

Empty page.

00-03-07

Preface

This volume contains the papers presented at the 2™ ARTES Graduate Student Conference, held at
Chamers University of Technology in Goéteborg, from March 16 to 17, 2000.

As of today, more than 70 graduate students have joined the ARTES network by registering as
Real-Time Graduate Students, and thereby getting access to the benefits provided by ARTES,
including free-of-charge participation at the ARTES Summer School, aswell as at other ARTES
conferences and meetings, not to mention the mobility support provided by ARTES. The 70+ real-
time graduate students clearly indicate that a substantial amount of real-time research is conducted
in Sweden today. Due to ARTES and other efforts, it isfair to say that Sweden is one of the world-
leaders in real-time systems research. During 1999 more than 20 papers authored/co-authored by
Swedish researchers were presented at the four leading real-time conferences: |IEEE Real-Time
Systems Symposium (RTSS), Euromicro Conference on Rea-Time Systems (RTS), |EEE Real-
Time Technology and Applications Symposium (RTAS) and The International Conference on
Real-Time Computing Systems and Applications (RTCSA). In 2000 we expect this number to
increase even further. The ARTES Graduate Student conference is one of the ARTES supported
activities aiming at ensuring this.

The main idea with the ARTES Graduate Student Conference is to provide aforum for technical
presentations and discussions among the Swedish graduate students active in the real-time area. For
newly recruited graduate students it will provide an opportunity to experience ”area conference
situation” (maybe) for the first time. For everyone, the conference will be an excellent opportunity
to, in arelatively short time, get an overview of the current state of the national research.

As an extra bonus, we have invited Prof. Jack Stankovic from University of Virginia, one of the
founding fathers of modern real-time systems research. He will give an exciting tutorial on
Feedback Control Real-Time Scheduling, aswell as sharing his experiences and views on the work
being presented. Our second invited speaker is Alexander Dean from CMU, who will talk about
Automating Hardware to Software Migration for Real-Time Embedded Systems.

This conference has been organized with the support from the Department of Computer
Engineering at Chalmers, for which we are grateful. | would in particular like to thank Ewa
Waéingelin and Jan Jonsson for their excellent support. As always, ARTES deputy programme
director Roland Gronroos has provided inval uable assistance in organizing the event.

The papers included in this volume show an impressing width and quality, and I’ m certain that the
conference will be an event with intense technical and other discussion.

Enjoy it!

Hans A. Hansson

ARTES Programme Director
http://www.docs.uu.sefartes/
http://www.mrtc.mdh.se/han/

Address Visiting address Phone Fax Internet
Box 325 Polacksbacken +46 18 471 6847 +46 18 550225 artes@docs.uu.se
SE-751 05 Uppsala, Sweden Building 1, room 239 http://www.docs.uu.se/artes/

UPPSALA UNIVERSITY

rraduate] Educationlin Sweden

',’g\ ENg, e,
] »
8 Suedish 5 Foundation for Stralegic Research

Q
0, \J
ogys®

About ARTES 2000

The ARTES nitiative.
Representants for Svenska NAtionella Real Tidsfoéreningen (SNART) called on Bernt Ericson, at that time chairman in
SSFs I T-group, in february 1995. Bernt asked Hans Hansson (at that time chairman in SNART) to coordinate the

planning of a Swedish network for real-time research.

1.

ARTESgoalsare

to increase the number of PhDsand
Licentiates which play important rolesin
development of industrial real-time
applications and products. Concretely, the
long term goal is 50 graduate degrees per
year in ARTES related areas (the level 1997
was about 20 degrees per year), and that at
least 80% of the graduates start an industrial
career.

ARTES will reach 30 supported active PhD student
thisyear, from 2004 will the number of exams
increase and reach the goal at about 2005.

to increase the efficiency of graduate
education. The goal isthat no ARTES
graduate student should have a study-time
exceeding the nominal times of 2 yearsfor a
licentiate and 4 years for a PhD
(compensating for departmental duties and
periods of industrial work).

It looks good so far, the PhD students keep a good
Speed.

activeindustrial involvement in research
and graduate education, aswell as
academic involvement in industry.
Concretely, each ARTES supported project
should have at |east one active cooperation
activity, e.g., in the form of an industrial
engineer participating in the project, or a
graduate student performing parts of his/her
research in industry.

This goal has been reached.

to maximise synergy between thereal-
time componentsin strategic centers
supported by SSF, as well as with other

6.

effortsin the area. Concretely, at least 50%
of the ARTES supported projects should
have aformalised or informal cooperation
(e.g., interms of joint papers) with related
national programmes.

All projectsis carried out in research groups with
support from several capital providers. ARTES has
not evaluated how well this goal has been fullfilled.

toincrease national and inter national
cooper ation in real-time systems research
and education, and

ARTES have increased the national cooperation
within the area and stimulated international
cooperation.

to provide a broad base for Swedish real-
time systems research, and to make
Swedish real-time systemsr esear ch
world leading in selected areas.

ARTES have increased the cooperation in the area.
Besides research are ARTES supporting SIGURT
(SNART:sinterest group for undergraduate
education). This may lead to a higher level on
grauate education due to introduction of more real-
time isues in undergraduate levels. Swedish rea
time research is (almost) worldleader in severa
areas thisis reflected by the contributions to
international conferences (see Thomas Lundgvists,
Man Lins och Andreas Ermedahls, reportsin
ARTES Mohbility reports). The number of Swedish
publicationsin leading Real time conferences has
doubled the last year.

|EEE Real-Time Systems Symposium (RTSS 99): 3
Euromicro Conference on RTS (ECRTS 99): 4
|IEEE RT Technology and Appl. Symp. (RTAS 99) 2
R-T Computing Systems and Appl. (RTCSA’99) 12

Roland Gronroos

Address
ARTESBox 325
SE-751 05 Uppsala,
Sweden

Visiting address

Polacksbacken, building 1, room 239
L &gerhyddvagen 2

Uppsala

Phone

+46 18 471 6847

Internet
artes@docs.uu.se
http://www.artes.uu.se/

Fax
+46 18 550 225

Programme for

ARTES Real-Time Graduate Student Conference 2000

Thursday March 16

09.30-10.00 Registration and Coffee
10.00-10.10 Introduction Hans Hansson
10.10-11.00 Tutorial: Feedback Control Real-Time Scheduling Jack Stankovic
11.00-11.10 Break
11.10-11.30 Tutorial (cont'd)
11.30-12.00 Using Full Simulation for Debugging Real-Time Properties of Operating Systems Lars Albertsson, SICS
12.00-13.00 Lunch
13.00-14.00 Session on RTS Design |
Modelling of Real-Time Embedded Systems in an Object-Oriented Design Environment
with UML Sorin Manolache, LiU
Real-Time System Constraints; Where do They Come From and Where do They Go? Cecilia Ekelin, Chalmers
A Real-Time Animator for Hybrid Systems T. Amnell, A. David, UU
14.00-14.10 Break
14.10-15.10 Session on RT networking
Deadline Dependent Coding - A Framework for Wireless Real-Time Communication Elisabeth Uhlemann, HH
Wireless Networks for Manufacturing Urban Bilstrup, HH
Methods for integration of Heterogeneous Real-Time Services into High-Performance
Networks Carl Bergenhem, HH
15.10-15.40 Coffee
15.40-16.40 Session on RTS Design |1
Research Issues on System Architecture for Mechatronics Systems De-jiu Chen, KTH
Formal and Probabilistic Arguments for Component Reuse in Safety-Critical Real-Time
Systems Anders Wall, MdH
Performance Tuning of Multithreaded Applications for Different Multiprocessor Platforms Magnus Broberg, HK/R
16.40-16.50 Break
16.50-17.50 Session on execution time analysis
Supporting Timing Analysis by Automatic Bounding of Loop Iterations Mikael Sjédin, UU
Bounding The Execution Time of Method Calls Combining Static Analysis and Dynamic
Class Loading Patrik Persson, LTH
Obtaining execution time for small program fragments by testing Markus Lindgren, MdH
18.00 Closing
19.30 Conference Dinner

Friday March 17

08.30-09.30 Automating Hardware to Software Migration for RT Embedded Systems Alexander Dean. CMU

09.30-09.40 Break

09.40-10.20 Session on Multiprocessor Scheduling
Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition Bjorn Andersson, Chalmers
Dynamic Replication Decisions in Fault-Tolerant Multiprocessor-Based Real-Time Systems Monika Andersson Wiklund, Chalmers

10.20-10.40 Coffee

10.40-12.00 Session on Fault Tolerance and Control
Using Massive Time Redundancy to Achieve Node-level Transient Fault Tolerance Joakim Aidemark, Chalmers
AIDA Il Automatic control in distributed applications O. Redell, J. Elkhoury, KTH
Feedback Scheduling of Control Tasks Anton Cervin, LTH
Schedulability Analysis for Systems with Data and Control Dependencies Paul Pop, LiTH

12.00-12.10 Summary and closing

12.10

Lunch

Name

Joakim Aidemark
Lars Albertsson
Tobias Amnell
Bjorn Andersson
Monika Andersson Wiklund
Bengt Asker
Johan Bengtsson
Carl Bergenhem
Urban Bilstrup
Magnus Broberg
Anton Cervin
De-Jui Chen
Alexandre David
Alexander Dean
Julien d'Orso
CeciliaEkelin

Jad Elkhoury
Jakob Engblom
Andreas Ermedahl
Roland Grénroos

Sanny Gustavsson

Participants at
ARTES graduate student day 2000

Affiliation

E-mail

aidemark@ce.chamers.se
lale@sics.se
tobiasa@docs.uu.se
ba@ce.chalmers.se
monikaw@ce.chamers.se
bengt.asker@mailbox.swipnet.se
johanb@DoCS.UU.SE
carl.bergenhem@ide.hh.se
Urban.Bilstrup@ide.hh.se
magnusb@mailix.ide.hk-r.se
anton@control.Ith.se
chen@damek.kth.se
adavid@docs.uu.se
adean@gop.ece.cmu.edu
juldor@docs.uu.se
cekelin@ce.chalmers.se
jad@md.kth.se
jakob@docs.uu.se
ebbe@csd.uu.se
Roland.Gronroos@docs.uu.se

sanny@ida.his.se

Chamers

SICS

Uppsala University
Chalmers

Chalmers

ARTES

Uppsala University
Hoégskolan i Halmstad
Hogskolan i Halmstad
Hogskolan Karl skrona/Ronneby
Lund Institute of Technology
KTH

Uppsala University

Carnegie Mellon University
Uppsala University
Chalmers

KTH

IAR Systems AB & UU
Uppsala University

ARTES

Hogskolan i Skévde

Jorgen Hansson
Arshad Jhumka
Markus Lindgren
Birgitta Lindstrém
Thomas Lundqvist
Sorin Manolache
Simin Nadjm-Tehrani
Robert Nilsson

Jonas Norberg

Patrik Persson

Paul Pop

Mikael Sjodin

John A. Stankovic
Samuel Stolberg-Rohr
Diana Szentivanyi
Mattias Tullberg
Martin Torngren
Elisabeth Uhlemann
Anders Wall

M attias Weckstén

jorha@ida.liu.se
arshad@ce.chamers.se
markus.lindgren@mdh.se
a96birli @ida.his.se
thomas @ce.chalmers.se
g-sorma@ida.liu.se
snt@idaliu.se

robert.nilsson@ida.his.se

Patrik.Persson@cs.Ith.se
paupo@ida.liu.se
mic@docs.uu.se
stankovic@cs.virginia.edu
samuel s@md.kth.se

diasz@idalliu.se

martin@damek.kth.se
€elisabeth.uhlemann@ccahh.se

anders.wall@mdh.se

Link6ping University
Chalmers
Maélardalens hogskola
Hogskolan i Skévde
Chalmers

Link6ping University
Linkdping University
Hogskolan i Skévde
KTH

Lund University
Link6ping University
Uppsala University
University of Virginia
KTH

Link6ping University
KTH

KTH

Hoégskolan i Halmstad
Mé ardal ens hogskola

Hoégskolan i Halmstad

Updated Tuesday, 07-Mar-2000 08:45 by Roland Grénroos

e-mail: artes@docs.uu.se
Location: http://www.docs.uu.se/artes/events/gsconfO0/partici ?:.ﬂ
Togy-#

pants.shtml

1.{_|.I Hq"
-

Suwedtich 5 Foudution for Strutegic Rewaroh
o5

iy

Empty page.

Feedback Control Real-Time
Scheduling

Prof Jack Stankovic

BP America Professor and Chair
Department of Computer Science
University of Virginia

Despite the significant body of results in real-time scheduling, many
real world problems are not easily supported. While algorithms such as
Earliest Deadline First, Rate Monotonic, and the Spring scheduling
algorithm can support sophisticated task set characteristics (such as
deadlines, precedence constraints, shared resources, jitters, etc.), they
are all open loop scheduling algorithms. Open loop refers to the fact
that once schedules are created they are not adjusted based on
continuous feedback. While open-loop scheduling algorithms can
perform well in static or dynamic systems in which the workloads can
be accurately modeled, they can perform poorly in unpredictable
dynamic systems. In this project we are developing a theory and
practice of feedback control real-time scheduling. Feedback control
real-time scheduling defines error terms for schedules, monitors the
error, and continuously adjust the schedules to maintain required and
stable performance. We have developed a practical feedback control
real-time scheduling algorithm, FC-EDF, which is a starting point in
the long-term endeavor of creating of theory and practice of feedback
control scheduling. We are applying out results to applications such as
web servers, agile manufacturing, and defense systems. We are also
proposing a novel way to specify and measure complex real-time
systems based on control theory.

VN
Updated Friday, 04-Feb-2000 16:55 by Roland Grénroos .'l:‘ {"..f_
e-mail: artes@docs.uu.se 3 Soweddinh o Foumdision for Strafegic Rewaroh
&

Location: http://www.docs.uu.se/artes/events/gsconfO0/jack_s2.shtml 1&% .
o

http://www.docs.uu.se/artes/events/gsconfO0/
jack_s2.shtml

tisdag 7 mars 2000

Page: 1

Feedback Control Real-Time
Scheduling

Professor Jack Stankovic
Department of Computer Science
University of Virginia

Qutline of Presentation

Motivation

Our Goal

Feedback Control Scheduling Architecture
The FC-EDF Algorithm

Specifications and Metrics

Simulation Environment

Performance Results

Summary

Motivation

» The emergence of soft real-time systems in

unpredictable environments
— agile manufacturing
— command and control or other defense applications
— web browsers (audio and video)
— real-time database systems

* For Dynamic RTS in unpredictable environments

— WCET too pessimistic, high variance in execution time, unbounded
arrival rate, overload unavoidable

Applications Requirement

» Missing some deadlines inevitable and OK

— Agile manufacturing
* part or product is produced wrong

Worst Case Assumptions Average Case + FC Scheduling
100 products/day 1010 products/day
No errors 10 errors ($2 penalty)
$10 profit/product $10 profit/product

Profit - $1,000 Profit - $9,980

Motivation - What’s Available

e RT Scheduling Paradigms

— Static - predictable

« all is known a priori (WCET, invocation times or worst case
rates, resource needs, precedence, etc.)

* Cyclic scheduling, RM, table driven, ...
* open loop
— Dynamic - high degree of predictability
« all is known except invocation times/rates (use WCET)
* Spring algorithm - admission control and planning, or EDF
* open loop

Claims

» Despite the significant body of results in real-
time scheduling many real world problems and
NOT easily supported!

» We need a new real-time scheduling paradigm
based on feedback !

Goals

Theory and Practice of Feedback Control Real-
Time Scheduling
PID control (but not restricted to this)

— does not require precise analytical model of the
system being controlled

— not ad hoc either
Explicit use of deadline based metrics

New Specifications and Metrics for Soft Real-
Time Systems

Feedback

e Front-End p1

— feedback loops based on
real world control

— generate timing
requirements/rates

— generally fixed

— handed to scheduling
algorithm; recent work
=> tighter linkage

— Future: deadline range,
more flexible periods

R

s

Q@ = >

Feedback

o Our Work - Applied to Scheduling itself
— Multi-level feedback queue (ad hoc)
— Network traffic flow - bandwidth or utilization
— AED - RTDB (proportional control)
— Our work:
 Based on FC theory

 Explicit use of deadline based metrics
* PID control

— Future: Direct linkage to front-end (deadline
range)

Practical Issues

 Not all deadlines are created equal (missing
some is worse than missing others)

« Missing n in a row for one periodic task can
cause instability

o Start simple: treat all deadlines as equal in
importance

Approach

Mapping feedback control concepts to scheduling
Establishing control model for scheduling

— map MR to utilization

Applying control design/analysis to the scheduler to
satisfy performance requirements

System-wide evaluation - requirements and metrics
from control theory

Feedback Control System

e eeeeereeeeeeeeerr e e e et e e e e e e e aaaa s : manipulated

variable
EE—
Controller Actuator

A :

: Sensor je¢———

: SyStem feedback : controlled

e ariable

set point

FC-EDF Scheduling Algorithm

Completed Tasks

MissRatio MissRatio(t) ﬁ

=t cPU
Scheduler \\

i Service Level
PID Controller DCPU

Controller >
Accepted Tasks
DCN
Admission \ | T T
—>
FC'EDF Controller
Submitted Tasks

Task Model

Each Task T Service Levels

ET(1) Val(l)
ET2) Val(2)

ET(N) Val(N) '

Nominal execution times used - not worst case

PID controller

The PID controller periodically (sampling period) maps the
error in term of the deadline miss ratio to the control signal - the
required change in the requested CPU utilization

erro,—(t) - erro,—(t = DW)

DCPy (t) = Cperror(t) +C, q ,, error(t) +Cp bW

PID control only requires an approximate system model to
achieve satisfactory performance

Deadline miss ratio is directly controlled

Service Level Controller

Input - Delta CPU

choose least important “degradable” task
reduce level by 1, 2, ...

iterate

if not all Delta CPU is accommodated, then
pass the rest of the Delta CPU to AC

Admission Control

e New arrivals

— Admit task 1 with highest service level possible such
that the CPU(t) + ET(i) < 1.

— Reject task if its lowest service level not acceptable
* When PID needs to reduce or increase CPU

— Accommodate as much as possible of Delta CPU in
service level controller

— Adjust estimate of cpu utilization in system to modify
amount admitted (in the future)

Two Questions

» Determine coefficients of PID control terms
e Establish link between MR and Delta CPU

PID Control Parameters

e How do we choose the parameters?

— Use control theory

* create model of system

* solve model to get the form of the parameters

Example: CI>0;CD<1,2CP-Cl+4CD <4 and

2-2*CD*CD >CD*CP+CP-CI>0

Scheduling Model

FC-EDF

MissRatio,—»@—» ¢, + 5 +Co(2-1)

2-1 4

DCPU’

D Real-Time System

1
z-1

>

ug(z)

CPU

h 4

uB

MissRatio

*MissRatio(z): miss ratio
* MissRatio,: miss ratio set point
* CPU’(2): estimated CPU utilization
* CPU(2): actual CPU utilization

* DCPU’(2): the change in CPU’(z)
* CPU(2) = ug(z)CPU’(2)

10

Soft Real-Time Systems

Larger and larger
More complex
Operate in non-deterministic environments

Hypothesis: Current requirements specification
and metrics are not sufficient

Proposing: A (new) set of specifications and
measurements based on control theory.

Today’s Soft Real-Time Systems

Specifications

— meet as many deadlines as possible
— meet 95% of the deadlines
Metrics

— missed deadline percentage

Build Large System

— manipulate algorithms, system parameters, etc. and
run some “workload” to see what happens

— iterate

11

A Proposed (New) Idea

 Exploit the notion of a Theory and Practice of
Feedback Control Scheduling

« Specifications for a control system often
involve requirements associated with the time
response of the system
— Overshoot
— Settling time
— Rise time

Specification - Example

» Miss deadline percentage (MDP) should be 2%

e Overshoot
— MDP should not get greater than 10%
 Settling time - the time it takes the system transients

to decay

— settling time to return to the 2% MDP should be within 3
seconds

12

Measurements

« MDP Sensitivity - relative
e Overshoot change to MDP with
« Settling Time respect to a relative
- change of a system
* Rise Time parameter
* Peak Time — execution time of tasks
 Steady State Error from the average
— blocking time

— external arrivals

Workloads

« Series of step functions as input load
— burst arrivals of various sizes

« Series of ramp functions with different slopes
— period of continuing increased load

Load Load ;

Time Time

13

Result

» A more complete picture of your system
performance
— average MDP (are you meeting the goal)

— how far off from MDP will your system stray for
given “stressing” workloads

— does the system exhibit any steady state error

— on overload - how soon does the system return to
normal

— what are the parameters that affect your
performance the most, the least

Simulation Experiments

» Baseline algorithms
— EDF: Basic EDF scheduling algorithm
— EDF+AC: EDF with static admission control
— EDF+P: EDF with proportional feedback control

 Periodic and independent tasks

 execution time factor (etf): The measure of the unpredictability
of the workload. The smaller etf is, the more pessimistic the
estimation is.

etf = avg_exe_time / est_exe_time

14

Experiments

Experiment A

— statistical description of average execution times is the same
throughout the simulation

— vary - how far the actual execution time is off from the
estimated, called eft
» etf =1 =>no error; etf <1 => pessimistic; etf > 1 => optimistic
Experiment B

— statistical description of average execution times varies over
the simulation

Experiment A

Experiment A tests the robustness of the scheduler when the
average execution time keeps the same but deviates from the
estimation.

Fixed etf for each run.

Performance Metrics

— MRA: Miss Ratio among admitted tasks

— UTIL: CPU Utilization

— HRS: Hit Ratio among submitted tasks
— VCR: Value Completion Ratio

15

08
— EDF+AC
/ EDF+P
d FC-EDF
—— EDF

0.6

MRA

UnL

0.5 L0 1.5 0.5 1.0 1.5
ctf ctf
Figure 5 MRA vs. etf Figure 6 UTIL vs. etf

HRS

0+
0.5 L0 1.5 0.5 1.0 1.5
ctf ctf
Figure 7 HRS vs. etf Figure 8 VCR vs. etf

Experiment B

Experiment B tests the performance under conditions when the
execution time changes dynamically.

etf is changed every 300 sampling periods.
Interval(SP) 0-300 300-600 600-900 900-1200
etf 08 1.3 08 1.2

Performance Metrics
— MRA: Miss Ratio among admitted tasks
— UTIL: CPU Utilization

16

MRA and UTIL

MRA and UTIL

MRA and UTIL

0.8
0.6 CPU Utilization
04 MissRatio
0.2
0.0

0 500 1000

Time (2400 unit)
Figure 9 Sampling MissRatio and CPU Utilization of FC-EDF

L0
0.8
0.6 CPU Utilization
04 MissRatio
0.0 T T t T T t T T t T T]

0 500 1000

Time (2400 unit)
Figure L0 Sampling MissRatio and CPU Utilization of EDF+AC

L0
0.8
0.6 CPU Utilization
0.4 MissRatio
0.2
0.0 T T T T T T T T T T T]

0 500 1000

Time (2400 unit)
Figure L1 Sampling MissRatio and CPU Utilization of EDF

Additional Metrics

Load - step 162.5%
Overshoot 35%

Settling Time 720 ms
Steady-State MR 1%

Sensitivity (ET) 0

17

Summary

» Goal - a theory and practice of feedback control real-time
scheduling

» Real-time systems in unpredictable environments
» FC-EDF
* Future

“ Link with front-end control

" New performance specifications

" Model non-linearities

" More sophisticated deadline miss semantics

" Control design methodology

" Real-time web servers

" BeeHive real-time database testbed

Related Work

» Ad hoc feedback scheduling
— Mutilevel feedback queue [Blevins76]
— Adaptive Earliest Deadline [Haritsa91]
» Adaptation mechanisms
— Deadline/period adjustment [Abde97][Becc99][Shin99]
— Multimedia QoS [Steinmetz95]
— Imprecise computation [Liu91]
» Feedback resource management in non-rt area
— Web resource management [Abde99]
— Distributed multimedia QoS [Li98][Cen97]

18

Empty page.

Design and Evaluation of a Feedback Control EDF Scheduling
Algorithm

Chenyang Lu John A. Stankovic Gang TaoSang H. Son
Department of Computer SciendBepartment of Electrical Engineering

University of Virginia, Charlottesville, VA22903
e-mail: {cl7v, stankovic, son}@cs.virginia.edat9s@virginia.edu

Abstract scheduling can be further divided into two categories:
scheduling algorithms that work imesource sufficient
environments and those that work iesource insufficient
environments. Resource sufficient environments are
systems where the system resources are sufficiend to

Despite the significant body of results in real-time
scheduling, many real world problems are not easily
supported. While algorithms such as Earliest Deadline””™"" ; .
First, Rate Monotonic, and the Spring scheduling algorithmpnor' guarantee that, even though tasks arrive dynamically,

L . t any given time all the tasks are schedulable. Under
can support sophisticated task set characteristics (such a8 2" " . . . i)
deadlinpeg preczdence constraints, shared resourc(es jmepertam conditions, Earliest Deadline First (EDF) [Liu73] is

etc.), they are all "open loop" scheduling algorithms. Openem optimal dynamic scheduling algorithm in resource

loop refers to the fact that once schedules are created thej:rﬁlrcelzlr-]:'nigvggr?g:je?:]& ES?:EnEBa \S/\?r?l)gdrergﬂ'?;epasras?;gr?
are not "adjusted” based on continuous feedback. Whil . : uing [] i a-tl y
designers try to design the system with sufficient resources,

open-loop scheduling algorithms can perform well in static . . . L
or dynamic systems in which the workloads can bebecause of cost and highly unpredictable environments, it is

accurately modeled, they can perform poorly in S0 BOS, MRREERE, (0 SR I ormance
unpredictable dynamic systems. In this paper, we present 8e rades rapidly in 6ver|oad situr;\tions 1Phe Sprin
feedback control real-time scheduling algorithm and its 9 pialy X pring

evaluation. Performance results demonstrate theSChedUIIng algorithm [Ramag4][Zhao87] can dynamically

; . : : rantee incomin ks via on-lin mission control an
effectiveness of the algorithm when execution times vargua antee incoming tasks via o e admission control and

from the worst case and when there are major shifts of tota Iri/?:]olggneanr]cg m;ﬁ Iztr?grpgra:)brli?hrlrr]‘s r((zsour;eEDmasluTﬁ,lﬁﬁ
load in the system. A key part of this feedback solution is it : y 9 9. 9

L . . Butt95]) have also been developed to operate in this way.
explicit use of deadline based metrics. This planning-based set of algorithms represents the third
major paradigm for real-time scheduling. However, despite
. . the significant body of results in these three paradigms of
1. Motivation and Introduction real-time scheduling, many real world problems are not
Real-time scheduling algorithms fall into two categories:easily supported. While algorithms such as EDF, RM and
static and dynamic scheduling. In static scheduling, the the Spring scheduling algorithm can support sophisticated
scheduling algorithm has complete knowledge of the taskask set characteristics (such as deadlines, precedence
set and its constraints, such as deadlines, computatiogonstraints, shared resources, jitter, etc.), they are all "open
times, precedence constraints, and future release times. Thsop" scheduling algorithms. Open loop refers to the fact
Rate Monotonic (RM) algorithm and its extensionsthat once schedules are created they are not "adjusted"
[Liu73][Leho89] are static scheduling algorithms and based on continuous feedback. While open-loop scheduling
represent one major paradigm for real-time scheduling. Iralgorithms can perform well in static or dynamic systems in
dynamic scheduling, however, the scheduling algorithmwhich the workloads (i.e., task sets) can be accurately
does not have the complete knowledge of the task set or itsiodeled, they can perform poorly inunpredictable
timing constraints. For example, new task activations, notlynamic systems, i.e., systems whose workloads cannot be
known to the algorithm when it is scheduling the currentaccurately modeled. For example, the Spring scheduling
task set, may arrive at a future unknown time. Dynamicalgorithm assumes complete knowledge of the task set

" Supported in part by NSF grant CCR-9901706 and contract IJRP-
9803-6 from the Ministry of Information and Communication of
Korea.

except for their future release times. Systems with openthe deadline miss ratios. More discussion of this appears
loop schedulers such as the Spring scheduling algorithm adater in the related work section.

usually designed based @rorst-casevorkload parameters.

When accurate system workload models are not available2, Approach

such an approach can result in a highly underutilize
system based on extremely pessimistic estimation gg

Worﬂ?:}dﬁ natelv. manv real-world mplex problem designing scheduling algorithms. Many aspects of this

such a(; l;zialee yﬁanﬂfgctu?iﬁ- Orobo;gs p: da pti\c/)e efaLSJI mapping are straightforward, but others require significant
9 9, , adap tinsight and future research. We now describe how such a

tolerance, and C4l and other defense applications are n apping can be done and what research is necessary. In

predictable. Because of this, it is impossible to meet eVery. . tion 3 we present an instance of this mapping by creating

task deadlm_e. The object!ve of the system Is 1o meet 43n actual algorithm and a runtime scheduling structure.
many deadlines as possihleFor example, autonomous

robotic systems always suffer from sudden variations i
computational load and overload situations due to highl

variable execution times in robot control algorithms (e.g. Controller o Actuators——
sensor interpretation, motion planning, inverse kinematic 7
and inverse dynamics algorithms) [Becc99]. For anothe System feedback
example, in information and decision support system:
accurate knowledge about transaction resource and di
requirements is usually not knowan priori. The execution
time and resource requirements of a transaction may |

dependent on user input or dependent on sensor values. For _ _
these applications, a design based on the estimation &.1. Control theory and real-time scheduling

worst case execution times will result in extremely p typical feedback control system is composed of a
expensive and underutilized system. It is more costontroller, a plant to be controlled, actuators, and sensors
effective to design for less than worst case, but sometimegs illustrated in Figure 1). It definesantrolled variable
miss deadlines. the quantity of the output that is measured and controlled.
Another important issue is that these schedulingThe set pointrepresents the correct value of the controlled
paradigms all assume that timing requirements are knowQariable. The difference between the current value of the
and fixed. The assumption is that control engineers desigfgntrolled variable and the set point is tteeror. The
the system front-end control loops and generate resultinghanipulated variables the quantity that is varied by the
timing requirements for tasks. The scheduling algorithmsontroller so as to affect the value of the controlled
then work with this fixed set of timing requirements. Real ygriable. The system is composed of a feedback loop as
control systems, in general, are much more flexible angp|lows. (1) The system periodically monitors and compares
robust, e.g., instead of choosing a single deadline for a tasfhe controlled variable to the set point to determine the
which is passed on to the scheduling system, a deadlingrror. (2) The controller computes the required control with
range might be acceptable to the physical system. If thishe control function of the system based on the error. (3)
range was passed to the scheduling system, the on-linehe actuators change the value of the manipulated variable
scheduling might be more robust. to control the system. In the context of real-time scheduling
We believe that due to all these problems, solutionsyroblems, our approach is to regard a scheduling system as
based on a new paradigm of scheduling, which we calg feedback control system, and the scheduler as the
feedback control real-time scheduling, is necessary fogontroller. The scheduler utilizes feedback control
some important systems. A case for this was made iRechniques to achieve satisfactory system performance in
[Stan99]. In this current paper we fully develop a feedbackspite of unpredictable system dynamics. We believe that the
control scheduling algorithm, discuss stability, and presenfong term potential for a theory and practice of feedback
the evaluation of the algorithm. control scheduling is significant; partly because we can also
In the past, many forms of feedback control havepyild upon the vast amount of knowledge and experience
appeared in real-time and non-real-time schedulingrom control systems.
systems, but it has not been elevated to a central principle; aAs a starting point, we will apply PID (Proportional-

rather most of the time it is used more as an afterthoughfntegral-Derivative) control in schedulers. A basic form
and is usuallyad hoc Most of these techniques also did not p|p control formula is

address the key performance metric of real-time systems -
Control (t) = C,Error (t) +C, [Error (t)dt +C,

he mapping of control theory methodology and analysis to
cheduling provides a systematic and scientific method for

Set point

Figure 1 Architecture of Feedback Control Systems

dError (t)
a9

1 If such systems have some critical tasks, they are treated
separately by static allocation of resources.

We choose PID control as the basic feedback controthen monitor the actual performance of the schedule,
techniques in feedback control scheduling for the followingcompare it to the system requirements and detect
reasons. (1) In term of control theory, the schedulingdifferences. The system would call control functions to
system is adynamicsystem, i.e., a system whose outputassess the impact of these differences and apply a
depends not only on the current input, but also on thecorrection to keep the system within an acceptable range of
previous system inputs. It is known that the current misperformance. Research is needed to answer the following
ratio of a scheduling system depends not only on theopen questions:
currently submitted task, but also on the previouslye What are the right choices of controlled variables,
submitted tasks that remain in the system for queuing, manipulated variables, set points, and effective control
execution and blocking. It is known that PID control is a functions/mechanisms for feedback control scheduling?
widely applicable control technigue in dynamic systems. (2 How to model a feedback control scheduling system?
Compared with other control techniques, an important How to tune the control parameters to build a stable and
feature of PID control is that it does not require a precise high performance scheduler?
analytical model of the system being controlled. Instead, 8 How to integrate the flexible timing constraints derived
PID controller designed based on an approximate model from the front-end feedback control loops in control

can achieve satisfactory performance. Due to the extremely gystems with an on-line feedback control scheduling
complex behavior of current computer systems, it is gigorithm?

impossible to precisely model the dynamics of real world,
scheduling systems. However, certain form of approximate
modeling of the scheduling system can be built to help tune
the PID control parameters more systematically (such a

approximate model is presented in section 3.6 of this%' Feedback Contro_l EDF

paper). (3) According to control theory, basic PID control W€ now present an algorithm called Feedback Control EDF
can provide stable control in first and second order dynami¢FC-EDF), which integrates PID control with an EDF
systems. In systems with higher order of dynamics'scheduler. With FC-EDF, we demonstrate how to structure
however, basic PID control can only provide approximate2 real-time scheduler based on the feedback control
control, but an adaptive form of PID control can provideframework. We will identify specific research issues related

What is the impact of overhead in feedback control
scheduling and how to minimize it?

stable control for high order dynamic systems. to feedback control scheduling using FC-EDF as a concrete
example. The FC-EDF architecture (shown in Figure 2) can
2.2. Feedback control real-time scheduling be generalized to be used as a framework of feedback

control schedulers. For example, we can investigate

To apply feedback control techniques in scheduling, we K | RM lacina the EDE scheduler i
need to restructure schedulers based on the feedback contﬁggfs (2: W(i:t?]n;roRM sch%dl?a? acing the scheduler in

framework. We need to identify the controlled variable, the
manipulated variable, the set point, the error, the contro .
function, and the mechanisms of the actuators. We can the 1. Overview of FC-EDF .
set up the feedback loops based on these selections. TA@ apply PID control to a scheduling system, we need to
choice of the controlled variable depends on the systerfi€cide on the components of a scheduling system
goal. For example, the performance of real-time system&orresponding to those in a feedback control system (Figure
usually depends on how many tasks make (miss) theit)- Firs_t, we need to choose the cc_)ntrolled variablg and the
deadlines. We define the system deadline miss ratio as theet point of the system. The requirements of an ideal soft
percentage of tasks that miss their deadlines; this is &@al-time scheduling algorithm should be to (1) provide
natural choice of the controlled variable. The manipulatedSoft) performance guarantees to admitted tasks, i.e.,
variable must be able to affect the value of the controllegaintain low miss ratio among admitted tasks; and (2)
variable. In the real-time scheduling, it is a widely known achieve high system throughput and utilization. To satisfy
fact that the deadline miss ratio highly depends on thdhese requirements, FC-EDF chooses miss ratio among the
system load, i.e., the requested CPU utilization of tasks irrdmitted tasksMissRatio(t),as the controlled variable and
the system. Thus the requested CPU utilization can be used (application dependent) small but non-zero value (e.g.,
as the manipulated variable. Other possible choices oMissRatiq= 1%) as the set point. Note that 0 is not chosen
manipulated variables are the periods/deadlines of tasks S the set point for the following reasons. A system with a
control applications when there exists the flexibility to Set point of MissRatiq = 0 can ignore the second
adjust these task parameters [Seto96]. requirement of soft real-time scheduling, i.e., high
In summary, a feedback control scheduling Systerrptilization and throughput. When a system achieves a 0%
would start with a schedule based on the nominadeadline miss ratio but causes extremely low utilization
assumptions of the incoming tasks (expected start time(€-9., by unnecessarily rejecting too many tasks), a feedback

expected execution time and deadline). The system woul§ontrol scheduler wittMissRatiq = O will treat it as the
correct state. In contrast, a feedback control scheduler with

a set point ofMissRatiq # 0 will always try to (lightly)
overload the system to achieve high utilization. Note that in
an unpredictable environment, it is impossible for a system
to achieve 100% utilization and 0% miss ratio all the time
and a tradeoff between miss ratio and utilization is EDF cPU
unavoidable. There can be two approaches to deal with this Scheduler -
tradeoff. The approach of admission control based on

pessimistic estimation is thpessimisticapproach, which

alwaysavoidsdeadline misses at the cost of low utilization BID Controlie), ACPU @ ‘*]
and throughput. This approach has been widely used in hart Controller >
real-time systems. On the other hand, the feedback contro Acgepted Tasks
scheduling presented in this paper representfinistic ACPU
approach, which maintains a low (but possibly non-zero)
miss ratio and high utilization and throughput. When a high
misses actually happens due to system load changes, th FC-EDF
schedulercorrectsthe system state back to the satisfactory
state, i.e., a state with low miss ratio and high utilization
and throughput. This optimistic approach is especially
preferable in soft real-time systems since it provides a soft Figure 2 Architecture of FC-EDF
performance guarantee in term of miss ratios while
achieving high utilization and throughput at the same time
(see performance evaluation in section 4). 3.2. Task model
Second, we choose the requested CPU utilization, i.eQur initial task model assumes that all tasks have soft
the total CPU utilization requested by all the accepted taskgeadlines and all the tasks are independent. For the
in the system, as the manipulated variable. The rational igonvenience of description, this paper assumes a task model
that EDF can guarantee a miss ratio of 0% given the systemimilar to the imprecise computation model [Liu91], but the
is not overloaded, and in normal situations, the deadlingcheduling algorithms presented do not depend on the
miss ratios increases as the system load incréas@s imprecise computation model. Each taskslibmitted to the
simplicity of description, we will use requested utilization system is described with a tuple (I, ET, VAL, S, D). Each
in place of requested CPU utilization in this paper. Third,task T, has one or more logical versions | ={TTp, ... Ti).
we need to design the mechanisms (i.e., actuators) used INbte that when a task has multiple logical versions it does
the scheduler to manipulate the requested utilization. Amot necessarily mean that it has multiple implementations.
Admission Controller and a Service Level Controller are aon imprecise Computation can have several different forms
included in the FC-EDF scheduler as the mechanisms tincluding milestone method, sieve function method or
manipulate the requested utilization. The Admissionmultiple version method [Liu91]. We call all these methods
Controller can control the flow of workload into the system, that can tradeoff computation value and time as multiple
and the Service Level Controller can adjust the workloadogical versions of a task for convenience of discussion.
inside the system. Each version has different execution time and different
The FC-EDF scheduler is composed of a PIDyalue. ET = {ET,, ETy, ... ETy} (suppose ER=ET,> ...
controller, a Service Level controller, an Admission >ET,) are the nominal execution times of different versions.
Controller and an EDF scheduler (Figure 2). The systenpjere, nominal execution time instead of worst case
performanceMissRatio(t)is periodically fed back to the ~execution time is used in the system to achieve higher CPU
PID controller. Using the PID control formula (1), the PID jlization in the system. The execution time is described in
controller computes the required control actid@PU(t), the form of requested utilization. For example, £0.02
i.e., the total amount of CPU load that need to be added int@neans the 1st version of task féquires 2% of the CPU
(whenACPU(t)>0) or reduced from (whedCPU(t)<0) the time. VAL = {VAL , VALp, ... VAL;} represents the
system. Then the PID controller calls the Service-Levelvalues of different implementation. In this research, different
Controller and the Admission Controller to change the CPUyersjons of a task are called service levels. We call a version
load of the system bACPU. This system control forms a with longer execution time and higher value a higher service
feedback control loop in the scheduling system. The EDHevel than another version with less execution time and
scheduler schedules the accepted tasks according to th@wer value. Each task has a soft deadlinebd a start time
EDF policy. S.

Completed Tasks

MissRatiq MissRatio(t)

Admission
Controller

Submitted Tasks

Note that FC-EDF does not depend on the imprecise
computation model. FC-EDF only needs a certain flexibility

2This is under the assumption that the domino effect is rare in redP adjust the CPU utilization. In our future work, we will
world applications. extend the deadline;@o a range of deadlines (Rn, Dimax-

The deadline of a task;Tcould be adjusted dynamically 3.4. Service Level Controller

within the range. By adjusting the deadline of a task, thens senice Level Controller (SLC) changes the requested
Service Level Controller can effectively change thejjization in the system by adjusting the service levels of
requested CPU utilization in the system. This extension g centeq tasks. For example, if it changes the service level
based on the fact thgt .dlgltal cont'rol systems are usuallyt ook T from Ty to T;, it adjusts the requested utilization
robust, i.e., the task timing constraints are allowed to varys o system by EFET,, where ET and ET. are the
within a certain range without affecting critical control ogimated CPU requilrement of. Bnd 'I}J respectively. SLC
functions such as maintenance of system stability [Seto98L ;i\s the portion ofACPU not aécommodated. This

Suph extension is als.o_ ap_phcable n mul_t|meQ|a SYStems, |0 +ion of control will be accommodated by the Admission
which the QoS specifications of a multimedia applicatio ontroller

can be specified as intervals.

3.3, PID controller 3.5. Admission Controller

. . __The Admission Controller (AC) controls the flow of
The PID controller is the core of FC-EDF. It maps the MISS, o rkioad into the system. When a new tasksTsubmitted

ratio of acc.e.pte.d ta;ks (ie. er_ror) to the change Mo the system, AC decides on whether it could be accepted
requested utilization (i.e., control signal) so as to drive themto the system. Given current system-wide requested

m'SSTft'%FSth?tT set p.o'c'?.t' I itors th trolled utilization CPU(t) and the CPU requirement of the
€ controfier periodically monitors the controfie incoming task, the Admission Controller admits With

variableMissRatio(t) and computes the contrdCPU(1)in genice level k if k is the highest level that satisfies

terms of requested utilization with the following control CPU(t}+ET,<1; T, is rejected if it cannot be admitted even
formula, which is an approximation of formula (1). with the lowest level.

ACPU(t) = Cperror(t) +C,)" error(t) + The Admission Controller's paramet@PU(t) may be
o €rror (t) - error (t - DW) X adjusted when the PID controller cannot accommodate
o DW © ACPU(t) completely with SLC. Suppose SLC changes the

whereerror(t) = MissRatia — MissRatio(t). SPCp, C;, Cp, requested utilization bACPU andACPU<ACPU, AC will

IW and DW are tunable parameters of the PID controller.accommodate ACPW’=ACPU(tyACPU, the portion of
SPis the sampling period. The PID controller will be called ACPU not accommodated by SLC. It accommodates
everySPseconds. For convenience of presentation, we wilACPU® by adjusting the estimation of requested utilization
take SPas the time unit in our following discussio@s, C, CPU(t) as following est_cpu_util = 1 - ACPU’. The
andCp, are the coefficients of the PID controlldWV is the Admission Controller will admit the workload of at most
time window over which to sum the errors. Only errors in ACPU° (whenACPU° > 0) or will not admit any new tasks

the lastIW time units will be considered in the integral yntil the system load has been reduced by amount of more
term.DW s the time window of derivative errors. Only the han ACcPL?| (whenACPLP < 0).

error change during the lasbW time units will be
considered in the derivative term (i.e., the derivative error i
(MissRatio(t-DWAMissRatio(t)/DW). The tuning of these
parameters will be discussed in section 16PU(t) is the
output (i.e., control signal) of the PID controller. .
ACPU(t>0 means that the requested utilization should be3'6'1' Feedback control scheduling model

increased, and4ACPU(tkO means that the requested An important task of building a stablg and high-
utilization should be decreased. performance PID-control-based scheduler is to tune the

The PID controller will call the Service Level control parameters (i'e.CP’ G _and Cp). One way i.s to tune
Controller and the Admission controller to change thethe parameters by simulations. However, thls_approach
requested utilization of the system IZPU. If the current would require large amount of experiments to gain enough

I o confidence in the selected values of the parameters. A more
;i%uezt;riigg:gﬁ“%%ﬁgﬁé?’ T/ﬁl S;r]\;ﬁeeLe;/r:aé C?Qtrl?gsetre dscientific and systematic approach is to apply control theory
utilization to CPU(O+ACPU. The PID cgontroller aﬂ/vays analysis to select the PID control parameters. Such analysis

. ST > requires an analytical model of the scheduling system.
tries to change the requested utilization internally by callingg tyre \ve present the model of a PID-control based
Service Level Controller first so that 'the' system Coul‘?'scheduling system, we define the following notions in the
respond to the error faster. The admission controller i

led v if the Servi Level C I Yiscrete time domain:
called only 1t the Service Leve ontroller cannot ; -~ gp s a constant sampling period, which is the time
accommodatelCPU completely.

elapsed in interval [k, k+1], k being time instants.
2. MissRatio(z) the miss ratio - the system output and the
controlled variable.

53.6. Modeling and Analysis of feedback control
scheduling

3. MissRatiq: the set point (i.e., the target) in term of missrelated to the system behavior due to initial conditions. If no

ratio. input is applied, an internally stable system will settle to be
4. CPU’'(z). the estimated CPU utilization; close to an equilibrium set point within a definite amount of
5. CPU(z) the CPU utilization; time. Although a real-time system could enter an internally
6. ACPU'(z). the change in the estimated CPU utilizationunstable mode when the miss ratio rises monotonically over
(CPU’'(2)) . This is the system input; time (e.g., when deadlock occurs) even when there is no
7. ug(ky the ratio of the actual total utilization to the change in the workload, this paper will assume an
estimation; independent task model and the system is assumed
8. mrg(k)} the gain that maps the utilizatiol€©PU(z) to internally stable when it is made BIBO stable. The issue of
the miss ratio MissRatio(2). internal stability will be investigated in our future research.
9. d(k): the disturbance (e.g., associated with theBIBO stability means that the system output is always
utilization bound). bounded for a bounded input. In the context of the

scheduling system, this means that the miss ratio will be
Using the above notations, the estimated CPWounded for bounded changes in the workload. It is

utilization follows the following equation: important to tune the PID controller such that the BIBO
stability is satisfied to avoid uncontrollable performance
CPU'(z) = ACPU'(2)/(z-1) (3) degradation in a scheduling system. For convenience of

description, we will use stability in place of BIBO stability
Since the precise execution time of each task i#n this paper. To demonstrate the importance of using a
unknown and changes over time, the actual requestd@rmal theory to describe feedback control real-time
utilization is usually different from the estimated requestedscheduling, we present the following stability analysis result
utilization. In term of control theoryg(k)is a time-variant (The mathematical proof is skipped due to the length limit
gain (calledutilization gainin this paper) of the system. We on this paper).
can get the (actual) CPU utilization usiog(k}
Theorem 1: Whenug(k)mrg(k)is close to 1, the FC-EDF
CPU(z) = ug(k)CPU'(z) (4) scheduling system established by the block diagram in
Figure 3 is stable if one of the following conditions is
We can derive the deadline miss ratio based on th&atisfied:
correlation between the deadline miss ratio and the systeh G>0, |G| <1, 2G-G+4G <4, and
utilization. The relationship between the deadline miss ratio 2 - 2G°> CoCp+ Co— G> 0
and the requested utilization can be modeled as 2. G=0,|G|<1l,and0<G+2CG <2

MissRatio(z) = mrg(k)CPU(z)} d(k) (5) The assumption thaig(k)mrg(k)is close to 1 implies
that (1) the estimated utilization is not too far from the
where mrg(k) (miss ratio gain is a time-variantgain that ~ actual utilization and (2) domino effect does not happen.

mapsCPU(z)to MissRatio(z)n overload situations. Under this assumption (which we believe is true for most
The transfer function of the PID controller is: soft real-time systems), the stability condition gives the
guidance on how to set the coefficients in the PID control

H(z) = Cp + C//(z-1) + Cp(z-1)/z (6) such that the satisfactory scheduling performance can be

maintained. This is one important reason for basing
In summary, we present the block diagram of the FC-feedback control real-time scheduling on control theory.
EDF scheduling system in Figure 3.

3.6.2. Stability Analysis
For a control system, there are two forms of stability:
internal stability and BIBO stabilitylnternal stability is

d(k)

+ X MissRatio(z
CPU(z)‘mrg(k)g’é al (2

Figure 3. Block diagram of the FC-EDF scheduling system

+ _ s .
MissRati (:,,JriJrM ACPU' | 1 [CPUG ug(k)
4 z-1 z z-1

whereetf (execution time factoan be tuned to change the
accuracy of the estimation. The larger thif is, the more

. . pessimistic the estimation is. For exampaé,of 1.0 means
4.1. Simulation Model that the estimated execution time is equal to the actual
An uniprocessor simulator of a soft real-time system wasaverage execution time. The estimation is less than the
used to study the performance of FC-EDF and baselingerage execution time whextf < 1.0; and greater than the
algorithms. The workload consists of independent periodicaverage execution time wheetf > 1.0. The actual
tasks. Each task instance has a deadline that equals itecution time of each instance (which is unknown to the
period. If a task instance is not completed by its deadline, ischeduler) is computed as a uniform random variable in
is immediately aborted. The simulator (Figure 4) has sixinterval [AET,, WCET] or [BCET, AET] depending on a
components:sourcesthat generate tasks; aadmission random Bernoulli trial with probability (AET-
controller that make admission/rejection decisions onBCET)/(WCET-BCET). In our experiments, the workload
submitted tasks; aexecutorthat models the execution of js composed of 40 periodic tasks and each task has two
the tasks; a monitor that periodically collects the service levels WCET, = 2*WCET,, WCET = 4*BCET,
performance statistics of the systemPED controller that vAL, = 1.0 andVAL; = 0.5. It follows thatetf lies in the
periodically computes control signals based on therange of [0.4, 1.6]. A uniform distribution is used to
performance errors; and aervice level controllerthat generate WCET, and P of each task: WCER =
adjusts the service levels of the tasks. A basic EDFyniform(5,10),P = WCET, *uniform(10,15).P is adjusted
scheduler is embedded in the executor. The admissioBych that 31 of the tasks are harmonious with least common
Controller, service level Controller, and PID controller each mu|t|p||er of 2400 time units. The same workload is used
can be turned on/off to emulate the different baselinefor all the experiments. Each different experiment has
scheduling algorithms. varied etf. All the tasks arrive in the beginning of each
experiment to overload the system. Each rejected task will
attempt to get re-admitted all through the experiment.

4. Experiments and Results

performance
statistics

4.3. Implementation of FC-EDF

The parameter settings of FC-EDF in all the experiments
are listed in Table 1. The set point is the soft real-time
performance target miss ratio that the scheduler will

MissRatio(t) achieve. In practice, this value depends on the tolerance (to
Source deadline misses) of the application. TB®is equal to the
Source least common multiplier of the majority of the tasks such
______ abort that similar number of task instances are submitted in each
Source n terminate_q SP. IW controls the length of history that the controller

need to consideDW affects the agility of the controller to
the sudden change in workloadc,, C, and Cp are
coefficients of the PID controller. Note that the values of
Cp, C, and Cp are tuned so that they satisfy the stability
condition established in Theorem 1 to guarantee the
scheduling performance.

reject_q

Figure 4. Feedback Control Scheduling Simulator

4.2. Workload Model Set Point | 0.01

Each source is characterized with a periB)l (the deadline SP 2400 (time unit)
of each task instance equals its period), a set of worst case W 100 (SP)
execution times WWCET}, a set of best case execution DW 1(SP)

times {BCET}, a set of estimated execution timeEET}, Ce 0.5

a set of average execution time&ET} (WCET = AET, = G 0.05

BCET,), and a set of valuesMAL}, where #service_level- Co 0.1

1>i >0. Each tupleR, WCET, BCET, EET, AET, VAL) Table 1 FC-EDF parameter setting

characterizes a service level and
4.4. Baseline Algorithms

The following baseline algorithms are implemented and
compared with FC-EDF in the experiments.

