should be complemented by an appropriate design methodology.
One important piece of this methodology should be a verification framework that promotes the
development of dependable embedded systems.

Extending the functionality of the toolset also requires the models to be extended (as partly dis-
cussed in the previous section). For example, the AIDA models currently do not include explicit
fault models and attributes such as criticality.

6. REFERENCES

Gomaa (1993). Hassan Gomaa. Software design methods for concurrent and real-time systems.
Addison-Wesley publishing company, 1993.

Nilsson (1996). Johan Nilsson. Real-Time Control Systems with Delays. PhD thesis. ISRN
LUTFD2/TFRT--1049--SE, Lund Institute of Technology, Sweden.

Ray and Halevi (1988). Asok Ray and Y. Halevi. Integrated Communication and Control
Systems: Part II - Design Considerations. ASME Journal of Dynamic Systems,
Measurements and Control, Vol 110, Dec. 1998, pp 374-381.



Redell (1998). Ola Redell. Modelling of Distributed Real-Time Control Systems, An Approach for Design and
Early Analysis, Licentiate Thesis, Department of Machine Design, KTH, 1998, TRITA-MMK
1998:9, ISSN 1400-1179, ISRN KTH/MMK--98/9--SE, Stockholm, Sweden.

Sanfridson (1999). Martin Sanfridson. QoS in Distributed Control of Safety-Critical Motion
Systems. Work in progress paper at the 20th Real-time Systems Symposium, Phoenix,
December 1999.

Sanfridson (2000). Martin Sanfridson. Timing problems in distributed control. Licentiate Thesis,
TRITA-MMK 2000:14, ISSN 1400-1179, ISRN KTH/MMK--00/14--SE, May 2000.

Törngren (1995). Martin Törngren. Modelling and design of distributed real-time control applications.
Doctoral thesis, Department of Machine Design, KTH, TRITA-MMK 1995:7, ISSN1400-
1179, ISRN KTH/MMK--95/7--SE.

Törngren and Fredriksson (1999). Martin Törngren and Peter Fredriksson. SMART-1. CAN and
Redundancy logic simulation of the SMART SU. Swedish Space Corporation, Report S80-
1-SRAPP-1.

Törngren and Redell (2000). Martin Törngren and Ola Redell. A Modelling Framework to
support the design and analysis of distributed real-time control systems. Journal of
Microprocessors and Microsystems 24 (2000) 81-93, Elsevier, special issue based on
selected papers from the Mechatronics 98 proceedings.

Törngren (2001). Martin Törngren, Jad El-khoury, Martin Sanfridson and Ola Redell. Modelling
and Simulation of Embedded Computer Control Systems: Problem formulation. Internal Report,
Department of Machine Design, KTH, TRITA-MMK 2001:3, ISSN1400-1179, ISRN KTH/
MMK--01/3--SE.

Törngren et al. (1997). Martin Törngren, Christer Eriksson, Kristian Sandström (1997). Real-
time issues in the design and implementation of multirate sampled data systems. In Preprints
of SNART 97 -Swedish National Association on Real-Time Systems Conference, Lund, 21-
22 August 1997.

UML (1997). UML notation guide. Version 1.1. Sept. 1997. Object Management Group, doc.
no. ad/97-08-05. http://www.rational.com/uml

Wittenmark et al. (1995). Björn Wittenmark, Johan Nilsson, and Martin Törngren. Timing
Problems in Real-time Control Systems. Proceedings of the 1995 American Control
Conference, Seattle, WA, USA.