EET = (WCET+BCET)*0.5
AET = EET/*etf

1.0+

0.8
Lacat
o x

0.6 - A —e— EDF+AC

= & — EDF+P
e |_

b A 5 —e— FC-EDF

0.4+ Iy ---a-- EDF

K
0.2 R 0.2
A
00-a—4—84—8—8—8—4 oo+ o+—F—7—
05 10 15 05 10 15
etf etf
Figure5 MRA vs. etf Figure 6 UTIL vs. etf

1.0+ 1.0

0.8 0.8

0.6 0.6 1 —e— EDF+AC
0
®) & = EDF+P
T S —e— FC-EDF

0.4+ 0.4 ---a-- EDF

0.2+ 0.2+

0.0 A F A N 0.0 L F A N

05 10 15 05 10 15
etf etf
Figure 7 HRS vs. etf Figure 8 VCR vs. etf

« EDF: This is the basic EDF scheduling algorithm. It is can tolerate a small percent of deadline misses, it usually
implemented by turning off the admission controller, requires asoft guaranteen term of miss ratio in order to
service level controller, and the PID controller. maintain its normal functionality. Therefore, the average
« EDF+AC (EDF with static admission control): miss ratio among admitted tasks should be the most
EDF+AC is implemented by turning off the service level important performance metric.

controller and the PID controller. The admission decision iss CPU Utilization (UTIL): Soft real-time systems should
made once for each periodic task when it is submitted. avoid under-utilizing the system resources to reduce costs,
+ EDF+P (EDF with proportional control): EDF+P is thus the CPU utilization is another metric under
implemented and configured the same as FC-EDF exceptonsideration.

for Co = Cp = 0. This algorithm is to test whether the ¢« Hit Ratio among submitted taskdHRS = #Hits /
simple proportional control can provide comparable#(Submitted Task InstancigsHit ratio among submitted

performance as PID control. tasks is a measure of the system throughput in term of the
percentage of task instances completed in time among all
4.5. Performance Metrics the arrivals.

. Miss Ratio among admitted taskSIRA = #Misses / | Value Completion RatigVCR =(2(Values of hit task
#(Admitted Task Instancdsplthough a soft real-time task Instances) Z(Values of Submitted Task Instancgsyalue

completion ratio considers the quality of the results. A taskalso under-utilizes the utilization whesif < 1 similar to
that misses its deadline contributes 0 value. A task instancEDF+AC. This is because EDF+P does not consider the
completed with a lower service level contributes a loweraccumulated error, and the control signaiCPU)

value. computed with proportional control alone is too small to be
accommodated when the task utilization can only be
4.6. Experiment A: Steady execution time adjusted in discrete stehsin comparison, with the PID

Experiment A evaluates the performance of the scheduling©ntrol, FC-EDF maintains high CPU utilization in all the
algorithms (EDF, EDF+AC, EDF+P and FC-EDF) when S|tuat!ons. We can aIsp see that the CPU utilization of FC-
the average execution time of each periodic task isEDF i consistently higher than EDF+P even whetf ¢
statistically steady, but different from the estimatietf.is o

constant through each run, but the actual execution time of ~ Figures 7 and 8 compare the throughput of the
each task instance is a random value that differs over time@lgorithms in term oHRSandVCR EDF+AC and EDF+P
Each algorithm made 13 set of runs with each set for &@s &low throughput wheeff< 1) as a result of admission
different etf values in the range [0.4, 1.6]. These control based on pessimistic estimation. EDF has the

experiments are interesting since, in real-world highest throughput when the system is lightly loaded and
applications, it is impossible to make the estimation ofdegrades fast as the system load increases. We should also

execution time the same as the average actual executidiPt® EDF achieves its throughput by greedily accepting all
time at all times. This problem is avoided in hard real-time the tasks while at the cost of poor performance éach
systems by using worst-case estimatiosif (<< 1.0). task (no performance guarantees for admitted tasks). FC-
However, soft real-time systems usually useminal EDF'S throughput is slightly lower than EDF when the
estimations instead of worst-case estimations due to cosyStem is lightly loaded (This is actually a result in the
considerations. It is thus important for a soft real-time INitial phase and the PID control drives the throughput to
system to maintain satisfactory performance even when thi'e same level as EDF after a short learning period). When
estimation is different from the average actual executionih® System is overloaded, FC-EDF consistently achieves the
times. This is one place the value of feedback control ishighest throughput in all situations (except for wheth=
demonstrated. Experiment A evaluates the algorithms unde}-6 When itis slightly lower than EDF+P).
situations when the execution time is statistically steady. N summary, Experiment A demonstrates that under
The performance under conditions when the execution timgituations when the estimation of execution time differs
changes dramatically is studied in Experiment B. This isffom the (statistically steady) actual execution time, FC-
another place where feedback proves very valuableEDF is able to (1) provide a soft performance guarantee for
Experiment A results are illustrated in Figures 5-8. Eachadmitted tasks; (2) achieving high system utilization; and
point in Figure 5-8 is the average value of 30 runs. The(3) high throughput. None of the other algorithms under
90% confidence interval for each point ®RA UTIL, comparison can meet these goals simultaneously.
HRS and VCR is within £0.0006,+0.0058,+0.0066 and
+0.0046, respectively. Each run lasts for 2880000 time?-/- EXperiment B: Dynamic execution time
units (1200 SP). In experiment B, theetf is dynamically changed every
From Figure 5, we see that both FC-EDF and EDF+P720000 time units (300 SP) in order to study the response
maintains a very lowMRA (<1%) throughout theetf of the scheduling algorithms when the average system load
interval. TheMRA of FC-EDF is closer to the set point changes dramatically. Thef settings in different intervals
(1%) and thus slightly higher than EDF+P since theare listed in table 2.
Integral control reduces the steady state error of the control.
EDF's MRA increases sharply whentf > 0.5 and the Interval (SP)| 0-300; 300-600 600-900 900-1200
system is overloaded. This shows pure EDF cannot provide etf 0.8 1.3 0.8 1.2
acceptable performance in resource-insufficient systems. Table 2etfsetting in Experiment B
EDF+AC maintains IowMRA when etf < 1, however, its
performance degrades sharply when the average execution
time is larger than its estimatiortf > 1). This shows that
static admission control based on nominal estimations
cannot provide (soft) performance guarantees under all
situations. Figure 6 shows that EDF always achieves the
highest CPU utilization since it never rejects any tasks.
EDF+AC under-utilizes the system when the average
execution time is lower than the estimaticgtf(< 1). This
shows that static admission control cannot avoid wasting
the system resources under all situations. Similarly, EDF+P While a larger G can amplify the control signal, it will also cause
severe oscillation and even instability in the system response.

1.0
0.8

06 —— CPU Utilization
04 MissRatio

MRA and UTIL

0.2 H

O-O L BLE—— T T 77'1’ - T L T I
0 500 1000
Time (2400 unit)
Figure 9 Sampling MissRatio and CPU Utilization of FC-EDF

S TPOTRRA R AN

0.6

| —— CPU Utilization
04 MissRatio

MRA and UTIL

0.2

0.0 . . ; . ,

0 500
Time (2400 unit)

Figure 10 Sampling MissRatio and CPU Utilization of EDF+AC

I
1000

1.0
0.8+

06 — CPU Utilization
" MissRatio

MRA and UTIL

0.2

0.0

: : : : 1 : : : : T

0 500 1000
Time (2400 unit)

Figure 11 Sampling MissRatio and CPU Utilization of EDF

Figures 9-11 illustrates the samplstRA andUTIL of the end of 300 SP when thetf suddenly increases to 1.3,
FC-EDF, EDF+AC and EDF (EDF+P is dropped in this which implies that the system load suddenly increases by
experiment since its performance is consistently worse thaover 60%. This causes the big spike on miss ratio at time
FC-EDF) in a typical run. From Figure 9, we can see that300 SP in Figure 9. FC-EDF responds immediately by
the system starts with approximately 80% of utilization (thereducing the load (i.e., reducing service levels) to below
top curve) and 0 miss ratio (the bottom curve) as a result 0f.00% within 3 SP. In addition to the proportional control,
the pessimistic admission control. However, after a shorthe fast response is also due to the derivative control in FC-
learning period (43 SP), the PID control in FC-EDF causesEDF which responses to the sudden increase in the miss
the system to increase its utilization (by increasing serviceatio. The system comes back to low miss ratio and high
levels and admitting more tasks) to close to 100%. Theutilization and stays this way until 600 SP when #téis
system maintains a high utilization and low miss ratio until reduced to 0.8 (which corresponds to an over 60% loss in

system load). Again, the FC-EDF responds by increasindg. Related Work
the system load. Within 35 SP, the utilization is driven back
close to 100% and the system maintains low miss ratio an . ;

; o) chedule has been used in general-purpose operating
high utilization afterwards. At the end of 900 SP, tiéis systems in the form of multi-level feedback queue

mcreasgd to 1.2 and, §|mllar to the time at 300 SP, thescheduling [Blev76]. The system monitors each task to see
system is back to a satisfactory performance state. We ¢

also see that all through the run, theRA is 0 in most f it consumes a time slice or does /O and adjusts its

sampling periods but non-zero (around 10% except for thégnomy accordingly. This type of control is a crude

short transition periods between differagif intervals) in a orrection term that seems to work \ad hocmethods. No
X P !) S systematic study has been done. [Stee99] presented a
small portion of sampling periods. This is the penalty for

achieving high utilization (around 95% throughout the runfeedback-based scheduling scheme that adjusts CPU

except for the short transition periods) and throughput Ofallocatlon based ~on application-dependemrogress

the svstem. Note that due to the random nature of th monitors This work is done in the context of general
y L . L) ._Operating systems and the performance of real-time tasks is
system load, it is impossible to maintain both 0 miss rat|onot addressed
O 2 it ot X .
and Ilno?:fn?rt;!sztat:‘cr)gn?"Iiihgeutrlerzni.o we see that EDE+AC In the area of real-time databases, Haritsa et. al.
. ! . ! e Hari9l A i Earli D ling AED
achieves 0 miss ratio at the cost of low utilization (around[ari91] proposedAdaptive Earliest Deadling) a

. priority assignment policy based on EDF. In order to
Eg:{c)evlgr 2}13;0?ni§5r§%di562?£?18 ZSOPZSLQI?:‘SZOIG%)O SPs'[abilize the performance of EDF under overload
and 900-1200 SP (whegtf> 1.0). From Figure 11, we can conditions, AED features a feedback control loop that

X .) monitors transactions’ deadline miss ratio and adjusts
see theMRAIs around 40% or 65% at different intervals for . S - . ;
EDF, which performs even worse that EDF+AC. transaction priority assignment accordinglyAdaptive

virtual deadline firstfPang95] aims to achieve the fairness
of an EDF based scheduler to transactions with different
sizes. The linear correlation between deadline miss ratio
and transaction size in the system is measured and fed back

he idea of using feedback information to adjust the

MRA UTIL HRS VCR
FC-EDF | 0.011 0.954 0.796 0.537

EDF+AC | 0.127 0.889 0.440 0.431 to the scheduler, which adjusts scheduling parameters
EDF 0518 | 1.000 | 0.482 | 0.482 dynamically. However, the feedback control in these
Table 3 Overall performance in Experiment B algorithms isad hoc and the issues of stability of the

) schedulers is not addressed.
In summary, the overall performance of the algorithms [Seto96] and [Ryu98] both propose to integrate the

is listed in Table 3 (Each data is the average value of 3@esign of a real-time controller with the scheduling of real-

UTIL, HRS, and VCR is withint0.0006,+0.0023,+0.0068, performance indeso describe the control cost and tracking
and +0.0026, respectively). FC-EDF effectively adapts toerrors of a control system. Their approach was to assign
the radical changes in the execution time and system loagtequencies to control tasks that optimize the system
and maintains satisfactory performance throughout the ruserformance index under resource constraints in the system.
time. In contrast, both EDF and EDF+AC are unable tqRyu98] is based on a generic analytical feedback control

handle the workload and render poor performance. system model, which expresses the system performance as
functions of the end to end timing constraints at the system
4.8. Discussions on overhead level. A heuristic algorithm is used to find the end-to-end

Feedback control scheduling algorithms can introduce extMing constraints that can achieve the required system
overhead compared with open-loop scheduling algorithmg€rformance. They then use tperiod calibration method -
The overhead is ignored in the simulation experiments folGerb95] to derive the timing constraints for each task in
the following reasons. First, the feedback controller can b€ system. Both [Seto96] and [Ryu98] aim at providing
executed at a much lower rate than application tasks. In bof#£sign tools that enable control engineers to take into
experiments, FC-EDF maintains satisfactory performancgonsideration scheduling in the early design stage of control
while more than 100 task instances are executed betwe&}Stems. The scheduling algorithms in both of these cases
two subsequent invocations of the feedback controllerdre Still open loop scheduling algorithms. o
Second, the control algorithm is not complex. The [Becc99] and [Shin99] both utilized the flexible timing
bookkeeping of the miss ratio, the PID control function, ancconstraints as a mechanism for graceful performance
admission control adjustment all cost constant time. Thé€gradation in control systems. Both of the works assumed
service-level controller is a linear-time (in terms of theth® execution times are known and focused on how to
number of admitted tasks) algorithm. The overhead issugeassign the periods for tasks to satisfy the utilization
will be further investigated in our future research as we vargonstraints. Instead, our work focuses on using feedback

the period of the feedback controller.

control loops to maintain satisfactory deadline miss ratidBlev76] P. R. Blevins and C. V. Ramamoorthy, “Aspects of a
when the task execution times change dynamically. dynamically adaptive operating system$ZEE Transactions on
Jehuda and Israeli [Jehu98] proposed artomated —ComputersVol. 25, No. 7, pp. 713-725, July 1976.

software meta-controlleto dynamically reconfigure real- [BUt95] G. Buttazzo and J. A. Stankovic, “Adding Robustness in
time systems. Compared with feedback control real-tim Dynamic Preemptive SchedulingResponsive Computer Systems:

heduli h ft | hiaher | teps Toward Fault-Tolerant Real-Time Systdis S. Fussell
scheduling, the software meta-control is a higher level,q\ malek Ed.), Kluwer Academic Publishers, 1995.

control that occurs only when the system mode changes. [Gerbgs] R. Gerber, S. Hong and M. Saksena, “Guaranteeing
In the area of multimedia communication, severalReal-Time Requirements with Resource-Based Calibration of

papers [Meer97][Li98][Abde98] presented feedback controlPeriodic ProcesseslEEE Transactions on Software Engineering

architectures and algorithms for QoS control. These work&/ol. 21, No. 7, July 1995.

are targeted at supporting end-to-end QoS in distributedHari91] J. R. Haritsa, M. Livny and M. J. Carey, “Earliest

multimedia communication and they are not scheduIind(%lze*"’“]”'ne Scheduling for Real-Time Database SystertSEE

algorithms. Meeting task deadlines is not a focus of thes& 1591991 .
9 9 Jehu98] J. Jehuda and A. Israeli, “Automated Meta-Control for

works. :)
. Adaptable Real-Time SoftwareReal-Time Systems 14, 1998.

The' idea and framewor'k of fegdback control LehFc)J89] J. P. Lehoczky, L. Sha and 3; Ding, “The Rate
scheduling has been presented in our earlier paper [Stan9%honotonic Scheduling Algorithm — Exact Characterization and
As an evaluation and extension to our earlier work, thisaverage Case BehaviollEEE RTSS1989.
paper presents simulation experiments that verifies th@.iog] B. Li, K. Nahrstedt, “A Control Theoretical Model for
advantage of feedback control scheduling in unpredictabl®uality of Service Adaptations”, itEEE International Workshop
dynamic environments. In this paper, we also present @n Quality of ServiceMay 1998.

discrete control model and stability analysis of the feedbacktiu73] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
control scheduling system. Multiprogramming in a Hard Real-Time EnvironmentJACM

Vol. 20, No. 1, pp. 46-61, 1973.
. [Liu91] J. W. S. Liu, et. al., “Algorithms for Scheduling Imprecise
6. Conclusion Computations”]JEEE ComputerVol. 24, No. 5, May 1991.

In our work, we are systematically exploring the use of(Meer7] J. B. de Meer, “On the Specification of EtE QoS
feedback control concepts in soft real-time schedulin%yOntrOI (A. Campbell and K. Nahrstedt Edsilding QoS into

. istributed System£hapman & Hall, 1997.
systems. The goal is the development of a theory an ang95]H. Pang and M. J. Carey, “Multiclass Query Scheduling

practice of 'feedback con’FroI schedullng. This would be 8%n Real-Time Database SystemlEEE Trans. on Knowledge and
new paradigm for real-time scheduling. We have alsopata Engineeringvol. 7, no. 4, August 1995.

demons.trated feasi.blility of ' the basic approach byjRama84] K. Ramamritham and J. A. Stankovic, “Dynamic task
developing a specific algorithm called FC-EDF and scheduling in distributed hard real-time system&EE Software
scheduling architecture as presented here. Anothevol. 1, No. 3, July 1984.

contribution of our work is that the key performance metric[Ryu98] M. Ryu and S. Hong, “Toward Automatic Synthesis of
of the real-time system — the deadline miss ratio — isSchedulable Real-Time Controllerdhtegrated Computer-Aided

directly controlled by the scheduler. The feedback controlEngineering5(3) 261-277, 1998.

; eto96] D. Seto, et. al., “On Task Schedulability in Real-Time
scheduler can achieve a soft performance guarantees Dntrol Systems"|EEE RTSSDecemben.996.

term of_deadllne m,'SS_ ratios. An analytical model Of, Fhe Shin99] K. G. Shin and C. L. Meissner, “Adaptation and Graceful
scheduling system is introduced and analyzed to facilitatg)egragation of Control System Performance by Task Reallocation
tuning the scheduling algorithm systematically. Theand Period Adjustment’EuroMicro Conference on Real-Time
simulation experiments demonstrate that FC-EDF carsystemsjune 1999.
maintain satisfactory deadline miss ratio and high systenfStan98] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
utilization when the workload changes dramatically. Buttazzo,Deadline Scheduling for Real-Time Systems — EDF and
Related AlgorithmsKluwer Academic Publishers, 1998.
[Stan99]J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The Case
ACknOWledgment for Feedback Control Real-Time Scheduling’EuroMicro
The authors wish to thank Tarek Abdelzaher for finding arConference on Real-Time Systethse 1999.
error in the earlier manuscript of this paper. [Stee99] D. C. Steere, et. al., "A Feedback-driven Proportion
Allocator for Real-Rate SchedulingQperating Systems Design
and Implementatiorfeb 1999.
References [Zzhao87] W. Zhao, K. Ramamritham and J. A. Stankovic,
[Abde98] T. F. Abdelzaher and Kang G. Shin, "End-host “Preemptive Scheduling Under Time and Resource Constraints”,
Architecture for QoS-Adaptive CommunicatiodEEE RTAS IEEE Transactions on Compute3$§(8), 1987.
June 1998.
[Becc99 G. Beccari, et. al., “Rate Modulation of Soft Real-Time
Tasks in Autonomous Robot Control SystemsEuroMicro
Conference on Real-Time Systethse 1999.

Using Full System Simulation for Debugging
Real-Time Properties of Operating Systems

Lars Albertsson
Computer and Network Architectures Laboratory
Swedish Institute of Computer Science
lalle@sics.se

February 28, 2000

Abstract

This paper proposes the use of instruction level, full system simula-
tion for debugging real-time properties of commodity desktop operating
systems. A design of a non-intrusive, predictable environment for debug-
ging real-time operating systems is presented. The simulator based envi-
ronment allows for interactive debugging of time critical sequences while
correctly preserving execution time flow information. It is also shown
how performance profiling data provided by an instruction level simulator
reveal causes of real-time performance bottlenecks.

1 Introduction

Since long, there has been a rise in the popularity of applications with demand
for short response times and throughput guarantees, such as media, entertain-
ment and telecommunication systems. Unlike many real-time applications, these
applications also have a large need for throughput performance. In order to sat-
isfy such performance requirements, the applications often run on commodity
hardware using operating systems designed for desktop or server use. However,
these operating systems are not designed for the needs of real-time applications
and fail to meet quality of service requirements. Hence, large research efforts
have been put into design of operating systems providing quality of service
without compromising performance, and also into appropriate modifications of
existing operating systems. However, the complexity of the task and lack of
powerful tools for real-time system analysis have prevented effective develop-
ment of high performance real-time operating systems.

The debugger is one of the most important tools used in computer system
programming. It is partially useful for operating system analysis, even though
debugger functionality depends on the services provided by the operating sys-
tem. However, the correctness of real-time operating systems depends on the
time elapsed between points in execution. Debuggers generally ignore time flow
and often pause program execution. Thus, the use of conventional debuggers

is insufficient for validation of real-time operating systems, as these debuggers
lack a notion of temporal correctness.

This paper proposes the use of full system simulation for temporally correct
debugging. Full system simulation effectively addresses two major problems in
real-time analysis: lack of repeatability and time distortion from intrusion.

Section 2 provides some background regarding full system simulation and
the benefits from using it for real-time analysis. In section 3, the design of
a temporal debugging environment is described. Section 4 contains a short
survey of related work in real-time analysis and simulation. Conclusions and
future work are presented in section 5.

2 Background

2.1 Instruction Level Simulation

Many design and research areas benefit from simulation of computer systems.
Thus, the level of detail provided by simulators range from models of micropro-
cessor chip logic to coarse models of execution environment including operating
system and libraries. A large group of simulators provide a model of a ma-
chine at the instruction set level, as it represents a well defined border between
hardware and software.

Full system simulators differ from other simulation tools in that they model
all the hardware in a system, and only the hardware. Tools that do not provide
a complete hardware model need to also model software upon which the appli-
cation under study is dependent, or disregard from aspects not modelled. Both
alternatives compromise accuracy significantly.

In order for a simulator to be useful for real-time research, the model pro-
vided need not only be functionally correct, but also temporally correct. Thus,
it is necessary to account for all items affecting execution time at the temporal
resolution aimed for. For large applications, this includes delays from devices,
memory management unit (MMU) and cache system.

Apart from providing a detailed hardware model, an instruction set simula-
tor also provides detailed instrumentation of execution. It records statistics of
hardware events, associated with the instruction triggering each event. Exam-
ples of events recorded by a simulator are: instruction execution count, cache
memory misses and translation lookaside buffer (TLB) misses.

Traditionally, computer system simulators have been used for three purposes:

¢ Hardware performance evaluation. In a simulated environment, it
is possible to build a software prototype of a design for a piece of hard-
ware. Measurements of a simulation running applications on this virtual
hardware give performance metrics of the design.

e Software performance evaluation. For many applications the per-
formance is dependent on memory system behaviour. As the simulator
collects statistics on memory system events, it reveals memory related
bottlenecks in applications.

¢ Debugging of operating systems. Operating system debugging is in-
herently difficult, as services necessary for debugger operation are part
of the program under study. Moreover, many aspects and problems in
operating systems, such as race condition and deadlocks, are prone to in-
trusion. Therefore, they are hard to reproduce and may be impossible to
catch in a debugging session using conventional tools.

It is our aim to apply simulation for debugging another class of programs
with special characteristics, namely real-time operating systems and applica-
tions. As a simulated environment is completely artificial, many of the re-
strictions that apply to tools operating in a physical environment are removed.
Hence, many of the major problems with building tools for real-time systems
are eliminated.

2.2 Predictability

An artificial system has very few unpredictable factors. Thus, a simulated sys-
tem starting execution in a known state will always execute along the same
path. This is very useful, both for experiments and debugging, as it is possible
to reproduce a state reached in execution. Thus, a user of a temporal debugger
may detect that excessive time has passed at one point in execution, and restart
simulation to examine the recently executed routines more carefully. This is
similar to the methodology used for debugging the logical correctness of con-
ventional programs. However, as time is part of the state the user wishes to
verify, it is crucial that temporal behaviour is preserved between program runs.

2.3 Robustness

In physical systems, measurement of the system often also introduces a mod-
ification. This is referred to as the probe effect. As real-time system analysis
tend to focus on short periods of time, even small amounts of temporal intru-
sion affect measurement quality. This limits both the accuracy and amount of
measurement, in such systems. Furthermore, the time period in focus is too
short for a human user to draw conclusions about the correctness of the system.
Thus, it is not possible to stop execution in order to analyse current state and
step carefully forward, which is a commonly used way of debugging conventional
systems.

In a simulated system, the time scale of the system under study is decoupled
from the time scale of the system running the simulator. Time distortion due
to probe effect is thereby eliminated. This enables the implementation of a
temporal debugger, similar to a conventional debugger. The temporal debugger
is also able to report time as perceived by the application. Hence, it may be used
for validating temporal correctness and finding bugs violating desired real-time
behaviour.

3 Design of Temporal Debugger Environment

3.1 Debugging Using a Simulator Backend

In order to provide a convenient user interface to the simulator, it is connected
as a backend to a debugger. The simulator supports services normally provid-
ed by hardware and operating system. Examples of such services are reading
memory, reading registers, setting breakpoints and single stepping. Apart from
traditional debugging services, the debugger interface also allows the user to
access simulator services. The service most interesting for real-time analysis is
the ability to present current time with cycle count granularity. This semanti-
cally very small difference enables the user to step through a portion of code,
checking for both functional and temporal errors. Figure 1 shows an example
output from the debugger library included in the Simics simulator [MDG"98].

simscrit> where

#0 [win] 0x45b680 in posix_make_lock (filp = , fl = ,
1 = Oxfffff800001d6440) at locks.c:648

#1 [win] 0x459428 in sys_fcntl (fd = 0 ’\000’, cmd = 8 ’\b’,
arg = 64 ’Q@’) at fcntl.c:140

#2 [win] 0x421b74 in sys32_fcntl (£d = 0 °\000’, cmd = 8 ’\b’,
arg = 64 ’Q@’) at sys_sparc32.c:600

#3 [win] 0x40fe74 in linux_sparc_syscall () + 0x34 in
vmlinux-2.1.126-1.stabs

simscrit> list

643 /* Verify a "struct flock" and copy it to a "struct file_lock"
644 * as a POSIX style lock.

645 x/

646 static int posix_make_lock(struct file *filp, struct file_lock *fl,
647 struct flock *1)

648 {

649 off_t start;

650

651 memset (f1, 0, sizeof (*fl));

652

653 f1->f1_flags = FL_POSIX;

simscrit> print-time
Number of cycles executed (CPU 0): 630034486

Figure 1: Example of the Simics simulator debugging interface. The simulation
session shown is paused during boot of Ultrasparc Linux.

The technique used to debug for temporal errors is very similar to a familiar
technique for debugging conventional applications. The user starts the simulated
system and sets breakpoints at appropriate places. Whenever a breakpoint is
triggered, the user verifies that the system is in an expected state. In this case,
the state includes current time. The current time stamp is compared with the
time stamp of the previous state. If more time than the system allows for has
elapsed, a deadline violation is detected. The user makes a note of the point

in execution where the violation occurred, and the simulation is restarted from
a known state. When the breakpoint preceding deadline violation is reached,
the user proceeds by stepping through subroutines suspected of causing the
problem. For each subroutine, the time spent is compared with time usually
spent during successful execution. If the time differs significantly from the
normal case, a possible cause of the deadline violation is detected. Again, the
simulation is restarted in order to step into the violating routine. This procedure
is repeated until the presumed problem cause have been thoroughly examined.
At this point, the user hopefully has a clue of the cause of violation. Otherwise,
he continues with examining other routines whose execution time differs from
those of a successful execution.

3.2 Real-Time Performance Debugging with Instrument-
ed Simulation

The methodology described above assumes that the user eventually will discover
an erroneous piece of code. This piece of code is assumed to take an undesired
execution path, or to set the program in an undesired state, affecting later ex-
ecution. This assumption is reasonable for conventional applications. However,
it is not always true for real-time systems, as time spent in a specific routine
may be different between executions, even though program state and input is
identical. This is due to the fact that application performance is dependent on
memory system behaviour. Thus, execution time for a fraction of a program is
also dependent on hardware state, such as cache memory contents.

In order to obtain clues about performance hazards caused by cache effects,
the instrumentation provided by the simulator may be consulted. The simula-
tor presents statistics of hardware events, associated with instruction address.
In case the time elapsed differs in similar execution paths of a program, these
statistics will point out instructions causing cache misses. Statistics for a frac-
tion of the execution may be obtained by subtracting the statistics before and
after execution. The values obtained are compared to values from a successful
iteration, highlighting the specific hardware events causing delay. The debug-
ger and simulator environment provide a summary of statistics corresponding
to source code line, thereby exposing code portions affected by cache effects.
Figure 2 shows an example of annotated source code listing.

4 Related Work

In many existing real-time operating systems and environments, only conven-
tional debugging tools are available. These systems may only be used for val-
idating and debugging functional, not temporal, correctness. However, some
vendors provide some support for alternative debugging methods.

When developing programs for small, embedded systems, it is common to
use an emulator as debugging backend. However, an emulator generally does
not model components relevant to execution time, such as caches. Thus, a useful
temporal model of execution cannot be provided.

(gdb-simics) prof-info

Active profilers, from ’left to right’:

Column 1: Instruction cache misses caused by program line
($SIM_SS_INSTR_MISS_WEIGHT = 0.000000)

Column 2: Cache misses (writes) caused by program line
($SIM_SS_WRITE_MISS_WEIGHT = 0.000000)

Column 3: Cache misses (reads) caused by program line
($SIM_SS_READ_MISS_WEIGHT = 0.000000)

Column 4: TLB misses passed on to Unix emulation
($SIM_TLB_MISS_WEIGHT = 0.000000)

Column 5: Number of (taken) branches *to* the code block
($SIM_TO_WEIGHT = 0.000000)

Column 6: Number of (taken) branches *from* the code block
($SIM_FROM_WEIGHT = 0.000000)

Column 7: Count of instruction execution (based on branch arcs)
($SIM_PC_WEIGHT = 0.000000)

Column 8: Number of addresses from which instructions have
been fetched ($SIM_INSTR_WEIGHT = 0.000000)

(gdb-simics) list *0x1f2ec

Ox1f2ec is in bmexec (kwset.c:560).

5565 {

556 0 0 66 0 8396 0 20289 3 d = d1[U(tp[-11D]1, tp += 4;
557 0 0 106 0 0 0 16792 d = di[U(tp[-11)], tp += d;
568 00 00 0 1450 25188 if (d == 0)

559 goto found;

N
]

w

560 0 0 115 0 0 0 20838 3 d = d1[U(tp[-11)], tp += d;
561 1 0 104 0 0 0 20838 3 d = d1[U(tp[-11D]1, tp += d;
562 0 0 126 0 0 0 13892 2 d = d1[U(tp[-11)], tp += d;
563 00 00 0 1109 20838 3 if (d == 0)

564 goto found;

Figure 2: Source code listing with performance profiling data. Example from
Simics tutorial showing the GNU debugger as frontend to Simics in Unix emu-
lation mode.

Some debugging tools work in combination with simulators providing cache
modelling, resulting in good execution time prediction. Prior to recent advances
in full system simulation, such simulators were not useful for running desktop
operating system and large applications. The tools available have either been
too incomplete too boot a commodity operating system, or too slow to run an
application of realistic size [EST, And94].

Support for non-interactive debugging may be provided by inserting extra
code to monitor system events. A trace is generated and sent to a monitoring
system. This method is intrusive and has a performance impact. Hence, the
amount of monitoring is limited. Furthermore, it is inflexible, as the monitoring
process may not query for data not provided. In order to avoid the probe effect,
some systems define the trace generation to be part of the production system
[BJHL96, NGM98].

The intrusion issue may be avoided using dedicated hardware for bus mon-
itoring. However, requiring extra hardware is generally inconvenient. Further-
more, both the hardware and software monitoring approaches put a great per-
formance demand on the receiving system due to high volumes of generated
data. If such a solution is acceptable, it is effective, as it captures almost all
activities of interest [TFC90, GT91, Plag4].

The R2D2 debugger [Zen] is based on monitoring of software generated
traces. It has been extended with a low priority task in the target system to
answer queries from the debugger in case the system is idle. This provides some
support for interactive debugging, although not very robust. Furthermore, it
does not provide any information when the system is under stress, which usually
is the information sought.

Mueller and Whalley [MW94] propose debugging of real-time applications
using execution time prediction. The application is executed in a conventional
debugger, supported by a cache simulator. Time elapsed is predicted by the
simulator and reported during debugging. However, this prediction does not
take operating system effects into account, and works best for small programs.

A few simulator research groups have managed to model a complete hard-
ware system with sufficient detail and efficiency to run commodity operating
systems with large workloads [DM84], [MDG*98]. The SimOS project [Her98]
has made similar achievements, although the simulator presented is not strictly
predictable and requires operating system modifications. Due to the accurate
timing model provided, these simulators have proven to be effective tools for
performance analysis [MM97], [RBDH97].

5 Conclusions and Future Work

It has been demonstrated that full system simulators are very useful tools for
temporal debugging of real-time operating systems. As a simulated system
operates in an artificial time scale, it may be paused to allow for interactive
debugging without disturbing the temporal correctness of the system. Accurate
analysis of temporal correctness is possible, as hardware devices affecting exe-
cution time are modelled in adequate detail. Furthermore, due to advances in

simulation technology, full system simulators are now capable of running large
commodity operating systems.

Instruction level simulation tools have previously been used in small scale
only. Therefore, user support is limited, and many tasks could be improved and
automated. For example, rather than having the user compare time elapsed
in subroutines, it is possible to build a tool for automatic correlation of time
spent in subroutines to deadline violation. Such a tool would point out routines
frequently triggering deadline misses.

Although the environment described in this paper is limited to debugging
of operating systems only, it is possible and desirable to extend its use to user
space applications. However, this is non-trivial, as a user space debugger expects
to read virtual memory and registers, whereas the simulator provides access to
physical devices only. In order to perform translation of debugger accesses, it
is necessary to traverse virtual memory management data structures within the
operating system.

References

[And94] William Anderson. An overview of Motorola’s PowerPC simulator
family. Communications of the ACM, 37(6):64-69, June 1994.

[BJHL96] Monica Brockmeyer, Farnam Jahanian, Constance Heitmeyer, and
Bruce Labaw. An approach to monitoring and assertion-checking of
real time specifications in Modechart. In Proceedings of the Second
IEEFE Real-Time Technology and Applications Symposium, Boston,
USA, June 1996. IEEE Computer Society.

[DM84] J. K. Doyle and K. I. Mandelberg. A portable PDP-11 simula-
tor. Software Practice and Experience, 14(11):1047-1059, November
1984.

[EST] Embedded support tools corporation. www.estc.com.

[GT91] F. Gielen and M. Timmerman. The design of DARTS: A dynamic
debugger for multiprocessor real-time applications. In Proceedings
of 1991 IEEFE Conference on Real-Time Computer Applications in
Nuclear, Particle and Plasma Physics, pages 153-161, Julich, Ger-
many, June 1991.

[Her98] Stephen Alan Herrod. Using Complete Machine Simulation to Un-
derstand Computer System Behavior. PhD thesis, Stanford Univer-
sity, February 1998.

[MDG*98] Peter S. Magnusson, Fredrik Dahlgren, Hakan Grahn, Magnus
Karlsson, Fredrik Larsson, Fredrik Lundholm, Andreas Moestedst,
Jim Nilsson, Per Stenstrom, and Bengt Werner. SimICS/sundm: A
Virtual Workstation. In Proceedings of the 1998 USENIX Annual
Technical Conference, 1998.

[MM97]

[MW94]

[NGMOYS]

[Plag4]

[RBDH97]

[TFC0]

[Zen)]

Johan Montelius and Peter Magnusson. Using SimICS to evaluate
the Penny system. In Jan Maluszynski, editor, Proceedings of the
International Symposium on Logic Programming (ILPS-97), pages
133-148, Cambridge, October 13-16 1997. MIT Press.

Frank Mueller and David B. Whalley. On debugging real-time app-
lications. In ACM SIGPLAN Workshop on Language, Compiler,
and Tool Support for Real-Time Systems, June 1994.

Edgar Nett, Martin Gergeleit, and Michael Mock. An adaptive
approach to object-oriented real-time computing. In Kristine Kel-
ly, editor, Proceedings of First International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC‘98), pages 342—
349, Kyoto, Japan, April 1998. IEEE Computer Society, IEEE Com-
puter Society Press.

Bernhard Plattner. Real-time execution monitoring. IEEE Transac-
tions on Software Engineering, SE-10(6):756-764, November 1984.

Mendel Rosenblum, Edouard Bugnion, Scott Devine, and
Stephen Alan Herrod. Using the SimOS machine simulator to study
complex computer systems. ACM Transactions on Modeling and
Computer Simulation, 7(1):78-103, January 1997.

Jeffery J. P. Tsai, Kwang-Ya Fang, and Horng-Yuan Chen. A nonin-
vasive architecture to monitor real-time distributed systems. Com-
puter, 23(3):11-23, March 1990.

R2D2 debugger, Zentropix. www.zentropix.com.

Empty page.

Modelling of Real-Time Embedded Systems in an Object-Oriented Design
Environment with UML

Razvan Jigorea, Sorin Manolache, Petru Eles, Zebo Peng
Linkdping University
{g-razji, g-sorma, petel, zebpe}@ida.liu.se

Abstract ——
This paper explores aspects concerning system-level System speci-
specification, modelling and simulation of real-time fication
embedded systems. By means of case studies, we investigate . .
. Simulation
how object-oriented methodologies, and in particular - v
UML, support the modelling of industrial scale real-time Desian
systems, and how different architectures can be explored by Module g

model simulation. We are mainly interested in the problem library

of system specification as it appears from the prospect of the
whole design process. The discussion is illustrated by a
large system model from the telecommunications area, the Implementation
GSM base transceiver station.

Figure 1. The design cycle of RT systems

1. Introduction used in this context, simulation is still the basic technique
which allows to get a feedback concerning the degree to
Current real-time embedded systems have to fulfill more which a specification or design alternative fulfils certain
and more complex requirements concerning functionality, requirements [2].
timing, power consumption, reliability, cost, etc. Typical An important trend in current design methodologies for
application areas for such systems are telecommunicationsembedded systems is towards the reuse of pre-designed
automotive industry, avionics, or industrial process control. components as an alternative to the complete synthesis of
Embedded systems are very often implemented onthe whole system. Such an approach is well known for the
distributed architectures consisting of several software design community but has been only recently
programmable processors and application specific considered by hardware designers as a practicable strategy
integrated circuits (ASICs) [1]. in order to cope with increasing system complexity [3].
Due to the complexity of such systems, design According to such a methodology, pre-designed
environments have to be developed in order to assist theprogrammable cores and ASICs (called intellectual
designer throughout the whole design process, starting fromproperty (IP) components), stored in a module library
the system specification, going through the design phase(Figure 1), are used as building blocks for new system
until the final implementation. In Figure 1 we show a very designs.
simplified view of such a design flow. One of the important In order to support such a complex design process, the
tasks performed during the design phase is architecturesystem specification has to fulfill several requirements.
exploration. Several architectures (which differ in number Some of them are well known and have been much
and kind of processors, interconnection structure, numberdiscussed in the literature [4, 5, 8]. Such are the support for
of ASICs, memory structure, etc.) and alternatives for task concurrency, exception handling, timing, hierarchy, or
partitioning are explored in order to find an efficient nondeterminism. In this paper, however, we are mainly
solution which also satisfies the imposed requirements. interested in the problem of system specification as it
An essential aspect of such an iterative design process isippears from the prospect of the whole design process.
the ability to check the functionality of a certain design Thus, requirements like support for IP-based design,
alternative and to estimate different parameters separation of control and dataflow, or facilities for system
characteristic to it like, for example, timing. Although simulation and architecture exploration are of particular
formal verification and static analysis are more and more interest. Our main focus is on how object-oriented

methodologies, and in particular UML, support such
requirements and how they can be used for the specification
and design of complex embedded systems. The discussion
is based on the experience gained from the modelling of ae
large application in the telecommunications area, namely
the GSM Base Transceiver Station (BTS). This is a
representative example of a large reactive embedded system
and is therefore well suited to illustrate some design
problems and possible solutions. Another example, an
intelligent traffic lights controller, has been used for a set of
experiments concerning the architecture exploration
aspects. .

In the following section we identify some of the main
problems to be discussed. Section 3 describes the basic
functionality of a GSM BTS, our main case study. Section
4 presents solutions to the problems identified in section 2,
in the particular context of UML. In section 5 we focus on
aspects related to architecture exploration. The last section
presents our conclusions.

2. Modelling of Real-Time Embedded Systems

Embedded systems, and in general all real-time (RT)
systems, have characteristics that make their design very
complex. They usually exhibit a reactive behaviour,
meaning that they respond in a well-defined manner to input
stimuli. Moreover, the response is time-constrained,
therefore it must occur within a more or less specific time
window. Safe critical embedded systems must be also
robust, showing correct behaviour even in unexpected
circumstances.

Concerning the specification and design of RT embedded

units and specifying them as superclasses is essential
in order to manage complexity during the modelling
process.

Support for architecture exploratioBoth the specifi-
cation methodology and the related design environ-
ment should provide the support for exploration of
alternative implementation architectures.

Timeliness verificationThe model must be checked

not only for functional correctness, but also for tempo-
ral correctness. We therefore need mechanisms for
specification and checking of timing aspects.

Multiple abstraction levelsThe specification of a RT
system often consists of blocks which are described at
very different levels of abstraction. In the initial speci-
fication some blocks can be treated as black boxes and
be specified at a high level of abstraction, while other
blocks are specified in more detail. As result of subse-
quent design steps, some of the blocks are further
refined while other are left unchanged. Despite such an
unbalance in the abstraction level, a clear separation
between specification of interfaces and that of the
internal behaviour, allows the whole system to be kept
coherent and executable.

Support for reuseAs mentioned earlier, the reuse of
predefined components (IP-based design) is of
extreme importance in managing the complexity of the
design process. Thus, specifications and models
should be built with a high-degree of reusability as an
essential goal. At the same time, the specification and
design methodology has to support the reuse of exist-
ing components.

In the following section we introduce a typical

systems, several particular issues have been identified anéelecommunication application of high complexity which in
discussed in the literature [4, 5, 8]. Such are state-transitionthe subsequent sections will be used in order to illustrate the
oriented behaviour, inherent parallelism, timing aspects, discussion. All the problems highlighted above will be
exception handling, environment dependency, and non-analysed, along with proposed solutions, in the context of
functional characteristics (performance, safety, reliability, @n OO design environment based on the UML.

power consumption etc.).

As mentioned in the previous section, in this paper we 3. The Base Transceiver Station (BTS)

are interested in particular aspects of system specification,
which are related to the whole design process. Some of

these problems have been identified as result of our workarchitecture of
related to the modelling and design of RT systems in the Communication (GSM),

The BTS is one of the devices in the canonical

the Global System for Mobile
as defined by the GSM

telecommunications area. They are briefly introduced herestandardisation group [7]. Figure 2 shows the place of the

and will be further discussed in the following sections:
« Data and control flow separatiohe model should

be organized as a set of functional and control layers.

A functional layer performs operations on the incom-
ing data, while a control layer coordinates clusters of
units situated in a lower layer. The amount of control
implemented in a certain layer should not exceed the
minimum needed in order to coordinate the operation
of the lower layers.
¢ Generic functional and control unitdany functional

or control blocks share certain basic characteristics,
differing just in some aspects. Identifying such generic

BTS in the context of the GSM architecture. The radio
interface connects the BTS with the mobile stations (MS).
A terrestrial link, the Abis interface, connects the BTS with
the Base Station Controller (BSC). The BSC is further
connected with the Network Switching Subsystem (NSS).
The BTS comprises radio transmission and reception
devices, and also all the signal processing specific to the
radio interface. The radio interface is characterized by a
high bit error rate. To counter this, complex modulation/
demodulation algorithms are deployed in the BTS and
computation intensive channel encoding/decoding methods
are applied. Because of the large range of services GSM

MS

BTS

radio interface

Abis interface

base station network
- . .
controller switching sub-
(BSC) system (NSS)

Figure 2. The BTS in the context of the GSM architecture

offers, the number of these channel encoding/decodinge
algorithms is also very large. The BTS also performs the so

called characterization of the radio interface, i.e. it measurese
interference level and bit error rates, processese
measurements of received power, and reports the results to

convolutional encoding/decoding in its various vari-
ants (punctured or not);
tailing;
fire codes (similar to CRC codes).
Subsequent interleaving/deinterleaving schemes are

the NSS. In order to adapt more users, a time division applied in order to build radio-bursts from data-blocks and
multiple access (TDMA) scheme is used. This allows a BTS to assemble data-blocks out of the incoming radio-bursts.
to manage several communication channels multiplexedFunctional units in the model are specialized for a certain
both in time and frequency. The BTS allocates/deallocatesencoding/decoding or interleaving/deinterleaving task.

and changes the channel mode at the request of the NSS. The first layer of control, above the functional layer,
Signalling protocols between the BTS and the mobile consists of the baseband controllers (BC). Their
stations as well as between the BTS and the infrastructureresponsibility is to assure a correct sequence of operations
are used in order to make such a channel managemenfperformed by the FUs) for each channel mode. BCs are

possible.

4. The BTS Model

specialized for the control of channels in a certain channel
mode. By channel mode we understand a set of properties
that characterize the channel. Such properties are:

In this section we first present the general structure of the*
BTS model. Next, solutions to the problems identified in
section 2 are discussed. The underlying specification and®
design strategy is based on an OO methodology. The*®
discussion here is in the particular context of the UML [5,
10]. General aspects concerning OO methodologies and the
basics of the UML have been much discussed in the®
literature [8, 9, 10], and therefore are not mentioned in this
paper.

semantics of carried data (speech, data, signalling);
gross data rate, which classifies channels in full and
half rate channels;
nett data rate;
whether the channel is dedicated to a particular user at
a moment in time or it is a broadcast (common) chan-
nel;
whether the channel is a duplex one or not.

The next level of control consists of the transmitter-

receivers (TRX). A TRX controls a set of BCs. It emits or

receives continuously, but on a single frequency at a given
moment. From the signalling point of view, each TRX
corresponds to a signalling link. A TRX manages traffic and

In Figure 3 we show the structure of the BTS model. Our Signalling for eight (due to the TDMA scheme) physical

model has been organized on four layers. The bottom layerchannels. _ _
consists of purely functional processing units (called The TRXs use the services of the LAPD (Link Access

functional units — FU). The control tasks to be performed Protocol for the “D” Channel) and LAPDm (Link Access
by the BTS are distributed among the other three layers. TheProtocol for the “Dm” Channel) protocol interpreters [6].
responsibilities of the functional units are related to channel These modules receive from the TRX the signalling bursts/
encoding/decoding and to data interleaving/deinterleaving. Plocks and are responsible for assembling the frames,

The encoding/decoding algorithms are the following: ~ Maintenance of the link, and notification of the TRX
« CRC encoding/decoding; regarding the received message. The two LAPD blocks

4.1. General Description of the Model Architecture

LAPDm PI LAPD PI

v >< v
Radio Abis
BuG (< TRX TRX “* BIG
v \

[| J] 7 [Ee]
A s N
O T

radio interface FU — functional unit Pl — protocol interpreter Abis interface
BC — baseband controller BuG — burst generator
TRX — transmitter-receiver BIG — block generator

Figure 3. Structure of the GSM BTS model

represent the third and highest layer of control. the channel whose processing chain it belongs to. Thus, it
The Radio Burst Generator (BuG) is the module that could be used as a building block for both speech encoding
models the radio subassembly of the BTS. It generatesand for fire codes, as well as for any other design in which
bursts which are sent to the TRX. The BuG has to be awareCRC encoding is performed. The unit has a very simple
of the time division scheme, as demodulation is performed interface: after a processing delay (procD) has elapsed from
differently for different channels. the moment it receives a processing command
The Abis Block Generator (BIG) has a similar role to the (evCRCEncCmd) from a controlling entity, it will notify the
Radio BuG. It generates blocks, simulating the time controlling entity about completion of the processing and
division scheme deployed on the terrestrial link. These offer the transformed data (evCmdCompleted(result)).

blocks are then forwarded to the TRXs. The same principle of minimum amount of control
The BTS model has been specified and simulated with deployment was adopted for the controlling units. A
the UML using the iLogix Rhapsody environment [12]. baseband controller, for example, manages functional units
according to the mode of the channel it controls. At the
4.2. Deployment of Control same time, it is completely unaware of the existence of the

other channels and it does not know anything about the
Functional units can be, in principle, reused over many time-slots structure of the access scheme (a statechart of a
generations of a telecommunication application and often baseband controller is shown in Figure 8).
they can be also included in different designs. Such different The TRX, on the other hand, is in charge of the eight
designs and successive generations of the same desigghannels it manages. It is the only unit which has to be
usually differ in their control aspects (e.g. the protocols) but aware of the timing scheme in order to identify a channel
not in the basic functions performed. The same philosophycorrectly and to activate the right baseband controller (the
applies to control units, as well. Protocols are organized onstatechart of the TRX is depicted in Figure 9).
different layers and from one product to another only
particular layers are modified (upgraded) while other layers 4.3. Separation of Control and Data Flows
are reused. Therefore, in order to support reusability of
functional and control units, a minimal amount of control Another aspect which improves the reusability of the
has to be deployed to any processing unit in the model. By various elements of the model is the separation of data and
doing this, the potential of reusing the modelling units control flows. Object-oriented modelling particularly suits
increases significantly. Figure 4 shows the UML statechart this requirement. There are objects which model entities on
for one of the functional units which performs a part of the the data path, and objects which model controlling units.
channel encoding. The unit, a CRC encoder, is unaware ofDue to the inherent loose coupling between objects, the
separation of control and data flow is easy to achieve. This

R\ evCRCEncCmd aspect is well highlighted in Figure 3. Functional units are
idle L 7 CRC operating on t_he_ data path, while no control functions are
embedded within them. On the other hand, baseband

tm(procD)/itsController->evCmdCompl(result); controllers as well as TRXs do not perform any processing

on the data flow. They just coordinate lower level entities
Figure 4. Statechart for CRC processing unit (other controllers or functional units).

- 01 1 Yoo,
FuncUnit ConvEnc [—=—<>PownLkCtrlk>———= ParityEnc
procD:int
? 1
~ ~
~ Zﬁ ~ 0,
Interleaver Interleaver
/ B\ Data 1 1 Data
Speechintl Datalntl Ctrlintl FastAssocl ConvEnc —<>DownLkCtrI
? 1
Figure 5. Generic functional units 1

Datalntl

4.4. Uniform Interfaces and Generic Units Figure 7. Specialization of a downlink controller
Various types of low level control or processing units are Modelling of such timing aspects comprises specification of
treated uniformly by the upper layers. This highly simplifies deadlines and execution delays.
the modelling process. Such an uniformity is achieved by Execution delays are modelled as time-triggered state
means of the inheritance relationship. transitions (see Figure 4). The parameter which
Figure 5illustrates a class hierarchy for functional units. characterizes the execution delay on a certain functional
Particular interleavers are derived from a generic interleaverunit is specified as an attribute of that unit. During
which again is a specialization of a generic functional unit. architecture exploration, this delay depends on the
For the upper, control layers, every functional unit appears particular processor to which the unit is assigned for
as this generic unit. A similar strategy also applies to control execution. This delay has to be estimated [11] and the
units. resulting value is assigned to the unit. The delay attribute is
Figure 6 shows the class diagram of a generic downlink specified in the superclass of all functional units (procD in
baseband controller. The generic controller aggregatesFigure 5).
generic functional units of the classes Interleaver (see also The controlling units are in charge of coordinating the
Figure 5), ConvEnc, and ParityEnc. A specific BC functionality of lower lever units. They are not
aggregates specialized FUs, depending on the particulacharacterized by a processing delay in the sense the
channel mode it controls. A data downlink controller, for functional units are. However, the control units have to
example, is an instantiation of the generic class
DownLkCtrl, and aggregates an instantiation of the class
DataConvEnc and of the class Datalntl (see also Figure 5). active
The corresponding class diagram is shown in Figure 7.

deinterl

evBursts/del->GEN(evDé|Cmd(params->bursts));
evDe]Compl/conv->GEN(evConvCmd(params->block));

4.5. Timing Aspects

Specification of timing aspects is mandatory in order to
verify timeliness and to perform architecture exploration.

convDec

evConvCompl

errConv

1 1
Convenc -9 S PpownLkCtril~, 9.11 parivvEnc

1 [params->status+
0,

tm(deadling|

Interleaver l watchdog ’47

Figure 6. Structure of a downlink controller

Figure 8. Statechart of a baseband controller

monitor whether certain predefined time intervals have
passed and to take certain decision if a deadline has been

reached. Deadline is modelled by introducing an additional departure

state, which is entered after a certain time interval has sensor |
elapsed. In Figure 8 we illustrate this mechanism for a i " controller in |
baseband controller. If the execution delay of the processing ntelligent 'prev. crossing'
chain exceeds the predefined value @éadline the subsystem controller o .
watchdog state is entered. The TRX interprets this as an | controller in |
exceptional situation. ' next crossing |
4.6. Concurrency Issues event queue traffic lights

Usually, telecommunication devices, and the BTS makes
no exception, perform a set of well specified operations on Figure 10. Intelligent traffic lights controller
multiple data flows. Identification of this parallelism is
important in the analysis phase because it significantly
influences the object structure of the model. In the UML, 5 Architecture Exploration
parallelism can be expressed in two ways. First, all the

objects are considered to be parallel entities. |, orderto complete our goal in exploring the way UML
Synchronization is easily achieved by means of messagey jts the real-time systems design cycle, we imagined a
exchanges. Second, an entity which has been modelled as gimpjer case study, which allows to easily demonstrate how
single object can exhibit itself a concurrent behaviour. In 5.chitecture exploration can be performed. The example we
this case the statechart corresponding to the object ispsve chosen is an intelligent, adaptive traffic lights
specified as a set of orthogonal (concurrent) components qtroller (see Figure 10).

Such a case is shown in Figure 9, where the statechartofa 1he controller was designed for a typical two road
TRX is depicted. The TRX has to handle both uplink and ¢sging (one main road, crossed by a secondary road),
downlink traffic, as well as signalling information .| ding pedestrian sideways. It is connected with the
addressed to it. Those activities are independent to each.qtrollers in the previous and next crossing on the main

other and can be performed concurrently. road. Beyond the crossing, on the main road, there is a
. . departure sensor, used for detecting if a car left the current
4.7. Multiple Abstraction Levels crossing, heading to the next crossing on the main road.

) o ~ Thisis needed in order to perform statistical analysis on the
Our main focus was set on the specification and designtime needed for a car to get from one crossing to another.
of the digital components of the BTS. However, in order to according to the statistical data, the intelligent subsystem

perform simulation and architecture exploration, the whole ;| adjust the synchronization and traffic lights timing in
functionality of the BTS had to be modelled. Thus, the radio order to have an optimal “green wave” on the main road,

subassembly was simply modelled as a radio burst

generator, at a very high abstraction level. The strong
encapsulation, typical to the object-oriented approach, sensor
allows for an uniform treatment of entities specified at
different abstraction levels. They permit us to concentrate dzzi;tgrre
on the refinement of that part of the model we are mainly B
interested in. 1
v
main processor pcontroller comm. line
sirgr]lr{i;\rlllingI uplink ! downlink — =
| | controller

R \
{inactive}_. { idle }
| | e
evAlloc/ evAbisBlock/
alloc(params); | |e><tract(params);

o e

traffic light

Figure 9. Statechart of a TRX Figure 11. Deployment diagram

corresponding to the fastest communication link in the

controller module library.
1 . The experimental results are presented in Table 1. We
— |01 1 > _)
% intelligent timer % Table 1. Simulation results
previous subsystem next —
crossing 1 crossing el Average waiting time for a car (seconds)
. gentsub-|| PE=0.9 | PE=0.9 | PE=0.6 | PE=0.6
system || CE=0.9 | CE=0.6 | CE=0.9 | CE=0.6
traffic lights departure |1 * X
Sensor - No 11.56 11.56 11.56 11.56
/ v\ car Yes 1.66 5.82 9.09 11.31
pedestrian car run the same scenario (i.e., input vectors), first for the traffic
traffic lights traffic lights lights controller without the intelligent subsystem, and

second for the traffic lights controller with intelligent
subsystem, departure sensor and communication lines. For
the case without an intelligent subsystem, the controller
which adapts to the current traffic condition. wor.ks by granting access tq the tracks according to a round
In Figure 10, the shaded blocks represent the core of thefobin strategy. For both settings we explored several values
traffic lights controller. We considered that the controller is (o' PE and CE. As it can be seen from Table 1, the
physically mapped on a microcontroller, and the intelligent intelligent subsystem produces a 5|gn|f|qant increase in
subsystem (which performs statistical analysis and adjustg®€formance. The quality of the system is degraded for
the timing accordingly) is mapped on a processor. This lower performances of the processor and/or communication
mapping is illustrated by the UML deployment diagram in N€:
Figure 11.
A high-level object model diagram of the intelligent 6. Conclusions
traffic lights controller is presented in Figure 12. The model
was conceived in a way which allows code generation and We discussed several issues concerning the modelling of
simulation with or without the intelligent subsystem. complex embedded real-time applications using an OO
We assumed that the average waiting time for a car is themethodology with the UML.
performance parameter of interest. Thus, we explored how We have concentrated on particular issues which are
different processors and communication lines affect this characteristic to the modelling of large telecommunication
performance parameter. The processing efficiency (PE) is s@Pplications. Using the particular example of a GSM BTS
parameter of the processor which runs the intelligent We showed how the UML based methodology allows the
subsystem, and the communication efficiency (CE) reflectsProper layering of a model, the separation of control and
the performance of the communication lines connecting ourdata flows, as well as the definition and combination of

controller to the two controllers in the adjacent crossings. generic units. The main objective is to facilitate complexity
We define PE and CE as follows: management during the modelling phase. At the same time,

reusability (IP-based design) and architecture exploration
are supported.
Using a smaller example, which allows for a more

Figure 12. Object model diagram

— Ymin . . .
PE = —\7- detailed discussion, we also presented an example of
architecture exploration and gave some experimental
5 results.
CE - min
o References

where v is the execution time for the intelligent [1] R. Ernst “Codesign of Embedded Systems: Status and
subsystem on the currently considered processis, the Tregis IEEE Design & Test of Computers, April-June, 1998, pp.
communication delay for an instance of data transfer on the[z] J. Axelsson, “Holistic Object-Oriented Modelling of
currently considered infrastructure for the communication pistributed Automotive Real-Time Control Applications”
lines, vmin is the value ofv corresponding to the fastest Proceedings of the™ IEEE International Symposium on Object-

processor in the module library, aldg,, is the value o Oriented Real-Time Distributed Computing, 1999, pp. 85-92.

[3] M. Keating, P. Bricaud,"Reuse Methodology Manual for
System-on-a-Chip DesignKluwer Academic Publishers, 1998.
[4] A. Sarkar, R. Waxman, J. Cohodtgpecification-Modelling
Methodologies for Reactive-System Designfi “High-Level
System Modelling: Specification Languages”, eds. J. M. Bergé et
al., Kluwer Academic Publishers, 1995, pp. 1-34.

[5] B. Douglass;Doing Hard Tim€', Addison-Wesley, 1999.

[6] M. Mouly, M. Pautet, “The GSM System for Mobile
Communication; Palaiseau, 1992.

[71 “GSM 03.02", European Telecommunications Standards
Institute (ETSI),

http://www.etsi.org.

[8] B.Selic, G. Gullekson, P. WartiReal-Time Object-Oriented
Modeling”, John Wiley & Sons, 1994.

[9] G. Booch,"Object Oriented Design With ApplicationsThe
Benjamin/Cummings Publishing, 1991.

[10] G.Booch, J. Rumbaugh, I. Jacobstie Unified Modeling
Language User Guide"Addison-Wesley, 1999.

[11] J. Gong, D. Gajski, S. BaksHiSoftware Estimation Using A
Generic Processor Mode)"Proceedings of the European Design
and Test Conference, 1995, pp. 498-502.

[12] “Rhapsody Reference Guide, Release 2illdgix, 1999.

Real-Time System Constraints: Where do They Come From and
Where do They Go?

Cecilia Ekelin and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology
S-412 96 Gteborg, Sweden
{cekelin,janjd @ce.chalmers.se

Abstract in the system design. Are the scheduling constraints due to
Within the real-time community a great deal of research limitations in hardware, cost or system behavior? Or are
has been, and is being, conducted on scheduling. There exthey more or less intelligent guesses? Previous research
ist a diversity of different scheduling algorithms as well as [1, 2] have argued that the latter often is the case. Adding
constraints that should be satisfied by a feasible scheduleconstraints manually is an iterative process becausadhe
What is not commonly discussed though is how the con-hoc assignment often leads to an over-constrained and in-
straints relate to the requirements on the actual real-time feasible system. Apparently, the reason for fabricating con-
system. In fact, many constraints are mere artifacts that straints is the lack of expressive power in current tools and
cannot be traced to the system design. This often results irthe lack of scheduling tools that handle complex constraints.
an over-constrained and infeasible scheduling problem. To The facility to consider factors such as cost and hardware
avoid this we are conducting a survey on industrial real- performance is also lacking in most proposed scheduling
time system requirements. The aim is to give a better under-algorithms. However, for industrial real-time system devel-
standing of how to derive adequate constraints. Further- opers, these factors are extremely important in order to pro-
more, we believe that by considering constraints imposedvide cost-effective solutions. In particular since the trend in
by industrial requirements such as product cost or hardware real-time system development is moving towards open sys-
limitations, the time complexity of schedule generation cantems [3], that is, the system designer is restricted to use
be greatly reduced. In this paper we present some earlythe hardware components available on the market. Design-
results from our survey. This includes a description of real- ing real-time systems with these prerequisites also affects
time system requirements and how they relate to commonlythe definition of an optimal schedule. The optimality of a

used real-time constraints. schedule might not only concern the behavior of the tasks
but also the cost of the resulting hardware configuration.
Keywords: real-time constraints, real-time scheduling, In an attempt to aid industry in this design process, we
system design, constraint programming, complexity reduc-have begun work that attempts to identify requirements like
tion cost and hardware limitations, as well as behavioral aspects
of industrial real-time systems. This paper reports some re-
1 Introduction sults from this work and also demonstrates how these re-

Scheduling in distributed real-time systems involves as- duirements can be translated into constraints. Apart from
signingn tasks tom processors such that all constraints on Increasing the expressive power we also believe that, by
the tasks are satisfied. A common instance of the problem igntroducing additional constraints, the scheduling search
to find the optimal schedule according to some objective. In SPace will be reduced without making the system over-
real-time literature, several scheduling algorithms that dealconstrained. In particular, we are interested in investigating
with specific real-time constraints (periods, release timesnOW this hypothesis can aid in reducing the search complex-
etc.) have been proposed. However, in most cases therdy for optimal schedule generation.
is no clear connection between the theoretical scheduling The rest of this paper is organized as follows. Section
problem and the practical design of the real-time system2 describes some common real-time system requirements.
being scheduled. This makes it difficult to verify the cor- Section 3 lists some real-time constraints typically found in
rectness of the constraints with respect to the requirementditerature. Section 4 presents our allocation and scheduling

approach. In Section 5 related work is discussed and Sec<derive the constraints often leads to an over-constrained and

tion 6 outlines our future work. infeasible system. In our approach we try to keep the con-
> Identificati f . straints as close as possible to the original requirements.
Identification of requirements Below we discuss how a number of constraints, that fre-

When trying to identify the requirements on a real- quently appear in real-time literature, relates to typical sys-
time system from an industrial perspective it is necessarytem requirements.
to work in close relation to industry. We are therefore 3 1 Task model
performing our investigation in cooperation with Mecel v 56 the following variables to denote task properties
AB in Goteborg, Sweden. Mecel AB develops tools and ¢, 4 taski.
distributed real-time systems for the automotive industry.
However, as an initial attempt we have limited the survey to §; actual start time
requirements and constraint constructs found in literature.
So far, we have found that the requirements can be divided E;
into three groups which are further described below. R; release time, i.e., the earliest allowed start time
2.1 Behavioral requirements

A model of a real-time system includes tasks, that de-
termine the behavior of the system, and resources, that are p, period, i.e., the rate that the task is executed with
used by tasks. The behavior of the system imposes restric-
tions on its implementation which affects the scheduling Bi blocking time, i.e., the time the task is spent preempted
constraints. Typical behavioral requirements could be task by other tasks

execution order or tasll< allocation. N; execution node, i.e., the processor the task is scheduled
2.2 Temporal requirements to execute on

Most development tools for real-time systems focus on
modeling the system behavior but lack the expressive power Als0, cis used to denote an arbitrary constant where ap-
to handle temporal requirements [4]. This is a serious dis- Plicable.
advantage since real-time systems have a temporal behavio3.2 Preemption
as well as an operational. The temporal behavior depends Apart from the derivation of constraints, it has to be
on the environment that the system interacts with. That is decided whether or not tasks are allowed to preempt each
why the requirements rarely are stated for each task indi-other. By allowing preemption it might be possible to find
vidually but rather on chains of tasks constituting a specific schedules for designs that are otherwise infeasible.nLet
function. For instance, a function like cruise control might denote the number of tasks. Then the time atasklocked
have a required update rate which is set independent of thedue to preemption is defined as:
number of tasks that are part of the function. Most schedul-
ing constraints st.em from temporal requirements. B; = Z B;:
2.3 Cost requirements j=1

Apart from mere system requirements, it is in the interest
of industry that development of real-time systems is made
cost-effective. That is why development using off-the-shelf
hardware components has become an interesting alternaContext switching —or task invocation time is usually as-
tive. Instead of making hardware for the software, the soft- Sumed to be small enough to be neglected or included in the
ware has to be made for the hardware. This puts additionaltask’s worst-case execution time. However, there might be
strain on the system design since the flexibility is decreased Some real-world problems where this approximation is not
Even though less flexibility is likely to reduce scheduling desirable. For example, in preemptive scheduling where it
complexity, additional hardware constraints have been in-is not known beforehand how many times a task will be pre-

worst-case execution time

D; deadline, i.e., the latest allowed finish time

{i #3,8 <8;,8; <S8+ B; + E;, N; = Nj}

troduced. empted. Most likely, the context switch occurring at a pre-
o _ emption will be significant since the state of the preempted
3 Derivation of constraints task must be stored away or retrieved. The context switch

In the introduction it was stated that most real-time sys- time ¢ can easily be incorporated into our previous equation
tem constraints are artifacts. The reason for this is the in-as:
ability of current tools to translate system requirements into
system constraints in an adequate way. In the translation .
the requirements are usually divided into a number of sim-
ple constraints. Unfortunately, tiael hocmethods used to {i #5,8: < 8;,8; < Si+ Bi + E;, N; = N;}

B; = (Bj—i—c):

-

J

3.3 Absolute timing constraints schedule each invocation as an individual task. The differ-
Absolute timing constraints are direct restrictions on the ent scenarios impose the following constraints:
temporal behavior of a task.
Rip=(k—1)-P;:{k>0,D; < P;}

Execution times express the worst-case execution times
of the tasks. They depend on the hardware the task is sched-
uled to execute on. This is of importance in a distributed
system where the execution time for a task may differ be- Separation constraints [1] express an interval of values
tween the nodes. Lef; x be the execution time of tagk that the period of a task should belong to. In contrast to

Riyk:(k—l)-Di:{k>0,Di >Pz}

on nodeN. Then this constraint is defined as: deadlines, periods might be limited by a maximum and/or
minimum period value which ensures that the required func-
E; = Ein:{N = Ni} tionality is obtained. Let andu be the minimum and max-

imum value respectively. Then this constraint is defined as:
Deadlines correspond to the responsiveness required by
the system. Usually, there only exists an explicit deadline I<P;<u
for a chain of tasks (end-to-end deadline) and not for each
individual task. A common approach is to split the end-to- 3.4 Relative timing constraints
end deadline into shorter deadlines which are assigned to Relative timing constraints are also known as local con-
each task [5]. This operation may put an unnecessary strairstraints. That is, they express how two tasks relate to each
on the task set. To avoid this, we assign the end-to-endother. Some common constructs are explained below. Other
deadline as the deadline for all tasks in the chain.Ddte constructs are possible [6, 7] and can be expressed in a sim-
the end-to-end deadline. L&} be all tasks restricted by ilar manner.
D. Then the deadline constraint is defined as:

Vi € Tp|D; = D Precedence constraints deal with the order the tasks

should be executed in. Such constraints are often derived

To ensure that no deadlines are missed, the following con-from the system design because the behavior of a system is

straint is needed: modeled as sequences of operations. If taskould pre-
cede taskj the constraint is defined as:

Si+ B; + E; < D;
. . Si+B; +E; <§;
This assumes that the precedence relations have been

modeled as described later in this paper.) .]
Distance constraints are a stronger variant of precedence

constraints. In addition to constraining their order of exe-
cution, they also express the minimum distance in time be-
tween two taskg andj. A reason for this could be limi-

Release times are mostly connected to periodic processes
where they restrict the start time of task invocations. This is

explained furth_er below. Many scheduling algorlth_ms m- tlations in the processing speed of the environment that the
pose release times on the tasks as a way to obtain mutuat . ; . .
asks interact with. It could also be derived from delays in

exclusion between tasks that access the same resource. T'}ﬁe communication hardware between two communicatin
drawback of this technique is the same as for the deadline 9

. . : . tasks. If the distance is the constraint is defined as:
assignment mentioned previously, namely the risk of over-
constra_ining the ta;k set. To ensure thatata;k .is not started Si+ B+ E;+c<S;
before its release time, the following constraint is needed:

S; > R; Freshness constraints [1] are the opposite of distance
constraints. They express the maximum distance in time

Periods express how often a task should be executed.between two (consecutive) taskandj. This is used to ex-
This is linked to how accurate the system needs to be forpress that a task uses some result produced by another task.
interaction with its environment. Periods may restrict the If the tasks are too far apart in time, the result have become
deadlines since the deadline of a task often is less than itgnaccurate when it is about to be used. This constraint is
period (0; < P;). Even if that is not truel); > P;), the typically found in database applications. If the freshness is
k:th invocation of a task must be completed before invoca- ¢, the constraint is defined as:
tion £ + 1. A way to handle scheduling of periodic tasks
is to find the least common multiple of all periods and then Si+Bi+E;<S§;<Si+Bi+Ei+c

Correlation constraints [1] are related to freshness con- Devices are resources other than processors used by the
straints in that they describe the maximum difference be- tasks during execution. It might be the case that only a lim-
tween the finish times of two (concurrent) tagkand j. ited number of tasks can access a device at the same time,
This appears when a third task uses the results from the twee.g., shared memory or bus communication. This means en-
tasks and a too large a time-skew between the parametersuring that the amount of the resource used, by concurrent
makes the task’s computation faulty. If the correlation,is tasks, never at any point in time is exceeding a given limit.
the constraint is defined as: This can be expressed using themulativeconstraint [8].
3.6 ORing

ORing constraints [6] are not that common but can be
used to express alternative operations. For instance, to ex-
Harmonicity constraints [1] relate the periods of two pjicitly state that a task must not preempt another tagk
communicating tasks. It is desired that the period of the (an EXCLUDES relation) means than taskiust execute

consumer task is exactly divisible by the period of the pefore or after task. Any types of constraints can be ORed.
producer tasl. If this is the case it is much easier for the For . constraints this is simply defined as:

consumer to keep track of the received messages since they

|(Si + B: + E;) — (S; + B; + Ej)| < ¢

always will arrive with the same interval. This constraint is constraint; V constraints V ... V constraint,
defined as:
P,=c-Pj:{c>0} 4 Allocation and scheduling
3.5 Resources Most published real-time scheduling algorithms are

To be able to perform their operations, the tasks may “.hard-coded" with respect to the constraints, task proper-
require to use specific hardware components. The perfor-tles and resources they can handle. Even-th(_)ugh a specific
mance or functionality of the available components is lim- method in most cases outperforms a generic, t_he f‘“mer
ited by how expensive the hardware is allowed to be. soon becomes quite comp!ex and it becomes difficult to in-
clude new features. That is why we have chosen the con-
straint programming approach.
The tool we have selected for our experiments is SIC-
Stus Prolog [8] and its associated constraint solver for fi-
%hite domains [9]. The identified real-time system require-
ments can be expressed using primitive (low-level) con-
straints which are combined to express more complex (high-
level) constraints. The advantage of this generality is that it
N; #N is easy to introduce new high-level constraints as long as
they can be composed by a combination of low-level con-
It could also be the case that communicating taskes straints. The translation of the constraints into code is pretty
j) should be located on the same node. A reason for thisstraightforward. An interesting feature is the possibility to
could be that the operating system requires that all tasksguide the search for feasible schedules by varying the search
within a process are located on the same node. Anothemparameters. By using "correct” parameters the search time
reason could be to lower the cost for the communication can be significantly reduced. We hope that it will be possi-
network. This is known aseusteringconstraint. The con- ble to automatically detect which heuristic that is best suited
straint is defined as: for a specific problem instance.

Ni = N; 5 Related work
Locality constrains are often implementation recommen- a great motivation for this paper was the analysis of the
dations made by the designer, and less frequently given ingrigins of timing constraints presented by Ramamritham in
the specification. [2]. The gap between the system design process and the
implementation has been discussed in [10]. We continue
Communication between tasks requires a communica- this work by proposing guidelines for the derivation of con-
tion media. The time to send a message depends on perforstraints from system requirements. In [1], a technique to
mance offered by the communication channel. Messagesautomatically generate periods and deadlines for each task
sent between tasks must themselves be scheduled on thigom end-to-end deadlines, is proposed. A similar tech-
communication network which affects the scheduling of the nique to generate intervals instead of single numbers for the
tasks. Message scheduling is non-preemptive. There exisstart times has been presented in [7]. Both techniques are
predefined constraint constructs for this kind of scheduling, based on constraint solving using Fourier-Motzkin variable
e.g., theserializedconstraint [8]. elimination. The ideas and techniques for constraint solving

Locality constraints concern the allocation of tasks to dif-
ferent nodes. A task might require a specific unit for its
execution that is not present on all nodes. We express thi
by simply removing impossible nodes from the task’s node
set. This is dard-codectonstraint. LetV be an impossible
node. This is then defined as:

are already contained in the concept of constraint program- [7] R. Gerber, W. Pugh, and M. Saksena, “Parametric Dis-
ming systems.
The use of constraint programming for scheduling has

been investigated in the areas of operations research and

artificial intelligence. However, the scheduling aspects in

these areas are somewhat different from the ones concern-
ing real-time systems. For instance, the optimization objec-
tive is different as well as the constraints to be considered. g
So far, we have only found one paper that addresses the use

of constraint programming for scheduling of real-time sys-

tems [11]. However, this work only addresses the problem
of finding a feasible schedule, while we are more interested

in finding the optimal and most cost-effective schedule.

6 Future work

As previously mentioned, we are currently working to- [10]

gether with the industry on a survey on real-time system
requirements. A remaining issue of importance is the defi-
nition of an optimal schedule. To this end, we plan to imple-
ment a scheduling framework in SICStus Prolog which will

incorporate the described real-time constraints, including al11]

new notion of optimality. At a later stage we will investi-

gate how the constraints and search heuristics can be used to
reduce the complexity of the scheduling process. Previous

work have shown that this is a viable approach [12, 13].

References

[1] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing

[2]

[3]

[4]

[5]

[6]

Real-Time Requirements with Resource-Based Cali-
bration of Periodic ProcesseslEEE Trans. on Soft-
ware Engineeringvol. 21, no. 7, pp. 579-592, July
1995.

K. Ramamritham, “Where do Time Constraints Come
From and Where do They Go?Jhternational Jour-
nal of Database Managememnol. 7, no. 2, pp. 4-10,
1996.

J. A. Stankovic, “Real-Time and Embedded Systems,”
http://www-ccs.cs.umass.edu/sdcr/

G. Bucci, M. Campanai, and P. Nesi, “Tools for Spec-
ifying Real-Time Systems,"Real-Time Systemsol.
8, no. 2/3, pp. 117-172, Mar. 1995.

M. Di Natale and J. A. Stankovic, “Dynamic End-to-
End Guarantees in Distributed Real-Time Systems,”
Proc. of the IEEE Real-Time Systems Sympos&an
Juan, Puerto Rico, Dec. 7-9, 1994, pp. 216-227.

T. M. Chung and H. G. Dietz, “Language Con-
structs and Transformation for Hard Real-Time Sys-
tems,” Proc. of ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Real-Time Systems
La Jolla, Canada, June 1995, pp. 4-10.

patching of Hard Real-Time Tasks/EEE Trans. on
Computersvol. 44, no. 3, pp. 471-479, Mar. 1995.

8] Intelligent Systems Laboratory, SICStus Prolog

User's Manua] Swedish Institute of Computer Sci-
ence, 1995, http://www.sics.se/sicstus/.

] M. Carlsson, G. Ottosson, and B. Carlson, “An Open-

Ended Finite Domain Constraint SolveFroc. of the
Int'l Symposium on Programming Languages: Imple-
mentations, Logics, and Programld. Glaser et al.,
Eds., Southampton, UK, Sept. 3-5, 1997, vol. 1292
of Lecture Notes in Computer Scienggp. 191-206,
Springer Verlag.

M. Saksena, “Real-Time System Design: A Temporal
Perspective,Proc. of IEEE Canadian Conference on
Electrical and Computer Engineeringvaterloo, May
1998.

M. Schild and J. Wirtz, “Off-Line Scheduling of a
Real-Time System,"Proc. of CP97 Workshop on In-
dustrial Constraint-Directed Schedulin§chloss Ha-
genberg, Austria, Oct. 1997.

J. Jonsson, “Effective Complexity Reduction for Op-
timal Scheduling of Distributed Real-Time Applica-
tions,” Proc. of the IEEE Int'l Conf. on Distributed
Computing Systemsawustin, Texas, May 31 —June 5,
1999, pp. 360-369.

I. Ahmad and Y.-K. Kwok, “Optimal and Near-
Optimal Allocation of Precedence-Constrained Tasks
to Parallel Processors: Defying the High Complex-
ity Using Effective Search TechniquesProc. of the
Int’l Conf. on Parallel ProcessingMinneapolis, Min-
nesota, Aug. 10-14, 1998, pp. 424-431.

Empty page.

A Real-Time Animator for Hybrid Systems
(Extended Abstract)

Tobias Amnell, Alexandre David
Wang Yi
Department of Computer Systems, Uppsala University
{adavid, tobiasa, yi} @docs.uu.se

Abstract

In this paper, we present a real time animator
for dynamical systems that can be modeled
as hybrid automata i.e. standard finite au-
tomata extended with differential equations.
We describe its semantic foundation and its
implementation in Java and C using CVODE,
a software package for solving ordinary differ-
ential equations. We show how the animator
is interfaced with the UPPAAL tool to demon-
strate the real time behavior of dynamical sys-
tems under the control of discrete components
described as timed automata.

1 Introduction

UPPAAL is a software tool for modeling, sim-
ulation and verification of real time systems
that can be described as timed automata. In
recent years, it has been applied in a number
of case studies [4, 5, 6, 7, 8], which demon-
strates the potential application areas of the
tool. It suites best the class of systems that
contain only discrete components with real
time clocks. But it can not handle hybrid
systems, which has been a serious restriction
on many industrial applications. This work is
to extend the UPPAAL tool with features for
modeling and simulation of hybrid systems.
A hybrid system is a dynamical system that
may contain both discrete and continuous
components whose behavior follows physical

laws [1], e.g. process control and automotive
systems. In this paper, we shall adopt hybrid
automata as a basic model for such systems.
A hybrid automaton is a finite automaton ex-
tended with differential equations assigned to
control nodes, describing the physical laws.
Timed automata [2] can be seen as special
class of hybrid automata with the equation
2 = 1 for all clocks z. We shall present an op-
erational semantics for hybrid automata with
dense time and its discrete version for a given
time granularity. The discrete semantics of
a hybrid system shall be considered as an ap-
proximation of the continuous behavior of the
system, corresponding to sampling in control
theory.

We have developed a real time animator
for hybrid systems based on the discrete se-
mantics. It can be used to simulate the dy-
namical behavior of a hybrid system in a
real time manner. The animator implements
the discrete semantics for a given automa-
ton and sampling period, using the differen-
tial equation solver CVODE. Currently the
engine of the animator has been implemented
in Java and C using CVODE. We are aiming
at a graphical user interface for editing and
showing moving graphical objects and plot-
ting curves. The graphical objects act on the
screen according to physical laws described
as differential equations and synchronize with
controllers described as timed automata in
UPPAAL.

The rest of the paper is organized as follows:
In the next section we describe the notion of
hybrid automata, the syntax and operational
semantics. Section 3 is devoted to implemen-
tation details of the animator. Section 4 con-
cludes the paper.

2 Hybrid Systems

A hybrid automaton is a finite automata ex-
tended with differential equations describing
the dynamical behavior of the physical com-
ponents.

2.1 Syntax

Let X be a set of real-valued variables X
ranged over by z,y,z etc including a time
variable .

We use & to denote the derivative (rate) of
x with respects to the time variable . Note
that in general £ may be a function over X;
but ¢ = 1. We use X to stand for the set of
differential equations in the form & = f(X)
where f is a function over X.

Assume a set of predicates over the values
of X; for example, 27 +1 < 10 is such a pred-
icate. We use G ranged over by g,h etc to
denote the set of boolean combinations of the
predicates, called guards.

To manipulate variables, we use con-
current assignments in the form: z; :=
fi(X) ...z, := fo(X) which takes the cur-
rent values of the variables X as parameters
for f; and updates all z;’s with f;(X)’s simul-
taneously. We use I' to stand for the set of
concurrent assignments.

We shall study networks of hybrid au-
tomata in which component automata syn-
chronize with each other via complementary
actions. Let A be a set of action names. We
use Act = {a?|ac A}U{al|lac A}U{T}
to denote the set of actions that processes can
perform to synchronize with each other, where
T is a distinct symbol representing internal ac-
tions.

A hybrid automaton over X, X, G, Act and
['is a tuple (L, E,I1,T, Ly, Xy) where

e [is a finite set of names standing for
control nodes.

FE is the equation assignment function:
E:L— 2%,

I is the invariant assignment function: I :
L — G which for each node [, assigns an
invariant condition I(1).

T is the transition relation: T C L x (G X
Act x T') x L. We denote (I, g, a,~,l") by

70{,
| 220

lp € L is the initial node.

X is the initial variable assignment.

To study networks of automata, we intro-
duce a CCS-like parallel composition opera-
tor. Assume that Ay,..., A, are automata.
We use A to denote their parallel composi-
tion. The intuitive meaning of A is similar
to the CCS parallel composition of Ay, ..., A,
with all actions being restricted, that is, A =
(A1]...|An)\Act. Thus only synchronization
between the components A; is possible. We
call A a network of automata. We simply view
A as a vector and use A; to denote its ith com-
ponent.

Example In figure 1 we give a simple ex-
ample hybrid automaton which describes a
bouncing ball and a touch sensitive floor. The
left automaton defines three variables, x, the
horizontal distance from the starting point,
the height y and the speed upwards u. Ini-
tially the z-speed is 1, the ball is at 20 m
height and the gravitational constant is 9.8.
The variables will change according to their
equations until the transition becomes en-
abled when y <= 0. The middle automaton
is a model of a sensor that will issue a signal
when the ball hits the floor. The right au-
tomaton is on the UPPAAL side. It synchro-
nizes with the sensor signal and resets a clock

z. If the intervals between signals are longer
than 5 time units it will return to the initial
location, but the first interval that is shorter
will lead to the location low_bounces.

init
x=0 L 7>5
ﬁz%o <=0 . bounce?
ounce! | z:=0
| bounce?
! z<=5
flowgbounces

Figure 1: Bouncing ball with touch sensitive
floor and control program.

2.2 Semantics

To develop a formal semantics for hybrid au-
tomata we shall use variable assignments. A
variable assignment is a mapping which maps
variables X to the reals. For a variable assign-
ment o and a delay d (a positive real), o + d
denotes the variable assignment such that

(0 +d)(z) = o(x) —l—/ zdt

A

For a concurrent assignment vy, we use 7y[o]
to denote the variable assignment o' with
o'(z) = Valeoc whenever (z := e) € v and
o'(¢") = o(z') otherwise, where Valeo de-
notes the value of e in 0. Given a guard g € G
and a variable assignment o, g(o) is a boolean
value describing whether ¢ is satisfied by o or
not.

A node vector 1 of a network A is a vec-
tor of nodes where [; is a location of A;. We
write [[l/l;] to denote the vector where the
ith element [; of [is replaced by /.

A state of a network A is a configuration
(I,0) where [is a node vector of A and o is a
variable assignment.

The semantics of a network of automata A
is given in terms of a labelled transition sys-
tem with the set of states being the configu-
rations. The transition relation is defined by
the following three rules:

o (I,o) ~ ([IL/L],vlo)) if I; L5 12 and
gi(o) for some l;, g;, ;.

o (o) ~ (/1,15 (v U w)lo]) if

)) ia?
L S gi(0), gi(0), and

{ 7é j7 for some lialja i, 95, @5 Yi, Vj-

e (I,o)~ (I,o+A)if I(I)(c) and I(I)(o +
A).

where I(l) = A, I(1;).

2.3 Tick semantics

The operational semantics above defines how
an automaton will behave at every real-valued
time point with arbitrarily fine precision. In
fact, it describes all the possible runnings of
a hybrid automata, that are the sequences of
alternating transitions between delays and ac-
tions in the form:

80’%9(20, op + Ag)’\l(zl, 01)%01, o1+ Al)’\g
(I, 09) ... (01,)50, 01 + AN (i1, 0441)

In practice, the “sampling” technique is of-
ten used to analyze a system. Instead of ex-
amining the system at every time point, only
certain typical time points are chosen to cap-
ture or approximate the full system behav-
ior. Based on this idea, we shall adopt a
time—step semantics called d—semantics rela-
tivized by the granularity J, which describes
how a hybrid system shall behave in every ¢
time units. In practical applications, the time
granularity § is chosen according to the na-
ture of the differential equations involved. In
a manner similar to sampling of measured sig-
nals the sampling interval should be short for
rapidly changing functions. To achieve finer
precision, we can choose a smaller granularity.

We identify the d—transitions as follows:

o (1,o) (1,0 +0) if (1,001, 0 +6) and

o (1,0)S(1,0") if 1,005, 0"

The “sampled” runnings of a hybrid au-
tomaton will be in the form:

(T, 00)~> (T, 00 +06) 5 (T, 01) > (I, 01 +)%
(a,09) ... (1, 00) 215, 01 + 6) 5 (i1, 1)

In the following section, we shall present a
real time animator based on the J-semantics.
For a given hybrid automaton, the anima-
tor works as an interpretor computing the J-
transitions step by step but in real time, using

CVODE, a differential equations solver.

3 Implementation

Our goal is to extend the UPPAAL tool to deal
with hybrid systems. The UprpPAAL GUI is
written in Java and the differential equation
solver that we have adopted, CVODE, is writ-
ten in C. This gives the natural architecture of
the animator: the animator itself with the ob-
jects is written in Java and the engine of the
animator in C, connected through the Java
native interface (JNI). The two main layers of
the implementation are the animation system

and the CVODE layers.

3.1 The Animation System Layer

The system to be modeled is defined as a col-
lection of objects. Each object is described
by a hybrid automaton with its corresponding
variables. Every state of the hybrid automa-
ton has a set of equations and transitions.
The equations, conditions (guards) and as-
signments are given as logical/arithmetic ex-
pressions with ordinary mathematical func-
tions such as sine, cosine ..., and also user
defined functions.

The evaluation of the object equations, con-
ditions and assignments is written in C. Each
animator object, i.e. a hybrid process, is as-
sociated with one UPPAAL process that is an
abstraction of the hybrid part and a bridge
to UPPAAL. The abstraction is modeled as
a stub process that performs the same syn-
chronizations as the hybrid counterpart. This

choice of implementation is motivated by the
desire to model-check the rest of the UPPAAL
processes as a closed system. Figure 2 shows
the association of animator objects with Up-
PAAL automata.

plug-in

Jipz

y

1 ¥ 1
uppiﬁ Aal /

controller model environment model

Figure 2: Association between animator ob-
jects and UPPAAL automata.

3.2 The CVODE Layer

At the heart of the animator we have used
the CVODE [9] solver for ordinary differential
equations (ODE’s). This is a freely available
ODE solver written in C, but based on two
older solvers in Fortran.

The mathematical formulation of an initial
value ODE problem is

T = f(t7$)7 x(tU) =Zp, T € R".

(1)

Note that the derivative is only first order.
Problems containing higher order differential
equations can be transformed to a system of
first order. When using CVODE one gets a
numerical solution to (1) as discrete values z,,
at time points ¢,.

CVODE provides several different methods
for solving ODE’s, suitable for different types
of problem. But since we aim at general us-
age of the animator engine we cannot assume
any certain properties of the system to solve.
Therefore we only use the full dense solver and
assume that the system is well behaved (non-
stiff in numerical analysis terminology). This
will give neither the most memory efficient nor
the best solution, but the most general.

We use one CVODE solver for the whole
system. This is set up and started with new
initial values at the beginning of each delay
The calculations are performed
stepwise, one “tick” (0—transition) at a time.
After each tick all the conditions of the cur-
rent state are checked, if any is evaluated to
true one must be taken, continuing in the
same state is not possible. If an assignment
on the transition changes a variable the solver
must be reinitialized before the calculations
can continue.

It is worth pointing out that the tick length
0 is independent of the internal step size used
by the ODE solver, the solver will automati-
cally choose an appropriate step size accord-
ing to the function calculated and acceptable
local error of the computation. From the
solvers point of view the tick intervals can be
seen as observation or sampling points.

After each tick the system variables are re-
turned to the Java side of the animator where
they are used either to update a graph or as
an input to move graphical objects.

transition.

Example, continued In figure 3 a plot of
the system described in figure 1 is shown. The
plot shows the height and the distance of the
bouncing ball. Not shown in the figure is that
the touch sensitive floor will create a signal
every time the ball hits the floor, and that the
system will continue running until the time
between bounces is less than 1 second.

4 Conclusion

We have presented a real time animator for
hybrid automata. For a given hybrid au-
tomaton modeling a dynamical system and a
given time granularity representing sampling
frequency, the animator demonstrates a pos-
sible running of the system in real time, which
is a sequence of sampled transitions. The an-
imator has been implemented in Java and C
using CVODE, a software package for solving
differential equations. As future work, we aim

JAYaY

6 8 10 12 14 16

Figure 3: Bouncing ball on touch sensitive
floor that continues until bounces are shorter
than 1 second

at a graphical user interface for editing and
showing moving graphical objects and plot-
ting curves. The graphical objects act on the
screen according to the differential equations
and synchronize with controllers described as
timed automata in UPPAAL.

References

[1] Thomas A. Henzinger. The Theory of
Hybrid Automata. Proceedings of the
11th Annual ITEEE Symposium on Logic
on Computer Science (LICS 96), pp. 278-
292.

2] R. Alur and D.L. Dill. A Theory of
Timed Automata. Theoretical Computer
Science, 125:183-235,1994.

[3] J. Bengtsson, K.G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. UPPAAL: a
Tool-Suite for Automatic Verification of
Real-time Systems. In R. Alur, T.A. Hen-
zinger, and E.D. Sontag, editors, Hybrid
Systems III, Lecture Notes in Computer
Science 1066, pages 232-243. Springer-
Verlag 1996.

[4]

[5]

[6]

7]

[9]

Kare J. Kristoffersen, Kim G. Larsen,
Paul Pettersson and Carsten Weise. Fx-
perimental Batch Plant - VHS Case
Study 1 Using Timed Automata and
UPPAAL. Deliverable of EPRIT-LTR
Project 26270 VHS (Verification of Hy-
bird Systems).

Magnus Lindahl, Paul Pettersson and
Wang Yi Formal Design and Analysis
of a Gear Controller. In Proceedings of
the 4th International Workshop on Tools
and Algorithms for the Construction and
Analysis of Systems. Gulbenkian Foun-
dation, Lisbon, Portugal, 31 March - 2
April, 1998. LNCS 1384, pages 281-297,
Bernhard Steffen (Ed.).

Henrik Lonn and Paul Pettersson. For-
mal Verification of a TDMA Protocol
Start-Up Mechanism. In Proceedings of
1997 TEEE Pacific Rim International
Symposium on Fault-Tolerant Systems,
pages 235-242. Taipei, Taiwan, 15-16 De-
cember, 1997.

Klaus Havelund, Arne Skou, Kim G.
Larsen and Kristian Lund. Formal Mod-
elling and Analysis of an Audio/Video
Protocol: An Industrial Case Study Us-
ing UPPAAL. In Proceedings of the 18th
IEEE Real-Time Systems Symposium,
pages 2-13. San Francisco, California,
USA, 3-5 December 1997.

P.R. D’Argenio, J.-P. Katoen, T.C.
Ruys, and J. Tretmans. The bounded re-
transmission protocol must be on time!
In Proceedings of the 3rd International
Workshop on Tools and Algorithms for
the Construction and Analysis of Sys-
tems. Enschede, The Netherlands, April
1997. LNCS 1217, pages 416-431.

S. Cohen and A. Hindmarsh. CVODE, a
Stiff/Nonstiff ODE Solver in C. Comput-
ers in Physics, 10(2):138-43, March-April
1996.

Deadline Dependent Coding - A Framework for
Wireless Real-Time Communication

Elisabeth Uhlemann and Per-Arne Wiberg
Halmstad University, SE-301 18 Halmstad,
http://www.hh.se, {elisabeth.uhlemann, per-arne.wiberg}@ide.hh.se

Abstract -- A framework for real-time traffic over a wireless
channel is proposed in this paper. The deadline dependent
coding (DDC) scheme makes use of modern tools from the
information theory. A combination of hybrid ARQ and soft
decision decoding is used to maximise the probability of
delivering information before a deadline. The strategy of DDC
is to combine different coding and decoding methods with
ARQ in order to fulfil the application requirements. These
requirements are formulated as two QoS parameters: deadline
(toL) and probability for delivery before this deadline @g).
The application can negotiate these parameters with the DDC
protocol, thus creating a flexible scheme. It is still possible to
make probabilistic guarantees on the communication
mechanism.

Index Terms-- real-time, communication

I. INTRODUCTION

There is a tremendous development in the wireless
communication field. New technologies and products reach
the market at increasing rate. Some parts of this evolution
look very promising for industrial applications.

Cabling always caused the industry problems in terms of
costs and feasibility in general. Some applications even
demand a wireless access in order to function.

There have been some implementations of wireless
communication systems for industrial use. The problem of
guaranteeing real-time delivery has been solved in quite an
ad hoc manner. The consequence is that it is hard or
impossible to make any judgement of the security aspects.
In this paper we will describe a framework of working with
such unsecure transfer mechanisms as radio channels.

A real-time communication channel is characterised by the
fact that it is equally important to deliver in time, as it is to
deliver the correct data. In literature the real-time field often
mentions two classes of real-time systems; hard and soft
real-time systems. A hard real-time system is a system
where you cannot tolerate any late delivery of a result. In a
soft system on the other hand you can tolerate a late
delivery but with a degraded value to the system.

The uncertainty concerning security in wireless
transmission has prevented it from being used in hard real-
time systems.

If we have control over the communication channel
security, wireless communication can replace cables in a
vast number of applications. A class of industrial

applications is measurement and control on rotating parts.
Here it is obvious why wireless communication is
necessary.

Another application is communication to and from different
kind of vehicles in factory automation situations. In control
systems in general, cabling is something we would like to
replace.

In all these cases it is not clear if it is a hard — or a soft real-
time system. In general we would like to turn away from
the notion of hard and soft real-time systems as if there only
exist these two classes. In our framework we introduce a
probabilistic view of the communication mechanism. This
means it is no longer meaningful to talk about hard or soft
real-time systems. We rather talk about deadline for
delivery and the probability to succeed in delivering before
this deadline. We therefore introduce two parameters:
deadline {p) and probability for deliveryRy). These two
parameters can be used for setting bounds on the
communication system, or stating requirements.

The values of these parameters can be derived by means of
classical safety analysis methods. In the process of making
requirement analysis of the systégn andPy is one result.

If this shall be a powerful tool in designing real-time
systems including wireless communication links, there must
be mechanism in the protocol for guaranteeing the
parameters.

If the two parameters are viewed as quality of service
parameters (QoS) of a communication mechanism it means
that a protocol layer can negotiate the parameters with an
underlying layer. If we give the protocol these properties
the communication system can guarantee the delivery based
on the parameters or reject the transmission request. If the
request is rejected the application have a possibility through
an exemption.

What we strive for is to maximise the probability that the
communication system will be able to accept the
transmission request. Aspects that must be considered is not
only static and dynamic channel properties like throughput
and error rate, but also multi-user interference.

In communication systems one can use several means for
increasing the probability of success. Different diversities
are such means. Time diversity is one and frequency
diversity is another. Both these tools are used in our
approach to guarantég andPg.

The main idea is that thg, andP4 parameters are mapped
onto a retransmission protocol. The retransmission protocol

plays the role of maximising the success rate and still being
able to reject requests that cannot be handled.

The protocol performs a series of transmissions with
different amount of redundant information, thus the closer
to the deadline the more information the receiver will have
in the decoding process. We denote this series of
transmissions ransmission suite

In a multi-user radio system it is important to keep the
interference, from all acting nodes, down. This is one of the
reasons for trying to get the information across with as little
redundant information as possible, thus the lower amount of
redundant bits in the beginning of the transmission suite.
Closer to deadline it is more important to get the
information across than not interfering with others; so more
redundant information is needed.

In section Il the background and the main ideas behind the
DDC scheme are described. A previous work by the authors
[1] evaluating a DDC scheme based on hard decision
decoding is discussed.

In this work a decoder based on a soft decision mechanism
will be evaluated. Different decoding techniques and
algorithms using soft decision decoding are examined in
section lll. The application of these algorithms to the DDC
scheme is discussed.

Il. BACKGROUND

A node communicating in real-time must not only remit the
correct information, but also deliver it within a certain limit
of time, the deadline. As a missed deadline can have
disastrous consequences, a real-time system must leave
some sort of performance guarantee, a quality of service.
When a hard real-time system is designed it is often
assumed that the deadline must be met with unity
probability. This is a situation that cannot be achieved with
any physical system. As the consequences for missing a
deadline is disastrous in a hard real-time system we want to
quantify the probability for this event.

The application designer states the probability as a
requirement. The communication mechanism then
transforms this request into actions in the protocol, using
models of the communication channel and different
communication methods.

We base our system on the Code Division Multiple Access
(CDMA) method, the Deadline Dependent Coding (DDC)
scheme, and linear block codes as explained below.

A. Media Access Method

Code Division Multiple Access (CDMA) uses orthogonal
codes in order to separate the different users and thereby
providing multiple access.

The advantage of CDMA in our case is that it rejects
multipath reception to some extent. Multipath reception is a
typical phenomenon in radio communication and is the
result of the message bouncing of obstacles and having to
travel different paths of different length. Thus, multiple
copies of the same message are received within a certain
time window. The radio channel also experiences fading,

usually with a Rayleigh distribution. By spreading the
messages to be sent, by means of orthogonal codes, they
use a wider frequency spectrum, thus reducing the fading
damages on a particular frequency band. CDMA also gives
instant access to the media, an important issue in a real-time
system, where time is a valuable resource. Less
administration is required when a new user is added as
opposed to TDMA for example. Naturally here is a limit to
the number of simultaneous users in a CDMA system, but it
still degenerates gracefully.

B. Deadline Dependent Coding

In [1] the Deadline Dependent Coding (DDC) scheme was
used. This coding scheme strives to meet the demands on
deadline) and probability of a correct delivery before
the deadlineRy), and at the same time keeping the activity
factor of the network as low as possible. This is realised by
using hybrid ARQ [2], which means that both an error
correcting code and a retransmission scheme is used as
opposed to just an error detecting code and retransmissions.
The message to be transmitted is coded differently
depending on the deadline and the requested delivery
probability. In the beginning of the time window a high rate
coded message, i.e. few redundant bits, is transmitted, see
Fig. L If no acknowledge signal is received, the procedure
will be repeated until a certain retransmission deadline is
reached. When this occurs the receiver performs a bit-wise
majority voting procedure in order to restore the correct
message. If the receiver still fails to decode the result from
the majority voting procedure a low rate coded message, i.e.
a large number of redundant bits, will be sent as a last
attempt to get a correct delivery before deadline.

: Deadline
Retransmission
Deadline

4 No. o

Transmissions

Time

Fig. 1. The Deadline Dependent
Transmission Suite.

Coding (DDC)

C. Linear Block Codes

The error correcting codes used in the DDC scheme are
Reed-Solomon codes. These codes are especially good at
correcting burst errors, which is a common error type in a
wireless system due to the fading.

Block codes introduce controlled amounts of redundancy
into a transmitted data stream, providing the receiver with
the ability to detect and correct errors caused by noise on

the communication channel. The data stream is divided into
blocks and redundancy is added to each block
independently, thus producing a larger block.

Each code can be described by a generator matrix, which is
multiplied with the data bits to produce a code word, and a
parity check matrix, which when multiplied with the
received code word is zero if no errors are present.

The data source generates blockskahessages symbols
taking values from the Galois Field, Gjr([2]. Each
message block is then encoded, generating a code waord of
code word symbols, each symbol taking values frongisF(
Consequently, the total amount of redundanay,
introduced isr = n - k. The code word symbols are then
sent to the modulator. We have used a BPSK modulation
technique and as Reed-Solomon codes are nonbinary, the
g—ary code word symbols must be translated into binary
channel symbols before transmission. The receiver recovers
the channel symbols from the demodulator and passes them
along to the translator for conversion back to g-ary code
word symbols. The received code word symbols are sent in
n-symbol blocks to the error control decoder. As the noisy
channel corrupts the modulated carrier, the symbol block
arriving at the error control decoder contains errors.

D. Hard Decision Decoding

To decode the Reed-Solomon codes a bounded distance
decoder was used in [1].

A bounded distance decoder will select the code word
closest irhammingdistance [2] to the received code word if
and only if that distance is less than the bounded distance. If
there is no code word within the bounded distance a
decoder failure is declared. The hamming distance between
two code words is the number of positions in which they
differ. A bounded distance decoder will make an error
whenever the received code word is within the bounded
distance of another code word than that which was sent, see
Fig. 2.

Fig. 2. Bounded Distance Decoding. In the centre of each
sphere is a code word. P(F) is the probability of decoder
failure and P(E) the probability of decoder error.

The hamming distance implies hard decision decoding, i.e.
the decoder first determine whether it is a binary one or a
zero in a particular position of the received code word by

means of quantization and thereafter calculates the code
word distance based on the binary representation of the

code word. Decisions based directly on the unquantized
demodulator output, so-called soft decisions decoding,

requires a more complex decoder that can handle analog
inputs, but offers a significant performance improvement

over hard decision decoding.

[ll. SOFTDECISIONDECODING OFLINEAR BLOCK CODES

Soft decision decoding is now introduced in the DDC
scheme in order to enhance the performance with respect to
probability of delivering before the deadline.

We have developed a toolbox with different decoding
methods which can used in the DDC framework. These
methods are based on a trellis representation of block code.
The trellis concept is explained in section IIl.LA. Two
different decoding algorithms, the Viterbi and the BCJR
algorithm, are explained in section 1ll.B and IIIl.C
respectively. Both these decoding algorithms are used in
conjunction with the trellis. The Viterbi algorithm has a
lower complexity and is thus faster. The BCJR algorithm on
the other hand can be used in a turbo decoding scheme,
explained in section 1ll.D, resulting in a faster and more
powerful decoding strategy. Turbo decoding, which is an
iterative decoding strategy, used in conjunction with ARQ
gives new possibilities for adapting the transmission suite
and the coding to a particulgy andPy request.

Which strategy to use in which situation to make the most
of the remaining time is what is to be examined and
simulated in the near future.

A. Trellis Representation of Linear Block Codes

For many years the algebraic decoding of linear block codes
was considered the only possible. Convolutional codes on
the other hand could be decoded using soft decision
decoding with the Viterbi algorithm on a trellis. The fact
that block codes also can be interpreted as trellises was first
described in [3] and later in [4].

Consider a binaryn(k) block codeC overGF(q) with parity
check matrixH. A message df information bits is shifted
into the encoder and is encoded into a code wordaafde

bits [5]. The code words i€ are all then-tuplesx with
elements fronGF(q), such thaHx=0. Onen-bit code word

is shifted out on the channel each intettval his procedure
can be viewed as a finite state machine, FSM,Gudn be
represented by an-section trellis diagram of length A
trellis is a directed graph consisting of1 states and
branches, sefg. 3

A branch in thei-th section of the trellis connects a state
S.€2,,(C) to a stateg € >,(C) and is labeled with a
code bit y; that represents the encoder output at the bit

interval from time {-1) to timei. A branch represents a
state transition. The branches diverging from the same state
have different labels. Each path from the initial stgteto

the final states, is a code word iiC.

Fig. 3. Trellis for RM(8,4). Horizontal branches represent
the label binary zero.

The collection of nodes at timés obtained from the nodes
at time (-1) by:

S()=S..()) +ayh;;
vje>i(C)

m=01,...,q-1
(1)

The transitions between the nodes at tirfe andi are
labeled by the particular value af = ¢, .

The trellis representation described can be used for soft
decision decoding of the block codes in the DDC scheme
described in section I1.C.

B. Decoding with Viterbi

A trellis can be used to perform soft decision decoding
based, no longer on the hamming distance between code
words, but the Euclidean distance. We simply search trough
the trellis looking for the sequence that minimizes the
Euclidean distance. However, we do not have to compute

the distance for alg* possible sequences. We can use the

Viterbi algorithm [6] to eliminate certain sequences that
merge in the trellis with other sequences that are much
closer to the received sequence. The Viterbi algorithm
works as follows:

Step 1) For block codes we know that we start at tirien

the all zero state, so we initialize its metric to zero. We then
calculate the branch metric for the branches emerging from
the all zero state. Either Euclidean metric or hamming
metric may be used. The paths or survivors and their metric
are stored for each new state.

Step 2) Increaseé by one. Compute the metric for all the
paths entering a state by computing the new branch metric
and adding that to the corresponding state metric of the
surviving state from the previous time step. For each step
with a merger, store the path with the largest metric, the
survivor, and its metric and discard all other paths.

Step 3) Ift is smaller than the length of the trellis repeat
step 2, otherwise choose the all zero state as "winner" and
choose the corresponding sequence of survivors as output

sequence. It should be noted that it is only for block codes
that we know that we are in the all zero state in the end,
otherwise it would not be a code word.

C. Decoding with BCJR

The Viterbi algorithm is optimal in the sense that it
minimizes the word error probability by selecting the
maximum likelihood sequence (called maximum likelihood
sequence detection, MLSD). It does not, however, minimize
the symbol or bit error probability, by choosing in each case
the symbol or bit with the maximum aposteriori probability
(MAP). The complexity of a MAP decoder is significantly
higher and is, in general, not an alternative to MLSD since
in most applications a MLSD decoder and a MAP decoder
will have virtually identical performance. The main asset of
the MAP decoder is that it produces aposteriori information
bit probabilities, which can be used, in an iterative or
concatenated decoding scheme.

An algorithm that does perform MAP decoding is the
BCJR-algorithm [3]. The BCJR algorithm calculates the
aposteriori probabilities for each symbol using the trellis as
described below.

We define

a,(m)=Pr{S, = m;Ylt} (2)

as the joint probability of the partial received sequence
(Yy,-..Y, ;) and the stateS =m

Bi(m) =Pr{Y;, § =m} 3)

as the conditional probability of the remaining sequence
(Yy1,--4Y,) excludingt given the state at timeis § =m;

and
yo(m',m) =Pr{S =mY, |S ; =m} (4)

as the joint conditional probability of, and that the state
at timet is § =m, given that the state at timel is

S, =m.

Step 1)a,(m) and g,(m) are initialized according to:

,(0) =1, and ¢,(m) =0, form=0 (5)

and

£.(0)=1 and g, (m) =0, form=0 (6)

Step 2) As soon ay, is received, the decoder computes:

() ="$Prs, = mi§ =mY} =

') (7)
Zat—l(m)')/t(m!m)
and
7, m) = X py(m) -, (X |, m) - RCY,, X) ®)

where p,(m|m’) are the transition probabilities of the
trellis, g,(X |m’,m) the output, wher& belongs to some
finite discrete alphabet, ang(Y,, X gre the derived block
transition probabilities.

Step 3) Once the complete sequeigehas been received,
the decoder recursively computes:

pi(m) = S PHS., =Y IS =) =

. ,)
%ﬂm(m) '7t+1(ma m’)
and the APP can then be calculated as:
o (m,m)=Pr{S, =m;Y, "}
PH{S =mY, |S ,=m}-Pr{Y},,§ =m} = (10)

a1 (M) -y (m',m) - g, (m)

It should be noted that the BCJR has to go through the
trellis twice, once for calculatingz, ,(m’) andy, (m',m)
while the sequence is being received and once recursively
to calculateg, (m)and the APP.

D. Turbo Decoding

If some sort of concatenated coding scheme is used,
iterative or turbo decoding can be used. The idea with
iterative decoding is to divide the aposteriori probabilities,
obtained from the BCJR algorithm, into three parts, a priori
information, intrinsic information and most importantly
extrinsic information. The extrinsic information is the
indirect information you gain about a particular data bit
from the other bits in the concatenated scheme. This
extrinsic information is the fed back into the decoder as a
priori information and the information is decoding once
again, but this time with enhanced a priori knowledge, see

Fig. 4.
A priori
Inf. APP
Soft- —>
: In/Soft-Out | Extinf,
received
sequeﬁ?’ Decoder
Apriori
Inf.
Soft- Extlnf]
In/Soft-Out| App Soft
Decoder _> AAAAAAAAAAAA > output at
the final
iteration

Fig. 4. lterative (Turbo) Decoding

The advantage of turbo decoding is that one approaches the
optimality of the MAP decoder with each iteration, but a
much lower decoder complexity is required. The BCJR
algorithm used in an iterative decoding scheme is now an
option to the low complexity Viterbi algorithm.

In the DDC scheme the turbo decoding scheme may be
used in conjunction with ARQ. The receiver may, for
example, choose to do additional iterations on the already
received results instead of asking for a new transmission, if
the channel is sensitive to multi-user interference or
alternately, ask for more information while iterating the
already received data.

IV. CONCLUSIONS

We have put forward a framework for transmitting real-
time data over a radio channel based on the Quality of
Service parameters deadlirig] and probability for correct
delivery before deadlinePg). Initial studies show a high
probability of delivering the data before deadline. In this
ongoing work we use a set of tools for handling
information, such as hybrid ARQ, trellis representation of
linear block codes, the Viterbi algorithm, the BCJR
algorithm and Turbo decoding. These methods are used in
conjunction with the deadline dependent coding (DDC)
scheme in order to maximise the probability of delivering a
message before a given deadline.

The DDC-protocol strategies for using the tools in different
situations are not yet studied in detail. As an example, when
high probability, Py is required and the deadling, is
small, two simultaneous actions can be taken: require more
information from the transmitter and simultaneously
performing some turbo decoding iterations for maximising
the probability of correctly decoding the data block before
deadline.

The required deadline and probability of delivery can be
negotiated by the application, thus forming a flexible
transmission mechanism. We believe that DDC might be a
way of making it possible to use wireless radio channels in
time- and safety critical applications.

V. REFERENCES

[1] H. Bengtsson, E. Uhlemann and P.-A. Wiberg, "Protocol for
wireless real-time systemdProc. of the 11th Euromicro Conference
on Real Time Systems, YoBngland, UK, June 9-11, 1999.

[2] S. Lin and D. J. Costello, Jr.,Efror Control Coding:
Fundamentals and Applicatiohs Prentice-Hall, Inc. Englewood
Cliffs, New Jersey 07632, 1983.

[3] L. R. Bahl, J. Cocke, F.Jelinek, and J. Raviv, Optimal decoding of
linear codes for minimizing symbol error ratEEE Transaction on
Information Theoryvol. IT-20, pp. 284-287, Mar. 1974.

[4] J. K. Wolf, "Efficient maximum-likelihood decoding of linear
block codes using a trellis"|EEE Transaction of Information
Theory vol. 24, pp. 76-80, 1978.

[5] S. Lin, T. Kasami, T. Fujiwara and M. Fossorigrellises and
Trellis-Based Decoding Algorithms for Linear Block Codéswer
Academic Publishers, 1998.

[6] G. D. Forney, Jr.,"The Viterbi Algorithm"Proceedings |IEEE
Vol. 61, pp. 268-278, 1973.

Empty page.

Wireless Networks for Manufacturing

Urban Bilstrup Per-Arne Wiberg
Centre for Computer Systems Centre for Computer Systems
Architecture, Halmstad UniversityArchitecture, Halmstad University

urban.bilstrup@cca.hh.se per-arne.wiberg@cca.hh.se
Abstract recovering the information is re-transmission of the packet
)) or accepting that the information is lost.
Wireless technology’s like Bluetooth and W-LAN has If we want time and safety deterministic
reached a tremendous attention the last years. The communication over the radio media, we have to define
manufacturing industry could probably make large the quality of the media. The quality of a radio channel is

benefits from using these technologies. In this paper we qften defined by the bit error rate (BER). From this we
propose new definitions of QoS parameters to be able to ¢can define the probability of error free delivery (P) before

handle real-time traffic in wireless networks. Initial a deadline (D). These two parameters (P, D) can be used
assumptions regarding media access in a multihop for setting bounds on the communication system, or
network is presented. Finally simulations showing that it stating requirements of a link or a path through a network.
is possible to map the new QoS parameters on a routing The layers in a communication protocol stack are given
algorithm. the requirements from the layer above. And the resources

from the layer below, each layer has the possibility to

optimize the resources given from below with the
1. Introduction requirements from the layer above. Each layer strives to

maximize the performance of the communication system

The last years, tremendous steps have been taken in thewith respect to D and P.
field of local wireless communication. Concepts like
Bluetooth, homeRF and W-LAN have been developed. 2 Link management
These technologies will be found in all kind of different
electronic devices, like mobile phones laptops, palmtops, \eeting quality of service (QoS) guaranties over one
and watches. We have found that the industry can benefit 5gio link in a real-time communication system is
from using these technical advances in an industrial fyndamental, but because of the insecure radio media
manufacturing environment. Likely applications are; aqaptation to the physical environment is necessary.
mobile test-instruments, temporarily sensors, Sensors agpects considered of a radio media is not static like bit
mounted at moving machine parts and autonomous robots. grror rate of wired link, the error rate is variable
The traffic in these types of systems is often delay gepending on the fading radio signal, multi-user
sensitive and/or error sensitive. Unfortunately are the jnterference, interference caused from certain types of
radio media known to be stochastic in its nature, causing equipment, like microwave ovens and arc welders.
non-deterministic delay by re-transmissions or bit errors in pjtferent types of diversity can be introduced to combat
the messages. . _ the interference, examples of diversity methods are; time
A voice channel from a bas-station to a mobile phone, gjversity, space diversity, code diversity or simply

this is a real-time communication link with delay jncrease the signal power. But all these methods have their
constraints on the delivery of a packet, but a voice channel yrawpack: our aim is to dynamically find the most
can tolerate a bit error rate (BER) of 0.1 %. If @ sampled efficient method or combination of methods to maximize
data value from a sensor should be sent over a the performance over a link or a path over a number of
communication link, such a high BER can not be |inks through a network. At the same time minimizing the
tolerated. - Often when real-time communication s mylti-user interference (signal power) to not reduce the
discussed, the message delivers before deadline is thegystem performance due to the requirements of the QoS

quality parameter and that is true, as long as the media notarameters P and D for the link, one method with code
causing any message erfors or any re-transmission is and time diversity is presented in [2].

preformed. When the message is totally destructed by
interference (forward error correction have not been able
to extract the information), then the only way of

3. Media access 4. Network layer simulations

If a large number of units should be able to
communicate with each other, media access methods must
be used. Deterministic media access methods like TDMA
and polling schemes does not scale with increased number
of units, the bandwidth must be reused on a very local
basis. Today this is often done with bas-stations, dividing
an operation area into cells, each unit in the cell is
accessed by the base station according to a TDMA
schedule or different units are given different frequencies
(FDMA). This gives a static infrastructure, but when the
number of units continue to increase the size of the cell
will get smaller and smaller and the number of base-
stations increases and the wired backbone will get more
and more complex. There are already today industries that
are considering putting a Bluetooth [1] units in their
products in order to down load software wireless in the
factory. Sooner or later there will be large amounts of
such units per 100 square meters that wants to connect to
access points.

One possible way out of this is the use of ad-hoc
networks forming clusters depending on the density of
units, the units in a cluster adapting their signal power to
physical size of a cluster minimizing the multi-users
interference. This is possible if each cluster is able to
perform the media access function of the base-station and
repeating a message through the cluster to neighbor
clusters until an access point (base station) to the wired
network is reached by the message. The Bluetooth [1]
_srtr?gd;atgjndp;)dwde the possibility creating these clusters. dan industrial environment.

provides b.Oth synchronous messages an In a wireless network, a node has radio connection with
asynchronous messages inside a cluster, very close to the

functi £ a field bus 115 h i multiple nodes. The environment is mobile and the radio
unction of a field bus [15], synchronous message are time link between nodes is subject to frequent changes,

ttherefore the flexibility of the routing is very important.

The higher layers above the network layer is able to
negotiate with the network layer protocol about the QoS
parameters.

The higher layer asks the network layer protocol about
the possibility to send a packet over the network with a
deadline (D). The network protocol answers with a P that
tells the about the possibility for a packet to reach the
destination nod before D expires. Then the higher layers is
able to reconsider D and try again until an agreement
about the QoS parameters D and P is reached, and then
the transmission starts.

Weights (W) are assigned to each radio connection
(links) between neighbor nodes. The value of W reflects
the QoS of a link between two nodes. In this work, the
link weight W is the time between a node generating or
receiving a packet until it is received correct by next
destination node. Other properties can be mapped to W

In this section an on-going work on mapping the QoS
parameters D and P on a routing protocol for a wireless
real-time multihop network is described. Multihop
networks [3,4,5,6,7] means that a packet is able to travel
longer distance then the nodes radio range (single hop), by
using multiple hops over other nodes.

In this work no clustering methode is used, forcing us

use a non-deterministic media access method,
combining direct sequence spread spectrum (DSSS) with
carrier sense multiple access (CSMA). This is not a time
deterministic media access, because of the collisions that
can happen at the receiver, but as mentioned in previous
chapter the cluster method will be implemented and then
asynchronous messages are possible through the network.
The interesting part so far is the behavior of the routing
algorithms and the possibility to match the parameters P
and D to an insecure media. No access points to a wired
network are yet present which will probably be the
bottleneck points of the local multihop network.

The advantage of a wireless multihop networks, is that
it does not use an infrastructure like the base station
networks. The multihop network does not have any
critical nodes that the network survival is dependent upon.
A transmitting node only has to reach its nearest
neighbors, instead of covering the whole area; this causes
less interference to the surrounding traffic. Multihop
networks gives a local and distributed view of the
network, and probably the most intense traffic are local in

triggered. Also inter cluster communication is possible but
there is however no support for inter cluster synchronous
messages. The exchange between two clusters will be
done through a gateway unit, belonging to two clusters.
This unit will experience a scheduling problem to which
clusters it should belong to at the moment. The standard
has no support for routing a messageugtoa network of
clusters. Is it possible to match the QoS parameters P and
D to each cluster and solving media access scheduling at
the gateway units between two cluster, then it should be
possible to route a message through a network of clusters.

Each cluster schedule the traffic inside the cluster, a
synchronous channel (time-triggered) passing through the
cluster is scheduled statically as virtual circuit. Event-
triggered messages are scheduled dynamically as
asynchronous traffic. A message must be routed either to
an access point to the wired backbone or to a destination
in the local area.

such as: bit error rate (BER), probability of error free 1Mbit/s and a transmitting power of 63 mw, it is based on
delivery or number of hops. DSSS multiplexing. The nodes move with a speed ranging

Information is stored in every node about W for each from O to 3 m/s. The time between two data packets are
outgoing link. The update mechanism [8] below is used to generated at each node, is exponential distributed. If there
update W; this gives a moderate adaptation of W value on is no possible path between source and destination the
each link. The learning ratg moderates the update of W, packet is deleted and counted as destroyed, a data packet
to combat frequent link weight fluctuations (ping pong is 3000 bits long and takes 3ms to send one hop.

effects between two links) In this, ongoing work initial simulations have shown
following results: When the node motion is Brownian,
Wnew=W +n(Wupdate-W) there is a possibility that the nodes are grouped into

different clusters without any connections. Due to this
effect, only 85% of correct arrival are reached even if the
deadline approaches infinity, this can be considered by
power control inside a cluster where the nodes control
their transmitting power according to the density of nodes.

We have also investigated a more likely motion model
for the nodes, where the nodes are moving in a more
predictable way. The intense traffic with small deadlines
(20ms, average 1,5 hop) is local, typically this can be a
moving smart sensor sampling a value on a large machine
sending the value to a smart actuator. An autonomous
robot traveling around the factory delivering things at
different machines, has a less intense but more "global”
traffic with longer deadline (50ms, average 2,5 hop).
Some nodes are not mobile at all they may be control
computers sampling data from sensors and sending data to
actuators. In a more planed environment like this, about
95% of the packets arrive correct before their deadline is
expired. Multi-user interference in this case causes packet
loss. Collisions occur when two nodes tries to send to the
same node at the same time or when a node is busy
transmitting and another nod tries to reach the busy node.
These collisions are very time consuming and the deadline
expires sometimes, because of re-transmission.

The routing algorithm tries to find a path through the
network; it calculates the sum of the weights (Wt) for
different paths from source to destination. The path with
the best Wt is chosen, this path gives the highest
probability for a packet to reach the destination node,
before deadline expires.

The routing algorithm in use at the moment is the
highly dynamic Destination-Sequenced Distance-Vector
routing algorithm (DSDV) [9]. DSDV is more distributed
and gives less routing control overhead than the more
centralized link-state method [10], which is another well-
known routing algorithm.

The calculation of P given Wt and D, is one of the
most critical parts of this protocol. At a source node a
routing table gives Wt and the next node address along the
path to the destination, D is given by the application. P is
then retrieved from a look-up table with the index D and
Wt. The look-up table is developed using statistics from
simulations, modeling the distribution of P in respect to D
and Wt.

4.1 Simulations

A discrete event, network simulator (NESU)[12] has
been developed and used for the performance evaluation.
NESU is a flexible platform, designed for evaluating and
comparing network routing algorithms. All the nodes have
their individual parameters, such as speed, trajectory, and
packet intensity etc. The nodes can move in a rectangular
region (in this case 60 x 60 m) according to a given
motion model. All nodes have a fixed radio transmitting
power, which in our case gives a transmitting radius about
20 m, depending on the interference in the area. The radio
channel model [2,13] determines the radio connection
between two nodes, the BER is calculated for every
packet sent over the link. If the BER ratio is over a
specified threshold, the packet is considered destroyed.

A 25-node mobile multihop network has been
simulated, using the following simulation parameters. The
radio transmitter/receiver has been assumed the PRISM
chipset [14]. The PRISM chipset gives a bandwidth of

Ppredicted Preal
0.3 0.34
0.4 0.39
0.5 0.50
0.6 0.62
0.7 0.73
0.8 0.82
0.9 0.89
1.0 0.97

Table 1: Real probability Vs predicted probability
for a message path through the network before
deadline is expired.

Although the degree of correct arrival have not been

the best depending on the insecure radio media and

collisions, the prediction of a packets correct arrival is

possible (Tablel). This is the key to map the parameters P

The scheduling protocol for the gateway nodes
between two clusters must be dealt with. And the
parameters P and D must be mapped on this schedule.

One other thing that should be looked into are the use
of power control to control the physical cluster size with
respect to the density of nodes.

7. References

[1] J. Haartsen, “Bluetooth — The universal radio interface for ad
hoc, wireless connectivity”, Ericsson Review, No. 3, 1998, pp.
110-117.

[2] H. Bengtsson E. Uhlemann and P. Wiberg “Protocol for
Wireless Real-Time SystemsRroc. ECRTS'99,York , UK,
June. 9-111999.

[3] J. Jubin and J. D Craighill, "The DARPA packet radio
network protocol; Proc IEEE Jan. 1997.

and D to a multihop network. We can say that a message [4] T. Chen, J. T. Tsai, and M. Gerla, "QoS Routing

has probability P of reaching its destination before the
deadline is expired.

5. Conclusions

Industries have a great interest of using the wireless
technical advances in an industrial manufacturing
environment. But the problem is that today, are the
definitions for real-time communication traffic not
suitable for the radio media.

The ability to say that a message has a probability of
correct delivery to destination before deadline gives the
opportunity to discuss real-time communication over the
wireless media.

The multihop network simulations show that the one
most important factor for delivering a packet in time is the
control of collisions in receiving nodes, which possible

can be done with clusters and another media access

protocol then the combining of DSSS and CSMA.
Another important guarantee is that every node in the

network has a path to the other nodes. This problem can
be solved with clusters that adapt their physical size to the

density of nodes. The fact that multihop network is

Performance in Multihop, Multimedia, Wireless Networks", in
Proc. IEEE ICUP97 part21997, pp. 557-451.

[5] C. Cheng and R. Riley, “A loop-free extended bellman-ford
routing protocol without bouncing effectin Proc. Of ACM
SIGCOMM Conf 1989.

[6] D. B Johnson, "Routing in Ad Hoc Networks of Mobile
Hosts”, Proceedings of the |IEEE Wohap on Mobile
Computing and Application®ec. 1994.

[7]1V.D. Park and M.S. Corson, “A Highly Adaptive Distributed
Routing Algorithm for Mobile Wireless Networksin Proc.
IEEE INFOCOM'97 Kobe, Japan, Apr. 7-11 1997.

[8] S. Kumar, "Confidence based Dual Reinforcement Q-
Routing: an On-line Adaptive Network Routing Algorithm
Report Al98-267The University of Texas at Austirrtificial
Intelligence LaboratoryMay. 1998

[91 C. E. Perkins and P. Bhagwat, "Highly Dynamic
Destination-Sequenced Distance-Vector Routing (DSHf)
Mobile Computer§ Proc. of ACM SIGCOMM Aug. 1994, pp.
234-244

[10] A.S. TanenbaumComputer Networks Third Edition,

scaleable with respect to bandwidth when new nodes are prentice Hall PTR, Upper Saddle River, New Jersey, USA,

added is very much in favor of these network.

6. Future work

We will focus our future work on refining the protocol
and dealing with the receiving collision problem, this will
be done by introducing the method of clustering nodes

1996, ISBN 0-13-349945-6.

[11] R.C. Dixon,Spread spectrum systentkird edition, John
Wiley & Sons inc., USA, 1994, ISBN 0-471-59342-7

[12] S. Ackmer U. Bilstrup L. Svalmark, “Routing Protocol for
Wireless Real-Time Multihop Netwdrktechnical report CCA-
9906,Halmstad University, Jan. 1999.

and use a time deterministic media access scheme inside

each cluster.

[13] S.Y. Seidel, “914 MHz Path Loss Prediction Models for
Indoor Wireless Communication in Multifloored Buildings”,
IEEE Transactions on Antennas and Propagatieol 40, NO.

2, Feb. 1992.

[14] Advanced Micro Device, AM79C930, Advanced Micro
Device Inc. 1995.

[15] J.R. Pimentel, Communication Networks for
Manufactoring first edition, Prentice-Hall inc., USA, 1990,
ISBN 0-13-154402-0

Empty page.

Position Statement for:

Methodsfor integration of Heter ogeneous Real-Time Services
into High-Perfor mance Networ ks

Carl Bergenhem®

CC-lab, School of information science, computer- and electrical engineering, Halmstad
University, Box 823, S-301 18 Halmstad, Sweden email: carl.bergenhem@ide.hh.se,
Phone: +46 (0)35 167483, Fax: +46 (0)35 120348

1. Introduction:

The work described in this statement is to be performed within the ARTES project with
the same name as above. The project has been active since January 2000. The described
areas of focus only account for a part of the ARTES project. This work package,
together with the survey of research and industrial applications, accounts for the work
to be done during the first year.

Current work is based on previous work reported in [1 - 5]. The network, referred to as
control channel based fibre ribbon ring (CC-FPR), is based on fibre ribbon links
connected together in aring topology, see fig. 1. Each link is unidirectional and consists
of 10 fibres. A medium access method referred to here as one cycle method (OCM) was
proposed in [1,2]. The medium access method together with the network provides
support for, among other services, dot reservation and spatia reuse of dots. The
medium access method uses a separate fibre or channel for sending network arbitration
information between the nodes in the network. This implies that there is no arbitration
overhead sent over the data channel. The medium access method supports both fair
sharing and reservation of bandwidth.

The future work proposed in this report is aimed at an increased understanding of how
different classes of real-time traffic (hard and soft traffic) affect each other in a CC-FPR
network. Simulation of the network loading will be used as a method to gather results.
We believe that this study also will result in a more general understanding, or at least
directions for further study, in the area of integrated support for hard and soft real-time
traffic.

Previous work [3, 4] has shown that it is possible to extend the functionality of the
network with functions for parallel processing. This support may increase performance
in parallel processing applications and will be further studied and analysed with focus
on real-time support. Again, simulation will account for alarge part of the results

A large portion of this document is copied from the ARTES project application authored by Magnus
Jonsson and Bertil Svensson

Node 1 Node 2

Node M Node 3

AN
N I I . =Clock, Control

Node 5 Node 4
=Data

Fig 1. The control channel based fibre ribbon
pipeline ring network.

In [5] a new medium access method referred to as the two cycle method (TCM) was
proposed in order to get better support for heterogeneous real-time traffic. Its properties
will be analysed and compared to the original method OCM by making simulations. A
comparative study will be performed based on simulations of both OCM and TCM.
Conclusions will be drawn as to the two methods suitability for different applications.

Lastly a case study of current and emerging real-time communication methods and
network technologies will be performed in parallel with this first-year work-package.
Possible target applications, which future work may be directed towards, will be
identified.

2. Main areas of focus (work package)

2.1. Extra functionality

In the studied network a separate fibre is used for distributing network arbitration
information. This control fibre may also be used for “special services’; sending extra
information such as barrier synchronisation, global reduction, acknowledge of packets
and flow control. Services such as global reduction and barrier synchronisation, are
useful in parallel processing and may increase performance. Some research has already
been published [3, 4]. The extended functionality of the control channel will be further
investigated and the results of it studied, especialy in terms of real-time support.
Implications of its use, latency of packet acknowledgement etc. will also be studied.

2.2. Anew medium access method

A proposition of a new medium access method, two-cycle method (TCM), was reported
in [5]. The method has not yet been presented or published at an internationa
conference. TCM differs from the original method, OCM, in that the nodes in the
network may vote for access to slots. A control package is sent twice around the ring as
opposed to once in OCM. This gives some drawbacks such as latency but also, as
further research may prove, advantages. For example since it is always the message
with highest priority, e.g., earliest deadline that gets to reserve a dot, one can regard the
TCM method as to provide global optimisation of message timing constraints. How to
best make use of this will be investigated. The integration with already supportedd real-
time services in OCM will also be investigated. Simulations of TCM will be carried out,
see below. Average- and worst case analysis of the method will confirm the simulation
results.

2.3. A study and simulation of network load

A study of the implications of combining hard real-time traffic with soft quality of
service (QoS) constrained real-time traffic in aring network, such as previously studied,
will be conducted. The motivation for this study is to see how useful the network
capacity, remaining after a network already has a certain load of hard real-time (HRT)
traffic, is to soft real-time (SRT) traffic. In other words, the capacity overhead required
in a network to successfully perform certain tasks will be investigated? This knowledge
is useful when designing networks and making capacity planning and performance
predictions.

The questions posed in the part of the research will be answered partly by doing
simulations. Statistical models of hard real-time, QoS constrained soft real-time will be
defined together with a definition of the network, see fig. 2. These parameters may be
decided by studying similar work and by using common sense.

The simulation will be executed with the notion that the HRT load will affect the
possible load of SRT traffic and that it may not be possible to schedule traffic to 100%
of maximum network capacity.

QoS SRT
(Stat. model)

Reject Rate

100% <

Hard
Load

Fig 2. The model used for simulation

Qu&stlonsthat simulation will try to answer:
How does a certain load level of hard traffic effect incoming soft traffic, e.g. reject
rate, jitter etc.?
How much QoS SRT traffic the network can be loaded with at a certain HRT load
level.
Can an optimum balance of traffic be found?

Simulations will be carried out with varying parameters on a basic network
configuration. The performance of TCM and OCM will be evaluated and compared.
Conclusions may be drawn as to the suitability of the two methods in different
situations. A metric for best describing network load will be chosen or developed.

2.4. Case study and future work

A survey of state of the art communication networks will be conducted in parallel to the
rest of the work. This will also give an opportunity to study emerging industrial
applications with high communications demands and will thus give guidelines for
future work. In the survey it will thus be possible to identify applications that may draw
benefit from the technology conceived within the scope of this work. Further research
efforts may be directed towards studying particular applications. Examples of systems
that have previously been studied are radar signal processing systems [6].

3. Summary

CC-FPR, the network that this research is based on has in previous work demonstrated
promising properties of determinism etc. In this work proposal, we present ideas for
further investigation and improvements towards integration of heterogeneous real-time
services. We believe that the simulations and study will give indications of how to best
integrate soft and hard real-time communication in high performance networks.

4. References

[1] Jonsson, M., "Control-channel based fiber-ribbon pipeline ring network,"” Proc.
Massively Parallel Processing using Optical Interconnections (MPPOI'98), Las Vegas,
NV, USA, June 15-17, 1998, pp. 158-165.

[2] M. Jonsson, “Two fiber-ribbon ring networks for parallel and distributed computing
systems,” Optical Engineering, vol. 37, no. 12, pp. 3196-3204, Dec. 1998.

[3] M. Jonsson, C. Bergenhem, and J. Olsson, "Fiber-ribbon ring network with services
for paralel processing and distributed real-time systems” Proc. ISCA 12th
International Conference on Parallel and Distributed Computing Systems (PDCS-99),
Fort Lauderdale, FL, USA, Aug. 18-20, 1999, pp. 94-101.

[4] M. Jonsson, C. Bergenhem, and J. Olsson, "Fiber-ribbon ring network with services
for parallel processing and distributed real-time systems,” Proc. SNART'99 Real-Time
Systems Conference, Linkdping, Sweden, Aug. 24-25, 1999, pp. 46-54.

[5] C. Bergenhem and J. Olsson, “Protocol suite and demonstrator for a high
performance real-time network,” Master thesis, Centre for Computer Architecture
(CCA), Halmstad University, Sweden, Jan. 1999.

[6] M. Taveniku, A. Ahlander, M. Jonsson, and B. Svensson, "The VEGA moderately
parallel MIMD, moderately paralel SIMD, architecture for high performance array
signal processing,” Proc. 12th International Parallel Processing Symposium & Sth
Symposium on Parallel and Distributed Processing (IPPSSPDP’98), Orlando, FL,
USA, Mar. 30 - Apr. 3, 1998, pp. 226-232.

Empty page.

Resear ch | ssues on System Ar chitecturefor M echatronics Systems

De-jiu Chen
Royal Ingtitute of Technology, Mechatronics Laboratory, Department of Machine Design,
100 44 Stockholm, Sweden
chen@damek.kth.se

Abstract: The ARTES project no: A4-9805 aims to progress the state of the art on software
architectures for complex control systems. A specific goal of the project is to provide a system
architecture suitable for scalable, maintainable and reconfigurable mechatronics systems controlled
by an embedded distributed computer system. This are requirements found by the legged locomotion
systems that are being studied and used as a case study within the project. In this report, we briefly
introduce the system characteristics and give introductory knowledge on the key research issues

around system architecture.

Background

A mechatronics system embodies technologies
from several engineering disciplines in the
domains of mechanics, automatic control,
computer software and hardware. In such a
system, the major portion of system functionality
isrealized by adopting automatic control through
computer software and hardware, as well as a
variety of sensors and actuators. As this
approach promises enhanced functionality,
performance and flexibility, more and more
traditional mechanical solutions in modern
machinery are being improved or replaced by the
mechatronics solutions. For example, ABS
(Antilock Brake Systems) for the performance of
the breaking system of a car or the x-by-wire
flight controls in a modern passenger airplane.

There is inherent complexity in this
multidisciplinary approach. First, the complexity
arises from the multidimensional
interdependency across the involved domain
technologies (i.e, mechanics, electronics,
automatic control, computer software and
hardware). To complete a specific task or to
satisfy a desired non-functional quality attributes
(e.g., versatility, modifiability, maintainability,
etc.), this interdependency needs to be correctly
established and handled in the system. Second,
the software makes the system structure and
behavior less comprehensible and controllable.
Thisis caused by the lack of physical constraints
and the large "state-space" of software (e.g., the
fine-grained codes and their complex
interrelations). In contrast to the physica
constraints in other engineering disciplines, there
are only storage and (temporal) performance
constraints on software. This gives tremendous
design freedom of software; however, aso
makes the design more error-prone. As a

mechatronics system has physical impact on its
environment, software failure is often
intolerable.

To facilitate the development and maintenance
of the system, a variety of measures managing
the complexity are needed. At this point,
managing the software complexity becomes
extremely important for the system functionality
and dependability. In the following sections, we
will list some key concepts on how to handle the
complexity with the focus on software. The aim
is to illustrate some important research issues
around the system architecture.

An architecture-based design
approach

To handle the complexity, the design must
progress in a top-down and evolutionary manner.
In a systematic top-down approach, the system is
hierarchically decomposed into lower level
constituent units and their relationships. With the
abstractions, we can concentrate on the system
temporal and spatial structures, which in turn
determine the essential properties of the system.
For software, it means that programming-in-the-
large and the programming-in-the-small issues
are separated. Meanwhile, the design should also
progress evolutionarily in the sense that we map
requirements on the system decompositions and
remedy any inconsistency as the design goes on.

The above mentioned design approach is an
architecture-based design approach. Although no
consensus on the definition of system
architecture has been reached today, we believe
architecture is a high-level (i.e, abstract)
representation of the logical, temporal and spatial
structures of the system. It shows how the
system propertiesin terms of functional and non-

functional quality attributes are determined by its
constituent units and their relations. Working
concretely with architecture for the system
design implies the following issues.

System architectural description

One of the most important research issues
around system architecture is the description of
the system abstractions, i.e. system architectural
description. It is the basis for all design
activities, e.g., comprehension, communication
quality prediction, trade-off, decision-making,
manipul ation, modification, reuses, etc.

The most fundamental requirement on the
description is completeness in the sense that the
described information should be sufficient for
the purposes. For mechatronics software, the
description should at least include the functional
and behavioral/tempora aspects of the system.
To facilitate the comprehension, the description
should be based on the principle of separation-
of-concerns. It means that the description should
be given in multiple hierarchical layers and
orthogonal views (e.g., the structural, functional,
behavior, and reliability views, etc.).

The research of architectural description for
mechatronics systems should focus on
elaborating the needed information for the
design, as well as integrating and improving
legacy modeling techniques.

Software components

In practice, no design proceeds in a purely top-
down manner. During the design, the designers
have to use knowledge relating to the system
implementation. Otherwise, a semantic gap
between an architecture and its implementation
may arise. For instance, they may consider
similar control algorithms and software codes for
quality prediction, and available off-the-shelf
components (e.g., Sensors, microprocessors,
communication bus system, rea-time operating
system, drive units and actuators, etc.) for
implementation. Thus, accessing bottom-up
information is unavoidable in a top-down design
approach and has impacts on the system
architecture.

Fundamentally, a software component is a
congtituent unit of a software system. As the
system exists in different hierarchical layers,
there are aso different classes of software
components. For the real-time software, we may

consider the software hierarchy runs from the
automatic control solutions at the top level to the
software implementation at the lower level (e.g.,
class and object in an Object-Oriented language).
The constituent parts in these layers have
multiple interrel ations established by the adopted
automatic control logic (e.g., required control
data flow, desired timing and synchronization),
the chosen software implementation (e.g., time
consumption and shared timing resource), and
the shared hardware resources (e.g., /O,
memory, processor). Thus, to support the design
and to achieve flexibility and reuse, the interface
of a software component should provide
sufficient information so that these multiple
interrelations can be established properly.

Some answers on how to classify the software
components in the system and how to define
their logical, structural and tempora contexts, as
well as the required implementation resources
and services, should be provided by the research.

Architectural principles and styles

During the design, the designers also use the
knowledge from the engineering background
(i.e., evauation criteria, and mature solutions on
partitioning/structuring, allocating/distributing,
scheduling, etc.). Architectural principles and
styles formulate the essentia features of existing
mature solutions of software, which can be
compared with the principles and mature
solutions in other well-established engineering
domains. Under the circumstances, it is easier to
reuse the existing solutions, to dicit hidden
requirements in time, and to provide early
quality predictions for the domain systems. Thus,
research efforts are needed to identify and
categorize useful architectural principles and
styles.

Conclusions

To illustrate the key research issues around
system architecture, we have briefly introduced
the system characteristics and the architecture
based system design approach. The fundamental
problems needs to be tackled by the research are:
what congtitute the system software and how
they interact with each other; how the system
architectural description should be provided so
that comprehension and analyses are facilitated;
how to make software engineering more mature
and constrained. A summarization of the project
status can be found in the project homepage
(http://www.damek.kth.se/~chen.html).

Formal and Probabilistic Arguments for Component Reuse in
Safety-Critical Real-Time Systems

H. Thaneand A. Wadll
Malardalen Real-Time research Center (MRTC)
Malardalen University, Vasteras, Sweden
{awl,hte}@mdh.se

Abstract: In this paper we are going to introduce a novel framework for formal and probabilistic
arguments of component reuse in safety-critical real-time systems. Using both quantitative and qualitative
descriptions of component attributes and assumptions about the environment, we can relate input-output
domains, temporal characteristics, fault hypotheses, reliability levels, and task models. Using these
quantitative and qualitative attributes we can deem if a component can be reused or not. We can also deem
how much and which subsets, of say input-output domains, that need additional functional and safety
verification. This framework will give formal and probabilistic arguments for reuse of components in
safety-critical real-time systems.

1 Introduction

The introduction of computers into safety-critical systems lays a heavy burden on the software
designers. The public and the legidators demand reliable and safe computer systems, equal to or
better than the mechanical or electromechanica parts they replace. The designers must have a
thorough understanding of the system and more accurate software design and verification
techniques than have usually been deemed necessary for software development. However, since
computer related problems, relating to safety and reliability, have just recently been of any
concern for engineers, there exists no holistic engineering knowledge of how to construct safe
and reliable computer based systems. There exist only tidbits of knowledge and no silver bullets
that can handle everything. Some people do nonetheless, with an almost religious glee, decree
that their method, principle or programming language handles or kills all werewolves (bugs) [8].

In order to be able to design software that is as safe and reliable as the mechanical or
electromechanical parts it replaces, and to reduce the time to market (TTM) focus of current
research and practice has turned to the reuse of proven software components. The components
can be arbitrary small or large in terms of functionality. The basic ideaisthat the system designer
should be able to procure (or reuse) software components in the same manner as hardware
components can be acquired. Hardware component like nuts, bolts, CPUs, memory, A/D
converters can be procured based on functionality, running conditions (environment) and their
reliability. Hardware components are typically divided into two classes, commercial and military
grade components, where military grade electronics can withstand greater temperature spans,
handle shock and humidity better than commercial components. However, for software it is not so
easy to make the same classification since the metrics of software are not based on physical
attributes, but rather on its design, which is unigue for each new design. In fact, software has no
physical restrictions what so ever, like mass, size, number of components. Software has neither
structure nor function related attributes like strength, density and form. The sole physical entity
that can be modeled and measured by software engineers is time. With but a few exceptions all
safety critical systems are also real-time systems.

In this paper we are going to introduce a framework for formal and probabilistic arguments of
component reuse in safety-critical real-time systems, based on the restrictions that time, and the
component contracts impose on the system behavior.

1.1 What are software components?

There exists yet no commonly agreed upon definition of what constitutes a software component.
Most people do however agree that the concept of components is the idea of reusable software
entities. In this paper, for the sake of enabling analysis of components in safety-critical real-time
systems we do not only define a component in terms of software. A component must also be well
documented in terms of design documentation and preferably also in terms of test documents, and
in evidence of the reliability achieved.

We have chosen a hierarchical/recursive definition of components in real-time systems (RTS).
The smallest components are the actual assembly instructions provided by the processor, some
way up in the hierarchy a component is atask or process. A task is a unit that usually performs a
single calculation, for instance calculating a new process value based on measurements collected
by another task. On the next level, several tasks can work together in a transaction where the
transaction itself is a component. A transaction is a set of functionally related and cooperating
tasks, e.g., sample-calculate-actuate loops in control systems. The relationship between the
cooperating tasks with respect to precedence (execution order), interactions (data-flow), and a
period time typically define each transaction.

software system

transactions

Figure 1. Hierarchical definition of components for real-time systems.

All tasks and transactions together make up a software system that also might be a component
from the complete systems point of view. As an example, the software controlling the air bag in a
car could be considered as a component from the air bags point of view.

Asthis definition eventually forces us to define the universe as a software component, we have to
stop the recursion somewhere. At least on the level of abstraction in this paper, the operating
system is not considered a component. We like to think of the operating system as the
infrastructure for the computer system. It provides the necessary services for the software but it
also restricts the possibilities of implementing the requirements put upon tasks and transactions.

2 Component contracts

A contract is a specification for a component in terms of what functionality a component
provides. Furthermore, the contract states the conditions under which the specified functionality
works. In other words, a contract of a software component is a statement saying that: provided
that certain assumptions are fulfilled, the specified functionality will be provided and error free.
Such contracts can be described with arbitrary formality. The more formal the contracts are, the
richer possibilities of verifying that the component will work correctly in a system, or that the
software system will work correctly with the new component as a part of it. In this paper we will
settle for a functional description in some natural language although we could use some formal
temporal language such as timed automata [1]. However, the main focus in this paper is on the
specific demands put on component contracts in safety-critical real-time systems.

As the temporal behavior is of great importance for the correctness of rea-time systems, the
temporal assumptions have to be specified in the contracts. The temporal attributes make up the
task model that is used when formally verifying the temporal behavior of the system, i.e., if the
system is schedulable or not. However, there exist two different task models for tasks in a real-
time system, one that exists on the design level and one that is actualy provided by the given
infrastructure. Typically, the design task model consists of end-to-end deadlines for transaction,
jitter constraints, etc which isrealized in the implementation using the temporal attributes at hand
in the infrastructure. As a consegquence, we will divide the contract into two different main parts,
the design task model and the infrastructure task model.

2.1 The design task model

As discussed in the introduction, our view on components in real-time systems is that they are
either single tasks or a transaction consisting of tasks and transactions. Thus, the contract must
specify whether or not the component is a transaction or not. If the component is indeed a
transaction it has a precedence relation between the cooperation tasks and there is a flow of data
between the tasks. Note that a single task is a specidization of atransaction asiit is a transaction
without any precedence relations or data-flow. There might be several different ways to represent
precedence relations. We will, however settle with a simple graphical notation caled a
precedence graph. A precedence graph is simply a directed graph visualizing al tasks in the
transaction interconnected by an arrow indicating the direction of the precedence relation between
those tasks. In Figure 2 a simple precedence graph is shown where task 4 precedes, task B and
task C. We can aso see that task B and C, precede task D.

Figure 2 A simple precedence graph

Concerning the data-flow in a component we are interested in exposing three different attributes

in the contract namely: where, how and what. The attribute “Where”, declares the receiver of
data, i.e. another task within the component. The data can flow throughout the component using
different strategies. The two different possibilities are synchronous and asynchronous. If data is
transported in an asynchronous manner, the contract must specify how the data is treated on the
receiver side. This is important since data can be consumed either faster or slower than it is
produced in a multi-rate transaction. If data is produced in a faster pace than it is consumed, the
contract must specify whether or not new data should overwrite old data or if data should be
buffered to provide history. Finally, concerning communication, the size of data is important, as
the size will restrict the speed at which the component can execute.

The temporal attributes for a real-time component specifies the required temporal behavior for the
component. As discussed, these attributes must not necessarily have there correspondence in the
infrastructure, but should rather be realized using the constructions provided by the infrastructure.
As we focus on reuse in this paper, we want our components to be as general as possible in terms
of the temporal constraints. The generality is obtained by specifying the temporal constraints as
time intervals. Later on in Section 3, we will elaborate further on how these intervals are
obtained. Transaction components (where a single task is a special case) have period times, jitter
constraints on period times, end-to-end deadlines, etc. However, it is not trivial to represent the
period time for a component consisting of several tasks all running with different period times
(multi-rate). We propose that period times are only valid for single-task components. The period
time of a transaction is inherited from the system in which the component will be reused. The
tolerances on the period times of a component are given in terms of decreased/increased inter
arrival times, however where the precedence, and mutual exclusion relations, are preserved
between the sub-components. This is a way of parameterize the component to fit in a new
environment.

2.2 Infrastructure

Derived from the recursive definition of components and component relations, we can with
respect to real-time systems define the components forming the basis for running the real-time
tasks as the infrastructure, i.e., the real-time operating system and its attributes. We are now going
to give a qualitative classification of the infrastructure for real-time operating systems based on
their execution strategy, synchronization mechanisms, and communication mechanisms.

Execution strategy

The execution strategy of a real-time system defines how the tasks of the system are run. A usual
classification is event and time triggered systems. An event-triggered system is a system where
the tasks activation is determined by an event that can be of external or internal origin, e.g., an
interrupt, or a signal from another task. There are usually no restrictions what so ever on when
events are allowed to arrive, since the time base is dense (continuos). For time-triggered systems
events are only allowed to arrive into the system, and activate tasks, with a certain minimum and
maximum inter-arrival time; the time-base is sparse. The only event allowed is the periodic
activation of the real-time kernel, generated by the real-time clock.

Another characteristic of an execution strategy is the support of single tasking or multitasking.
That is, can multiple tasks share the same computing resource (CPU), or not? If the infrastructure
does support multitasking does it also support task interleavings, i.e., does it allow an executing
task to be preempted during its execution by another task, and then resumed after the completion
of the preempting task?

A very common characteristic of an execution strategy, especially for multi-tasking RTS, is the
infrastructure task model. The task model defines execution attributes for the tasks [2][7][11][12].
For example:

* Execution time, C;. Where C; U [BCET;, WCET]], i.e., the execution time for atask, j, varies
depending on input in an interval delimited by the task’s best case executiorBGHE)(
and its worst case execution tini&(ET)).

* Periodicity, 7. Where7; O [Tj”””, 7", i.e., the inter-arrival time between the activations of
a task,j, is delimited by an interval ranging from the minimum inter-arrival time, to the
maximum inter-arrival time. For strictly periodic RTS," = 7;"“.

« Offset, O, WhereO, defines an offset relative the period start at which thejtabbuld be
activated. Offsets also go by the name release times.

* Priority, P, WhereP, defines the priority of task When several tasks are activated at the
same time, or when an activated task has higher priory than the currently running task, the
priority determines which task should have access to the computing resource.

* Deadline, D;. WhereD; defines the deadline for the tagkthat is, when it has to be finished.
The deadline can be defined relative task activation, its period time, absolute time, etc.

For different infrastructures the task model vary with different flavors of the above-exemplified
attributes.

Synchronization

Depending on the infrastructure we can either make necessary synchronizations between tasks
off-line if it is time triggered and supports offsets, or we can synchronize tasks on-line using
primitives like semaphores. In the off-line case we guarantee precedence and mutual exclusion
relations by separating tasks time-wise, using offsets.

Communication

Communication between tasks in RTS can be achieved in a multitude of ways. We can make use
of shared memory which is guarded by semaphores, or time synchronization, or we can via the
operating system infra structure send messages, or signals between tasks. Depending on the
relation between the communicating tasks, in respect to periodicity, the communication can vary
between totally synchronous communication to totally asynchronous communication. That is, if
taski sends data to tagkand both tasks have equal periodicity= 7;, we can make use of just

one shared memory buffer. However7jf> 7, or 7; < 7, the issue gets more complicated. Either

we make use of overwriting semantics (state-based communication), using just a few buffers, or
we record all data that has been sent by the higher frequency task so that it can be consumed by
the lower frequency task when it is activated. There are several approaches to solving this
problem [3][4][5].

2.3 Failure semantics

Components can fail in different ways. The manner in which they fail can be categorized into
failure modes. Failure modes are defined through the effects, as perceived by the component user:

1. Sequential failure behavior
This failure mode includes:
o Control failures, €.9g., selecting the wrong branch in an if-then-else statement.

* Value failures, €.9., assigning an incorrect value to a correct (intended) variable.

* Addressing failures, €.9., assigning a correct (intended) value to an incorrect variable.

» Termination failures, €.g., a loop statement failing to complete because the termination
condition is never satisfied.

o Input failures, e.g., receiving an (undetected) erroneous value from a sensor.

Multitasking and real-time failure behavior

2.
3.
4,

Ordering failures, e.g., violations upon precedence relations or mutual exclusion relations.
Synchronization failures, i.e., ordering failures but also deadlocks.

Interleaving failures, e.9., Side effects caused by non-reentrant code, and shared data, in
preemptively scheduled systems.

Timing failures. This failure mode, yields a correct result (value), although the procurement
of the result is time-wise incorrect. For example, deadline violations, early start of task,
incorrect period time, too much jitter, too many interrupts (too short inter-arrival time), etc.

Byzantine and arbitrary failures. This failure mode is characterized by a non-assumption,
meaning that there is no restriction what so ever with respect to which effects the component

user may perceive. Therefore, has the failure mode been called malicious or fail-uncontrolled.

This failure mode includes two-faced behavior: a component can output “X is true” to one
component user, and “X is false” to another component user.

The above listed failure modes build up a hierarchy where byzantine failures are based on the
weakest assumption (a non-assumption) on the behavior of the components, and sequential
failures are based on the strongest assumptions. Hence byzantine failure is the most severe and
sequential failure the least severe failure mode. The byzantine failure mode covers all failures
classified as timing failures, which in turn covers interleaving failures, and so on.

More formally: Sequential failures Ordering failures] Synchronization failure8! Interleaving
failures Timing failuresl] Byzantine failures. That is,[120 304050 6.

The component user can also characterize the failure modes according to the viewpoints domain
and perception. A distinction can be made between primary failures, secondary failures and
command failures [6]:

Primary failures

A primary failure is caused by an error in the software of the component so that its output
does not meet the specification. This class includes byzantine failure modes, and
sequential failure modes.

Secondary failures

A secondary failure occurs when the input to a component does not comply with the
specification. This can happen when the component is used in an environment not
designed for, or when the output of a preceding task (component) does not comply with
the specifications of a succeeding task’s (component) input. This class includes
interleaving failures, and sequential input failure modes.

Command failures

Command failures occur when a component delivers the correct result but at the wrong
time or in the wrong order. This class covers timing failures, synchronization failures,
and ordering failures.

The above classification of failure modes is not restricted to individual instances of failures, but
can be used to classify the failure behavior of components, which is called a component’s failure
semantics [9].

e Failure semantics

A component exhibits a given failure semantic if the probability of failure modes, which
are not covered by the failure semantic, is sufficiently low.

If a given component is defined to have ordering failure semantics, then all individual failures of
the component should be ordering or sequential failures. The possibility of more severe failures,
like timing failures, should be sufficiently low. The failure semantic is a probabilistic
specification of the failure modes a component may exhibit, which has to be chosen in relation to
the application requirements. In other words, the failure semantics defines the most severe failure
mode a component user may have to consider. Fault-tolerant systems are designed with the
assumption that any component that fails will do so according to a given failure semantic. If
nonetheless, the failure of a component violates the failure semantic, then nothing is guaranteed
and the whole system might fail. This consideration leads to the important concept of assumption
coverage [10], which is closely related to the definition of failure semantics.

* Assumption coverage

Assumption coverage is defined as the probability that the possible failure modes defined
by the failure semantic of a component proves to be true during practical conditions on
the fact that the component has failed.

For components defined as having byzantine failures semantics the assumption coverage is
always 1.0, i.e., the confidence in the failure semantic is total. This is safe since byzantine failures
belong to the most severe failure mode. In all other cases the assumptions of the failure semantics
may be violated because the component may show byzantine behavior. Consequently, will
assumption coverage (confidence) be less than total (1.0).

The assumption coverage is a critical parameter when designing and reusing reliable components.
If the assumptions are relaxed too much in order to achieve good assumption coverage, the design
becomes overly complicated since severe failure semantics (like byzantine) have to be
considered. On the other hand, if too many assumptions are made, the system design is easier, but
the assumption coverage might be unacceptably low. In practice there is thus a need to
compromise between system complexity and assumption coverage.

3 Component based analysis

In this section we are going to introduce a framework for formal and probabilistic arguments of
component reuse in safety-critical real-time systems. The basic idea is to provide evidence, based
on the components contracts and the experience accumulated, that a component can be reused
immediately, or if only parts can be reused - or not at all. That is, we want to relate the
environment for which the component was originally designed and verified for, with the new
environment where it is going to be reused. Depending on the match with respect to input-output
domains and temporal domains we want to deem how much of the reliability from the earlier use
of the component can be inherited in the new environment. Faced with a non-match we are
usually required to re-verify the entire component. However, we would like to make use of the
parts that match and only re-verify the non-matching parts.

Specifically, we are now going to introduce two analyses, one with respect to changes in the
input-output domain, and one with respect to changes in the temporal domain.

3.1 Input-output domain analysis

We are now going to establish aframework for comparative analysis of components input-output
domains, i.e. their respective expected inputs and outputs, as defined by the components contracts
(interfaces). But, we are aso going to relate the input-output domain to its verified and
experienced rdiability, according to certain failure semantics. We can represent the input-output
domain for a component, ¢, as atupe of inputs and outputs; /7(c) O I(c) x O(c). Where the input
domain, /(c), isdefined as atupel of al interfaces and their respective sets of input; /(c) O 1(c), U
O I(c),. Further, the output domai)(c), is defined as a tupel of all interfaces and their
respective sets of outpu®(c) 0 O(c); 0 ... O O(c),.

The basic idea is that, given that we have a reliability pr@{l®, of a component’s input-output
domain, [7(c) and that the attributes for the real-time components are fixed, we can deem how
well the component would fare in a new environment. That is, we would be able to make
comparative analysis of the experienced input-output domain and the domain of the new
environment.

For example, assume that we have designed and verified a compgndrat has an input
domain(c) corresponding to a range of integer inputg) = [40,70], to a certain level of
reliability.

R(c)

>
40 70 I(©)

Figure 3 The reliability for input domain [40,70].

Consider now that we reuse this component in another system, where all things are the same
except for the input domait;(c) = [50,80], and that we by use and verification have achieved
another level of reliability.

R(c)

>
40 70 80 I(©)

Figure 4 The reliability for joint input domain.

We can now introduce a new relation called the experienced input-output-reliability d&apin,

O (M7(c) x Ri(c))T ... O (/7,(c) x R,(c)), which represent the union of all input-output domains
and the achieved reliability for each of these domains. This union is illustrated in Figure 4. Using
this E(c) we can deem if we can reuse the component immediately in a new envirdimént

and inherit the experienced reliability, or we can put another condition on the reuse, a reliability
requirement.

R(c) -

>
40 70 80 I(©)

Figure 5 Reliability cannot be guaranteed in new
environment.
In Figure 5, the new environment and the area named X, illustrates the reliability requirement. If
it can be shown that /7,..(c) * R..(c) O E(c) then the component can be reused without re-
verification. However if the reliability requirement cannot be satisfied as illustrated in Figure 5,
reuse cannot be done without additional verification.

R(c)

40 70 80 19
Figure 6 Verification only necessary for limited area.

If the /7,..(c) * R..(c) O E(c), then we cannot immediately reuse the component without re-
verification, however we need not re-verify the component entirely. It is sufficient to verify the
part of the input domain that is non-overlapping with the experienced one, i.e., (/7,4(c) X Ryew(c))
\E(c).

By making this classification we can provide arguments for immediate reuse, arguments for re-
verification of only cut sets and non-reuse. For example, assume that the /7,...(c) (the area named
Y in the Figure 6) has an 7,..(c) = [35,45] then we can calculate the cut set for 7,.,(c) and I(c) to
be 7...(c) = [35,40]

3.2 Temporal analysis

Whenever a new component is to be used in a real-time system, the new temporal behavior of the
system must be verified, i.e. that all tasks are schedulable. For real-time systems schedul ability
means that no task in the system will ever violate its timing requirements, for instance deadlines,
start times, jitter, etc. In order schedule a system the components have to be decomposed into
their smallest possible entities, i.e., their tasks. Thus, the level of abstraction provided by the
component concept is violated.

In this section we will discuss the impact of changing some of the temporal attributes for a
component when reusing it. The following situations are dealt with:

e Thesameinfrastructure and the same input-output domain

* The same input-output domain but a different infrastructure

A change in the temporal domain is aways initiated by the system in which the component will
run in. For instance, if the new system executes on different hardware, the execution times might
vary (afaster or slower CPU). The changes can also originate from the regquirements of the new
system, for example the component has to run with a higher frequency than originally designed
for.

3.2.1 The same infrastructure and input-output domain

In this case, the infrastructure is exactly the same in the new environment as the one previousy
used. Consequently, we have an exact match between the sets of services provided (denoted as S
below). The services required by the design task model for the component have been satisfied
earlier which implicates that they still are satisfied in the new environment. Thus, S(c) U
So(infrastructure) and S, (infrastructure) = Sy (infrastructure) holds, where S(c) is the set of
services required by component c.

Moreover, the new input-output domain for the new instance of component ¢, /7,...(c), is
completely within the verified range of input-output for the component /7(c). Formally the
following must hold: /7,..(c) O ().

The only alteration is in one or several of the tempora attributes for the component. Such a
change requires the system to undertake a schedulability analysis [2][7][12] where the component
is decomposed into its smallest constituents, the tasks. The component can be considered to fit
into the new system if the system is schedulable and the relations between the tasks in the
component, aswell asthe tasks in the new system, are not violated.

3.2.2 The same input-output domain but different infrastructure
There exist two different types of infra-structural changes:

* Onewheretheinfrastructures are different, but where the infrastructure parts pertaining to the
component are the same. More precisaly, if S(c) O S,..(infrastructure) n Soq(infrastructure),
then the necessary services are provided by the new infrastructure. If thisis the case, and a
correct mapping of the services required by the component to the new infrastructure is
performed, we can reuse the component with same confidence in its reliability as in the
original environment.

* One where the infrastructures are different and the infrastructure parts pertaining to the
component are non-compliant. Formally if the S(c) \ Swen(infrastructure) # 0.

In the latter case where the new infrastructure does not enable the same implementation of the
design task model, a new mapping from the design must be performed. This mapping is a matter
of implementing the new infrastructure model using the services provided in the new
infrastructure. If this mapping is not possible then we cannot reuse the component at all. If the
mapping is possible, we can till argue if thisis reuse at all, since major parts of the component
must be maodified. Here we make a clear distinction between modify and parameterize, where
modifications are changes in the source code and parameterizations leave the source code
unchanged, but its behavior can be changed dynamically.

As an example, consider a component that has been proven to have certain reliability in an
infrastructure that provides synchronization between tasks using time-wise separation. If now the
component is reused in an infrastructure that handles synchronization using semaphores the
synchronization strategy has to be changed. Consequently, we cannot assume anything about the
reliability regarding synchronization failures. We have to assume weaker failure semantics since

the preconditions for which the rdiability estimates regarding synchronization failures are no
longer valid. That is, we cannot guarantee anything regarding synchronization failures in reusing
the component.

The graph below illustrates the different reliabilities for the fault hypotheses (assumptions of
failure semantics as introduced in section 2.3), 1 through 5 for component c.

Re) A

>
1 2 3 4 5 H(c)

Figure 7 The reliability/fault hypothesis before reuse in a new infrastructure.

If the assumptions made for the reliability measure of fault hypothesis 3 is changed, the reliability
is inherited from fault hypothesis 2 (see Figure 8), and we cannot say anything about the
reliability regarding stronger failure semantics.

R 4

>
1 2 3 4 5 H(c)

Figure 8 The new reliability/fault hypothesis after reuse in a new infrastructre.

Just as in the previous case where the infrastructure was not changed, the schedulability analysis
must be performed al over again, ensuring that no temporal constraints are violated in the
component as well in the rest of the system.

3.2.3 A measurement of reusability for components

For every new environment in which a component is successfully reused, the broader is the
usability of that component. That is, it has been empirical proven that the component can be used
in different environments, and is thus highly reusable. The graph in Figure 9 exemplifies this for
changes in the period times of a component. The greater the reliability (denoted as R), the more
confident we can be that the component will work correctly for that given period time. The
greater the number of period times covered by the diagram, the more reusable the component is.
However, one can argue that a component that has been reused in alot of different environments
but where every reuse resulted in alow reliability is really reusable? Consequently, the reusability
is a combination of the number of environments where the component has been used, and the
success of every such reuse.

Such a graph can be generated for every type of attribute in the component contract. For instance,
the different types of real-time operating systems for which the component has been reused. In
this case, the distribution is also a measurement of the portability for the component.

LR

4 5 6

T
Figure 9 Distribution of period times for which the component has been reused

4 Conclusions

In this paper we have presented a novel framework for arguments of reuse of components in
safety-critical rea-time systems. In this framework, we formally describe component contracts in
term of its temporal congtraints given in the design phase (the design task model) and the
temporal attributes available in the implementation (the infrastructure). Furthermore, the input-
output domain for a component is specified in its contract. By relating the input-output domain,
fault hypotheses, probabilistic reliability levels and the temporal behavior of the component, we
can deem if a component can be reused or not. We can aso deem how much and which subsets,
of say input-output domains, that need additional functional and safety verification based on
reliability requirementsin the environment in which the reuse isintended.

5 References

[1] Alur R. and Dill D. A theory of timed automata, Theoretical Computer Science vol. 126
pp. 183-235, 1994

[2] Auddey N. C., Burns A., Davis R. I., Tindell K. W. Fixed Priority Pre-emptive
Scheduling: A Historical Perspective. Real-Time Systems, The Int. Journa of Time-
Critical Computing Systems, Val. 8(2/3), March/May, 1995.

[3] Eriksson C., Méki-Turja J., Post K., Gustafsson M., Gustafsson J., Sandstrom K., and
Brorsson EAn Overview of RTT: A design Framework for Real-Time Systems. Journal of
Parallel and Distributed Computing, vol. 36, pp. 66-80, Oct. 1996.

[4] H. Kopetz and J. Reisinger The Non-Blocking Write Protocol NBW: A Solution to a Real-
Time Synchronization Problem. In Proceedings of he 14th Real-Time Systems
Symposium, pp. 131-137, 1993.

[5] J. Chen and A. Burns Asynchronous Data Sharing in Muliprocessor Real-Time Systems
Using Process Consensus. 10th Euromicro Workshop on Real-Time Systems, June 1998,

[6] Leveson N. GSafeware - System, Safety and Computers. pp. 414. Addison Wesley 1995.
ISBN 0-201-11972-2.

[7] Lui C. L. and Layland J. WScheduling Algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20(1), 1973.

(8]

[9]

[10]

[11]

[12]

Parnas D.L., van Schouwen J., and Kwan S.P. Evaluation of Safety-Critical Sofiware.
Communication of the ACM, 6(33):636-648, June 1990.

Poledna S. Replica Determinism in Distributed Real-Time Systems: A Brief Survey. Real-
Times systems Journal, Kluwer A.P., (6):289-316, 1994.

Powell D. Failure Mode Assumptions and Assumption Coverage. In Proc. 22™
International Symposium on Fault-Tolerant Computing. IEEE Computer Society Press,
pp.386-395, July 1992.

Puschner P. and Koza C. Calculating the maximum execution time of real-time programs.
Journal of Real-time systems, Kluwer A.P., 1(2):159-176, September, 1989.

Xu J. and Parnas D. Scheduling processes with release times, deadlines, precedence, and
exclusion, relations. |EEE Trans. on Software Eng. val. 16, pp. 360-369, 1990.

Empty page.

Performance Tuning of Multithreaded Applications
for Different Multiprocessor Platforms

Magnus Broberg

Department of Computer Science
University of Karlskrona/Ronneby
Soft Center, S-372 25 Ronneby, Sweden
Magnus.Broberg@ipd.hk-r.se

Abstract
Performance tuning of a parallel application is often hard. The use of standards, such as
POSIX threads, makes it possible to move a multithreaded application from one platform to
another. Doing performance tuning for many platforms are even tougher since the implemen-
tation of the standards may vary on different operating systems. The developer need tools for
analysing how the application will behave on different operating systems in order to do ade-
quate performance tuning.

In this paper we present a technique based on cross-simulation that will solve the issues
above. The technique uses a monitored execution of a multithreaded application on a single
processor workstation running the Solaris operating system. Then the technique, which has
been implemented in a tool, simulates a multiprocessor with an arbitrary number of proces-
sors running either Solaris or Linux. The tool then displays the behaviour of the application
on the selected target configuration.

Validation, using a subset of the SPLASH-2 benchmark suite, shows that the tool predicts
speed-ups correctly. The average error in the predicted speed-up when simulating Linux is
5.8%. All this can be done using the ordinary Solaris workstation on the developer’s desk,
without even having a multiprocessor.

1. Introduction

Writing parallel applications for multiprocessors is often hard. In many cases the reason for using
a multiprocessor is to achieve more computing power for the application. Doing performance tun-
ing of a multithreaded application for a multiprocessor is an important but tedious task and few
tools are available for the developer. Most tools require the application to be executed on the tar-
get multiprocessor, e.g., [5, 7, 9, 18].

When introducing standards, such as POSIX threads [3], the aim is to make applications port-
able. This makes it possible to move one application from one operating system, e.g. Solaris, to
another operating system, e.g. Linux. However, it is not obvious that an application tuned for one
operating system will run efficiently on another operating system. Different characteristics for the
operating systems may lead to different tuning or trade-offs when tuning the application for both
operating systems.

The developer then has to tune the application for several operating systems, using different
tools for the different operating systems. The developer must also have access to all combinations
of multiprocessors and operating systems in order to do the performance tuning. Not only a tedi-
ous task to do, in many cases it is impossible (and expensive) to have all the machines needed.

In this paper we present a tool called VPPB (Visualization of Parallel Program Behaviour).
The tool is capable of executing a multithreaded application (using POSIX Threads) on a single
processor workstation with Solaris and shows how the execution would be if the application were
executed on an SMP (Symmetric MultiProcessor) with an arbitrary number of processors, running

either Solaris or Linux. The predictions are with good accuracy. The tool has perviously been
used for prediction on Solaris for Solaris-threads [1, 2, 15]. The tool has now been extended to
cover the major parts of POSIX threads as well. The tool can now also mimic the Linux 2.2 oper-
ating system. Based on an execution of an application on a single processor Solaris workstation,
the tool is able to predict the behaviour of the application on a multiprocessor running Linux.
Thus, the tool is able to perform cross-simulation. We use the term cross-simulation when a pro-
gram is monitored on one operating system and then simulated for another (target) operating sys-
tem. The performance tuning of the application can be done on the developer’s ordinary
workstation without the need for a multiprocessor.

The rest of this paper is as follows. In Section 2 we give an overview of the VPPB system and
in Section 3 Solaris, Linux, and POSIX threads are briefly discussed. Section 4 shows the valida-
tion of the predictions and Section 5 shows that the same application will execute differently on
different operating systems. Section 6 discusses the result and points at some future work, the
conclusions are found in Section 7.

2. Overview of VPPB

The VPPB consists of three major parts, fRecordey the Simulator and theVisualizer The
workflow when using the VPPB system is shown in Figure 1. The developer writes the multi-
threaded program (a) in Figure 1, compiles it, and an executable binary file is obtained. After that,
the program is executed on a uni-processor. When starting the monitored execution (b), the
Recordeiis automatically placetietweerthe program and the standard thread library. Every time
the program uses the routines in the thread library, the call passes throughdbeer(c) which
records information about the call, i.e., the identity of the calling thread, the name of the called
routine, the time the call was made, and other parametersR€kerderthen calls the original
routine in the thread library. When the execution of the program finishes all the collected informa-
tion is stored in a file, theecorded informatior{d). The recording is done without recompilation

or relinking of the application, making our approach very flexible.

The Simulatorsimulates a multiprocessor execution. The main input for the simulator is the
recorded informatior{d) in Figure 1. The simulator also takes the configuration (e) as input, such
as the target operating system, number of processors, etc. The output from the simulator is infor-
mation describing the predicted execution (f).

Using theVisualizerthe predicted parallel execution of the program can be inspected (g). The
Visualizer uses the simulated execution (f) as input. The main view of the (predicted) execution is
a Gant diagram. When visualizing a simulation, it is possible for the developer to use the mouse to
click on a certain interesting event, get the source code displayed, and the line making the call that
generated the event highlighted. With these facilities the developer may detect problems in the
program and can modify the source code (a). Then the developer can re-run the execution to
inspect the performance change. The VPPB system is designed to work for C or C++ programs
that uses the built-in thread package [7] and POSIX threads [3] on the Solaris 2.X operating sys-
tem. The Simulator is able to simulate both Solaris and Linux.

3. POSIX Threads and Some Key Differences Between Solaris and Linux

Both Solaris and Linux 2.2 implement the POSIX thread interface [3]. However, there are differ-
ences between the implementations. Solaris uses a two-layered approach illustrated in Figure 2
[6, 12]. In the user level there are user level threads. These threads are executed in a non preemp-
tive way. This means that the thread must, in some way, voluntarily give up the execution in favor
of another thread. This could be done explicitly or implicitly by calling a synchronization primi-

tive that blocks the thread or releases a previously blocked thread with higher priority.

-2-

Il [\“M‘\

Information describing
simulated execution

\ Configuration ® ==c==
No of Processors ® —c-==

Operating system —c-==

Binding of threads

Thread priorities

Binary file ®

=[G -C=) yppPB

= Calls /\Returns

Recorded
Recorder @ information

©|((Instrumented —_—=-=
Encapsulatin - ——-—
Thread leraﬁ/]/)/ ===

Calls /\Returns

(Thread'Library)

Figure 1: A schematic flowchart of the VPPB system.

The kernel level threads (also known as LightWeight Process, LWP [15]) are scheduled by the
kernel in a pre-emptive fashion. The scheduling is priority based, with a round robin policy on
each priority level. The priority is changed over time, the longer time an LWP executes the lower
priority and longer time slices it gets. Each CPU has it's own run queue. In order to migrate an
LWP to another CPU the LWP must have been in the queue for some pre-defined time without
being selected by the current CPU. The user level threads are executed by the LWPs. This means
that the kernel only schedules LWPs, the user level threads are not seen by the kernel. From the
user level threads’ point of view the LWPs could be seen as virtual CPUs. A user level thread
might be bound to a specific LWP, i.e., the user level thread will (indirectly) be scheduled in a pre-
emptive manner. Non-bound user level threads will execute on the LWPs that are not bound to any
thread. There could be many LWPs to serve this kind of user level threads.

A Multithreaded Solaris Process
/ Non-bound threads Bound thre@

User level

Kernel level

Figure 2: The thread model in Solaris. A bound thread may only execute on the LWP that it is bound to,
whereas a non-bound thread may execute on any LWP that is not bound to a user level thread.

Linux [8] uses an single-layered approach, similar to merging the Thread and LWP concepts
in Solaris together into one single unit. The creation of threads is made by cloning the parent
thread, using the system call clone. This is quite similar to fork, but the cloned threads share the
same address space, open files, etc. However, each thread gets its own process id and is schedulec
as a process. The scheduling is pre-emptive and time-sliced, as for any other process in Linux.
The time-slices are fixed (210 milliseconds). Linux calculates a goodness-value in order to choose
between which thread/process to execute next. This goodness-value represents two things, first it
represents how long the thread has executed in its current time slice. A thread that has been exe-
cuted a small part of its time slice will be given a higher goodness value than threads that have
executed a longer part of their time slice. The second thing is that threads are favourized to run on
the same processor as previously. This is done by increasing the goodness value for the thread
when the processor it previously executed on looks for a new thread to execute. Newly awakened
threads can force another thread from a processor when the newly awakened thread has a higher
goodness value than the other thread.

There are also differences between synchronizations as well. In Linux all locks has ordered
queues. When a thread releases the lock, the first thread in the queue is given the lock and put in
the running queue. In Solaris, there is no ordered queue (for guaranteed). When a thread releases
a lock, it may lock it again, before any other thread (both those waiting in the queue or other) has
been able to grab the lock.

4. VValidation of the Predicted Execution Times

4.1. The SPLASH-2 benchmark suite

The validation of the predictions was made using a subset of the SPLASH-2 benchmark suite
[17]. The applications that we used from the SPLASH-2 suite are listed with the data set in Table
1. All applications that we used are from the scientific and engineering domain.

Table 1: The parallel applications together with the data set sizes we used.

Application Description Data set size/Input data
Ocean (contiguous) Simulate eddy currents in an ocean basin 258-by-258 grid
Water-Spatial Molecular dynamics simulation, O(N) algorithm| 512 molecules, 30 time steps
FFT 1-D /n Six-step Fast Fourier Transform 4M points
Radix Integer radix sort 16M keys, radix 1024
LU (contiguous) Blocked LU-decomposition of a dense matrix 768x768 matrix, 16x16 blocks
Raytrace Producing a raytraced picture balls4
Barnes Simulates interaction between a number of bodi€2048 bodies

in three dimensions
Cholesky Factors a sparse matrix into the product of a loyek29.0
triangular matrix and its transpose
Radiosity Producing a raytraced picture Default, batch mode, en 0.1

All executions were made on a Sun Ultra Enterprise 4000 with 8 processors and 512 MByte
memory. The operating systems in this validation was Solaris 2.6 and Linux 2.2 (RedHat 6.1).
The compiler used for both Solaris and Linux was the egcs-1.1.2 (a.k.a. gcc 2.91.66). Since the
SPLASH-2 applications are designed to create one thread per physical processor, one log file

were made for each processor setup when using the Recorder. Thus, 9 applications running each
on 4 different CPU setups generated a total of 36 log files. The benchmarks were modified in
order to remove spinning locks and task stealing as described in [2].

4.2. Validation results

Table 2 shows the measured and predicted speed-up for the 9 applications from the SPLASH-2
benchmark suit on the Solaris platform. The real speed-up is the middle value of 5 executions of
the application. The error is defined as |((Real speed-up) - (Predicted speed-up))/(Real speed-up)|,
where |x| = k| =x, for allx > 0.

Due to the recordings, the monitored uni-processor execution takes somewhat longer than an
ordinary uni-processor execution of the application. However, our measurements showed that the
execution time overhead for doing the recordings was very small. The maximum overhead, which
was obtained for Radiosity, was 16.4% of the total execution time, but still more than half of the
36 log files caused less than 0.5% overhead. Another concern was the size of the log files. 75% of
the log files were less than 2Mbyte in size. The largest log file, which was obtained for Radiosity,
was 20.4 MByte. This file could be handled without any problems. Consequently, neither the exe-
cution time overhead, nor the size of the log files caused problems for these applications.

Table 3 shows the measured and predicted speed-up for the 9 applications from the SPLASH-
2 benchmark suite on the Linux 2.2 platform. The columns are the same as in Table 2.

The mean error for Solaris was 1.6% while when simulating the Linux platform the mean
error was less than 5.8%. Thus, the error on the Linux platform is then on average 3.6 times larger
than on the Solaris platform.

4.3. Study of the application with the largest error, Ocean

There are three applications in Table 3 that has large errors in the predictions. These are Ocean,
FFT, and Radiosity. Ocean has the largest error and we will focus on that application for this
study.

The first thing to notice is the total CPU time needed to execute the application (without the
Recorder) behaves quite differently on Solaris and Linux. Since the monitoring is done on Solaris
all the overhead, etc., on Solaris is incorporated in the monitoring. Thus, if Solaris behaves differ-
ently than Linux, the estimation can be no good. The CPU time needed to execute Ocean is shown
as the first row in Table 4. The values are normalized to the case for 1 processor for easy compar-
iIson reasons. As can be seen, Solaris increases the needed CPU time with up to twelve percent
when executing the 8 threaded Ocean. On the other hand, Linux needs three percent less CPU
time to execute Ocean with 8 threads than with one thread. The difference between Solaris and
Linux is then 15.5% (1.12 / 0.97).

By increasing the data set for Ocean to 514 and 1026, theses differences decrease as shown in
the two last rows in Table 4, to 5.0% and 1.1%, respectively for the case with 8 threads. It is then
most likely that the predictions also will be more accurate for Linux as the needed CPU time does
not differ. In Table 5 the predictions for Ocean on Linux is shown. As assumed the error in the
predictions drops as the data set increases. The measured CPU time can then act as an indicator of
the degree of reliability of the prediction.

The measured CPU time may not only act as an indicator, it could also be used to compensate
the prediction. In the case of Ocean with data set 258 there is an difference of 15.5% between
Solaris and Linux. Thus, the monitored execution on 8 processors was 15.5% longer on Solaris
than on Linux and this made the predicted execution for Linux 15.5% longer as well, assuming an
even distribution of the overhead over the whole execution. If the predicted execution was 15.5%
longer, the predicted speed-up will only be 8.6 1 / 1.155) compared to the speed-up without
the differences in CPU time. Thus, by adding 15.5% more speed-up we are able to compensate for

Table 2: Measured and predicted speed-ups for the benchmark applications on Solaris 2.6.

Application 2 processorg 4 processqrs 8 processors
Real Speed-up 1.98 3.7 4.39
Ocean Pred. Speed-up 1.9D 3.35 4.35
Error 4.0% 8.7% 0.9%
Real Speed-up 1.99 3.93 7.41
Water-spatial | Pred. Speed-up 1.9y 3.83 7.24
Error 1.0% 2.5% 2.3%
Real Speed-up 1.58 2.22 2.76
FFT Pred. Speed-up 1.5p 2.23 2.80
Error 0.6% 0.5% 1.4%
Real Speed-up 1.99 3.96 7.66
Radix Pred. Speed-up 1.9p 3.96 7.79
Error 0.0% 0.0% 1.7%
Real Speed-up 1.78 3.02 4.45
LU Pred. Speed-up 1.78 3.90 4.50
Error 0.0% 0.7% 1.1%
Real Speed-up 1.88 2.97 4.86
Raytrace Pred. Speed-up 1.8B 2.94 4.83
Error 0.0% 1.0% 0.6%
Real Speed-up 1.8b 3.60 5.18
Radiosity Pred. Speed-up 1.81 3.42 5.89
Error 2.2% 5.0% 1.9%
Real Speed-up 1.94 3.56 6.35
Barnes Pred. Speed-up 1.98 3.57 5.97
Error 0.5% 0.3% 6.0%
Real Speed-up 1.6p 2.30 2.94
Cholesky Pred. Speed-up 1.6D 2.30 2.90
Error 0.0% 0.0% 1.4%

the differences in CPU time. The predicted speed-up is 4.35 and with a 15.5% increase it will be
5.02. The latter is much closer the real measured value of 5.77.

The result of calculating in the same way for the other data sets and number of processors is
shown in Table 5 within square brackets. The average error in Table 4 has decreased from 7.8% to
5.6% due to this compensation. In three cases the predictions become worse than without com-
pensation, however, those errors are still within the range of errors for the Solaris prediction in
Table 2 as well as the errors reported in [2].

Table 3: Measured and predicted speed-ups for the benchmark applications on LINUX 2.2.

Application 2 processor$ 4 processqrs 8 processors
Real Speed-up 1.99 3.75 577
Ocean Pred. Speed-up 1.9p 3.35 4.35
Error 4.5% 10.7% 24.69
Real Speed-up 1.99 3.95 7.75
Water-spatial | Pred. Speed-up 1.9y 3.83 7.24
Error 1.0% 3.0% 6.6%
Real Speed-up 1.71 2.56 3.40
FFT Pred. Speed-up 1.5p 2.23 2.80
Error 7.0% 12.9% 17.69
Real Speed-up 1.98 3.93 7.17
Radix Pred. Speed-up 1.9p 3.96 7.79
Error 0.5% 0.8% 8.6%
Real Speed-up 1.81 3.11 4.80
LU Pred. Speed-up 1.78 3.00 4.50
Error 1.7% 3.5% 6.2%
Real Speed-up 1.8p 2.85 4.41
Raytrace Pred. Speed-up 1.8B 2.94 4.83
Error 3.3% 3.2% 9.5%
Real Speed-up 1.8b 3.75 5.05
Radiosity Pred. Speed-up 1.81 3.42 5.89
Error 2.2% 8.8% 16.69
Real Speed-up 1.94 3.591 6.03
Barnes Pred. Speed-up 1.98 3.57 5.98
Error 0.5% 1.7% 0.8%
Real Speed-up 1.6p 2.30 2.93
Cholesky Pred. Speed-up 1.6p 2.30 2.90
Error 0.0% 0.0% 1.0%

5. Scheduling Differences

When dealing with performance debugging, the speed-up metric does not give all the information
needed. If the speed-up is not as the desired speed-up there are some kind of performance bottle-
necks in the application. The VPPB system has, as mentioned in Section 2, the ability to show the
execution flow as a Gant diagram. This diagram can help the developer understand where the bot-
tlenecks are and how to remove them.

Table 4: Normalized CPU time required to execute the OCEAN benchmark with different data sets on Solaris

and Linux.
Data set Operating 1 Thread 2 Threads 4 Threads 8 Thredds
System

Solaris 1.00 0.99 1.03 1.12
258

Linux 1.00 0.96 0.97 0.97

Solaris 1.00 1.02 1.04 1.05
514

Linux 1.00 1.00 1.01 1.00

Solaris 1.00 1.00 1.00 1.01
1026

Linux 1.00 1.01 1.00 1.00

Table 5: Ocean on Linux with different data sets. A compensated values are given in square brackets.

Dr

Data set 2 Processor 4 Processor 8 Process
Real Speed-up 1.99 3.75 5.77

258 | Pred. Speed-up| 1.90 [1.96] 3.35 [3.56] 4.35[5.02]
Error 4.5% [1.5%)] 10.7% [5.1%)] 24.6% [13.0%)]
Real Speed-up 1.84 3.67 5.27

514 | Pred. Speed-up| 1.94 [1.98] 3.71[3.82] 4.51 [4.74]
Error 5.4% [7.6%] 1.1% [4.1%] 14.4% [10.1%)]
Real Speed-up 1.96 3.83 6.93

1026 | Pred. Speed-up| 1.90[1.88] 3.74 [3.74] 6.66 [6.73]
Error 3.1% [4.1%)] 2.3% [2.3%)] 3.9% [2.9%]

In Section 4 there is very little difference between the predicted speed-up for the Solaris plat-
form and the Linux platform. Although the speed-up is similar, the execution flow may not be the
same. To illustrate that issue Figure 3 shows the same execution segment of the Barnes bench-
mark. Each horizontal line in the figure represent an executing thread over time. Different sym-
bols indicate different events, e.g., an arrow facing downwards represents a locking operation.
Different colours (appear as different gray shades in black and white printing) are used for
mutexes, semaphores, etc. Though the execution flow is quite different in Figure 3 the source
code is the same. This shows that the execution flow is different when using different operating
system, and thus the performance bottlenecks may also differ between the operating systems.

x Tt

Tttt b .
TET TET TEE TEY TR PTE—TE TTE T b TE T
T7T 17T T T T

R R A

R 1t TR R R 5 T S R R A

Linux

x v > » Tt T T Tt T Tt T T t TTTTTM1 S s (N (NN N, T S (NN N N S
T ¢T1 ¢T1J- T T F T T TT STRTI T3 3T T1 T1¢T1¢T1¢T1¢T1¢T1¢T1¢ T1

x x ¥ x = T 1 x x x bt T Tt 1 T - T

e e T Im TB-LTTB-L 7 L e e = e T T§¢ Im Tt TB-L TB-L TEL ITE T = & [TE, T 7 13T _TEL TR TEE TB*];E;L TELT
AL T T T I TTET U S T CTITT I T
2] 2] o 2] 2] = =] =11 =] 2] 2] =1l 2] =] o

§ SRS ST S ST ST S ST

R R S S i . | x_ v vy
3 T T 110 B I ¢¢¢¢¢¢ ¢¢¢¢¢T1D¢¢T1DLJ-J-J-¢¢¢J-¢¢¢

Solaris

Figure 3: Execution flows for Barnes. Solaris is the upper graph, Linux is the lower. The five ovals in the
Solaris graph indicates the same events as the five ovals in the Linux graph.

6. Discussion and Related Work

6.1. Comments on the validation

Validation of the cross-simulation was done on a Sun Enterprise 4000 with 8 CPUs by executing 9
benchmarks from the SPLASH-2 benchmark suite. Only three applications had larger than ten
percent error in the predicted speed-up. A further study of the application with the largest error
(Ocean) shows that the error is reduced when the data set grows.

As the data set increases the overhead for executing Ocean on Solaris decreases. Since this
overhead is included in the monitored data used for the cross-simulation the simulation results for
small data sets may not be very accurate. By compensating the predictions with the measured
overheads, the error of the predictions was reduced with up to nearly a factor of two.

The reason for the increased usage of CPU time on Solaris, when increasing the number of
threads in the Ocean application has not been found. A further study of the reason for this behav-
iour on Solaris is considered to be future work. Understanding why the error for the benchmarks
FFT and Radiosity is almost twice as large as the largest error on Solaris could also be interesting
future work.

Currently the VPPB system implements all the POSIX thread primitives that are common
between Solaris and Linux except the thread cancelling primitives. The semaphore primitives are
supported, although semaphores are not a part of the POSIX threads, but originate from
POSIX.1b.

6.2. Other tools
There are a number of tools, shown in Table 6, which make it possible to visualize the (predicted)
behaviour of a parallel application using any number of processors. However, these tools are
either developed for message passing systems or for non-standard programming environments.
Only a few tools, PARAVER and SIEVE, can do some kind of cross-simulation. The PAR-
AVER tool uses the DIMEMAS simulator [4]. DIMEMAS is a simulator for distributed memory
multiprocessors, and the ability to re-configure in order to mimic different operating systems is
limited. In [10] there is no validation of the predictions at all. In SIEVE all simulation is per-
formed by scrips working like macros on a spread-sheet, where the spread-sheet is the trace file.
By supplying different scripts different operating system can be simulated. The SIEVE system
does not address the issue of data monitoring. In [13] there is no validation of the predictions at
all.

Table 6: Comparison of some visualization tools similar to VPPB.

Name Platform Language Siﬁﬁ;ﬁ;ﬂ Comment elr?eer:;:e
CHIP®S Mathematica CHIfs Yes Pseudo language [10]
PARAVER | Any PVM3 platform| Any with PVM3| Yes Message passing [11]
PERFSIM | TMC CM-5 CM-Fortran No Limited visualization [16]
PIE Yﬁééj/ﬁgrm); MP with Pascal | No Pseudo language [14]
SIEVE BBN GP1000 pC++ Yes Hard to use the scripts [13

7. Conclusion

POSIX threads are used to make multithreaded applications portable. However, the implementa-
tion of POSIX threads differs for different operating systems. Thus, an application will not always
have the same performance and behaviour on different operating systems. Tuning multithreaded
applications for a multiprocessor is hard. Tuning applications for good performance on several
operating systems is even harder. Most tools use a real execution of the multithreaded application
on a given operating system in order to give the developer support in the performance tuning, e.g.,
[5, 7, 9, 18]. It is often impractical and expensive to have several multiprocessors in order to run
different operating systems.

In this paper we have presented a tool, called VPPB, that based on an execution of a multi-
threaded application on an ordinary single processor Solaris workstation can predict the behav-
lour of application on a multiprocessor with arbitrary number of processors, running Solaris or
Linux 2.2. The predictions are accurate, with an mean error of 5.8% for the predicted speed-ups
for Linux, and even better for Solaris. The validation was made by using 9 of the benchmarks
from the SPLASH-2 benchmark suite on a Sun Enterprise 4000 with eight processors.

During a detailed study of the Ocean benchmark we have shown that it is possible to find an
indicator that shows how reliable the predictions are. The indicator is based on the CPU time
required to execute an application with a different number of threads. This indicator works on a
single processor workstation with Solaris.

The Ocean benchmark also shown that the indicator can be successfully used to compensate
the predictions in order to get more accurate predictions. With Ocean the error in the predictions
was reduced with up to almost a factor of two.

Thus, we have shown that it is possible to use the described tool to predict the behaviour of an
multithreaded application on a multiprocessor with either Solaris or Linux, with the means of a
single processor workstation running Solaris.

8. Acknowledgments

We would like to thank Henrik Persson for rewriting the simulator for the Solaris threads in order
to achieve a much faster simulator. This simulator was used as the base when adding ability for
POSIX threads as well as support for the Linux platform.

-10 -

References

[1]

[5]
[6]
[7]
[8]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

[18]

M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction Tool
for Multithreaded Solaris Programs”, Proceedings of the 12th International Parallel Processing
SymposiumOrlando, USA, pp. 770-776, 1998.

M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Multi-

threaded Solaris Programs by Tracing Kernel ThreadsRroceedings of the 13th International
Parallel Processing Symposiyi®an Juan, Puerto Rico, pp. 407-413, 1999.

D. Butenhof, “Programming with POSIX Threads”, Addison-Wesley, 1997, ISBN 0-20-163392-2.

S. Girona, T. Cortes, J. Labarta, V. Pillet, A. Peres, and E. Lopez, “Deriverable OPS4A of the project
Basic research APPARC, Effect of short term scheduling on message passing multiprogrammed sys-
tems”, http://www.wi.leidenuniv.nl/CS/HPC/apparc-deliverables/OpS4a.html, 1994.

M. Heath and J. Etheridge, “Visualizing the Performance of Parallel ProgréigtsZ Software 8(9)

pp. 29-39, 1991.

S. Khanna, M. Sebrée, and J. Zolnowsky, “Realtime Scheduling in SunOS 5Brdaredings of

the Winter ‘92 USENIXJune 1992.

S. Kleiman, D. Shah, and B. Smaalders, “Programming with threads,” Prentice Hall, 1996, ISBN 0-
13-172389-8.

S. Maxwell, “Linux Core Kernel Commentary,” Coriolis Open Press, 1999, ISBN 1-57610-469-9.

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchithapadam,
and T. Newhall, “The Paradyn Parallel Performance Measuring Td&EE Computer 28, vol 28,
no. 11 pp. 37-46, 1995.

E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton, “An Overview of the’SIRER-
formance Prediction Toolset for Parallel SystemsPinceedings of 8th ISCA International Confer-
ence on Parallel and Distributed Computing Systdfiarida, USA, pp. 527-533, 1995.

V. Pillet, J. Laboarta, T. Cortes, and S. Girona, “PARAVER: A Tool to visualize and Analyse Parallel
Code,” University of Politencia, Catalonia, CEPBA/UPC Report No. RR-95/03, February 1995.

M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks, “SunOS 5.0 Multi-
threaded Architecture,” Sun Soft, Sun Microsystems Inc., September 1991.

S. R. Sarukkai and D. Gannon, “SIEVE: A Performance Debugging Environment for Parallel Pro-
grams,”Journal of Parallel and Distributed Computingol. 18, pp. 147-168, 1993.

Z. Segall and L. Rudolph, “PIE: A Programming and Instrumentation Environment for Parallel
Processing,IEEE Software2(6):22-37, November 1985.

SunSoft, “Solaris Multithreaded Programming Guide,” Prentice Hall, 1995, ISBN 0-13-160896-7.

S. Toledo, “PERFSIM: A Tool for Automatic Performance Analysis of Data-Parallel Fortran Pro-
grams,” inProceedings of the 5th Symposium on the Frontiers of Massively Parallel Computation
McLean, Virginia, IEEE Computer Society Press, February 1995.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” Rroceedings of the 22nd Annual International Symposium
on Computer Architecturep. 24-36, June 22-24, 1995.

Q. Zhao and J. Stasko, “Visualizing the Execution of Thread-based Parallel Prog@uagtiics,
Visualization, and Usability Centre, Georgia Institute of Technology, Technical Report GIT-GVU-95-
01, 1995.

-11 -

Empty page.

Supporting Timing Analysis by Automatic Bounding
of Loop Iterations!

Christopher Healy
Computer Science Department, Florida State University, FL, USA

Mikael Sjodin
Department of Computer Systems, Uppsala University, Sweden

Viresh Rustagi
Silicon Spice, Mountain View, CA, USA

David Whalley and Robert van Engelen
Computer Science Department, Florida State University, FL, USA

September 23, 1999

Abstract.

Static timing analyzers, which are used to analyze real-time systems, need to
know the minimum and maximum number of iterations associated with each loop
in a real-time program so accurate timing predictions can be obtained. This paper
describes three complementary methods to support timing analysis by bounding
the number of loop iterations. First, an algorithm is presented that determines the
minimum and maximum number of iterations of loops with multiple exits. Even
when the number of iterations cannot be exactly determined, it is desirable to know
the lower and upper iteration bounds. Second, when the number of iterations is de-
pendent on unknown values of variables, the user is asked to provide bounds for these
variables. These bounds are used to determine the minimum and maximum number
of iterations. Specifying the values of variables is less error prone than specifying the
number of loop iterations directly. Finally, a method is given to tightly predict the
execution time of inner loops whose number of iterations is dependent on counter
variables of outer level loops. This is accomplished by formulating the total number
of iterations of a loop in terms of summations and solving the resulting equation.
These three methods have been successfully integrated in an existing timing analyzer
that predicts the performance for optimized code on a machine that exploits caching
and pipelining. The result is tighter timing analysis predictions and less work for
the user.

Keywords: Hard Real-Time Systems, Worst-Case Execution Time, Static Analysis

1. Introduction

To be able to predict the Best-Case Execution Times (BCETs) and
Worst-Case Execution Times (WCETS) of a program, one must know

 Part of this work has be previously published in the Proceedings of IEEE Real-
Time Technology and Applications Symposium, June 1998, under the title “Bounding
Loop Iterations for Timing Analysis”.

P;ﬁ © 1999 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 23/09/1999; 15:55; p.1

2 Healy, Sjodin, Rustagi, Whalley and van Engelen

the number of iterations that can be performed by the loops in the
program. Under certain conditions, such as a loop with a single exit,
many compilers statically determine the exact number of loop iterations
(Benitez and Davidson, 1988). Applications for determining this num-
ber include loop unrolling (Hennessy and Patterson, 1996), software
pipelining (Lam, 1988), and exploiting parallelism across loop iterations
(Stone, 1990). When the number of iterations cannot be exactly deter-
mined, it is desirable in a real-time system to know lower and upper
bounds on the number of iterations. These bounds can be used by a
timing analysis tool to more accurately predict BCETs and WCETs.

Many existing timing analyzers require that a user specify the num-
ber of iterations of each loop in the program. This specification may be
requested interactively (Park and Shaw, 1991; Li et al., 1995). Thus,
each time the timing analyzer is invoked for a program, the bounds
for every loop in the program must be specified, which is error prone
and tedious for the user. Alternatively, one could specify this infor-
mation as assertions in the source code to prevent repeated specifica-
tions of the same information (Burns et al., 1996; Puschner and Koza,
1989; Kligerman and Stoyenko, 1986).

However, there are still several disadvantages. First, the user is still
required to write the assertions. Second, there is no guarantee that
the user will specify the correct minimum and maximum number of
iterations. This problem may easily occur when a user changes the
loop, but forgets to update the corresponding assertion. Also, code
generation strategies, such as whether to place instructions for the loop
exit condition code at the beginning or end of the loop, may cause the
number of loop iterations of the transformed loop to vary by one itera-
tion from the loop in the source code. Finally, compiler optimizations,
such as loop unrolling or software pipelining, may affect the number
of times a loop iterates. Inhibiting different code generation strategies
or compiler optimizations to more easily estimate loop bounds would
sacrifice performance, which is quite undesirable.

It would be more appropriate to have the compiler automatically
and efficiently determine the bounds for each loop in a program when
possible. This paper describes three methods that support timing anal-
ysis by bounding the number of loop iterations. First, an algorithm
is presented that determines bounds on the number of iterations for
loops with multiple exits. Second, support is provided for loops whose
number of iterations is dependent on loop-invariant variables. Finally, a
method is given to accurately predict the number of iterations for inner
loops, whose number of iterations varies depending upon the values of
counter variables of enclosing outer loops. All three of these methods
are efficiently implemented and result in less work for a user. The

paper.tex; 23/09/1999; 15:55; p.2

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 3

last method also results in tighter timing analysis predictions. These
methods were implemented by modifying the vpo compiler (Benitez and
Davidson, 1988) to analyze loops and the information about number of
loop iterations is passed to a timing analyzer (Arnold et al., 1994; Healy
et al., 1995; White et al., 1997; Healy and Whalley, 1999a) to predict
performance. Note that these methods applied in vpo could be used in
other compilers or on assembly or machine code files as well.

2. Related Work

Previous work to bound the number of loop iterations has used ab-
stract interpretation (Ermedahl and Gustafsson, 1997) and symbolic
execution (Lundqvist and Stenstréom, 1998; Liu and Gomez, 1998) to
automatically derive the number of loop iterations. These approaches
are quite powerful, but effectively requires simulating all paths of a
loop for every loop iteration. Thus, they require significant analysis
overhead, which would be undesirable when analyzing long running
programs.

Our work on bounding iterations for nested loops was inspired by
the work of Sakellariou (Sakellariou, 1997; Sakellariou, 1996). He cal-
culated the total number of iterations for loops that are dependent
on counter variables of outer loops in order to obtain better load bal-
ance by assigning approximately the same number of loop iterations
to each processor. The approach used was to formulate summations
representing the number of loop iterations by hand and to interface to
a mathematical package off-line to solve the equations. In this paper,
we describe a method to automatically calculate the average number of
times that a loop will iterate and how to use this information to obtain
tighter timing predictions.

3. Bounding Iterations for Loops with Multiple Exits

In this section we present a method to determine a bounded number of
iterations for natural loops with multiple exits. The method includes
the following steps. (1) First, the conditional branches within the loop
that can affect the number of loop iterations are identified. (2) Next,
we calculate when each of the identified branches can change its result
based on the number of loop iterations performed. (3) Afterwards, the
range of loop iterations when each of these branches can be reached
is determined. (4) Finally, the minimum and maximum number of
iterations for the loop is calculated. These steps are described in the
following subsections.

paper.tex; 23/09/1999; 15:55; p.3

4 Healy, Sjodin, Rustagi, Whalley and van Engelen

3.1. IDENTIFYING THE BRANCHES THAT CAN AFFECT THE
NUMBER OF LOOP ITERATIONS

In this subsection some terms are defined to facilitate the presentation
of the methods in this paper. A more complete description of these
terms can be found elsewhere (Aho et al., 1986). We define the number
of loop iterations as the number of times the header is executed once
the loop is entered (Arnold et al., 1994). A basic block is a sequence
of instructions with a single entry point at the beginning and a single
exit point at the end. A natural loop is a loop with a single entry point.
The header of a natural loop is the single basic block where the loop is
entered. Transitions from within the loop to the header are called back
edges. Block A dominates block B if every path from the initial node
of the control flow graph to B has to first go through A. For instance,
the header of a natural loop dominates all blocks in the loop. Similarly,
block B postdominates block A if all control paths from block A to the
exit node of the graph contains block B. A block always dominates and
postdominates itself.

An iteration branch in a loop is a conditional transfer of control,
where the choice between the two outgoing transitions can directly or
indirectly affect the number of loop iterations. The iteration branches
in the loop that can directly affect this number are branches that have
(1) a transition to a basic block outside the loop or (2) a transition to
the header block of the loop or to a block that is postdominated by the
header. Iteration branches that can indirectly affect the number of loop
iterations are those branches whose two successors are postdominated
by different iteration branches. Figure 1 shows an algorithm to calculate
the set of iteration branches I for a loop. The worst-case complexity of
the algorithm is O(B?1?), where B is the number of basic blocks in the
loop and [is the number of iteration branches. However, we believe
that the average complexity would be closer to O(B) since iteration
branches that indirectly affect the number of loop iterations are not
common, particularly in numerical applications.

Figure 2(a) contains the code for a toy example C function that
will be used to illustrate the algorithm for calculating loop iteration
bounds for loops with multiple exits. Figure 2(b) depicts the RTLs,
representing SPARC assembly instructions, that the vpo compiler has
generated for this function. Note that the relational operator in the
conditional branches are sometimes reversed from the relational ex-
pressions in the source code. (No delay slots have been filled in order
to simplify the example.) Figure 2(c) explains the RTL notation used.
The loop consists of basic blocks 2, 3, 5, 6, 7, and 8. The header of
the loop is block 7. The algorithm shown in Figure 1 identifies block 5

paper.tex; 23/09/1999; 15:55; p.4

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 5

//Find the iteration branches that can directly affect the number of iterations
I={}
FOR each block B in the loop L DO
IF (B has two successors S and S») THEN
IF (51 ¢ L) OR (SQ g L) OR
(S1 € PostDom(Header(L))) OR (S2 € PostDom(Header(L))) THEN
I=IUB
END IF
END IF
END FOR

//Find the iteration branches that can indirectly affect the number of iterations
DO
FOR each block in B in the loop L DO
IF (B has two successors S1 and S») AND (B ¢ I) THEN
IF (there exists J, K € I AND J # K AND
S1 € PostDom(J) AND S, € PostDom(K')) THEN
I=IUB
END IF
END IF
END FOR
WHILE (any change to I)

Figure 1. Finding the Set of Iterations Branches for a Loop

as containing an iteration branch since it has a transition to block 6,
which is postdominated by the loop header. Blocks 3, 5, and 7 are
identified as having iteration branches since they have a transition to
block 4, which is not in the loop. Block 2 is added to the set of blocks
containing iteration branches since it can indirectly affect the number
of iterations by transferring control to either block 3 or block 5, which
both have been identified as containing iteration branches.

Once the blocks containing iteration branches for the loop have
been identified, a precedence is established that represents the order
that these blocks can be executed on any given iteration of the loop.
This precedence relationship can be represented as a Directed Acyclic
Graph (DAG). The nodes in the DAG represent the blocks contain-
ing the iteration branches and two additional nodes, continue and
break. Figure 3 shows the DAG depicting the precedence relationship
between the blocks containing exit conditions from Figure 2. The con-
struction of the DAG can conceptually be accomplished by starting
with the graph representing the loop, replacing all back edges with

paper.tex; 23/09/1999; 15:55; p.5

6 Healy, Sjodin, Rustagi, Whalley and van Engelen

mai n()
{
int i, j;
extern int sonecond;
for (i =0, j =1; i <100; i++ | += 3)
if (j > 75 && sonmecond || j > 300)
br eak;

(a) Source Code

r[10] =0; 1
r[er=y

r[11] =HI [_sonecond] ;

PC=L18;

19 |1C=r[9] 275; 2
PC=l C<=0, L21;

r[8]=R[r[11] +L] _sonecond]]; 3

| C=r[8] ?0;
PC=l C==0, L21;

{17 | PC=RT; 4
| C=r[9] 2300;

K21 | pcsi o0, L17; 5
r[10] =r[10] +1; 6
r[9] =r[9]+3;

L1g |1C=r[10] 2100; 7
PC=I C>=0, L17;
[Pc-L19; 8

(b) Corresponding RTL Instructions

r[9] :register allocated to variable
r[10] : register alocated to variablei
HI [<addr ess>] : high portion of address
LJ <addr ess>] :low portion of address
R[<addr ess>] :integer memory reference
| C=<i tenp?<itenp; :comparison
PC=I C<r el op>0, <I abel >; : conditiona branch
PC=RT; :return
PC=<I abel >; :unconditiona jump

(c) Explanation of RTL Notation

Figure 2. Example Loop with Multiple Exits

transitions to continue, replacing each transition out of the loop with
a transition to break, and collapsing all nodes that do not represent
iteration branches. The actual implementation of the DAG construc-
tion started with only nodes representing continue, break, and blocks
containing iteration branches and used domination and postdomination
information to establish the edges between the nodes. This algorithm

paper.tex; 23/09/1999; 15:55; p.6

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 7

continue break
Figure 3. Precedence Relationship between Iteration Branches from Figure 2

is essentially a sort and requires O(IlogI) complexity, where I is the
number of iteration branches in the loop.

3.2. DETERMINING WHEN EACH ITERATION BRANCH CHANGES
DIRECTION

In this subsection a technique is presented that calculates when each
iteration branch can change its result based on the number of loop
iterations performed. This technique is similar to those used by other
compilers that can calculate the number of iterations of a loop with a
single exit (Benitez and Davidson, 1988). For each iteration branch we
derive the information shown in Table I. When all of the requirements
listed in Table I are satisfied, the iteration branch is classified as known.
Otherwise, the iteration branch is classified as unknown. Note that
detection of unknown iteration branches in a loop does not mean that
the number of iterations of a loop cannot be bounded. Using the derived
values, we apply Equation 1 to straightforwardly calculate on which
iteration, N;, that a known iteration branch ¢ will change direction.
Table II shows the values derived for the example in Figure 2. The
iteration branch in block 3 is classified as unknown since the wvariable
somecond is not a basic induction variable. The complexity of this
algorithm is O(I), where I is the number of iteration branches, since
each iteration branch need only be examined once.

N; = Vimitz- — (initial; + before;) + adjustiJ L9

1
before; + after; (1)

In addition, we have to select a value for adjust and checks have to
be made in case the iteration branch will always or never be satisfied.
Table III shows under what conditions we can use Equation 1 to de-
termine when an iteration branch changes direction. The column “Test

paper.tex; 23/09/1999; 15:55; p.7

Healy, Sjodin, Rustagi, Whalley and van Engelen

Table I. Information Calculated for Each Iteration Branch

Term

Explanation

Requirement

variable

limit

relop

inatial

before

after

adjust

The control variable on which
the branch depends, i.e., the
variable being compared in the
block containing the iteration
branch.

The value being compared to
the wariable in the block con-
taining the branch.

The relational operator used to
compare the wvariable and the
limit. L.e., the iteration condi-
tion is: “wvariable relop limit”.

The value of the variable when
the loop is entered.?

The amount by which the vari-
able is changed before reaching
the iteration branch in each
iteration.

The amount by which the vari-
able is changed after reaching
the iteration branch in each
iteration.

An adjustment value of -1,
0, or 1, which compensates
for the difference between re-
lational operators (e.g. < and
<=).

The control variable must be a basic induc-
tion variable, that is a variable v whose only
assignments within the loop are of the form
v := v £ c where c is a constant. In addi-
tion, we require that the variable change by
a constant integer amount on every loop iter-
ation. We ensure this by checking that each
basic block containing an assignment to a ba-
sic induction variable dominates all of the
blocks containing the tails of the back edge
transitions.

The limit must be an integer constant. We will
describe how this requirement can be relaxed
in Section 4.

Our initial description requires that the rela-
tional operator be an inequality operator (i.e.
<, <=, >=, and >). We will describe how to
relax this requirement in Section 3.5 to more
accurately handle the equality operators (i.e.
== and !=).

The initial value must be an integer constant.
We will describe how this requirement can be
relaxed in Section 4.

The amount by which the control variable is
incremented or decremented must be an inte-
ger constant and these changes must occur on
each complete iteration of the loop.?

The amount by which the control variable is
incremented or decremented must be an inte-
ger constant and these changes must occur on
each complete iteration of the loop.

! This value is found by searching backwards in the control flow for assignments to
variable. The search starts with the preheader, which is the block outside the loop
preceding the loop header.

’In other words, the basic blocks containing these changes must dominate every
predecessor block of the header that is in the loop.

paper.tex; 23/09/1999; 15:55; p.8

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 9

Table II. Derived Information for Each Iteration Branch in Figure 2

branch variable register limit relop initial before after adjust class N
block 2 j r[9] 7 <= 1 0 3 0 known 26
block 3 somecond r[§] 0 == N/A 0 0 N/A unknown N/A
block 5 j r[9] 300 > 1 0 3 0 known 101
block 7 i r[10] 100 >= 0 0 1 -1 known 101

Table ITI. How to Determine When a Branch with an Inequality Test Changes Direction

Operator Condition Test Result adjust
<= first < limit & incr >0 is false on the Nth iteration 0
<= first < limit & incr <0 always true
<= first > limit & incr >0 always false
<= first > limit & incr <0 is true on the Nth iteration 1
< first < limit & incr >0 is false on the Nth iteration —1
< first < limit & incr <0 always true
< first > limit & incr >0 always false
< first > limit & incr < 0 is true on the Nth iteration 0
> first < limit & incr >0 is true on the Nth iteration 0
> first < limit & incr <0 always false
> first > limit & incr >0 always true
> first > limit & incr < 0 s false on the Nth iteration 1
>= first < limit & idner >0 is true on the Nth iteration —1
>= first < limit & incr <0 always false
>= first > limit & incr >0 always true
>= first > limit & incr < 0 s false on the Nth iteration 0

Where first = initial + before, incr = before + after,
N is defined in Equation 1, and adjust is used in Equation 1.

Result” shows under what conditions we can conclude that the iteration
condition will always/never be true and when we should use Equation 1
to determine at which iteration the branch changes direction, as well as,
what value to use for adjust in Equation 1. Note that when before+after
= 0 we need not use Equation 1 and thus we do not cause a divide by
zero exception.

Figure 4 shows two loops where Equation 1 cannot be applied. Our
implementation detects that the loop in Figure 4(a) exits after a single
iteration. Recall that the number of iterations is the number of times
that the loop header block (i.e. testing 7 > 100 in the example) is exe-

paper.tex; 23/09/1999; 15:55; p.9

10 Healy, Sjodin, Rustagi, Whalley and van Engelen

cuted once the loop is entered (see Section 3.1). The loop in Figure 4(b)
is classified as unbounded since the loop may never exit depending on
how overflow of negative integer values is handled.

for(i = 0; i > 100; i++) for(i = 0; i < 100; i—-)
A; A;
(a) Loop That Exits Immediately (b) Loop That May Never Exit

Figure 4. Two Loops Which are Handled Without Equation 1

3.3. DETERMINING THE ITERATIONS WHEN EACH ITERATION
BraNcH CAN BE REACHED

The next step is to determine the iterations on which it is possible to
execute each node of the DAG. Calculating these ranges requires O(I)
complexity, where I is the number of iteration branches. We record this
information as a range of iterations and attach a range to each node
and edge. The DAG is processed top-down.

The head of the DAG is assigned the range [1..00]. All other nodes
are assigned a range that is the union of the ranges of all incoming
edges. The outgoing edges of a node 4 are assigned ranges using one of
the following two rules:

1. If iteration branch i is known, then relop; and the direction of
the increment (i.e. the sign of before;+after;) is used to determine
which edge is taken on the first V; — 1 iterations. That edge is
assigned the range that is the intersection of [1..N; — 1] and the
range of node i. The other outgoing edge is assigned the range that
is the intersection of [Nj..co] and the range of node i. If a range
assigned to an outgoing edge is empty, then this edge corresponds
to an infeasible transition and is deleted from the DAG.

2. If iteration branch % is unknown, then both outgoing edges are
assigned the same range as node 3.

Figure 5 shows the DAG of iteration branches in Figure 3 on page 7
with the range of possible iterations for each node and edge also de-
picted. Nodes with known iteration branches are marked with a K and
unknown iteration branches are marked with a U. Iteration branch 7
will take the transition to branch 2 on the first 100 iterations. Note this
iteration range of [1..100] corresponds to the variable i’s value range
of [0..99]. At this point, all values of variables have been abstracted as

paper.tex; 23/09/1999; 15:55; p.10

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 11

ranges of loop iterations. Node 5’s transition to a break is deleted since
the range associated with that transition is empty (i.e. the transition
is not possible).

7 \K
[1..100] [1.29 [101.. 0]
2 K break
[1..100]
[26..100]
3 U
[1..25]
[26..100]
[26..100] [26..100]
break 5 K
[1..100]
[1..100]
continue

Figure 5. DAG of Branches with Ranges of Iterations

3.4. DETERMINING THE MINIMUM AND MAXIMUM LoOOP
ITERATIONS

The ranges of iterations associated with each node and edge of the DAG
can be used to calculate the minimum and maximum number of itera-
tions for the loop. To determine the minimum and maximum iteration
value for each iteration branch, the DAG is processed in bottom-up
order. The algorithm requires O(I) complexity, where I is the number
of iteration branches. The minimum and maximum iteration values
for the root node of the DAG will be the minimum and maximum
iteration values for the entire loop. Figure 6 defines the notation used
in this subsection. Note that the range has been calculated using the
technique presented in Section 3.3.

The following rules are used to assign minimum and maximum
iteration values to edges.

1. If an edge is pointing to a break, then both the edge_exit_min and
edge_exit_maz are assigned the value of edge_range_min. (If there
is a transition to a break, then the loop can only make that tran-
sition once.) This is the only point where a bounded value can be
introduced since these are the only points where the loop can exit.

2. If an edge is pointing to a continue, then the edge_exit_min and
edge_exit_maz values for that edge are marked as unbounded, which

paper.tex; 23/09/1999; 15:55; p.11

12 Healy, Sjodin, Rustagi, Whalley and van Engelen

[edge range_min..edge_range_max]
<edge_exit_min, edge_exit_max>

<node_exit_min, node_exit_max>

edge range_min: lowest loop iteration when this edge can be reached
edge range_max: highest loop iteration when this edge can be reached
edge_exit_min: first iteration when this edge may lead to a break
edge_exit_max: first iteration when this edge must lead to a break
(on subsequent iterations it must also lead to a break)
node_exit_min: first iteration when this node may lead to a break

node_exit_ max: first iteration when this node must lead to a break
(on subsequent iterations it must also lead to a break)

Figure 6. Notation Used in Rules for Assigning Iteration Values

we will represent with ‘_’. (These transitions do not supply any
information about when the loop exits.)

3. If the iteration branch associated with a node is classified as known,
then the node_exit_max for the node is set to the smallest of the
bounded edge_exit_maz values on the outgoing edges or is denoted
as unbounded if both outgoing edges have unbounded edge_exit_maz
values. (The loop has to exit when it will encounter a break.)

4. If the iteration branch associated with a node is classified as un-
known, then the node_exit_maz for the node is set to the largest
of the edge_exit_maz values on the outgoing edges of the node or
is denoted as unbounded if either outgoing edge has an unbounded
edge_exit_maz value. (Use the largest value when it is not guaran-
teed that the node will actually reach the exit associated with a
lower value.)

5. The node_exit_min for a node is set to the smallest of the bounded
edge_exit_min values on the outgoing edges of the node or is denoted
as unbounded if both outgoing edges have unbounded edge_exit_min
values. (The smallest value represents the first possibility to exit
the loop.)

6. An edge not leading to a break or continue is an edge leading to
a node representing an iteration branch. The edge_exit_min and
edge_exit_max values assigned to the edge depend upon one of
three possible relations between the range of the edge and the
iteration values of the node. These relations and the corresponding

paper.tex; 23/09/1999; 15:55; p.12

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 13

edge assignments are depicted in Table IV. For example, the edge
assignment when node_exit_min satisfies case 1 and node_exit_maz
satisfies case 2 would be (edge_range_min, node_exit_maz). Case 1
depicts that the edge_exit is set to edge_range_min since this is the
first iteration the edge can be traversed when the edge may lead
to a break. Case 2 shows that the edge_exit is set to the node_ezit
when it is within the range of iterations that the edge is executed.
Case 3 illustrates that the edge_exit is set to unbounded when there
is no iteration on which the edge will be traversed after the edge
can lead to a break.

Table IV. Rules for Assigning Iteration Values to an Incoming Edge

Case Condition Test Edge_Exit
1 o node_exit < edge_range_min edge_range_min
0 < .
9 o edgelar}ge_mln < nodeexit & node_exit
node_exit < edge_range_max
3 — @ edge_range_max < node_exit —
Legend: ——— = [edge_range min .. edge_range_max]|
® = node_exit (i.e. node_exit_min or node_exit_max)
7 K
<26,101>
<26, > <101,101>
2 X break
<26, >
<26, >
3 U
<, >
<26, > -
<26,26> <, >
bresk 5 K
<,>
<, >
continue

Figure 7. DAG of Iteration Branches with Minimum and Maximum Iteration Values
Figure 7 shows the same DAG as in Figure 5 on page 11, but with

minimum and maximum iteration values assigned to edges and nodes.
Node 5 and its incoming edges are assigned unbounded values since

paper.tex; 23/09/1999; 15:55; p.13

14 Healy, Sjodin, Rustagi, Whalley and van Engelen

for (i =0; ; i++) {
if (i <100 && somecond)
_ . . conti nue;
for (i =0; i !'=100; i++) if (i == 50)
A br eak;
}
(a) Bounded L oop (b) Potentially Unbounded L oop
for (i =0; i !'=100; i += 3)
A
(c) Unbounded L oop

Figure 8. Examples of Loops with Iteration Branches Using Equality Operators

there is no transition to a break for the range of loop iterations in
which they are executed. Node 3 is assigned a minimum iteration value
of 26 since that is the first possible iteration at which the node can take
a transition to a break. Node 3’s maximum iteration value is unbounded
since node 3’s iteration branch is classified as unknown and there is
no guarantee that the transition to the break from node 3 will ever be
taken. The minimum and maximum iterations for the entire loop is 26
and 101, respectively, since these are the iteration values in node 7,
which is the root exit condition.

3.5. SUPPORTING ITERATION BRANCHES USING EQUALITY
OPERATORS

As stated in Table I on page 8, an iteration branch using an equality
operator (i.e. == or !=) was earlier described as always being treated as
an unknown branch. This may result in looser, but safe iteration bounds
for loops containing equality operators. One reason for not addressing
iteration branches that use the equality operators is that they may
cause loop iteration ranges to become noncontiguous and would compli-
cate the algorithms for bounding the number of iterations. However, in
many cases iteration branches with equality operators can be handled
using only contiguous ranges of iterations. For instance, Figure 8(a)
contains a loop with an equality operator that our implementation
was able to successfully bound. Our implementation classifies iteration
branches with equality operators as known when the following three
additional requirements to those specified in Table I are satisfied:

1. First, every path ending in a back edge in the loop must include
the iteration branch with the equality operator. Figure 8(b) shows

paper.tex; 23/09/1999; 15:55; p.14

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 15

Table V. How to Determine When an Equality Test Changes Direction

Operator Condition Test Result adjust
== first < limit & incr > 0 is true on the Nth iteration —1
== first > limit & incr < 0 is true on the Nth iteration 1
== first = limit & incr =0 always true
== first = limit & incr #0 is false on the 2nd iteration
== otherwise always false
I= first < limit & incr > 0 is false on the Nth iteration —1
I= first > limit & incr < 0 is false on the Nth iteration 1
I= first = limit & incr =0 always false
I= first = limit & incr #0 is true on the 2nd iteration
1= otherwise always true

Where first = initial + before, incr = before + after,
N is defined in Equation 1, and adjust is used in Equation 1.

an example of a loop that may not execute the test for equality on
the iteration in which the loop could exit.

2. Next, one of the outgoing transitions of the iteration branch with
an equality operator must be to a break.

3. Finally, the following expression, which is part of Equation 1, must
result in an integral value.

limit; — (initial; + before;)
before; + after;

In other words, the variable must equal the limit of the iteration
branch on some iteration. Figure 8(c) depicts a situation where the
variable i will be assigned values (0, 3, ... 99, 102, ...) that will
skip over the limit (100).

When the above requirements are fulfilled we have to check the
initial value and increments to the variable, similar to Table III on
page 9, and also choose a value for adjust. Table V shows when we can
use Equation 1 on page 7 to determine on which iteration an equality
test will change direction. Note that when before+after = 0 we need
not use Equation 1 and thus we do not cause a divide by zero exception.

paper.tex; 23/09/1999; 15:55; p.15

16 Healy, Sjodin, Rustagi, Whalley and van Engelen

4. Supporting a Non-constant Loop-Invariant Number of
Iterations

Sometimes a bounded number of iterations for a loop cannot be de-
termined since the loop exit conditions involve the values of variables.
Traditionally, timing analyzers have resolved this problem by requiring
a user to specify the maximum number of iterations for a loop inter-
actively (Park and Shaw, 1991; Li et al., 1995) or as an assertion in
the source code. (Burns et al., 1996; Puschner and Koza, 1989) Unfor-
tunately, there is no guarantee that the user will specify the correct
number of iterations. Compilers may employ different code generation
strategies or compiler optimizations that can affect the number of loop
iterations. Thus, even an astute user may specify the number of loop
iterations incorrectly.

Frequently the variables on which the number of loop iterations
depend are loop invariant. In this case, a loop-invariant expression is
calculated to represent the number of loop iterations. Essentially, we
will still use Equation 1 on page 7, but relax the requirement that
the limit and initial values have to be constants. Figure 9 shows an
example function and it’s corresponding SPARC RTLs. (Some compiler
optimizations, such as loop strength reduction, have not yet been per-
formed to simplify the example.) In this example, the control variable
for the loop is r[13] and the limit is r[12], which is loop invariant.
The block preceding the loop is examined to determine the expression
associated with the limit, which is expanded in the following steps:

r[12] # from instruction 12
r[9]+r[10] # from instruction 5
r[9]+R[r[10]+L0[n]] # from instruction 4
r[9]+R[HI[n]+L0O[mn]] # from instruction 3

m+n

CU W =

The register r [9] has been allocated to the argument m, whose value
was also passed to the function in the same register. The compiler
remembers the register and the blocks where each live range of a local
variable or argument is allocated to a register. Thus, the compiler was
able to associate the register r[9] with the argument m and that the
memory reference is to the global variable n. We use Equation 1 to
generate a symbolic expression (containing the local variable m and
global variable n) to represent the number of iterations, as shown in
Figure 10.

When the compiler can determine that the number of iterations is
non-constant and loop invariant, the loop-invariant expression is passed

paper.tex; 23/09/1999; 15:55; p.16

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 17

int sumarray(a, m
int a[], m
{

int i, sum
extern int n;

sum = 0;
for (i =1; i < men;

sum += a[i];
return sum

(a) Source Code

val uebnd nf 10: 100] n[20: 80]
i ++)

r[8] :addressof array a

r[9] :argumentm

r[11] :variablesum

r[13] :vaiablei
(b) Register to

Variable Mapping

r[11] =0;
r[13] =1;
r[10]=H[_n];

r[12]=r[9] +r[10];
1 C=0?r[12];
PC=I C=0, L25;

r[10]=R[r[10] +L _n]];

#instruction 1 1
#instruction 2
#instruction 3
#instruction 4
#instruction 5
#instruction 6
#instruction 7

L18 [r[10] =r[13] <<2;
r{10]=R{r[8] +r[10]];
r[11] =r[11] +r[10];
r[13]=r[13] +1;
1C=r[13] ?r[12];

PC=I C<0, L18;

#instruction 8 2
#instruction 9
#instruction 10
#instruction 11
#instruction 12
#instruction 13

L25 | PC=RT;

#instruction 14 3

(c) SPARC RTLs

Figure 9. Loop with a Non-constant Loop-Invariant Number of Iterations

to the timing analyzer. The user is prompted by the timing analyzer
for the minimum and maximum values for each variable in this expres-
sion. To simplify identification of these variables, the timing analyzer
also informs the user of the function and line number associated with
the loop. After receiving the minimum and maximum values for these
variables, the timing analyzer automatically calculates the minimum
and maximum number of loop iterations.?

3 Note that the timing analyzer will not permit the number of iterations to be
fewer than 1. In the above example, a user may indicate that the minimum values of
m and n are both 0. Simply substituting these values in the expression would result
in the number of loop iterations being —1. But if the loop is entered, then it has to

paper.tex; 23/09/1999; 15:55; p.17

18 Healy, Sjodin, Rustagi, Whalley and van Engelen

N— limit — (initial + before) + adjust 49
before + after
_|min-(+D+-1)
14+0
=m+n-—1

Figure 10. Finding a Symbolic Bound for Example in Figure 9

The authors also modified the compiler to allow the user to specify
assertions about the minimum and maximum values of variables asso-
ciated with loops. The boldface line in Figure 9(a) contains assertions
for the minimum and maximum values of the variables m and n. The
compiler uses the loop-invariant expression and replaces the variables
with the minimum and maximum specified values. The minimum num-
ber of iterations of 29 and the maximum number of iterations of 179 is
automatically passed to the timing analyzer and no user intervention
is required. Of course, the analysis will only be as accurate as the
assertions themselves.

When a loop-invariant expression cannot be calculated, the timing
analyzer will prompt the user for the minimum and maximum number
of iterations instead of values of variables. However, we have found
that a constant or loop-invariant number of iterations can be typically
calculated for most loops in the numerical benchmarks and applications
we have examined.

5. Bounding Iterations for Non-Rectangular Loop Nests

The previous sections described approaches to determine the minimum
and maximum number of iterations for a loop, given that the number of
iterations depends only upon either constant or loop-invariant values.
Unfortunately, many nested loops do not fulfill this requirement.

In this section we will describe a novel method to determine the
number of iterations for a nested loop whose iteration bound depends
upon the loop index of an outer loop. Such a loop nest is called non-
rectangular. A typical example of a non-rectangular loop nest is the
loop nest of the bubble sort program in Figure 11.

execute at least one iteration since the number of iterations is defined as the number
of times the loop header block is executed.

paper.tex; 23/09/1999; 15:55; p.18

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 19

for(i = 0; i < 99; i++)
for(j = i+1; j < 100; j++)
if(ali]l > al[j]) swap(a,i,j);

Figure 11. A Typical Non-Rectangular Loop Nest

Non-rectangular loop nests have long presented a problem for timing
analyzers since the resulting timing predictions are typically quite loose
(Healy et al., 1995; Hur et al., 1995; Li et al., 1995). In fact, these overly
pessimistic predictions may indicate that a program does not meet its
timing constraints, when it actually does.

This section describes a general and efficient method for obtaining
tight timing predictions for non-rectangular loop nests usually encoun-
tered in programs. This is accomplished by formulating the number
of loop iterations in terms of summations, where each summation rep-
resents the number of iterations to be executed by a loop. Such an
equation can be efficiently solved given that certain restrictions are
met.

5.1. FORMULATING THE NUMBER OF ITERATIONS

In this subsection we describe how a loop nest may be formulated in
terms of summations. The framework we present was based on work
by Sakellariou (Sakellariou, 1997; Sakellariou, 1996). The number of
iterations of a single loop, where the loop variable is incremented by
one (so called unit stride), can be represented by a summation when
the lower bound (a) is less than or equal to the upper bound (b), as
shown in Equation 2.

b .
— <
N Zl {z a+1 ifa<b @)

otherwise

Figure 12 shows how two different loop nests can be formulated in
terms of summations. The total number of iterations to be executed
by the innermost loop in each loop nest are calculated by solving the
corresponding equation. The Bernoulli formula shown in Equation 3,
where p > 1 and n > 1 and By, is the Bernoulli number of order &, can
be used to evaluate terms in a summation.

p
S S (U) ®)

paper.tex; 23/09/1999; 15:55; p.19

20 Healy, Sjodin, Rustagi, Whalley and van Engelen

for (j=1; j<=100; j++)
for (i=j; i<=100; i++)
for (k=1; k<j; k++)
A;
100 100 j—1
N=> 221
j=1i=j k=1
for (i=1; i<99; i++) 100 100
for (j=i+l; j<100; j++) =S G-
= i=1i=j
98 99 100 /100 j—1
V=Y 3o -3 (Su-n-Tu-n)
i=1 j=it+1 =1 \i=1 i=1
100 /100 100 j—1
> (r-x > (Li-nEex)
i=1 = 1= =1 =1
08 100
=>"(99-1i) =" (1025 — j* - 101)
i=1 i=1
98 99 100 100 100
Y w-y S SR SIS
i=1 i=1 j=1 j=1 j=1
= 4851 = 166650
(a) Loop Nest from (b) Loop Nest from LU Decom-
Sort Program position Program

Figure 12. Deriving the Total Number of Iterations for Two Loop Nests

The constraint on the bounds in Equation 2 results from the fact that
the value of the sum must equal 0 if the lower bound a is greater than
the upper bound b. The explicit constraint is necessary to accurately
count the number of iterations of so-called zero-trip loops. Zero-trip
loops do not execute the loop body when the lower bound exceeds the
upper bound, given that the stride is positive.

We can represent summations with non-unit strides, where the stride s
is specified along with the lower bound a and upper bound b. Equation 4
shows how a non-unit stride can be used in a conventional summation,
where E is an expression and E[i < si + a] denotes the substitution of
all free occurrences of 7 by si+a. This is effectively a change in variables
and does not change the value of the summation. The change allows
summations with strides to be represented by normalized summations

paper.tex; 23/09/1999; 15:55; p.20

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 21

(summations with stride 1).

b,s [(b—a)/s]
I=) E= Y Eli+si+ad (4)
i=a =0

Summations with non-unit strides are more difficult to evaluate since
one has to deal with summations of floors. Equation 5 shows how a floor
can be converted to an expression involving a modulo operation (%). A
modulo operation can often be simplified using Equation 6 (Sakellariou,
1996).

[ﬁjzw,ifrr»o&qwo (5)
m m
. > ifn<d
. =0
D (%A =< [jaj-1a1 n%a (6)

=0 Yo 4> P ifn>d
j=0 i=0 i=0

However, summations involving modulo operations are more diffi-
cult to simplify when two or more loops have non-unit strides and the
bounds are symbolic. Fortunately, this situation rarely occurs. Equa-
tions 2-6 can be used to correctly determine that the total iterations
for the loop nest in Figure 13 is 1717. Unfortunately, sometimes an
expression in a summation may contain a product of two or more
terms containing modulo operations. In this case, an approximation
of the iteration count is used, which is shown in Equation 7.

b,s [b/s]
Y Ex)Y Efs (7)
1=a 1=a

for (i=0; i<100; i++)
for (j=1i; j<100; j+=3)
A;

Figure 13. A Loop Nest Containing a Non-unit Stride

As suggested by Sakellariou (Sakellariou, 1996; Sakellariou, 1997), a
computer algebra system can be exploited off line to solve the equations

paper.tex; 23/09/1999; 15:55; p.21

22 Healy, Sjodin, Rustagi, Whalley and van Engelen

of summations. However, computer algebra systems, such as Maple
(Char et al., 1988), give inaccurate results when the bounds restriction
on the summation is violated in Equation 2. In general, every loop
iteration count problem that is cast as a summation should evaluate
to zero if the lower bound is greater than the upper bound. However,
it is not always possible to evaluate the test when the bounds are
symbolic. For example, consider the loop nest in Figure 14. The inner
loop is a zero-trip loop for values of ¢ greater than 2. We define a
partially zero-trip loop to be a loop that is zero-trip depending on
values of index variables of outer loop(s). By applying Equation 2, the
iteration count of the partially zero-trip loop can be defined as shown
in Figure 14. Clearly, the result is N = 3. However, a naive evaluation
without the bounds test results in N = —7. This means that when a
computer algebra system is to be used off line, the summations should
be guarded with bounds tests. Unfortunately, computer algebra systems
cannot effectively deal with the simplification of nested summations
with additional tests on the bounds of inner summations. The reason
is that the test may be symbolic, as shown in Figure 14. The solution is
to isolate possible conditions on the iteration variable from the test and
to simplify summations as shown in Equation 8 for any expression e.
Note that ¢ may not necessarily lie within the range [a..b] and relations
besides < may be used.

i{E ifi<c _{z;‘jg(”@E ifa <c @)
0

— otherwise 0 otherwise

for (i=1; i<8; i++)
for (j=i; j<3; j++)
A;

7 e
3—7 ifi<3
N =
; {0 otherwise

Figure 14. A Partially Zero-Trip Loop

paper.tex; 23/09/1999; 15:55; p.22

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 23

5.2. IMPLEMENTATION

The implementation for evaluating the summations described in the
previous section was accomplished by using the algebraic simplifier por-
tion of the CTADEL system (van Engelen et al., 1996; van Engelen et al.,
1997). The authors’ timing analyzer (Healy et al., 1999) and CTADEL
were compiled separately, but CTADEL is directly integrated into the
timing analyzer by linking the object files. This avoids unnecessary
overhead that would result from passing expressions between the tim-
ing analyzer and CTADEL by operating systems calls. The summations
are formulated in the timing analyzer and CTADEL is invoked as a C
function with the summation parameters as arguments.*

Another complication when dealing with zero-trip loops in the tim-
ing analyzer is due to the way the timing analyzer counts iterations. As
mentioned in Section 3.1, the number of loop iterations is the number
of times the loop header is executed, as opposed to the number of
times the loop body is encountered. Thus, when a loop is entered, it
is guaranteed to iterate at least once. The zero-trip case in Equation 8
can be modified to indicate a single iteration, as shown in Equation 9.

b {E ifi<ec

>

1 otherwise

0 otherwise 0 otherwise

{Z?ﬁfal(b,c—l) E ifa<c n {Z?max(a,c) 1 ife<b

Figure 15 shows how the loop nest in Figure 14 can be formulated as
a summation and solved to produce an accurate number of iterations.
Note that the test in Figure 15 has iteration variable 7 isolated to the
left of the relation. An isolation algorithm is used by CTADEL to analyze
the test and isolate the variable.

It is known that the detection of zero-trip loops in the general case
is NP-complete, because it amounts to solving a integer linear pro-
gramming problem. Similarly, adjusting the bounds of loops to avoid
partially zero-trip loops is NP-complete. This normalization process
can be performed with the Fourier-Motzkin (FM) elimination method
(Wolfe, 1996). However, one can argue that real-world algorithms rarely
exhibit (partially) zero-trip loops, because algorithms with partially
zero-trip loops are deemed to be inefficient.

The timing analyzer verifies that there are no zero-trip loops for an
inner loop by expanding its initial value and limit. Likewise, the timing

* The authors have created a Web page demonstrating the functionality of the
CTADEL. It can calculate the number of loop iterations for a loop nest specified by
the user. The URL is http://www.cs.fsu.edu/"engelen/iternum.cgi.

paper.tex; 23/09/1999; 15:55; p.23

24

Healy, Sjodin, Rustagi, Whalley and van Engelen

N 7{3—i
=1 1

ifs<3
otherwise

Figure 15. Deriving the Number of Iterations for the Loop Nest in Figure 14

analyzer is able to verify that there are no partially zero-trip loops in
the loop nest. However, if the verification is inconclusive, the loop nest
may or may not contain (partial) zero-trip loops. For instance, consider
the loop nest in Figure 16. The expansion of the innermost loop initial
value and limit is depicted in Figure 17. The timing analyzer is able to
guarantee that the inner loop is not zero-trip since the initial value is
never greater than the limit.

for (i=0; i<10; i++)
for (j=i; j<il; j++)
for (k=i-

A;

3; k<j+8; k++)

Figure 16. Innermost Loop Detected Zero-Trip Free by the Timing Analyzer

Initial Value

Limit

i—3
0.9] — 3
[~3..6]

j+8
[i..10] + 8

[[0..9]..10] + 8

[0..10] + 8
[8..18]

Figure 17. Expanding Initial and Limit Values of Innermost Loop in Figure 16

paper.tex; 23/09/1999; 15:55; p.24

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 25

Now consider the loop in Equation 18 and the corresponding expan-
sion of the initial value and limit in Figure 19. The test is inconclusive.
However, the loop nest is not zero-trip due to the 5 < ¢ condition in
the middle loop. Since the range analysis can be used to safely verify if
a loop is partially zero-trip, it is possible to use the results in deciding
which summation solver to use. For example, the loop in Figure 16
can be safely cast into a summation without a bounds tests, while
the summations for the loop in Figure 18 requires a bounds test (see
Figure 15 for an example bounds test). The disadvantage of having a
bounds test is that a loop with a stride poses problems for solving the
summation because the summation bounds test may contain modulo
operations on the iteration variable, which prohibits the application of
Equation 9.

for (i=1; i<10; i++)
for (j=0; j<i; j++)
for (k=j; k<i; k++)
A;

Figure 18. Innermost Loop Nest Detected Zero-Trip Free by CTADEL

Initial Value Limit

j i—1
[0...4] [1.9] — 1

[0..[1..9]] [0..8]
[0..9]

Figure 19. Expanding Initial and Limit Values of Innermost Loop in Equation 18

The timing analyzer decides among three possible solution methods
to evaluate the summation representing a loop nest:

— CTADEL evaluates the summation while testing the bounds of the
index variables.

— CTADEL evaluates the summation without testing for bounds.

— The timing analyzer derives conservative lower and upper bounds
on the sum, based on constant bounds given in outer level loops.

paper.tex; 23/09/1999; 15:55; p.25

26 Healy, Sjodin, Rustagi, Whalley and van Engelen

The algorithm for selecting the appropriate method is described in
Figure 20. The exact solutions are computed using safe assumptions in
the possible presence of partially zero-trip loops, using either method
(1) or (2). This algorithm will resort to method (3) only in the presence
of multiple loops with non-unit strides.

The timing analyzer verifies that the loop nest is not (partially) zero-trip.
IF the check is successful THEN
The loop nest is formulated into summation without bounds tests and
presented to CTADEL.
IF CTADEL is able to solve the summation THEN
RETURN the integer count.
ELSE
CTADEL could not solve the summation in the presence of two or more
loops with non-unit strides.
RETURN conservative lower and upper bounds on the sum.
END IF
ELSE
The check is inconclusive and the loop nest is cast into a summation with
bounds tests.
The rewritten summation is presented to CTADEL.
IF CTADEL is able to solve the summation THEN
RETURN the integer count.
ELSE
CTADEL could not solve the summation in the presence of two or more
loops with non-unit strides.
RETURN conservative lower and upper bounds on the sum.
END IF
END IF

Figure 20. Algorithm for Selecting a Solution Method for Summations

The following approach is used in the timing analyzer to obtain
tight predictions of non-rectangular loop nests whose total iterations
in a loop nest are known. The timing analyzer calculates WCET and
BCET predictions based on the maximum and minimum number of
iterations, respectively, for the loop whose number of iterations varies.
These predictions are made in case a user requests the WCET or BCET
predictions for the loop. In addition to these absolute predictions, the
timing analyzer also calculates average WCET and BCET predictions
for each loop. To calculate the average number of iterations for a loop,
we divide the total iterations by the total number of times the loop is
entered. For instance, in the previous subsection we found that the total
number of iterations for the innermost loop from the sort program in

paper.tex; 23/09/1999; 15:55; p.26

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 27

Figure 12 on page 20 was 4851. We also calculate the number of times
the current loop is entered by calculating the total number of iterations
for the loop that encloses the current loop. In this example, the inner-
most loop is entered 98 times. Thus, the average number of iterations
for the loop is 49.5 (4851/98). The average number of iterations is
used to calculate the average WCET and BCET predictions. When a
non-integer is calculated, we round up for the WCET prediction and
truncate for the BCET prediction since our loop analysis algorithm is
designed to work on an integral number of iterations.

5.3. REsSULTS

Table VI shows programs that were evaluated using the approach of
calculating an average number of iterations for loops. These programs
benefit from using this approach since they each contain one or more
non-rectangular loop nests. Note that the Sort program has been used
in the past as one of the test programs to evaluate our timing analyzer
(Arnold et al., 1994; Healy et al., 1995; White et al., 1997). The size
of a program is measured as number of assembly instructions in the
compiled and optimized program.

Table VI. Test Programs Containing Non-Rectangular Loop Nests

Name Description or Emphasis Size
Hes Reduces a 100x100 matrix to Hessenberg Form 221
Integ Evaluates a Double Integral over a Trapezoidal Region 45
Interp Polynomial Interpolation of 500 Points 178
LU LU Decomposition of a 100x100 Matrix 278
Sort Bubble sort of 500 Integers 130
Sym Tests If a 500x500 Matrix Is Symmetric 50

Table VII shows the best and worst-case cycles required for exe-
cuting with instruction caching and pipelining for the MicroSPARC I
(Texas Instruments, 1993). The previous ratio and current ratio columns
show that when the timing analyzer used the average inner loop predic-
tions, the predicted execution times were significantly tighter. Interp
showed a significant improvement in best case since the best case num-
ber of iterations for the inner loop of a non-rectangular loop nest was
1, which was significantly lower than the average number of iterations.
If the timing analyzer did not use an average number of inner loop
iterations in worst case, then the number of loop iterations for the
triangular loops in Interp, Sort, and Sym would have been approxi-

paper.tex; 23/09/1999; 15:55; p.27

28 Healy, Sjodin, Rustagi, Whalley and van Engelen

mately double. The WCET of these programs are nearly exact using
the average number of iterations. The Integ program had a higher best-
case previous ratio and a lower worst-case previous ratio since there
were other loops in this program that contributed more significantly to
the total execution time. The Sort and Sym programs did not have a
significant underestimation (i.e. previous ratio) in best case. In the best
case for Sort the values were initially sorted and the sort function exited
once the array has been detected to be in ascending order. Likewise,
the Sym program terminates when it finds the first pair of values that
are not equal. Hes and LU are unlike the other programs in that they
contain some triply nested loops. In some loop nests the loop variables
of the innermost and middle loops depend on the outermost index
variable. In other loop nests the innermost loop variable depends on
the loop variable of the middle loop, which in turn depends on the
loop variable of the outer loop. CTADEL correctly determines the exact
number of loop iterations in all of these cases and the results are more
accurate WCET predictions compared to its previous ratios. However,
the improvement in BCET for LU was less substantial.’

Table VIII shows the response time of the timing analyzer for each of
the test programs. To obtain these measurements, the timing analyzer
was invoked for each test program ten times on a Sun HPC 3000
processor. The figures in the table represent the averages of the ten
trials. Note that the times reported here include the analysis of both
best and worst case predictions, which occurred in the same invocation
of the analyzer. We found that the number of conditional constructs
(e.g. if statements) rather than the number of loops and functions,
tends to have the biggest impact on the analysis time since it affects
the number of paths that must be analyzed.

6. Coding Conventions to Make Loop Bounds Predictable

We have found that a programmer can write code where the timing
analyzer can accurately determine the number of iterations when the
following conventions are used. We do realize that these conventions

® The timing predictions for the Hes and LU programs are still fairly loose. This
is primarily due to the fact that several loops were preceded by guards resulting from
if statements and loop code generation strategies. Each of these guards tests the
value of a loop control variable. The authors have recently done work in detecting
this type of constraint (Healy and Whalley, 1999b) when dealing with rectangular
loop nests. We anticipate to extend this analysis to non-rectangular loop nests for
the final version of this paper. This ability to detect constraints on loop control
variables should substantially tighten both the WCET and BCET predictions for
the Hes and LU programs.

paper.tex; 23/09/1999; 15:55; p.28

Supporting Timing Analysis by Automatic Bounding of Loop Iterations

Table VII. Timing Analysis Results

Best-Case Results

Observed Previous Previous Current Current
Name Cycles Estimated Ratio Estimated Ratio
Cycles Cycles
Hes 306,341 13,614 0.044 256,516 0.837
Integ 19,160,842 12,785,618 0.667 19,135,118 0.999
Interp 6,485,878 143,064 0.022 6,479,865 0.999
LU 13,792,698 278,683 0.020 637,383 0.046
Sort 19,966 19,950 0.999 19,950 0.999
Sym 160 160 1.000 160 1.000
Worst-Case Results
Observed Previous Previous Current Current
Name Cycles Estimated Ratio Estimated Ratio
Cycles Cycles
Hes 55,747,317 130,932,770 2.281 57,389,258 1.029
Integ 22,538,082 30,023,163 1.332 22,553,163 1.001
Interp 25,469,403 50,702,358 1.991 25,479,405 1.000
LU 22,436,763 141,900,455 6.324 26,410,255 1.177
Sort 7,672,281 15,251,603 1.988 7,672,292 1.000
Sym 2,747,654 5,481,220 1.995 2,747,698 1.000

29

cannot always be used for some programs, such as non-numerical ap-
plications. However, we believe these conventions can be followed for
most numerical applications.

1.

When possible, make loop exit conditions only dependent on loop
counter variables.

tionally executed code.

. Use local integer variables for loop counter variables.

. Try not to increment or decrement loop counter variables in condi-

. When possible, use integer constants for the initial value, limit,

and increments of loop counter variables. Otherwise, try to use
loop invariant values.

. Try to avoid non-unit strides in non-rectangular loop nests.

paper.tex; 23/09/1999; 15:55; p.29

30 Healy, Sjodin, Rustagi, Whalley and van Engelen

Table VIII. Analysis Response Times in Seconds

Name Analysis Time
Hes 0.73
Integ 0.14
Interp 0.36
LU 1.10
Sort, 0.25
Sym 0.22
Average 0.47

6. Try to avoid conditionally executed loops in non-rectangular loop
nests.

7. Conclusions

In this paper we have presented three different methods for bounding
the number of iterations of a loop. First, a method was described that
determines the minimum and maximum number of iterations of loops
with multiple exits and also detects infeasible paths. For instance, loops
of the form in Figure 21(a) that can exit prematurely when some
condition becomes true are quite common and the bounded number
of iterations of such loops can be detected by the general algorithm
presented in the paper.

Second, a method to derive a symbolic expression representing the
number of iterations is presented. The symbolic expression is used to
bound the number of iterations of loops which have a non-constant
number of iterations. Figure 21(b) shows an example of this common
type of loop. The user can specify the minimum and maximum values
of the variables in the symbolic expression by placing assertions in
the source code or by interactively responding to prompts from the
timing analyzer. These assertions are more reliable than specifying the
minimum and maximum number of loop iterations directly since the
user does not have to be aware of the code generation strategies or
optimizations performed by the compiler. Also, if value range analysis
of variables is deployed the bounds of the variables can be automatically
provided by the compiler.

paper.tex; 23/09/1999; 15:55; p.30

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 31

for (i =0; i < 100; i++) {
for (i =0; i <n; i++) {
if (somecond)
br eak; }

(b) Loop with a Nonconstant
(a) Loop with Multiple Exits Number of Iterations

for (i =0; i < 99; i++)
for (j = i+1; j < 100; j++) {

}

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

Figure 21. Common Forms of Loops

Finally, timing analysis support is given to tightly predict the exe-
cution time of a non-rectangular loop nest, i.e. a loop nest where the
number of iterations of an inner loop is dependent on counter variables
of outer level loops. These loop nests, such as the one shown in Fig-
ure 21(c), appear frequently in programs and can result in significant
overestimations in worst-case predictions (as well as underestimations
in best-case predictions). Our approach more tightly predicts the num-
ber of iterations when the initial value or limit of the control variable
in an inner loop depends on a control variable of an enclosing outer
loop.

IF A loop variable has a non-constant loop-invariant initial value, limit, or stride
that is not dependent on an outer loop variable AND
There are no other loop variables to bound the number of loop iterations THEN
Use information provided by the user (assertions or responses to queries) as
described in Section 4 to obtain bounds on these variables.
END IF
Calculate the minimum and maximum iterations as described in Section 3.
IF The value of the loop variable is dependent on an outer loop variable THEN
Calculate an average number of iterations for the loop,
using the techniques described in Section 5.
END IF

Figure 22. Algorithm for Selecting a Solution Method for Bounding Loop Iterations

Figure 22 shows the algorithm used to decide which of the techniques
presented in this paper use for a particular loop.

paper.tex; 23/09/1999; 15:55; p.31

32 Healy, Sjodin, Rustagi, Whalley and van Engelen

These methods have been successfully integrated in an existing com-
piler and an associated timing analyzer that predicts the performance
for optimized code on a machine that exploits caching and pipelining.
The result is tighter and more reliable timing analysis predictions and
less work for the user.

Acknowledgements

The authors thank Jack Davidson for allowing vpo to be used for this
research. Manuel Benitez implemented the original algorithm in wpo to
calculate the number of iterations of a loop with a single exit condition.
Frank Mueller provided several helpful suggestions on an earlier draft
of this paper. Rizos Sakellariou provided several suggestions on a later
draft. The conversations with Rizos Sakellariou about his work on
calculating the total number of loop iterations for a non-rectangular
loop nest proved to be invaluable. The authors also appreciate the
suggestions from the anonymous reviewers, which measurably improved
the quality of the paper. This work was supported in part by NSF grant
ETA-9806525.

References

Aho, A. V., R. Sethi, and J. D. Ullman: 1986, Compilers Principles, Techniques,
and Tools. Addison-Wesley.

Arnold, R., F. Mueller, D. Whalley, and M. Harmon: 1994, ‘Bounding Worst-Case
Instruction Cache Performance’. In: Proceedings of the Fifteenth IEEE Real-Time
Systems Symposium. pp. 172-181.

Benitez, M. E. and J. W. Davidson: 1988, ‘A Portable Global Optimizer and Linker’.
In: Proceedings of the SIGPLAN ’88 Symposium on Programming Language
Design and Implementation. pp. 329-338.

Burns, A., R. Chapman, and A. Wellings: 1996, ‘Combining Static Worst-Case
Timing Analysis and Program Proof’. Real-Time Systems Journal 11, 145-171.

Char, B., K. Geddes, G. Gonnet, M. Monagan, and S. Watt: 1988, ‘MAPLE
Reference Manual’.

Ermedahl, A. and J. Gustafsson: 1997, ‘Deriving Annotations for Tight Calcula-
tion of Execution Time’. In: Proceedings of European Conference on Parallel
Processing. pp. 1298-1307.

Healy, C., R. Arnold, F. Mueller, D. Whalley, and M. Harmon: 1999, ‘Bounding
Pipeline and Instruction Cache Performance’. IEEE Transactions on Computers
48(1), 53-70.

Healy, C. A. and D. B. Whalley: 1999a, ‘Tighter Timing Predictions by Automatic
Detection and Exploitation of Value-Dependent Constraints’. In: Proceedings of
the IEEE Real-Time Technology and Applications Symposium. pp. 79-88.

paper.tex; 23/09/1999; 15:55; p.32

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 33

Healy, C. A. and D. B. Whalley: 1999b, ‘Tighter Timing Predictions by Automatic
Detection and Exploitation of Value-Dependent Constraints’. In: Proceedings of
the IEEE Real-Time Technology and Applications Symposium.

Healy, C. A., D. B. Whalley, and M. G. Harmon: 1995, ‘Integrating the Timing
Analysis of Pipelining and Instruction Caching’. In: Proceedings of the Sizteenth
IEEE Real-Time Systems Symposium. pp. 288-297.

Hennessy, J. and D. Patterson: 1996, Computer Architecture: A Quantitative
Approach, Second Edition. Morgan Kaufmann.

Hur, Y., Y. Bae, S. Lim, S. Kim, B. Rhee, S. Min, C. Park, M. Lee, H. Shin, and
C. Kim: 1995, ‘Worst Case Timing Analysis of RISC Processors: R3000/R3010
Case Study’. In: Proceedings of the IEEE Real-Time Systems Symposium.

Kligerman, E. and A. Stoyenko: 1986, ‘Real-Time Euclid: A Language for Reliable
Real-Time Systems’. IEEE Transactions on Software Engineering 12(9), 941—
949.

Lam, M.: 1988, ‘Software Pipelining: An Effective Scheduling Technique for VLIW
Machines’. In: Proceedings of the SIGPLAN ’88 Symposium on Programming
Language Design and Implementation. pp. 318-328.

Li, Y. S., S. Malik, and A. Wolfe: 1995, ‘Efficient Microarchitecture Modeling and
Path Analysis for Real-Time Software’. In: Proceedings of the Sizteenth IEEE
Real-Time Systems Symposium. pp. 298-307.

Liu, Y. and G. Gomez: 1998, ‘Automatic Accurate Time-Bound Analysis for High-
Level Languages’. In: ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems. pp. 31-40.

Lundqvist, T. and P. Stenstrom: 1998, ‘Integrating Path and Timing Analysis using
Instruction-Level Simulation Techniques’. In: ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems. pp. 1-15.

Park, C. Y. and A. C. Shaw: 1991, ‘Experiments with a Program Timing Tool Based
on a Source-Level Timing Schema’. Computer 24(5), 48-57.

Puschner, P. and C. Koza: 1989, ‘Calculating the Maximum Execution Time of
Real-Time Programs’. Real-Time Systems 1(2), 159-176.

Sakellariou, R.: 1996, ‘On the Quest for Perfect Load Balance in Loop-Based Parallel
Computations’. Ph.D. thesis, Department of Computer Science, University of
Manchester.

Sakellariou, R.: 1997, ‘Symbolic Evaluation of Sums for Parallelising Compilers’.
In: Proceedings of the 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics. pp. 685-690.

Stone, H. S.: 1990, High-Performance Computer Architecture, Second Edition.
Addison Wesley.

Texas Instruments, I.: 1993, ‘Product Preview of the TMS390S10 Integrated SPARC
Processor’.

van Engelen, R., L. Wolters, and G. Cats: 1996, ‘Ctadel: A Generator of Multi-
Platform High Performance Codes for PDE-based Scientific Applications’. In:
Proceedings of the 10th ACM International Conference on Supercomputing. pp.
86-93.

van Engelen, R., L. Wolters, and G. Cats: 1997, ‘Tomorrow’s Weather Forecast:
Automatic Code Generation for Atmospheric Modeling’. IEEE Journal of
Computational Science and Engineering 4(3), 22-31.

White, R. T., F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon: 1997,
‘Timing Analysis for Data Caches and Set-Associative Caches’. In: Proceedings
of the IEEE Real-Time Technology and Applications Symposium. pp. 192-202.

paper.tex; 23/09/1999; 15:55; p.33

34 Healy, Sjodin, Rustagi, Whalley and van Engelen

Wolfe, M. J.: 1996, High Performance Compilers for Parallel Computers. Addison-
Wesley.

paper.tex; 23/09/1999; 15:55; p.34

Bounding The Execution Time of Method Calls
Combining Static Analysis and Dynamic Class Loading

Patrik Persson
Department of Computer Science, Lund University

Patrik.Persson@cs.lth.se

Extended Abstract, February 2000

Background

Object-oriented languages are becoming more and more used in real-time
software development, but simpler languages such as C or assembly code are
more common. One reason is that the timing properties of object-oriented
programs are relatively complex to predict. Nevertheless, as increasingly
complex embedded systems become ubiquitous in our society, modern lan-
guages will be needed to develop their software. Object-orientation is indeed
already popular for analysis and design of embedded real-time systems [1];
now we need the language support for it.

More specifically, we address worst-case execution time (WCET) analysis
for object-oriented languages. Such analyses are necessary for safe schedul-
ing in real-time systems. We base our approach on the Java language,
which has received much attention in the community of embedded real-time
systems. Java is compiled to bytecode, a stack-based code model for a Java
virtual machine (JVM). The JVM is almost always a piece of software which
can be implemented on more or less any hardware platform.

Java’s bytecode approach was originally taken to support code mobility
over the Internet (applets), but has some interesting applications for embed-
ded systems. Java is designed to support dynamic class loading, that is, to
load code while the system is running. Such dynamic loading is desirable in
some embedded systems, such as industrial robots and telephone exchanges,
which often cannot be taken off-line without significant economic penalties.

We want to use Java for embedded real-time systems. While we want
to perform static analysis to ensure predictable scheduling, we also want
to retain the dynamic class loading. As we will show, these demands at
first appear contradictory, but can be combined in a manner consistent with
software engineering practice.

Timing Issues in Object-Oriented Languages

Although object-oriented languages (such as Java) share much of their se-
mantics with procedure-oriented languages such as C or Pascal, a few key
properties of these languages are of special importance in WCET analysis:

Garbage collection. A traditional garbage collector imposes unpredictable
delays in the garbage-collected process, which is clearly intolerable in a
hard real-time system. A number of real-time garbage collection tech-
niques have been developed to remedy this problem. These techniques
require information about the memory usage of the real-time process
in question, something we have treated in our previous work [3].

Virtual method calls. Unlike ordinary function or procedure calls, the
code to execute upon a virtual method call is not statically known:
it is determined at run-time. Static WCET prediction of such a call
requires special techniques.

We will now elaborate on WCET prediction of virtual method calls.

WCET Analysis of Method Calls

An automatic WCET analysis of method calls is actually possible in some
cases. If information about all possibly called implementations of a partic-
ular methods are available for analysis, one safe WCET estimation is the
longest WCET of these implementations.

This approach assumes that any of the existing implementations may be
called from a given call site. Such an approximation may be improved by
using existing type analysis techniques (e.g., [4]) developed for optimizing
compilers. A similar approach is taken in [2].

However, a global analysis is not always possible. In particular, Java
supports dynamic class loading, which means that new implementations of
a given virtual method may be introduced at run-time. To handle such an
environment, another approach is required.

Timing Constraints as Method Signature Information

We will now present an approach to handling timing requirements on virtual
methods in the context of dynamic class loading. We base this approach on
two observations:

o The WCET of a method call should be known to the programmer im-
plementing that call, even if the implementation is not yet available. If
it is not, the programmer has no way of fulfilling these requirements.

o When a new class is loaded, it must not break the timing assumptions
of the existing system. A new implementation of a virtual method
should not cause any code calling that method to miss its deadline.

These requirements are analogous to those for the type system in any
statically-typed programming language. For example, assume that the func-
tion f accepts a single integer argument. This information is used both for
semantic analysis of calls to f (to ensure that a call passes an integer argu-
ment) and of fitself (to ensure that it accepts an integer argument).

Timing constraints, such as bounds on WCETSs of virtual methods,
should be treated in a manner similar to such type information. We thus
argue that timing constraints on virtual methods should be expressed in the
method’s signature, along with the types of the parameters and the return
value.

We express this information as annotations in the form of “tagged com-
ments”. Such comments can be parsed and understood by a WCET analysis
tool, yet ignored by a traditional compiler.

Example: An Embedded Controller

To give concrete form to the discussion above, we outline a small example
of an embedded controller. The framework allows a method display in the
operator interface to be called (to display, e.g., the control parameters) upon
each execution of the controller. The controller should be possible to use
with a variety of operator interfaces, but we want to bound the WCET of
display to maintain predictability of the controller.

Figure 1 is an outline of how such a design can be expressed in our
signature-based approach.

Conclusion

We have presented an approach to managing bounds on WCETs of virtual
method calls in the context of dynamic class loading, something that must be
handled if object-oriented languages are to be used properly for hard real-
time systems. The approach gains from using a specialized class loading
mechanism which can check and handle these timing requirements. Such
mechanisms are well catered for in the current Java platform (in the form
of specialized class loaders).

Our specification-oriented approach is consistent with established soft-
ware engineering principles, considering the similarity to static typing in
programming languages.

class PIDController extends RealTimeThread {
private double uc, y, u, v;
private GUI myGUI = null;

public synchronized void setGUI(GUI g) { myGUI = g; }
public synchronized GUI getGUI() { return myGUI; }
public void run() {
long t = currentTime();
for(;;) {
y = I0.getY();
uc = I0.getUcQ);
calc_output();
I0.setU(u);
update_states();
GUI g = getGUI();

if (g != none) g.display(uc, y, u); // (R)
t += 100;
waitUntil(t);
}
}
}
class GUI {
abstract public void display(double uc,
double y,
double u)
/*$ time-bound 25ms */; // (B)
}
class SomeGUI extends GUI {
public void display(double uc,
double y,
double u) {
// Real-time stuff goes here. ()

Figure 1: Expressing WCET bounds for the operator interface in an embed-
ded controller. The call at (A) has a bounded WCET, since the top-level
declaration of the called method at (B) has a WCET bound associated with
it. The implementation at (C) must adhere to this bound.

References

[1]

2]

[4]

B. P. Douglass. Doing Hard Time: Developing Real-Time Systems With
UML, Objects, Frameworks, and Patterns. Addison-Wesley, 1999.

C. Eriksson, J. Maki-Turja, K. Post, M. Gustafsson, J. Gustafsson, K.
Sandstrom, and E. Brorsson. An Overview of RealTimeTalk: A Design
Framework for Real-Time Systems. Journal of Parallel and Distributed
Computing, Vol. 36, 1996.

P. Persson. Live Memory Analysis for Garbage Collection in Embed-
ded Systems. In Proceedings of the ACM SIGPLAN 1999 Workshop on
Languages, Compilers, and Tools for Embedded Systems (LCTES’99),
Atlanta, GA, May 1999. ACM SIGPLAN Notices 34(7), pages 45-54.

V. Sundaresan, C. Razafimahefa, R. Vallée-Rai, and L. Hendren. Prac-
tical Virtual Method Call Resolution for Java. Sable Technical Report
No. 1998-7, McGill University, Canada, 1998.

Empty page.

Obtaining execution time
for small program fragments
by testing
Markus Lindgren
MRTC, Malardalens Hogskola

markus.lindgren@mdh.se
http://www.idt. mdh.se/personal/mle

Abstract

A novel idea on how execution time of smaller parts of programs can be measured will be
presented (work in progress). The advantage of the approach is that it is applicable to
many types of processors, without requiring any changes to the method.

The measured time will later be used in high-level analysis to compute the "WCET" of the
entire program.

Empty page.

tisdag 7 mars 2000

Automating Hardware to
Software Migration for
Real-Time Embedded Systems

Alexander Dean
Carnegie Mellon University

Hardware to software migration helps embedded system designers
meet design goals by moving real-time functionality from dedicated
hardware to software running on a general purpose CPU. Cutting
hardware improves cost, size, weight, component availability,
reliability and power consumption. Using software increases flexibility
and can cut time to market. The central problem is sharing the CPU
efficiently among the multiple threads while ensuring that all
real-time operations execute on time.

Currently context-switching and busy-waiting are used to switch
threads and schedule operations; these methods slow down the
developer and use the processor inefficiently. Tight timing constraints
force programming in assembly code, greatly complicating system
development. Context switches and busy-wait nops increase program
run-time. Despite these drawbacks, design pressures often force
developers to manually migrate functions, as evidenced by software
implementations of modems, communication controllers, and even video
controllers.

This talk describes Software Thread Integration, a compiler-based
technique for automatically interleaving multiple real-time software
threads into one at the assembly language level, resulting in low-cost
or free concurrency. The fine-grain concurrency of integrated threads
is ideal for implementing real-time functions which replace dedicated
hardware. The compiler follows timing directives to automatically
integrate assembly language threads while maintaining semantic and
timing correctness. This frees the user to program in a high-level
language yet keep the timing accuracy of assembly language. This talk
will describe the integration process and results for various systems,
including a high-temperature industrial prototype which was built and
tested.

Biographical Information:

Alex Dean is finishing his Ph.D. on Software Thread Integration at
Carnegie Mellon University's ECE Department. As an engineer in an
industrial R&D lab he developed architectures and networks for
embedded systems which control automobiles, jet aircraft engines,
elevators and HVAC systems.

VR
Updated Thursday, 10-Feb-2000 17:00 by Roland Grénroos ;:' {"..1_
e-mail: artes@docs.uu.se 2 Swediik & Fovmdmtion for Strafgic Resr
&

Location: http://www.docs.uu.se/artes/events/gsconfO0/dean.shtml 1&..¢ &
o

http://www.docs.uu.se/artes/events/gsconfO0/ Page: 1
dean.shtml

Empty page.

Fixed-Priority Preemptive Multiprocessor Scheduling:
To Partition or not to Partition

Bjorn Andersson and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology
SE-412 96 Gteborg, Sweden
{ba,janjo} @ce.chalmers.se

Abstract for meeting this demand, and their availability thus paves

Traditional multiprocessor real-time scheduling parti- the way for cost-effective, high-performance real-time sys-

tions a task set and applies uniprocessor scheduling on eacems. Naturally, this new application domain introduces a

processor. For architectures where the penalty of migra- New intriguing research problem of how to take advantage

tion is low, such as uniform-memory access shared-memoryof the available processing power in a multiprocessor sys-

multiprocessors, the non-partitioned method becomes a vi-tem while at the same time account for the real-time con-
able alternative. By allowing a task to resume on another straints of the application.

processor than the task was preempted on, some task sets This paper contributes to solving this problem by ad-
can be scheduled where the partitioned method fails. dressing the issue of how to utilize processors to execute
We address fixed-priority scheduling of periodically ar- a set of application tasks in a dynamic operating environ-
riving tasks onm equally powerful processors having a ment with frequent mode changes. By mode changes we
non-partitioned ready queue. We propose a new priority- mean that the characteristics of the entire task set changes
assignment scheme for the non-partitioned method. Usingat certain points in time, for example, because new tasks
an extensive simulation study, we show that the priority- enter or leave the system (dynamically arriving events), or
assignment scheme has equivalent performance to the besjecause the existing tasks need to be re-scheduled with new
existing partitioning algorithms, and outperforms existing real-time constraints (QoS negotiation). In particular, this
fixed-priority assignment schemes for the non-partitioned paper elaborates on the problem to decide whetheara
method. We also propose a dispatcher for the non- titioned (all instances of a task should be executed on the
partitioned method which reduces the number of preemp-same processor) sron-partitioned(execution of a task is

tions to levels below the best partitioning schemes. allowed to be preempted and resume on another processor)
method should be used to schedule tasks to processors at
1 Introduction run-time. The relevance of this problem is motivated by the

Shared-memory multiprocessor systems have recentlyfaCt that many multiprocessor vgrsions .of modern operat-
made the transition from being resources dedicateding Systems (for example, Solaris or Windows NT) today
for computing-intensive calculations to common-place offer run-time support for both the partitioned and the non-
general-purpose computing facilities. The main reason for Partitioned method.
this is the increasing commercial availability of such sys- We study the addressed problem in the contexpref
tems. The significant advances in design methods for par-emptive, fixed-priority schedulinghe reasons for this are
allel architectures have resulted in very competitive cost—the following. First, the fixed-priority scheduling policy is
performance ratios for off-the-shelf multiprocessor sys- considered to be the most mature (in terms of theoretical
tems. Another important factor that has increased the avail-framework) of all priority-based scheduling disciplines. As
ability of these systems is that they have become relativelya consequence thereof, most (if not all) existing task par-
easy to program. titioning schemes for multiprocessor real-time systems are

Based on current trends [1] one can foresee an increasbased on a fixed-priority scheme. Second, most modern op-
ing demand for computing power in modern real-time ap- erating systems provide support for fixed-priority schedul-
plications such as multimedia and virtual-reality servers. ing as part of their standard configuration, which makes
Shared-memory multiprocessors constitute a viable remedyit possible to implement real-time scheduling policies on

these systems. 2 Background

It has long been claimed by real-time researchers [2, 3,4, We consider a task set= {7y, 7»,...,7,} of n inde-
5, 6] that tasks should be partitioned. The intuition behind pendent, periodically-arriving real-time tasks. The charac-
this recommendation has been that a partitioning method (i)teristics of each task; € 7 is described by the pafT’;, C;).
allows for the use of well-established uniprocessor schedul-A task arrives periodically with a period @f; and with a
ing techniques and (ii) prevents task sets to be unschedueconstant execution time @f;. Each task has a prescribed
lable with a low utilization. In this paper, we show that deadline, which is the time of the next arrival of the task.
the decision of whether to partition or not cannot solely be Theutilization u; of a taskr; is u; = C;/T;, that is, the
based on such intuition. In fact, we demonstrate in this pa-ratio of the task’s execution time to its period. The utiliza-
per that the partitioned methodi®t the best approach to tion U of a task set is the sum of the utilizations of the tasks
use in a dynamic operating environmeno this end, we belonging to that task set, that i§,= . C;/T;. Since we
make two main research contributions. consider scheduling on a multiprocessor system, the utiliza-
tion is not always indicative on the load of the system. This
is because the original definition of utilization is a property
non-partitioned method which circumvents many of of the task set only, and does not consider the number of

processors. To also reflect the amount of processing capa-

the problems identified with traditional fixed-priority " . . .
schemes. We evaluate this new priority-assignmentb.'“ty available, we introduce the concept®fstem utiliza-

scheme together with the rate-monotonic scheme fort'(t)"ri]’zU;si’ ;or?tasE S?t om prcr)ctisi?grs,_wrgch is the average
the non-partitioned method and compare their per- u Wa 0 o.gac P ocite_sso, aLte, _t /m.'l I
formance with that of a set of existing bin-packing- € consider a multiprocessor system equally

based partitioning algorithms. The evaluation indi- powerful processors. The system uses a run-time mecha-

cates that the new scheme clearly outperforms the nor‘_nism where each task is assigned a unique and fixed prior-

partitioned rate-monotonic scheme and provides per- gy‘ Thereisa regdy queue W.hlcg stores tasks Tat currently
formance at least as good as the best bin-packing- 0 not execute but are permitted to execute. As soon as a

L . processor becomes idle or a task arrives, a dispatcher selects
based partitioning algorithms. the next task (the task with the highest priority) in the ready

) - gueue and schedules it on a suitable processor.

C2. We propose a dispatcher for the non-partitioned = Recall that the focus of this paper is on preemptive
method which reduces the number of preemptions. gcheduling on a multiprocessor architecture. Multiproces-
The dispatcher combined with our proposed priority- gqr reg|-time scheduling differs from uniprocessor real-time
assignment scheme causes the number.of preempt'°”§cheduling in that we need to determine not only when
to be less than the number of preemptions generateq,sk should execute, but also on whigfocessor to exe-
by the best partitioning schemes. cute. In preemptive uniprocessor scheduling, a task can be

preempted by another task, and resume its execution later at
We evaluate the performance of the Schedu“ng a|go-adifferent time on the same processor. In preemptive multi-
rithms for multiprocessor real-time systems in the context Processor real-time scheduling, a task that is preempted by
of resource-"mitedsystems where the number of proces- another task still needs to resume its execution later at a dif-
sorsiis fixed, and use as our performance metrics the succedérent time, but the task may resume its execution on a dif-
ratio and least system utilization when scheduling a popu-ferent processor. Based on how the system wants to resume
lation of randomly-generated task sets. Since existing par-a task’s execution, two fundamentally different methods can
titioning algorithms have been proposed to be applied in abe used to implement preemptive multiprocessor schedul-
slightly different context — minimizing the number of used ing, namely, the partitioned method and the non-partitioned
processors in a system with an unlimited amount of proces—methoc}-
sors — their actual performance on a real multiprocessor ~ With the partitioned method, the tasks in the task set are
system has not been clear. divided in such a way that a task can only execute on one
The rest of this paper is organized as follows. In Sec- Processor. In this case, each processor has its own ready
tion 2, we define our task model and review related work in queue and tasks are not allowed to migrate between proces-

fixed-priority multiprocessor scheduling. We then present SOrS- With the non-partitioned mgthod, all tasks reside in a

the new priority-assignment scheme in Section 3, and eval-9lobal ready queue and can be dispatched to any processor.

uate its performance in Section 4. In Section 5, we propose/\ftér being preempted, the task can resume its execution on
and evaluate the new context-switch-aware dispatcher. WeanY Processor. The principle for the partitioned method and
conclude the paper with a discussion in Section 6 and SUM- " 155me authors refer to the non-partitioned method as “dynamic bind-

marize our contributions in Section 7. ing” or “global scheduling”.

Cl. We propose a new fixed-priority scheme for the

Partitioned method Non-partitioned method

P1 P2 P3 P1 P2 P3

Figure 1: With the partitioned method a task can only execute on one processor. With the non-partitioned method a task can
execute on any processor.

the non-partitioned method is illustrated in Figure 1. having its own dedicated processor. Since an optimal so-
For fixed-priority scheduling of periodically-arriving Iution to the problem of partitioning the tasks is compu-
tasks on a multiprocessor system, both the partitionedtationally intractable, many heuristics for partitioning have
method and the non-partitioned method have been ad-been proposed, a majority of which are versions of the bin-
dressed in previous research. Important properties ofpacking algorithm[2, 3, 4, 5, 8, 10, 11, 6, 9]. All of these
the real-time multiprocessor scheduling problem were pre-bin-packing-based partitioning algorithms provide perfor-
sented in a seminal paper by Leung and Whitehead [7]. mance guarantees, they all exhibit fairly good average-case
For example, they showed that the problem of deciding performance, and they can all be applied in polynomial time
if a task set is schedulable (that is, all tasks will meet (using sufficient schedulability tests).
their deadlines at run-time) is NP-hard for both the parti- The non-partitioned method has received considerably
tioned method and the non-partitioned method. They alsoless attention, mainly because of the disadvantages listed
observed that the two methods are not comparable in ef-gbove, but also because of the following two reasons. First,
fectiveness in the sense that there are task sets which argo effective optimal priority-assignment scheme has been
schedulable with an optimal priority assignment with the found for the non-partitioned method. It is a well-known
non-partitioned method, but cannot be scheduled with anfact that the rate-monotonic priority assignment scheme
optimal partitioning algorithm and conversely. proposed by Liu and Layland [12] is an optimal priority
When comparing the partitioned method and the non- assignment for the uniprocessor case. Unfortunately, it
partitioned method, other researchers have listed the fol-has been shown that the rate-monotonic priority-assignment
lowing disadvantages for the non-partitioned method. First, scheme is no longer optimal for the non-partitioned method
a task set may not be schedulable on multiple processorg3, 7]. Second, no effective schedulability tests exist for
even though it has a system utilization that approaches zerahe non-partitioned method. Recall that, for the partitioned
[2, 3, 4, 5]. Second, the plethora of well-known techniques method, existing uniprocessor schedulability tests can be
for uniprocessor scheduling algorithms (such as shared reused. The only known exact (necessary and sufficient)
source protocols), cannot be used [8]. Third, the run-time schedulability test for the non-partitioned method has an
overhead is greater because the assignment of a processor tponential time-complexity [13]. Liu has proposed a suf-
atask needs to be done each time the task arrives or resumefeient schedulability test for the rate-monotonic priority-
its execution after being preempted [9]. assignment scheme [14], which, unfortunately, becomes
Among the two methods, the partitioned method has re-very pessimistic when the number of tasks increases. Re-
ceived the most attention in the research literature. Thecently, another sufficient schedulability test for the rate-
main reason for this is probably that the partitioned method monotonic priority-assignment scheme was proposed inde-
can easily be used to guarantee run-time performance (in
terms of schedulability). By using a uniprocessor schedu- 2The bin-packing algorithm works as follows: (1) sort the tasks accord-
lability test as the admission condition when adding a new ing to some criterion; (2) select the first task and an arbitrary processor; (3)
task to a processor, all tasks will meet their deadlines at run-21eMPt {o assign the selected task to the selected processor by applying a
. . . schedulability test for the processor; (4) if the schedulability test fails, se-
time. Now, recall that the partitioned method requires that ject the next available processor; if it succeeds, select the next task; (5)
the task set has been divided into several partitions, eactyoto step 3.

pendently by three research groups [15, 16, 17]. Unfortu- scheduling. We then proceed to motivate our new priority-
nately, this schedulability test has the disadvantage of be-assignment scheme and discuss how it can be optimized for
coming pessimistic for task sets running on a large num- the non-partitioned method.
ber of processors [15, 16]. These schedulability tests all \yhile the partitioned method relies on well-known opti-
have a polynomial (for [17], a pseudo-polynomial) time- ma| uniprocessor priority-assignment schemes, such as the
complexity. These research groups also found that the conyate-monotonic scheme, it is not clear as to what priority-
dition for a critical instant in uniprocessor scheduling can- assighment scheme should be used for the non-partitioned
not be applied in multiprocessor scheduling. This is anim- method. To that end, Leung [13], and lateae3ét al.
portant observation since it indicates that completely new 9], evaluated dynamic-priority schemes and showed that
approaches must be used to devise a schedulability test fothe |east-laxity-first strategy performs the best for the non-
the non-partitioned method. partitioned case. In the case of fixed-priority schedul-
Since there currently exist no effici€énschedulability ing, adopting the idea used by Audsley [23] and Baruah
tests for non-partitioned method, it is tempting to believe [24] (testing for lowest priority viability) is unsuitable be-
that the non-partitioned method is inappropriate for real- cause existing schedulability tests for non-partitioned fixed-
time systems. However, our study of the non-partitioned priority scheduling are too pessimistic. The only known
method for real-time systems is motivated by the follow- results report that the rate-monotonic priority assignment
ing two reasons. First, many real-time systems do not rely scheme does not work well for the non-partitioned method.
on a schedulability test, for example, those which employ This is because, for rate-monotonic scheduling on a unipro-
feedback control scheduling [18, 19, 20] or QoS negotia- cessor, a sufficient (but not necessary) condition for schedu-
tion techniques [21]. Second, even if a real-time system |ability of a task set is that the utilization of the task set
does rely on a schedulability test, we believe that in devel- js |less than or equal ttm2. For non-partitioned multi-
oping better priority-assignment schemes, we may pave theprocessor scheduling using the rate-monotonic priority as-

way for effective schedulability tests in the future. signment, no such property exists. Originally presented by
To focus on the core problem, we make the following Dhall [2, 3] (and later repeated in, for example, [4, 5, 7]),
assumptions in the remainder of this paper: the basic argument is as follows. Assume that the task

, set(T) = 1,01 = 2¢),(Ty = 1,05 = 2¢),...,(Th =
Al. Tasks require no other resources than the Processorsy ¢, = 2¢), (Tyi1 = 1 +¢, Cpust = 1) should be sched-
This implies that tasks do not contend for an intercon- jeq ysing the rate-monotonic priority assignment scheme
nect, such as a bus, or critical sections. onm processors. The situation for = 3 is shown in Fig-
ure 2. In this caser,,+1 will have the lowest priority and
will only be scheduled after all other tasks have executed in
parallel. The task set is unschedulable and as 0, the
utilization become#’ = 1 no matter how many processors

A3. A task can always be preempted. In practice, though,are us_e_d. Another way of_formulatlng this is that the sys-
tem utilizationU, = U/m will decrease towards zero as

one has to be aware of the fact t.h at operating Sys’tems‘mcreases. We will refer to this observatiorsall’s effect
typically use tick-driven scheduling where the ready

queue can only be inspected at a maximum rate. ~ Now, we observe that if,,,, could somehow be as-
signed a higher priority, the given task set would be schedu-
A4. The cost of preemption is zero. We will use this as- lable. To see this, simply assign task priorities according to
sumption even if a task is resumed on another proces-the difference between period and execution time of each

sor than the task was originally preempted on. In a real task. Then.,,;; would be assigned the highest priority,
system, though, the cost of context switch is typically and the task set would still be schedulable even if the exe-

A2. Tasks are synchronous in the sense that their initial ar-
rivals occur at the same instant of time and then the
tasks arrive periodically.

in the order ofL00 s [22]. cution time of any single task would increase slightly.
o _ The fundamental problem demonstrated with the exam-
3 Priority assignment ple above can be summarized as follows. In fixed-priority

One of our major contributions in this paper is a new Scheduling using the rate-monotonic scheme, many tasks
priority-assignment scheme for the non-partitioned method.with short period, but with relatively (with respect to pe-
In this section, we begin by recapitulate some known resultsriod) short execution time, can block the available comput-
concerning priority-assignment schemes for multiprocessoring resources so that tasks with longer period, but with rel-
PP — N _ atively long execution time, will miss their deadlines. This

By "efficient” we mean that the schedulability test can be done Iin ., 4jcates that a more appropriate strategy to assign priori-
polynomial time (as a function of tasks, not task invocations) and that the . .
schedulability test always deems task sets as schedulable if the task set hd€S for the non-partitioned method would be to reflect both

a utilization which is less than a fixed ratio of the number of processors. time criticality and resource demands of each task.

. [n |
’ BN
T2 T2

P3
T3 T4 T3

0 2¢ 1\1+e€
[
[
[
|

T1
T2
T3
T4

| 74 needs to compute

2¢ more time units.

Figure 2: If the rate-monotonic priority assignment for the non-partitioned method is used, there are unschedulable task sets
with a low utilization.

An example of such a strategy would be one that priori- using the TkC priority-assignment scheme with+ oo on
tizes tasks according to the difference between the period ofm processors. The situation for = 3 is illustrated in Fig-
a task and its execution tifheBased on this, we now pro- ure 4. Now, ag — 0, this task set is unschedulable with a
pose a new priority assignment scheme, callk@, where utilization U = 0 no matter how many processors are used.
the priority of taskr; is assigned according to the weighted Of course, the system utilizatidii;, = U/m will also de-
difference between its period and its execution time, that crease toward asm increases. Consequently, this effect is
is, T; — k - C;, wherek is a globalslack factor Note even worse than Dhall’s effect.

that, by }Jsi_ng thisf model, we can represent two traditionally |, conclusion, we observe thatshould be greater than
used priority assignment schemes, namely the rate monoq pyt not too large. Lauzaet al. [16] evaluated the per-

tonic (whenk = 0) and the slack monotonic (whén= 1) formance of the non-partitioned fixed-priority scheduling.

sele.c.ted to contribute to the best performance for the non- 5te-monotonic scheme), which clearly is not the best

partitioned method. In Section 4.2, we simulate scheduling with different val-

3.1 Reasoning about k ues of k to determine whichk is best. In Section 4.3,
Itis clear from the discussion above that, in order to es- W& show that the non-partitioned method using the TkC

cape from Dhall's effect, we should seldet> 05. The priority-assignment scheme outperforms all existing fixed-

remaining question is then what valueskofield the best Priority schemes for the non-partitioned method and per-

performance. Even for al < k& < 1, something sim- forms atleast as good as the best practical online partition-

ilar to Dhall's effect can occur. Assume that the task set iNg schemes.

(h = 1,0, = %),(TQ = 1,0, = %),...,(Tm =

1,Cm = 1), (Tmy1 = L*++,Cpqr = L? — 1 - L) should _

be scheduled using the TkC priority-assignment scheme? Performance evaluation

with 0 < k < 1 onm processors. The situation for = 3 In this section, we will conduct a performance evaluation

is shown in Figure 3. Now, ab — oo, the task setis un- ¢ the non-partitioned and partitioned method. Our evalua-

schedulable with a utilizatioV = 1. On the other hand, 5 methodology is based on simulation experiments using

selecting too large & s a bad idea since task priorities will o qomiy-generated task sets. The reasons for this are that

then be selected such that the tasks with the longest exery gimylation using synthetic task sets more easily reveal

cution time obtains the highest priority. Assume that the 4 average-case performance and robustness of a schedul-

task se(T1 = 1,01 = ¢), (T2 = 127 Cr =€), (T = ing algorithm than can be achieved by scheduling a single
1,Cm =€), (Tm41 = €,Cpnya = €”) should be scheduled 55 jication benchmark, and (i) with the use of simulation
4This is what is typically referred to as tistackof the task. we can compare the besfrom simulation with the derived

5Selectingk < 0 can also cause Dhall's effect. interval of k from our reasoning in Section 3.1.

P1

T2 T T2

:

T3 T4
0 1/L

|

|

|

|

T3 ‘ T3
1+1/L L’ IF1/L

T1
T2
T3
T4

- — — =i

Figure 3: If the TkC priority assignmend (< & < 1) for the non-partitioned method is used, there are unschedulable task
sets with a low utilization.

4.1 Experimental setup metric in the real-time community and measures the proba-

BelOW, we describe our performance evaluation. Unless blllty that an arbitrary task set is schedulable with reSpeCt to

otherwise Stated, we conduct the performance evaluatiom® certain algorithm. The least system utilization is defined
using the following experimental setup. as the minimum of the system utilization of all the task sets

Task sets are randomly generated and their schedulindhat we simulated and found to be unschedulable. The least
is simulated with the respective method on four processors System utilization is primarily used to see if an algorithm is
The number of tasks, follows a uniform distribution with likely to suffer from Dhall's effect and similar effects, that
an expected value df[n] = 8 and a standard deviation of IS, if a task set will be unschedulable even for a low uti-
0.5 E[n]. The period,T;, of a taskr; is taken from a set lization. The plots showing the least system _ut|||zat|on will
{100,200, 300, ..., 1600}, each number having an equal belless ;mpoth than those from the smul_qﬂm_ws of success
probability of being selected. The utilization;, of a task ~ ratio. This is because the least system utilization reflects a
7; follows a normal distribution with an expected value of Minimum of numbers rather than an average.

Elu;] = 0.5 and a standard deviation efddev|u;] = 0.4. Two non-partitioned priority-assignment schemes are
If u; < 0oru; > 1then a new; is generated. The exe- evaluated, namelgRMwhich is the rate-monotonic priority-
cution time,C;, of a taskr; is computed from the generated assignment scheme, afét1.1Cwhich is the TKC priority-
utilization of the task, and rounded down to the next lower assignment scheme with = 1.1 (in Section 4.2, we will
integer. If the execution time becomes zero, then the task isshow that this is indeed the bdgt Four bin-packing-based
generated again. partitioning schemes are studied, namely RRM-BF [10],

The priorities of tasks are assigned with the respective RM-FFDU [11], RMGT [8], and R-BOUND-MP [6]. The
priority-assignment scheme, and, if applicable, tasks arereason for selecting these algorithms is that we have found
partitioned and assigned to processors. All tasks arrive atthat they are the partitioning algorithms which provide the

time 0 and scheduling is simulated durihgn (71, ..., T},). best performance in our experimental environment. Since
The reason for selecting small valueswfand E[n] is that partitioning schemes use a schedulability test as a part of the
lem(Tt, ..., T,) grows rapidly as: is increased, causing Ppartitioning, the success ratio is here also a guarantee ratio.
simulations to take too long time. Note that this property does not apply for scheduling algo-

Two performance metrics are used for eva|uating the rithms USing the non'partitionEd method. We have also eval-
simulation experimentS, namé}dccess ratiandleast sys- uated a hybnd partitionEd/nOn'partitiOHEd algorithm, which
tem utilization The success ratio is the fraction of all gen- We will call RM-FFDU+Tk1.1C The reason for consider-
erated task sets that are schedulable with respect to an aling @ hybrid solution is that we may be able to increase
gorithf . The success ratio is a recognized performance

than 0.0006 for Figure 5 and 0.0014 for Figures 6 and 7.

6Since the number of task sets for each point differs between plots (5 “To ensure correct operation of our simulator, we repeated previous
000 000 in Figure 5 and 2 000 000 in Figures 6 and 7, we obtain different experiments [10, pages 235-236] and [8, pages 1440-1441] with identical
estimates of the error. With 95% confidence, we obtain errors that are lessresults, and [11, pages 36—-37] with similar results.

P1

T2

T3

T1
T2
T3

T4 \\
74 Needs to
execute:? time units.

Figure 4: If the TkC priority assignmenk (— oo) for the non-partitioned method is used, there are unschedulable task sets
with a low utilization.

processor utilization with the use of non-partitioned tasks, indicates that our new parametrized priority-assignment
without jeopardizing the guarantees given to partitioned scheme works as predicted. In particular, we notice that
tasks. The RM-FFDU+Tk1.1C scheme operates in the fol- the traditional RM scheme is outperformed by more than
lowing manner. First, as many tasks as possible are parti-10 percentage units. The least system utilization associated
tioned with RM-FFDU on the given number of processors. with Tk1.1C is equivalent to that of the best existing par-
Then, the remaining tasks (if any) are assigned priorities ac-titioning algorithms. Note how the least system utilization
cording to the Tk1.1C priority-assignment scheme. In order of RM decreases considerably as the number of processors
not to jeopardize the partitioned tasks, the priorities of the increases, simply because of Dhall's effect. Also observe
non-partitioned tasks are set to be lower than the priority of that Tk1.1C does not appear to suffer from Dhall’s effect.
any partitioned task.

Below, we make two major experiments. First, we will
vary k to find the besk and compare the results with our
reasoning in Section 3.1. Second, we will compare the per-
formance of the Tk1.1C method with that of the partitioning
algorithms.

In a complementary study [25], we have also investi-
gated the robustness of the scheduling algorithms by vary-
ing the other parameter&{n|, E[u;] andstddev|u;]) that
determine the task set. Here, we observed that the rela-
tive ranking of the algorithms does not change; the Tk1.1C
priority-assignment scheme still offers the highest success
4.2 Finding the best k ratio. Furthermore, Tk1.1C continues to provide a least uti-

Figure 5 shows the success ratio and the least system utitization which is equivalent to that of the best existing par-
lization as a function of the slack factbr From the plotwe titioning algorithms. This further supports our hypothesis
make two important observations. First, the least systemthat Dhall’s effect does not occur for Tk1.1C.
utilization and the success ratio are correlated. This implies

! . . From the plots in Figures 6 and 7, we can also
that selecting an appropriateto maximize the least sys- plots 'gures W 3

L . ; make the following two observations. First, the hybrid
tem utilization will provide a good (though not necessary L e .
partitioning/non-partitioning scheme consistently outper-

optimal) k£ for the success ratio. Second, choosing 1.1 . o SRR
provides the best success ratio. This corroborates that ouFOrrns the correspond_mg partmo_nmg _schemes. Th|s indi-
reasoning in Section 3.1 was ac.curate cates that such a hybrid scheme is a viable alternative to use
' ' in multiprocessor systems that mixes real-time tasks of dif-
4.3 Performance comparison ferent criticality. Second, the success ratio of RM is not as
In Figures 6 and 7, we show the performance as a func-bad as suggested by previous studies [2, 3, 4, 5, 7]. The rea-
tion of the number of processors. The success ratio associson for this is of course that Dhall’s effect, although it exists,
ated with the Tk1.1C priority-assignment scheme is higher does not occur frequently. This observation corroborates a

than that of any other scheduling algorithm. This clearly recent study [16].

[m=4,E[n]=8,E[u]=0.5,stddev[u]=0.4]

0.38 T T - . 0.6
success ratio (TkC) —+—
system utilization (TkC) ---x---
0.36 055
0.34
] 05 ¢
2 S
T 032 g
% 0.45 E
S 03 £
@ 1
>
04 @
0.28
0.26 4 0.35
0.24 1 1 1 1 1 0.3
0 0.5 1 1.5 2 25 3

k

Figure 5: Success ratio and least system utilization as a function of the slackifactor

For all partitioning algorithms, sufficient schedulabil- 5.1 Dispatcher

ity tests were originally proposed to be used. Now, if we The non-partitoned method using fixed-priority
instead use a schedulability test based on response—timgchedu“ng does only require that, at each instant,nthe
analysis for the partitioning schemes, the success ratio caRasks with the highest priorities are executed; it does not
be expected to increase, albeit at the expense of a signifrequire a task to run on a specific processor. Hence, as long
icant increase in computational complexity. Recall that a5 the cost for a context switch is zero, the task-to-processor
response-time analysis has pseudo-polynomial time com-assignment at each instant does not affect schedulability.
plexity, while sufficient schedulability tests typically have However, on real computers the time required for a context
polynomial time-complexity. We have simulated the par- switch is non-negligible. If the task-to-processor assign-
titioning algorithms using response-time analysis [25] and ment is selected arbitrarily, it could happen (in theory) that
made the following observation. The FFDU algorithm now g)| »;, highest-priority tasks execute on another processor
occasionally provides a slightly higher success ratio thanthan they did the last time they were dispatched, even if
Tk1.1C, while other partitioning algorithms did notimprove thesem tasks were the ones that executed last. Hence, to
their performance that much, and still had a lower successyeduce the risk of unnecessary context switches, we need
ratio than the Tk1.1C. Note that this means that, even if the g dispatcher that not only selects the highest-priority
best partitioning algorithm (R-BOUND-MP) were to use tasks, but also selects a task-to-processor assignment such
response-time analysis, it would still perform worse than that the number of context switches is minimized.
Tk1.1C. This should not come as a surprise since, for R- \yg now propose a heuristic for the task-to-processor as-
BOUND-MP, the performance bottleneck is the partitioning signment that will reduce the number of context switches
and not the schedulability test [6]. for the non-partitioned method. The heuristic is intended
to be used as a subroutine in the dispatcher in an operating
system. The basic idea of the task-to-processor assignment
5 Context switches algorithm is to determine which of the tasks that must ex-
ecute now (that is, have the highest priority) have recently
It is tempting to believe that the non-partitioned method executed, and then try to execute those tasks on the same
causes a larger amount of (and more costly) contextprocessor as their previous execution. The algorithm for
switches than the partitioned method. In this section, we this is described in Algorithm 1.
will propose a dispatcher for the non-partitioned method)
that reduces the number of context switches by analyzingd-2 Comparison of the number of context
the current state of the scheduler. We will also compare switches
the number of context switches generated by the best non- Two terms contribute to the time for context switches: (i)
partitioned method using our dispatcher with that of the bestoperating system overhead, including register save and re-
partitioning scheme. store and time to acquire a lock for the ready queue, and (i)

[E[n]=8,E[u]=0.5,stddev{u]=0.4]

RM (=TkOC) —+—

TKL1C ¢

RRM-BF ------

RM-FFDU &
0.8 FRM-FFDU+TK1.1C —-m--)
RMGT - -o -]

R-BOUND-MP e P

success ratio

Figure 6: Success ratio as a function of the number of processors.

Algorithm 1 Task-to-processor assignment algorithm for interval oflem(7}, 7>, ...,T,) and use that as a measure
the non-partitioned method. of the impact of context switches on the performance of the
Input: Let 7. 0 be the set of tasks that just executed on the partitioned method and the non-partitioned method. Note,
m processors. On each procespara (possibly non-existing) however, that this does not measure the impact of context
taskij e fore €X€CUtEd. Letnighes: be the set of tasks thatare switches on schedulability, but gives an indication on the
in the ready queue and has the highest priority. amount of overhead introduced.
Output: On each processgr;, a (possibly non-existing) task To reveal which of the two methods (partitioned or non-
Tij,a fter ShoOUld execute. o -
LB = (o (rs isting) A (7:1 partitioned) that suffers the highest penalty due to context
o {7;1}' (Tijivesore 7 mon — existing) A (ijuefore € gpitches, we have simulated the scheduling of randomly-
” fglfgeh;éﬁp_ cE generated task sets and counted the number of preemptions.
. We simulate scheduling using Tk1.1C and R-BOUND-MP

3: TeMOVe T4j be fore fTOM Thighest - .
& Tijafter < Tijbefore because they are the best (as demonstrated in Section 4.3)
5: for each p; ¢ E schemes for the non-partitioned method and the partitioned
6. if Thighest 7# 0 method, respectively. We use the same experimental setup
7: select an arbitrary 7; from Thighest as described in Section 4.1. We varied the number of
8: remove 7; from Thighest tasks and counted the number of preemptions only for
91 Tijafter < Tj those task sets for which both Tk1.1C and R-BOUND-
10: else o MP were schedulable. Since different task sets have dif-
110 Tijajter ¢ non — existing ferentlem(T1, ..., T,), the impact of task sets with large
lem(Ty,...,T,) will be too large. To make each task set

an increase in execuction time due to cache reloading. Weequally important, we select to upeeemption densitgs a
assume that the penalty for cache reloading when a task igneasure of the context-switch overhead. Preemption den-
preempted, and resumes on another processor, is the sanféty of a task set is defined as the number of preemptions
as if the task would resume on the same processor after beduring alem(71, ..., T;,) divided by thelem(T1,. .., T;)

ing preempted. If the preempting task (that is, the new task)itself. We then take the average of the preemption density
has a large working set, this should be a reasonable assump2ver a set of 100 000 simulated task 8ets

tion. We also assume that the operating system overhead The results from the simulations are shown in Figure 8.
to resume a preempted task on the same processor is thé/e observe that, on average, the preemption density for
same as when the task resumes on another processor. Und#re best non-partitioned method (Tk1.1C) is lower than
these assumptions, the cost of a context switch is the saméhe preemption density for the best partitioned method (R-
for the partitioned method and the non-partitioned method. BOUND-MP). The reason for this is that, for the partitioned
Hence, we can count the number of preemptions during an

8Hence we obtain an error of 0.0004 with 95% confidence.

[E[n]=8,E[u]=0.5,stddev[u]=0.4]
1 T T

RM (=TkOC) —+—

TKL.1C ---—-
RRM-BF ---%---

RM-FFDU 8-

08 |- RM-FFDU+Tk1.1C - -® -
RMGT - o -

R-BOUND-MP e -

system utilization

Figure 7: Least system utilization as a function of the number of processors.

method, an arriving higher-priority task must preempt a is made. Our suggested hybrid approach offers one solution
lower-priority task. With the non-partitioned method, a to exploiting system resources effectively, while at the same
higher priority task can sometimes execute on another idletime providing guarantees for those tasks that require so.
processor, thereby avoiding a preemption. Figure 9 illus- The hybrid solution proposed in this paper applies the parti-
trates a situation where the non-partitioned method with ationed method to the task set until all processors have been
context-switch-aware dispatcher causes the number of prefilled. The remaining tasks are then scheduled using the
emptions to be less than the number of context switches fornon-partitioned approach. An alternativ approach would be
a partitioned method. to partition only the tasks that have strict (that is, hard) real-

The reasoning and evaluations in this section indicatetime constraints, and then let the tasks with less strict con-
that the cost of context switches for the non-partitioned straints be scheduled by the non-partitioned method. Since
method can be made significantly less than for the parti- itis likely that shared-memory multiprocessors will be used
tioned method. This means that it is should be possibleto schedule mostly tasks of the latter type, we expect even
to demonstrate even more significant performance gain inbetter performance (in terms of success ratio) for the hybrid
terms of schedulability for the non-partitioned method rela- solution.

tive to the partitioned method on a real multiprocessor sys- The non-partitioned method can perform mode changes

tem. faster than the partitioned method since tasks are not as-
)) signed to dedicated processors. For the partitioned method
6 Discussion it may be necessary to repartition the task set during the

The simulation results reported in Section 4.3 indicate mode change, something which significantly decreases the
that the non-partitioned method in fact performs better number of instants in time that a mode change can take
than its reputation. Besides the advantages demonstrateglace at. In a complementary study, we have observed pairs
through our experimental studies, there are also other beneof task sets between which a mode change can only be al-
fits in using the non-partitioned method. Below, we discuss lowed to take place at a few instants in time, otherwise dead-
some of those benefits. lines will be missed. The lack of capability to perform fast

The non-partitioned method is the best way of maximiz- mode changes limits the degree of flexibility in the system,
ing the resource utilization when a task’s actual execution Which is a serious drawback when working with dynamic
time is much lower than its stated worst-case execution timeapplication environments.

[16]. This situation can occur when the execution time of As shown in this paper, the non-partitioned method can
a task depends highly on user input or sensor values. Sincéde extended to account for processor affinity with the aid of
the partitioned method is guided by the worst-case excutionour proposed context-switch-aware dispatcher. The net re-
time during the partitioning decisions, there is a risk that sult of this extension is that the non-partitioned method in-
the actual resource usage will be lower than anticipated, anccurs fewer context switches at run-time than the partitioned
thus wasted if no dynamic exploitation of the spare capacity method on the average. However, it is important to real-

[m=4,E[u]=0.5,stddev[u]=0.4]

0.0045

TkL1C

0.004 [R-BOUND-MP --x--

0.0035
0.003
0.0025

0.002

preemption density

0.0015
0001 F _x~

0.0005

Figure 8: Preemption density as a function of the number of tasks in the system.

ize that this new dispatcher requires more synchronizationwe have also evaluated a hybrid solution that combined
between processors. The overall effect of this extra syn-the resource-effective characteristics of the non-partitioned
chronization remains to be seen and is consequently a submethod with the guarantee-based characteristics of the par-
ject for future research. Also, it will be necessary to assesstitioned method. The performance of the hybrid solution
the real costs for context switches and cache reloading andvas found to be at least as good as any partitioned method.
its impact on schedulability. However, this warrants eval- Second, we proposed a context-switch-aware dispatcher for
uation of real applications on real multiprocessor architec- the non-partitioned method that contributes to significantly
tures, which introduces several new system parameters toeducing the number of context switches taken at run-time.
consider. In fact, we show that the number of context switches taken
Finally, it should be mentioned that the results obtained is less than that of the partitioned method for similar task
for the TkC priority-assignment scheme constitute a strong sets.
conjecture regarding the eX|ste_n_ce of a fixed-priority assign- References
ment scheme for the non-partitioned method that does not [1] K. Diefendorff and P. K. Dubey. How multimedia
suffer from Dhall's effect. The results also indicate that ' . o Y- .
there is a need to configure TkC for each application and workloads V_V'“ change processor desigiEE Com-
system size. However, in order to use TkC in a system puter, 30(9):43-45, September 1997.

with eXClUSively strict real-time constraints, it is also im- [2] S. Dhall. Schedu”ng Periodic-Time-Critical Jobs on

portant to find an effective SChedUlability test. In our future S|ng|e Processor and Mu|tiprocessor Computing Sys_

research we will therefore focus on (I) prOVing that TkC tems PhD thesis, Department of Computer Science,

does in fact not suffer from Dhall’s effect, (ii) constructing University of lllinois at Urbana-Champain, 1977.

a (most likely, sufficient) schedulability test for TkC, and

(iii) devising a method to derive the best slack fadtdor [3] S. K. Dhalland C. L. Liu. On areal-time scheduling

any given task set and multiprocessor system. problem. Operations Researgt26(1):127-140, Jan-
uary/February 1978.

7 Conclusions . ,
. [4] S. Davari and S.K. Dhall. On a real-time task alloca-
In this paper, we have addressed the problem of schedul- ~ * 5, proplem. In19th Annual Hawaii International

ing tasks on a multiprocessor system with changing work- Conference on System Sciencpages 810, Hon-

loads. To that end, we have made two major contribu- olulu, Hawaii, 1985.

tions. First, we proposed a new fixed-priority assign-

ment scheme that gives the non-partitioned method equal [5] S. Davari and S.K. Dhall. An on-line algorithm for
or better performance than the best partitioning schemes. real-time task allocation. IRroc. of the IEEE Real-

Since the partitioned method can guarantee that deadlines Time Systems Symposiwonlume 7, pages 194-200,
will be met at run-time for the tasks that are partitioned, New Orleans, LA, December 1986.

[6]

S. Lauzac, R. Melhem, and D. Mass’An efficient
RMS admission control and its application to multi-
processor scheduling. Froc. of the IEEE Int'l Par-
allel Processing Symposiympages 511-518, Orlando,
Florida, March 1998.

[7] J. Y.-T. Leung and J. Whitehead. On the complex-

ity of fixed-priority scheduling of periodic, real-time
tasks. Performance Evaluation2(4):237-250, De-
cember 1982.

[8] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

strategies for assigning real-time tasks to multipro-
cessor systems.I[EEE Transactions on Computers
44(12):1429-1442, December 1995.

S. Sez, J. Vila, and A. Crespo. Using exact feasibility [

tests for allocating real-time tasks in multiprocessor
systems. IilOth Euromicro Workshop on Real Time
Systemspages 53-60, Berlin, Germany, June 17-19,
1998.

Y.Ohand S. H. Son. Allocating fixed-priority periodic
tasks on multiprocessor systenfReal-Time Systems
9(3):207-239, November 1995.

Y. Oh and S. H. Son. Fixed-priority scheduling
of periodic tasks on multiprocessor systems. Tech-
nical Report 95-16, Department of Computer Sci-
ence, University of Virginia, March 1995. Avail-
able at ftp://ftp.cs.virginia.edu/pub/techreports/CS-
95-16.ps.Z.

C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the Association for Computing Ma-
chinery, 20(1):46—61, January 1973.

J. Y.-T. Leung. A new algorithm for scheduling pe-
riodic, real-time tasks.Algorithmica 4(2):209-219,
1989.

C. L. Liu. Scheduling algorithms for multiprocessors
in a hard real-time environment. BPL Space Pro-
grams Summary 37-60olume Il, pages 28-31. 1969.

B. Andersson. Adaption of time-sensitive tasks
on shared memory multiprocessors: A frame-
work suggestion. Master's thesis, Department
of Computer Engineering, Chalmers Univer-

sity of Technology, January 1999. Available at

(17]

(18]

19]

(20]

(21]

[22]

(23]

(24]

(25]

http://www.ce.chalmers.se/staff/ba/magtezsis/ps/thesis.ps

and http://www.docs.uu.se/snart/prizes.shtml#1999.

S. Lauzac, R. Melhem, and D. Mass'Comparison
of global and partitioning schemes for scheduling rate

monotonic tasks on a multiprocessor.1idth Euromi-
cro Workshop on Real Time Systeipages 188-195,
Berlin, Germany, June 17-19, 1998.

L. Lundberg. Multiprocessor scheduling of age con-
traint processes. |Bth International Conference on
Real-Time Computing Systems and Applicatidtis
roshima, Japan, October 27-29, 1998.

J. A. Stankovic, C. Lu, and S. H. Son. The case
for feedback control real-time scheduling. Tech-
nical Report 98-35, Dept. of Computer Science,
University of Virginia, November 1998. Avail-
able at ftp://ftp.cs.virginia.edu/pub/techreports/CS-
98-35.ps.Z.

J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case
for feedback control real-time scheduling. Mmoc.

of the EuroMicro Conference on Real-Time Systems
volume 11, pages 11-20, York, England, June 9-11,
1999.

C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design
and evaluation of a feedback control EDF scheduling
algorithm. InProc. of the IEEE Real-Time Systems
SymposiunPhoenix, Arizona, December 1-3, 1995.

S. Brandt and G. Nutt. A dynamic quality of service

middleware agent for mediating application resource
usage. InProc. of the IEEE Real-Time Systems Sym-
posium volume 19, pages 307-317, Madrid, Spain,
1998.

J. C. Mogul and A. Borg. Effect of context switches
on cache performance. Imternational Conference
on Architectural Support for Programming Languages
and Operating Systempages 75-84, Santa Clara, CA
USA, April 8-11, 1991.

N. C. Audsley. Optimal priority assignment and feasi-
bility of static priority tasks with arbitrary start times.
Technical Report YCS 164, Dept. of Computer Sci-
ence, University of York, York, England Y01 5DD,
December 1991.

S. K. Baruah. Static-priority scheduling of re-
curring real-time tasks. Technical report, De-
partment of Computer Science, The University of
North Carolina at Chapel Hill, 1999. Available at
http://www.cs.unc.edu/"baruah/Papers/staticdag.ps.

B. Andersson and J. Jonsson. Fixed-priority preemp-
tive scheduling: To partition or not to partition. Tech-
nical Report No. 00-1, Dept. of Computer Engineer-
ing, Chalmers University of Technology, S—412 96
Goteborg, Sweden, January 2000. Available at
http://www.ce.chalmers.se/staff/ba/TR/TR-00-1.ps.

partitioning with R-BOUND-MP

/ preemptions
P1
T1 T1 /1/ T1
‘ ‘ / | / ‘
P2
T2 T3 / T2 T3 T2 T3
‘ 1 ‘ 1 ‘ 1
T1 [[[
T2
T3 I
non-partitioning with Tk1.1C, using a dispatcher aware of context switches
P1
T1 T3 T2 T1 T2
\ } \ T \ }
P2
T T1 \\ | T‘g | T1
\ \ \ \ \ \
T1 [[
T2
T3 |
preemption
non-partitioning with Tk1.1C, using a dispatcher unaware of context switches
P1
T1 T1 T4 T1 T3 T1
\ \ I* T \
P2 /
T: T: T: T: T:
g . - R ‘
T1 [[
T2
T3
preemptions

Figure 9: Preemptions for non-partitioned method and partitioned method.

Empty page.

Dynamic Replication Decisions in Fault-Tolerant
Multiprocessor-Based Real-Time Systems

Monika Andersson Wiklund and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology
S-412 96 Gteborg, Sweden
monikaw,janjo@ce.chalmers.se

Abstract detecting faults is then to execute multiple copies and com-

Fault-tolerance is an important property for many pare the results genera-.ted by the _COpieS; Unfortunately, itis
critical real-time applications such as telecommunication impossible to know which copy failed unless an odd num-
servers or space-borne signal-processing computers, bothP€r of copies are used. In some systems it is also some-
for static and dynamically arriving tasks. In this paper, times possible to detect a fault before the task is completed
we describe two method for supporting fault-tolerance for because of special hardware mechanisms, for example sig-
dynamically arriving tasks by replicating the tasks and nhature checking. In this case it is possible to remove the
scheduling the copies of each critical task. The methods areCOPY and start a new execution immediately when the fault
varieties of the Primary/Backup method for providing fault- 1S detected. o _
tolerance and the idea is to dynamically decide whether the In all of the above methods, replication is used to achieve
rep"cation should be tempora| or Spatia| given the execu- fault-tolerance. The difference between the methods is On!y
tion time and deadline of the task and the load in the sys-the number of replicas and how the faults are detected in
tem. This offers a flexibility that improves the schedulability €ach method. In both cases the replication can be temporal,
of the dynamically arriving tasks. spatial, or a combination of both. Which replication method
is the best depends on the fault model, the purpose of the
. replication, and the properties of the system. If both tran-
1 Introduction sient, intermittent and permanent faults must be handled,

Multiprocessor systems available today are used for newthe replication have to be spatial, or both temporal and spa-
high-performance real-time applications, such as telecom-tial; but, if only transient faults are handled it is sufficient
munication servers or space-borne signal-processing comio use temporal replication. In this work we only consider
puters. These systems work in hostile environments wheretransient or intermittent faults and thus we use both tempo-
it is not only important that data is processed correctly be- ral and spatial replication.
fore a deadline, but also necessary to maximize the success- To accept as many dynamically-arriving tasks as possi-
ful completion of tasks even in the presence of faults. Oneble, it is necessary to execute as few copies as possible. This
way of doing this is to replicate the tasks so that a copy of can be achieved by deallocating the backup copy if the orig-
the task can be completed even if the original task fails. De-inal copy completes its execution successfully. The deallo-
pending on how the failure of a task is detected, there havecation releases resources that will not be needed for the suc-
to be a different number of copies of each original task. cessful task and makes it possible to use these resources for

The most commonly-used method to provide fault- any dynamically arriving task that enters the system. How-
tolerance is the Primary/Backup method where there areever, this deallocation and reuse of resources is only possi-
two copies of each task, one primary and one backup copyble when the replication is either temporal or both temporal
In most cases, it is assumed that there is a function whichand spatial, which implicates that it is desirable to use tem-
detects any failures of a copy when the execution is com-poral replication whenever it is possible.
pleted. Since the function tells us when a copy fails and In order to achieve fault tolerance for dynamically arriv-
which copy it is that fails, it is possible to deallocate the ing tasks and to be able to guarantee as many new tasks as
resources used by the backup copy if the primary copy exe-possible in the schedule we need to decide which is the best
cutes successfully. possible method for replicating each new task. One way to

However, in many systems it is not always possible to do this is to examine the deadline and execution time of the
implement such a function, which means that the fault de- task and, if the deadline is long enough, use temporal repli-
tection must be made in some other way. One method forcation, otherwise, spatial replication is used. However, the

load in the system and the fault model must also be consid-with as much overloadirigas possible. There are no dy-
ered while making such decisions. namic decisions in this method since all backups are sched-
In this paper, we propose two methods for dynamic repli- uled after the primary and on another processor than the
cation of dynamically arriving tasks on a multiprocessor primary.
system. In the first method a function is used for fault de- The Distance Myopic algorithm [5, 6] also uses the Pri-
tection and all faults are detected at the end of the execu-mary/Backup method. By computing the relative distance
tion, while in the second method multiple copies are usedin position between the primary and backup copies in the
for fault detection and faults can be detected at any time dispatch queue, a flexible level of backup overloading gives
during the execution. Both methods assume that we havea trade-off between number of faults that can be handled,
a known baseload containing periodic tasks with real-time and system performance. All dynamic tasks arrive centrally
guarantees, and the tasks that are handled by the method asnd are distributed to a processor via the dispatch queues
aperiodic (e.g., telecommunication packets for GSM) and and each processor then executes the tasks in its dispatch
there is no information available for these tasks until they queue. When a task is executed successfully, the processor
arrive in the system. invokes a resource reclaiming algorithm which allows un-
To verify and test the methods we use extensive simu-used resources to be rescheduled and the backup copy to be
lation studies. The results from a preliminary study are deallocated (unless it has to execute as well).
promising, and verifies the functionality of the proposed Fohler [7] presents a method to achieve adaptive fault-
methods. tolerance for distributed systems by first providing a basic
The remainder of this paper is organized as follows: reliability level and then divide the schedule into disjoint
In Section 2 we discuss related work in the area of fault- execution intervals and define the spare capacities for each
tolerant real-time systems and replication. Section 3 de-interval. An on-line scheduler is invoked at the end of each
scribes the fault models while Section 4 present the pro-interval and takes care of aperiodic tasks that arrived dur-
posed replication methods. The implementation and simu-ing the interval by using the spare capacities. After this the
lation of the methods are discussed in Section 5. Finally, spare capacities are updated and the scheduling decision is
in Section 6 we summarize our results and discuss futureexecuted in the next interval using EDF. It is assumed that

work. only one task at a time can be affected by faults and the
number of replicas can be increased during runtime if there
2 Related work are enough spare capacities.

Hou and Shin [1] present a technique where a replica- Ahn, Kim, and Hong [8] use a variety of the Pri-
tion decision is made dynamically off-line by determining mary/Backup method where the primary copy of a task
whether or not the task module should be replicated in amay overlap the backup copy of another task. To prevent
system with limited resources. Since the resources are lim-the domino effect, i.e., that the activation of a backup task
ited, only those modules which have deadlines too tight for causes a primary task to miss its deadline the scheduling
time redundancy should be replicated in space. The backugs made by forming checkpoint cycles. There must be at
copy and the original copy of the task may not run on the least two processors in the cycle that can finish the task cur-
same processor and the modules are allocated with an offfently executing and the newly activated task within their
line Branch&Bound algorithm. The main objective of this deadlines if a domino effect ahould be avoided. Each task
method is to replicate only those modules that have to beis scheduled on the processor that gives the longest possible
replicated, not to find the best possible replication method. checkpoint chain until a cycle is formed, then the processor

Gonzlez et al [2] offer a method that uses alternative that satisfies the condition above and who gives the longest
lists for choosing which method of fault-tolerance should be checkpoint cycle is chosen.
used. Each arriving task has a list that contains up to three Srinivasan and Shoja [9] present a method in which pe-
methods, TMR, Primary/Backup, and Primary/Exception. riodic tasks with two versions, primary and alternate, are
The methods are considered in the order they appear in thécheduled dynamically to maximize the number of sched-
list and the scheduler tries to schedule the tasks with the dif-uled primaries. The tasks are first scheduled statically and
ferent methods until a feasible schedule is found or the listduring the execution of the tasks the dynamic scheduler is
is empty. With this approach the choice of fault-tolerance run to enhance the number of primaries that can be exe-
is made off-line since the lists must be prepared in advance cuted. If a primary executes without failure, the alternate
This means that the system load and load distribution havefor this task is redundant and a, so far, unscheduled pri-
no influence over the replication decision. mary might be scheduled instead. To find a schedulable

Moss, Melhem, and Ghosh [3, 4] present the Pri- Primary as quickly as possible, all nodes needs to contain
mary/Backup principle of replication for independent, dy- information about the unschedul'ed primaries in the other
namically arriving tasks. Backup overloading and resource Nodes. Each node thus has two lists, the schedule to follow
deallocation is used to achieve high schedulability and the™ 5 . . .

verloading means that several backup copies are scheduled in the

primary copy of a task is always scheduled as early as poS=ame time slot. This can only be done if the primary copies of all the
sible while the backup is scheduled as late as possible bubackups are scheduled on different processors.

and a shortest job list that contains all the unscheduled pri- PO ! copyl [copy2 ¢

maries across the system. When a message from the short- temporal replication

est job list is executed, a message is sent to all nodes and

each shortest jobs list is updated. Pl copy 1 ¢
These methods differ from that o_f ours in the following C[owz]

ways. Several of the methods use information about tasks PO g t

that have not yet entered the system, which is not always spatial replication

possible. Also, none of the methods decides dynamically [ooyl |

how the replication of the dynamically arriving tasks should PL t

be done, which means that some task might be ruled un- PO | copy 2 ‘

schedulable even though they might be schedulable if an-
other replication method is used.

3 Fault Models

As in most techniques for fault-tolerant systems, the is replicated and have one primary copy which always exe-
work in this paper assumes that thiagle-fault assumption cutes and one or two backup copies that only execute if the
is valid, that is, only one faulty result may be produced per primary copy was unable to finish its execution or if a fault
replica set. is detected. In this work it is assumed that only transient

The faults may appear either in the hardware or in the or intermittent faults can occur; however, it is possible to
software and they can be classified as being permanent, inadjust the method to allow for permanent failures as well.
termittent or transient. Our first method for dynamic replication assumes that

Permanent faults in a hardware circuit are caused by, forthere exists a function which detects whether the task is suc-
example, electromigratidngate-oxide breakdown, and ra- cessful or not when the execution is completed. Thus only
diation, and can be detected in self-tests or by repeated exone copy of each task is needed, the original and a backup.
ecution. When a node can be suspected to contain a perOur second method assumes that no such function exists,
manent fault it has to be stopped and tested, and, if it isand we therefore use two copies of each task for voting;
faulty, exchanged or repaired. A malicious class of perma- however, it is possible to find some faults before the exe-
nent faults that can not usually be detected or prevented bycution is completed if the faults are detected by hardware
redundancy are design errors. mechanisms.

Transient faults are mostly caused by environmental ef- The way in which the scheduling is done means that
fects such as radiation or cross-talk (electromagnetic inter-sometimes the replication can be both temporal and spatial
ference) and these faults will not cause any remaining dam-at the same time. That s, if the replication is temporal, but a
age on the node. The faults can be detected either by hardbackup copy cannot be scheduled on the same processor as
ware mechanisms, such as checksums or parity coding, othe primary copy, then the replication will be both temporal
they can be detected by software mechanisms such as votingnd spatial. It is important to note that a backup copy al-
or integrity checks on the results from the computation. ways must execute after the primary copy if the replication

Intermittent faults might be caused by electromagnetic is temporal, and that it may be partially or completely over-
interference that is caused by, for example radiation, a cel-lapped with the primary copy if the replication is spatial.
lular phone, or a radar antenna which are periodically send- Also, by using a distributed scheduling algorithm [11]
ing electromagnetic signals. Another possible cause for in-for scheduling, the replication strategy will depend on the
termittent faults are undetected permanent faults that onlyload in the system. Unless we have to handle permanent
become active from time to time. This means that inter- failures, it is preferred that the primary and the backup copy
mittent faults really are special cases of either permanent orshould be scheduled on the same processor; however, if this
transient faults and can be detected in the same way. is not possible due to high system load, we can allow the

In our methods, permanent faults can only be handled if copies to be scheduled on different processors.
the replication method operates in a way such that no repli- .
cas ofpthe same task arg scheduled on)f[he same processindg1 Method 1: Two copies of each task
node, or that a cold spare takes over for the stopped node The dynamic replication strategy using two copies is

temporal and spatial replication

Figure 1: Replication varieties for two copies.

when a permanent fault is detected. very simple. When a dynamic task arrives in the system,
the deadline and execution time of the task is examined. If
4 Our Dynamic Replication Methods the difference between the deadlid®;} and the execution

The replication methods used in our approach are basedime (C;) multiplied with a certain replication breakpoint,

on the Primary/Backup method, that is, each dynamic task!S !arger than the task execution time of a potential backup
task, then the task is replicated in time; otherwise itis repli-

2Movement of metal due to momentum exchange with electrons caus- Cate_d ir_‘ space. Depending on th_e load in the system, the
ing preferred direction of diffusion. [10] replication can also be a combination of both (see Figure 1).

| copy 1 | copy 2 | copy 3 | [k=03 s=10]
T

. . 100 LR o ™ = T
temporal replication % - <
o0t 5 * n |
copy 1 ol Y
P1 | >t 80%7 . i
700 i
copy 2 copy 3 4 .
L — o
PO _ o ot 603F R=06 —+— A
temporal and spatial replication N S = 8_; xeee
50 R=0.9 8 B
R=1.0 =~

- copy 1

Y

35 40 45 50 55 60 65 70 75 80 85

Uilization (%
copy 2
P1

Figure 3: The influence of deadline ratio, R.

| copy3 _ of each task can be faulty, and thus three copies of each task
PO o is enough for fault detection. At first, two copies are exe-
cuted and their results are compared,; if the results match,
Figure 2: Replication varieties for three copies. the task is successful and the third copy is unnecessary. If
the results do not match, the third copy must be executed

The reason for having the replication breakpoint parameterand compared with the first results so that the correct result
is that there might be extra cost involved in the execution, can be identified. _
for example, a communication cost may be involved if the ~ Since the third copy of each task only is needed when

primary and backup copies are situated on different proces-2 fault has been detected, it is desirable that this copy is
sors. scheduled after the other copies so that it can be deallocated

in case it will not be needed. There are three possible com-
D; —C; xs > C; — replicate intime binations for replicating the task: (i) all copies are temporal
replicas, (ii) two copies are spatial replicas and one is tem-
When the task has been replicated, the two copies of theporal, or (iii) all copies are spatial replicas (see Figure 2).
task are scheduled using a distributed scheduling techniquéVhich combination is used depends on the deadline of the
such as the Random scheduling algorithm or the Flexibletask in the following way. If the deadline is long enough to
algorithm [11]. First, the primary copy is scheduled on the allow all copies to execute after each other within the dead-
processor it arrived to, or if it is not possible to schedule line, only temporal replication is used. If the deadline is too
it on this processor, it is sent to one of the other proces- short for two copies to execute after each other, only spatial
sors. Which other processor is chosen to send the copy taeplication is used; otherwise, one spatial and one temporal
depends on which scheduling technigue is used; a processateplication is used.
can either be chosen randomly or on the basis of the load in To avoid that certain types of faults affect more than one
the system. copy in the same way, it is possible to place all copies on
If the replication is temporal, the method attempts to different processors and make sure that they do not start at
schedule a backup copy on the same processor as the priexactly the same time. This means that we will mix the
mary copy. If this is not possible, a processor is chosentemporal and spatial properties of the replicated copies so
accordingly to the scheduling technique and the method at-that all copies will differ in both time and space.
tempts to schedule the copy on this processor. For spatial
replication, on the other hand, the backup copy may not5 Implementation and Simulation

be scheduled on the same processor as the primary, thatis, \We have implemented our methods in GAST [12]
another processor must be chosen before the scheduling atGeneric Allocation and Scheduling Tool), a software pack-
tempt. Both the primary and the backup copies must beage developed at Chalmers University of Technology. The
scheduled for the task to be accepted; if either copy Cannoqmp|ementati0n of the proposed methods has been per-
be scheduled the task is rejected. formed in steps. Initially, a simple version of the first

The method can be altered to handle permanent failuresmethod without resource deallocation was implemented and
by scheduling all copies on different processors wheneverjater resource deallocation was added. The next step was to
possible. implement a simple version of the second method,; this im-
4.2 Method 2: Three copies of each task plementation has just been finished.

In this method we need at least two, but sometimes three, When the simple method of the first version was imple-
copies of each task since we assume that there is no functiomented, we ran a small simulation study to verify that it be-
for detecting faults, that is, there is no integrity check for the haved as expected. Later, we will add the results of newer
result of the computation. We assume that at most one copysimulation studies on the full implementation.

Y

spatial replication

[R=0.9, s =30]

- T T T

H
~ o] [{] 8
(93

STeces® ratPo

ARAARAX
o

o
ooceo

o
o

Il Il Il Il Il Il Il Il
55 60 65 70 75 80
Uilization (%

N
o

85

Figure 4: The influence fault intensity, k.

[R=0.9, k=03]

-
o
o

(3

@

\,
sces® ratfo

[=2]

wnnunonon

PwoNNR

o
o

Il Il Il Il
55 60 65 70 75 80
Utilization (%

N
o

85

Figure 5: The influence of replication breakpoint, s.
For the small simulation study, we used a system with

be removed from the schedule and, thus, it does not matter
to the success ratio how large the fault intensity is. If we use
resource deallocation, however, there should be a difference
in success ratio if the the fault intensiyis varied.

The effect of the replication breakpoints is shown in Fig-
ure 5. Recall that, when the replication breakpoint is low,
only spatial replication is used and when it is high only tem-
poral replication is used. The figure shows that the success
ratio decreases when the replication breakpoint is increased.
The reason for this is that, for shorter deadlines, it is harder
to find room for temporal copies than for spatial copies be-
cause the amount of free time between the baseload tasks is
too small.

6 Summary and Future Work

We have presented two methods for dynamic replication
of dynamically arriving tasks in a real-time multiprocessor
system. The methods are varieties of the Primary/Backup
method but have been extended to use the most suitable
replication mode for each arriving task based on task char-
acteristics and system load. The two methods are very sim-
ilar except for how the fault detection is made.

The implementation of the first method is finished and
verified by a small simulation study, and a simple imple-
mentation of the second method have just been finished.
We will perform a more extensive simulation study to find
which parameters are most influential on the success ratio
for the methods. We will also investigate how much it helps
to use resource deallocation. Finally, we will make a full
implementation of the second method and perform further
simulation studies to see if there are any differences be-

four nodes, a baseload of periodic tasks with periods of 100tween the full implementation and our simpler version.

time units and dynamically arriving tasks with a minimal

inter-arrival time of 75 time units. Each task had an exe-
cution time that was randomly chosen from a normal dis-
tribution with a mean execution time of 15 time units and
a variance of 1. The influence of three different parame-

ters was examined by running 128 simulations for each set-

ting. The parameters were; the deadline/period rafip (
the fault intensity k), and the replication breakpoing)(

The mean execution time was increased in steps of 5 from

a start value of 5 to a final value of 45 for each combination

of the parameters. We use a non-preemptive, time-driven [3]
execution model and we use success ratio as a measure of
performance in our simulations. We define the success ra-

tio as the fraction of tasks that can be scheduled with our
method out of all dynamically arriving tasks.

The effect of the deadline/period ratio is shown in Fig-
ure 3. Itis clear from the plots that if the deadline is short-
ened (that is, the rati® is decreased) the success ratio is
also decreased.

In Figure 4, the effect of the fault intensity is shown.
As can be seen there is no effect on the success ratio whe
the fault intensity is increased. This is due the fact that we
do not use resource deallocation in this simulation study.

Because of this, backup copies that are not needed cannot

References

[1] C.-J. Hou and K. G. Shin, “Replication and Allocation of
Task Modules in Distributed Real-Time System&foc. of
the IEEE 24th International Symposium on Fault- Tolerant
Computing Austin, TX, June 15-17, 1994, pp. 26-35.

0. Gonzlez, H. Shrikumar, J. A. Stankovic, and K. Ramam-
ritham, “Adaptive Fault Tolerance and Graceful Degradation
Under Dynamic Hard Real-time SchedulingProc. of the
18th IEEE Real-Time Systems SymposiGan Francisco,
CA, Dec. 2-5, 1997, pp. 79-89.

D. Moss, R. Melhem, and S. Ghosh, “Analysis of a Fault-
Tolerant Multiprocessor Scheduling Algorithm,Proc. of
the IEEE 24th International Symposium on Fault- Tolerant
Computing Austin, TX, June 15-17, 1994, pp. 16-25.

S. Ghosh, R. Melhem, and D. Moss, “Fault-Tolerant schedul-
ing on a Hard Real-Time Multiprocessor SysterRfoc. of

8th International Parallel Processing Symposiu@ancun,
Mexico, Apr. 26—29, 1994, pp. 775-782.

G. Manimaran and S. R. Murthy, “A Fault Tolerant Dy-
namic Scheduling Algorithm for Multiprocessor Real-Time
Systems and Its AnalysislEEE Trans. on Parallel and Dis-
N tributed Systemsol. 9, no. 11, pp. 1137-1152, Nov. 1998.

6] G. Manimaran and S. R. Murthy, “A new Study for Fault-
Tolerant Real-Time Dynamic Scheduling Algorithm3gur-
nal of Systems Architectyreol. 45, no. 1, pp. 1-13, Oct.
1998.

(2]

(4]

(5]

[7]

(8]

9]

(10]

(11]

(12]

G. Fohler, “Adaptive Fault-Tolerance with Statically Sched-
uled Real-Time Systems,”Proc. of the Ninth Euromicro
Workshop on Real Time Systemsledo, Spain, June 11-13,
1997, pp. 161-167.

K. Ahn, J. Kim, and S. Hong, “Fault-Tolerant Real-Time
Scheduling using Passive ReplicaBrbc. on the Pacific Rim
International Symposium on Fault-Tolerant Systehagpei,
Taiwan, Dec. 15-16, 1997, pp. 98-103.

A. Srinivasan and G. C. Shoja, “A Fault-Tolerant Dynamic
Scheduler for Distributed Hard-Real-Time SystemByfbc.

on the Pacific Rim Conference on Communications Comput-
ers and Signal Processinyictoria, BC, Canada, May 19—
21, 1993, pp. 268-271.

C. Hawkins, “Field Returns: Reliability Failure Mechanisms
and Defect Electronic Test Propertie$itorial B, IEEE Eu-
ropean Test Workshoitges, Spain, May 26, 1998, pp. XX—
XX.

K. Ramamritham and J. A. Stankovic, “Distributed Schedul-
ing of Tasks with Deadlines and Resource Requirements,”
IEEE Trans. on Computersol. 38, no. 8, pp. 1110-1123,
Aug. 1989.

J. Jonsson, “GAST: A Flexible and Extensible Tool for Eval-
uating Multiprocessor Assignment and Scheduling Tech-
niques,” Proc. on the Int'l Conf. on Parallel Processing
Minneapolis, Minnseota, Aug. 10-14, 1998, pp. 441-450.

Using Massive Time Redundancy to Achieve
Node-level Transient Fault Tolerance

J. Aidemark, J. Karlsson
Laboratory for Dependable Computing
Chalmers University of Technology
S412 96 Goteborg, Sweden
{aidemark, johan}@ce.chalmers.se

1. Introduction

Distributed real-time systems are increasingly being
used to control critical functions in automotive and
aerospace applications, such as fly-by-wire, break-by-
wire, and steer-by-wire systems. These systems must be
fault-tolerant to be safe and reliable.

For a cost-effective implementation of a fault-tolerant
distributed real-time system, it is necessary to design the
computer nodes in the system in such way that they
exhibit well-behaved failure semantics. This is achieved
by including error detection and fault-tolerance
mechanisms at the node-level. Nodes that exhibit only*
fail-stop/(crash) failures or omission failures [1] can be
considered to have well-behaved failure semantics.

Fail-stop semantics implies that the node produces either
correct results (at the right time) or produces no results
at all, i.e. it stops producing results when affected by a
fault. An omission failure occurs if the node fails to
produce a particular result, but continues to produce
correct (and timely) results after the omission failure
occurred. These failures can be handled effectively by
fairly simple distributed redundancy management
protocols, see e.g. the MARS system [2].

Previous research has shown that transient faults are
common in digital systems [3]. Transient faults can be
caused by particle radiation, e.g. in aircraft at high
atitude by high-energy neutrons, or in spacecraft by
heavy-ions. Power fluctuations and e ectromagnetic
interference are other causes of transient faults in
computer systems.

! That is, the probability for other types of failuresis assumed to be
negligible.

In this paper we describe an implementation of a small
real-time kernel that achieves transient fault tolerance at
the node-level. The objective is to tolerate transient
faults at the nodelevel whenever possible. For
permanent faults and transient faults that cannot be
handled at the node-level, the node should fulfil fail-stop
or omission failure semantics. These properties are
achieved by combining hardware and software error
detection mechanisms (EDMs) with massive time
redundancy. The kernel uses fixed-priority pre-emptive
scheduling [4].

We consider real-time systems with hard deadlines
where fault-tolerance is achieved by executing each
critical task on two nodes with fail-stop and omission
failure semantics. When such a system is used in an
environment where transients are common, such as a car
or asatellite, the time it takes to recover from a transient
fault has a significant impact on the overall system
reliability. The longer it takes to recover from atransient
fault, the higher the probability that the system crashes
because another transient fault affects the remaining
non-faulty node.

Many existing systems, e.g. MARS [2], do not provide
node-level transient fault tolerance, which means that
the recovery of all transient faults are handled via the
distributed redundancy management protocol. In this
case, the recovery time is in the order of seconds or
minutes. The advantage of handling transient faults at
the node-level is that the average recovery time for
transients can be reduced by several orders of
magnitude, which improves the overall reliability.

Node level transient fault tolerance also improves the
system resiliency to correlated node failures, which
occur when a single disturbance causes transient faults
in several nodes simultaneously.

2. Related work

Error detection by comparing the result from two
replicated executions of critical tasks was used in the
MARS system [2].

Recovery from transients faults can be achieved by
using a checkpointing scheme [5]. Checkpointing is
done by saving the state of the processor to stable
storage in regular intervals or when certain data is
updated. When a fault occur, the system is restored to
the last checkpoint and the execution can proceed.

Fault-tolerant scheduling of rea-time tasks in a
uniprocessor environment is studied in [6]. This work is
based on the assumption that transient faults are always
detected, and that recovery can be achieved by a retry/
re-execution of the affected task. The aim is to allocate
adequate time for the recovery action (i.e. the retry/ re-
execution). In [6] time is reserved prior to execution
using a technique called overloading. Overloading
reserve less time than needed to re-execute al tasks
based on the condition that at most one fault can occur
during a specific time interval. An approach for
dynamically alocating time for re-execution upon a
recovery request is presented in [7].

Techniques such as robust data structures, assertions,
plausibility tests and checking execution time of system
routines were used in [2] to detect transient faults during
execution of operating system code.

3. Basicideas

In massive time redundancy, a task is executed at least
three times to produce three or more copies of a result.
A majority vote is performed on the copies to mask any
faults (cf. massive redundancy in hardware, e.g. a TMR
system).

In our real-time kernel, each critical task is aways
executed twice during normal operation. We use the
term task replica, or just replica, to denote a particular
instance of the task execution. The results of the two
replicas are compared to detect errors. If the two results
do not match, athird replica of the task is executed. The
results of the three replicas are then checked by a
magjority vote. If none of the results match, no result is
delivered, which leads to a omission failure. If two
results match, they are accepted as a valid result of the
task.

Errors can also be detected by hardware and software
EDMs such as illegal op-code detection or variable
constraint checks. In this case, the affected replica is
immediately terminated, and a new replicais started.

We assume that there is enough slack (unused cpu time)
available to alow at least one task to execute three
replicas, without causing any other task to miss a
deadline. However, if two or more task are affected by
near-coincident transient faults, it may not be enough
slack available to allow al of them to execute three
replicas, without causing other tasks to miss their
deadlines.

After an error is detected, the kernel checks the deadline
of the task to determine if it is possible to execute an
additional task replica before the deadline. If not, no
result is delivered and an omission failure occurs. If time
is available, a new replica is started. The task result is
delivered only when two matching results have been
produced before the deadline.

We assume a simple task model where the input is read
in the beginning of the task and the result is delivered at
the end of the task. We also assume that the input to a
task is not updated until the task result is delivered.

i Tt | T2 | sk |

N

Comparison

\j

ii T8 [T122] T2 [slack]

»
-

Comparison
Error Error detected
by EDM
ii T8 | 2 [T2

—
BN Vo

Error Error detected
by comparision

Figure 1: Critical task with replicated executions
and fault handling.

Three time diagrams of the execution of task replicas is
shown in Figure 1. The time for the execution of the
kernel code is not included in the diagrams. The figure
shows three different scenarios. (i) Fault free operation,
where two replicas T1' and T1® of task T1 is executed
and their results are compared to detect errors. The

results match and can be delivered directly, not using
any of the available dlack. (ii) The error is detected by
an EDM during execution of the second replica T1% The
affected replica T1? is terminated and a new replica T1°
isimmediately started. T1* will use time reclaimed from
the removed replica T1* as well as time from the
available dlack After two replicas have been executed, a
comparison is made to confirm that the results match
before the task result is delivered. (iii) The error is
detected by the comparison. Thus, the results from the
two replicas T1' and T1° are dissimilar. It is not possible
to decide which of the two replicas that produced the
correct result so a third replica of the task is started,
caled T1’, using the available slack. The results of the
three executions are check by a magjority vote. As
previoudly described, no result is delivered if none of the
results match. If two results match, they are accepted as
avalid task result.

4. Implementation and Validation

We are implementing a small real-time kernel that
achieves transient fault tolerance by using the ideas
described above. The kernel will be implemented for the
Thor microprocessor developed by Saab Ericsson Space
AB.

Fault injection will be performed to estimate the
probability of violating the fail-stop or omission failure
semantics. We will use two fault injection tools,
FIMBUL [8] and MEFISTO-C [9]. FIMBUL inject
faults in the physical unit of Thor using the scan-chains.
Faults can be injected in the registers and in the cache.
MEFISTO-C inject faults in the VHDL model of the
Thor processor. Here, faults can be injected in any state
dement (i.e. a flip-flop, latch or register) of the
processor.

5. Summary and Discussion

This paper describes an implementation of a real-time
kernel that achieves transient fault tolerance by using
massive time redundancy. The real-time kernel is being
implemented for the Thor microprocessor, and will be
validated by using fault injection to estimate the
probability of violating the fail-stop or omission failure
semantics. Although the estimated coverage results will
be gspecific for the chosen microprocessor, the
experiments will give vauable insight into the
usefulness of the proposed technique. In the current
version, the kernel only handles transient faults that
occur during execution of application tasks.

Future work include the development of techniques that
ensure fail-stop semantics when transient faults occur
during the execution of the kernel code. We will also
investigate different policies for handling near-
coincident transient faults that affect more than one task.
Another interesting issue is to study error containment
between tasks and between tasks and the kernel.

6. References

[1] F. Crigtian, "Understanding Fault-Tolerant Distributed
Systems', Communications of ACM, Vol.34, No.2, 1991, pp.
56-78.

[2] H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and J.
Reisinger, "Tolerating transient faults in MARS" 20th Int.
Symp. on Fault-Tolerant Computing (FTCS-20), |EEE,
Newcastle Upon Tyne, U.K., June 1990. pp. 466-473.

[3] RK. lyer, D.J. Rossetti and M.C. Hsueh, "Measurement
and Modeling of Computer Reliability as Affected by System
Activity", ACM Trans. on Computer Systems, Aug 1986, pp.
214-237.

[4] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and
A. J. Wellings, "Fixed Priority Pre-emptive Scheduling: An
Historical Perspective”, Real-Time Systems, vol. 8, no. 2/3,
1995, pp. 129-154.

[5] D. K. Pradhan, Fault-Tolerant Computer System Design,
Prentice Hall, USA, 1996, pp. 160-192.

[6] S. Ghosh, "Guaranteeing Fault Tolerance through
Scheduling in Rea-Time Systems', Ph.D. Thesis, Dept.
Computer Science. University of Pittsburgh, USA, 1996.

[7] P. Mgia-Alvarez, and D. Mossé, "A responsiveness
approach for scheduling fault recovery in real-time systems"
Real-Time Technology and Applications Symposium, IEEE,
Vancouver, Canada, June 1999. pp. 4-13.

[8] P. Folkesson, S. Svensson, and J. Karlsson, "A comparison
of simulation based and scan chain implemented fault
injection", 28th Int. Symp. on Fault-Tolerant Computing
(FTCS-28), IEEE, Munich, Germany, June, 1998. pp. 284-
293.

[9] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson,
"Fault injection into VHDL models: the MEFISTO tooP4th

Int. Symp. on Fault-Tolerant Computing (FTCS-24), IEEE,
Austin, TX, USA, June 1994. pp. 66-75.

Empty page.

AIDA I
Automatic control in distributed applications

Ola Redell, Jad El-khoury, Martin Térngren
KTH, Department of Machine design,
Mechatronics lab, 100 44 Stockholm
{olaljad | martin}@md.kth.se

1 Introduction

Machine industry faces a shift where more and more functionality isimplemented in software
on distributed computer systems. Many difficult problems then face designers including sys-
tem modelling, analysis and management of multi disciplinary design teams. Thereisaneed to
transfer theoretical results to industrial practice, necessitating the integration of existing work
from separate disciplines. Industrial practice, on the other hand, needs to be shifted towards
model building, analysis and prediction in order to avoid clashes in system integration.

Severa useful modelling approaches and computer aided tools exist for the design of control,
software and mechanical systems. These support tools however fall short when the applica-
tions are implemented in embedded and distributed real-time computer systems. A number of
additional design issues then face designers including

* Structuring, partitioning and allocation, i.e. how to establish structures and the mappings
between them (e.g. functions/threads/processors).

 Execution and communication policies. The definition of policies and mechanisms for
triggering, scheduling, synchronisation and communication.

» Performance requirements. The definition of timing requirements and related trade-offs.

* Error detection and handling policies. In particular additional failure modes of distributed
real-time systems must be identified and handled.

The provision of amodelling framework that enables interdisciplinary work isaprerequisitein
order to support these design issues.

2 Approach and status

The objective in the AIDA research project isto develop a modelling framework and methods
for analysis of real-time behaviour in order to support the development of distributed, hetero-
geneous control systems.

The AIDA project has been running since 1996. In the first phase of the project (1996-1998)
the work was focused on the design of a modelling framework to support the design and speci-
fication of embedded distributed real-time control systems. This work has been carried out in
co-operation with aindustrial reference group including Scania, SAAB Military Aircraft, Atlas
Copco Controls and ABB Robotics. The modelling framework has been used in a case study to
describe possible implementations of a control system for afour legged vehicle [5].

The continuation of AIDA, the AIDA 1l project, is carried out in cooperation with SAAB
Combitech Software. The project includes continued theoretical work on the modelling frame-
work, the development of a prototype tool-set and an accompanying design method, more case
studies and strengthened industrial cooperation.

2.1 Modelling real-time requirements for control systems

The AIDA modelling framework provides a number of models (and views) related to domains;
functions, software, hardware and mechanical interfaces, and provides structural and timing
behaviour models for each domain.

The basic idea of the modelling framework is that the models should include all information
needed to completely specify the system’s implemented behaviour and requirements. Thisin-
cludes execution times, functional decomposition, partitioning, allocation, scheduling policies,
communication media etc. With such a modelling framework as a base for a CAE (Computer
Aided Engineering) tool-set it should be possible to develop functionality that can assist sys-
tem designers to test, analyse and compare different implementations regarding real-time
measures important for control implementations (such as response times and system induced
jitter).

2.2 Timing analysis of control implementations

Automatic control systems are by design highly dependant of (and sensitive to changes in) the
final timing in the target system. Generally, control activities are periodic and put hard require-
ments on jitter in both sampling and actuation. With these factsin mind, it is amazing how lit-
tle support there is for off-line pre-implementation timing analysis of control implementations.
Today’s implementation of control systems is obviously based on a combination of expert
knowledge, conservative assumptions and trial and error.

Within the area of fixed priority, single processor scheduling, some important results have
been developed during the last decade [8]. However, for distributed systems with various
scheduling policies on many different processors and communication links (not always fixed
priority) few similar results exist. The AIDA tool-set will include a tool that helps in analysis
of timing properties of control systems implementations, specifically implementations on dis-
tributed heterogeneous hardware. Hence further research has to be done in this area and when
enough results have been achieved, the tool isto be devel oped.

Current work is partly focused on co-simulation of control applications with communication
resources and processor scheduling policies.

3 Results

The most recent publication gives an overview of the modelling framework and compares the
AIDA framework with representative models with a basis in object-oriented analysis and de-
sign (UML real-time extensions), structured analysis and design (DARTS/DA), and real-time
scheduling research, [3]. The modelling framework is described in full in [4]. The modelling
framework has been used in a case study to describe possible implementations of a control sys-
tem for afour legged vehicle [5]. A survey of scheduling and allocation methods for distribut-
ed real-times systems is presented in [6]. The licentiate thesis, [7], contains papers [2,4-6], a
description of the tool-set and an overview of related work.

4 References

[1] Térngren Martin and Wikander Jan. A decentralization methodology for real-time control
applications. J. of Control Engineering Practice, Vol. 4 No. 2, Feb. 1996, Pergamon.

[2] Torngren Martin and Redell Ola. A Mechatronics Test-Bed for Embedded Distributed
Control Systems. Proc. of Algorithms and Architectures for Real-Time Control, AARTC'97,
Vilamoura, April 1997.

[3] Torngren Martin and Redell Ola. A Modelling Framework to support the design and analy-
sis of distributed real-time control systems. Invited Paper. To appear in the Journal of Micro-
processors and Microsystems, Elsevier, special issue based on selected papers from the
Mechatronics 98 proceedings

[4] Redell Ola and Torngren Martin. Preliminary design of models for the AIDA tool-set,
Technical report, Dept. of Machine design, KTH, 9805.

[5] Redell Ola. Modelling and Implementation Analysis of the Distributed Real-Time Control
System for a Four Legged Vehicle. Technical report Dept. of Machine design, KTH, 9805.

[6] Redell Ola. Global Scheduling in Distributed Rea-Time Computer Systems, An Automatic
Control Perspective. Technical report Dept. of Machine design, KTH, 9805.

[7] Redell Ola. Modelling of Distributed Real-Time Control Systems - An Approach for De-
sign and Early Analysis, Licentiate Thesis, 9805.

[8] Burns, A. Preemptive Priority-Based Scheduling: An Appropriate Engineering Approach,
Ch. 10 in Advancesin Real-Time Systems, ISBN 0-13-083348-7, Prentice-Hall, 1995

Empty page.

Feedback Scheduling of Control Tasks

Anton Cervin

Johan Eker

Department of Automatic Control
Lund Institute of Technology
Box 118, SE-221 00 Lund
Sweden
{anton, johane}@control.lth.se

Abstract

The paper presents a feedback scheduling mecha-
nism in the context of co-design of the scheduler
and the control tasks. We are particularly interested
in controllers where the execution time may change
abruptly between different modes, such as in hy-
brid controllers. The proposed solution attempts to
keep the CPU utilization at a high level, avoid over-
load, and distribute the computing resources evenly
among the tasks. The feedback scheduler is im-
plemented as a periodic or sporadic task that as-
signs sampling periods to the controllers based on
execution-time measurements. The controllers may
also communicate feedforward mode-change infor-
mation to the scheduler. As an example, we con-
sider hybrid control of a set of double-tank processes.
The system is evaluated, from both scheduling and
control performance perspectives, by co-simulation of
controllers, scheduler, and tanks.

1. Introduction

There is currently a trend towards more flexible real-
time control systems. By combining scheduling the-
ory and control theory, it is possible to achieve higher
resource utilization and better control performance.
To achieve the best results, co-design of the sched-
uler and the controllers is necessary. This research
area is only beginning to emerge, and there is still
a lot of theoretical and practical work to be done,
both in the control community and in the real-time
community.

Control tasks are generally viewed by the schedul-
ing community as hard real-time tasks with fixed
sampling periods and known WCETs. Upon closer
inspection, neither of these assumptions need neces-
sarily be true. For instance, many control algorithms
are quite robust against variations in sampling pe-
riod and response time. Controllers can be designed
to switch between different modes with different exe-
cution times and perhaps also different sampling in-

tervals. It is also possible to consider control systems
that are able to do a trade-off between the available
computation time and the control loop performance.

As an example throughout this paper, we study the
problem of scheduling a set of hybrid-control tasks.
Such tasks are good examples of tasks that do not
really meet the assumptions commonly made in the
scheduling theory. A hybrid controller switches be-
tween different modes, which may have very dif-
ferent execution-time characteristics. Utilizing only
worst-case execution-time (WCET) estimates in the
scheduling design can result in very low resource
utilization, slow sampling, and low control perfor-
mance. On the other hand, if instead, for instance,
average-case execution-time estimates are used in
the scheduling design, the CPU may experience tran-
sient overloads during run-time. This, again, can re-
sult in low control performance, and even temporary
shut-down of the controllers.

In this work, we present a feedback scheduler for
control tasks that attempts to keep the CPU utiliza-
tion at a high level, avoid overload, and distribute
the computing resources evenly among the tasks.
While we want to keep the number of missed dead-
lines as low as possible, control performance is our
primary objective. Thus, control tasks, in our view,
fall in a category somewhere between hard and soft
real-time tasks. The known-WCET assumption is re-
laxed by the use of feedback from execution-time
measurements. We also introduce feedforward to fur-
ther improve the regulation of the utilization.

The structure of the feedback scheduler is shown in
Figure 1. A set of control tasks generate jobs that
are fed to the run-time dispatcher. The scheduler
gets feedback information about the actual execution
time, c;, of the jobs (it is assumed that this infor-
mation can be provided by real-time operating sys-
tem). It also gets feedforward information from con-
trol tasks that are about to switch mode. This way,
the scheduler can proact rather than react to sudden
changes in the workload. The scheduler tries to keep

mode changes

Uyp /
— {T:} jobs . ¢, U
Scheduler “»! Tasks SO Dispatcher—

Figure 1 The feedback scheduling structure.

utilization, U, as close as possible to the utilization
setpoint, Us,. This is done by manipulating the sam-
pling periods, {7};}. The choice of utilization setpoint
depends on the scheduling policy of the dispatcher,
and on the sensitivity of the controllers to missed
deadlines. Notice that the well-known, guaranteed
utilization bounds of 100% for earliest-deadline-first
(EDF) scheduling and 69% for fixed-priority schedul-
ing are not valid in this context, since the assump-
tions about known, fixed WCETs and fixed periods
are violated.

The calculated task periods should reflect the rela-
tive importance of the different control tasks. One
possibility is to assign nominal sampling periods to
the controllers off-line. The feedback scheduler can
then do linear rescaling of the task periods to achieve
the desired utilization. The controllers are informed
of the new sampling periods and may adjust their
parameters if necessary. Other possibilities could in-
clude on-line optimization of a control performance
criterion over the task periods, subject to the uti-
lization constraint. The feedback scheduler is in the
end also implemented as a periodic or sporadic task
that consumes computing resources. There is a fun-
damental trade-off between the time that should be
spent doing scheduling, and the time left over for
control computations.

1.1 Related Work

The related work falls into three categories. The first
one is the field of integrated control system and real-
time system design. In [Seto et al, 1996], sampling
period selection for a set of control tasks is consid-
ered. The performance of a task is given as function
of its sampling frequency, and an optimization prob-
lem is solved to find a set of optimal task periods.
Co-design of real-time control systems is also con-
sidered in [Ryu et al, 1997], where the performance
parameters are expressed as functions of the sam-
pling periods and the input-output latencies. [Shin
and Meissner, 1999] deals with on-line rescaling and
relocation of control tasks in a multi-processor sys-
tem. A simulator for co-design is introduced in [Eker
and Cervin, 1999]. It facilitates co-simulation of con-
trol task execution, scheduling, and continuous plant
dynamics.

The second area of related work is on quality-of-
service (QoS) aware real-time software, where a
system’s resource allocation is adjusted on-line in
order to maximize the performance in some respect.
In [Li and Nahrstedt, 1998] a general framework
is proposed for controlling the application requests
for system resources using the amount of allocated
resources for feedback. It is shown that a PID
controller can be used to bound the resource usage
in a stable and fair way. A resource allocation
scheme called Q-RAM is presented in [Rajkumar
et al., 1997]. Several tasks are competing for finite
resources, and each task is associated with a utility
value, which is a function of the assigned resources.
The system distributes the resources between the
tasks to maximize the total utility of the system. In
[Abdelzaher et al., 1997] a QoS renegotiation scheme
is proposed as a way to allow graceful degradation
in cases of overload, failures or violation of pre-run-
time assumptions. The mechanism permits clients
to express, in their service requests, a range of QoS
levels they can accept from the provider, and the
perceived utility of receiving service at each of these
levels.

The third area relates to the wealth of flexible
scheduling algorithms available. An interesting al-
ternative to linear task rescaling is given in [But-
tazzo et al., 1998], where an elastic task model for
periodic tasks is presented. The relative sensitivity
of tasks to rescaling are expressed in terms of elastic-
ity coefficients. Schedulability analysis of the system
under EDF scheduling is given. Closely related to our
work, [Stankovic et al., 1999] presents a scheduling
algorithm that explicitly uses feedback. A PID con-
troller regulates the deadline miss-ratio for a set of
soft real-time tasks with varying execution times, by
adjusting their requested CPU utilization. It is as-
sumed that tasks can change their CPU consump-
tion by executing different versions of the same al-
gorithm. An admission controller is used to accom-
modate larger changes in the workload.

1.2 Outline

The rest of the paper is outlined as follows. Section
2 describes a hybrid controller for a double-tank pro-
cess. Section 3 applies the feedback scheduling prin-
ciple to a system with three hybrid controllers. The
design and implementation are discussed and simu-
lation results are given. Finally, Section 4 contains
the conclusions.

2. A Hybrid Controller

A hybrid controller for the double-tank process, see
Figure 2, is described. The controller was designed
and implemented in [Eker and Malmborg, 1999]. The
goal is to control the level of the lower tank to a

Figure 2 The double-tank process.

desired setpoint. The measurement signals are the
levels of both tanks, and the control signal is the
inflow to the upper tank. Choosing state variables
x1(¢t) for the upper tank level and xo(¢) for the
lower tank level, we get the nonlinear state-space
description

dx [—a/xi(t) + Bu(t) (1)
dt |a\/x1(t) —a\/x2(t)

The process constants @ and £ depend on the cross-
sections of the tanks, the outlet areas, and the
capacity of the pump. The control signal u(¢) is
limited to the interval [0,1].

Traditionally there is a trade-off in design objectives
when choosing controller parameters. It is usually
hard to achieve the desired step-change response
and at the same time get the wanted steady-state
behavior. An example of contradictory design crite-
ria is tuning a PID controller to achieve both fast
response to setpoint changes, fast disturbance rejec-
tion, and no or little overshoot. In process control it
is common practice to use PI control for steady state
regulation and to use manual control for large set-
point changes. One solution to this problem is to use
a hybrid controller consisting of two sub-controllers,
one PID controller and one time-optimal controller,
together with a switching scheme. The time-optimal
controller is used when the states are far away from
the reference point. Coming close, the PID controller
will automatically be switched in to replace the time
optimal controller.
The sub-controller designs are based on a lineariza-
tion of Equation (1).
dx —a 0 b
| ;

- =]x(t)—l—[

The new process parameters a and b are functions
of a, B and the current linearization level.

Jur @

a —a

2.1 PID Controller

The PID parameters (K, T;, T;) are calculated to give
the closed-loop characteristic polynomial

(s + wo)(s* + 2{ wos + w}) (3)

where (wy,{) = (6,0.7) are chosen to give good rejec-
tion of load disturbances. The following discrete-time
implementation, which includes low-pass filtering of
the derivative part (N = 10), is used:

P(t) = K (ysp(t) — ¥(t))

I(t) = I(t=h) + 7 (ysp(t) — (1))

D(t) = wair; D(t—h) + faers (y(t=h) — ¥(t))
(t)

2.2 Time-Optimal Controller

The time-optimal control signal is of bang-bang type.
For the linearized process it is possible to derive the
switching curve

axk —bu

xo(x1) = 2((ax1—bﬁ)(1+ln()) + bu)

ax1 —bu

where u takes values in {0,1}, and x¥ is the target
state for x;. The control signal is © = 0 above
the switching curve and u = 1 below. A closeness
criterion on the form

R T R
M | M |
Vcose = p 01
: [xf—xz] 6.) [xf—xz]

where P(6, y) is positive definite matrix, is evaluated
at each sample, to determine whether the controller
should switch to PID mode.

2.3 Implementation
The controller implementation is outlined below.

y = analogIn(yChan);
ysp = analogIn(yspChan);
if (getMode() == PID) {
if (ysp !'= ysp_old) {
setMode (OPT) ;
signal (FBS_sem); /* feedforward, see Sec 3.3 %/
u = calculateOPT();
} else {
u = calculatePID();
}
} else { /* OPT %/
Vclose = computeVclose();
if (Vclose < Vregion) {
setMode (PID) ;
u = calculatePID();
} else {
u = calculateOPT();
}
}
analogOut (uChan,u) ;

2.4 Real-Time Properties

The execution-time properties of the hybrid con-
troller were investigated in [Persson et al, 2000].

Control signal

1, 4
O-SW
O, 4

Lower tank level

0.15r
/ [|
! | l
0.1 ——=C

0.5 1 15 2 25 3 35 4
Time [s]

o

Figure 3 The single-controller case.

It was found that the optimal-control mode had con-
siderable longer execution time than the PID mode.
In each mode, the execution time was close to the
best case most of the time, but it also exhibited ran-
dom bursts. For purposes of illustration, assume that
the execution-time characteristics in the different
modes can be described by Cp;p = 1.8+ 0.25? ms and
Copt = 9.5+ 0.5‘&‘L2 ms, where {€;} is unit-variance
Gaussian white noise.

The nominal sampling interval is chosen to be one
tenth of the rise time, T, of the closed-loop system.
Our first example process has T,; = 210 ms which
gives Apom1 = 21 ms. A simulation of the computer-
control system is found in Figure 3. The controller
displays very good set-point response and steady-
state regulation. It is seen that the requested CPU
utilization is very low in PID mode, on average U =
Cpip/hnom1 = 9%. In Opt mode, it is significantly
higher, on average U = 6opt [Pnom1 = 45%.

3. Feedback Scheduling Example

Now assume that two additional hybrid double-tank
controllers should execute on the same CPU as the
first one. The tanks have slightly different process
parameters. Based on the rise-times, (Tyo,Tr3) =
(180,150) ms, they are assigned the nominal sam-
pling intervals (Znoma, Anoms) = (18,15) ms. To con-
sider scheduling, some assumptions about the real-
time operating system must be made. Throughout
this example, we assume a fixed-priority real-time
kernel with the possibility to measure task execution
time. The tasks are assigned rate-monotonic priori-
ties, i.e., the task with the shortest period gets the
highest priority.

First, open-loop scheduling is attempted. Then, a
feedback scheduler is added to the system. Finally,
feedforward is introduced in the scheduler. The sys-

Control signal
1r]
O L
Lower tank level
0.15r
| | |
| | |
0.1 ——=\=
Total requested utilization
l W
0 0.5 1 15 2 25 3 35 4
Time [s]

Figure 4 Open-loop scheduling.

Schedule (high=running, medium=preempted, low=sleeping)

FBS

TaskE]l ||| ||||||H
Taskl{A | | |

0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

Figure 5 Close-up of the schedule under open-loop
scheduling.

tems are evaluated by co-simulation of the real-time
kernel and the plant dynamics [Eker and Cervin,
1999]. A 4-second simulation cycle of is constructed
as follows. At time ¢ = 0, all controllers start in the
PID mode. At time ¢ = 0.5 s, the worst-case case sce-
nario appears: all controllers receive new setpoints
and should switch to Opt mode. Following this, the
controllers get new setpoints pairwise, and then one
by one. For each simulation, the behavior of Con-
troller 1, now being the lowest-priority controller, is
plotted. Also plotted is the total requested utiliza-
tion, Y, c;/hi, where c; is the current actual execu-
tion time of task i, and h; is the current period of
task i. Notice that this signal cannot be directly mea-
sured and used for feedback, but must be estimated.

3.1 Open-loop scheduling

We first consider open-loop scheduling, where the
controllers are implemented as tasks with fixed
periods equal to their nominal sampling intervals.

Control signal
1r]
ot d
Lower tank level

I N4

Total requested utilization

PP

0 0.5 1 15 2 25 3 35 4
Time [s]

i

Figure 6 Feedback scheduling.

Schedule (high=running, medium=preempted, low=sleeping)

w || |
Task S] | ||||||||| | I | | J

0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

Figure 7 Close-up of the schedule under feedback
scheduling.

The simulation results are shown in Figures 4 and 5.
The system easily becomes overloaded, since in the
worst case, U = Ziﬁopt /Pnomi = 170%. Controller 1
is for instance temporarily turned off in the intervals
t = [05,08] s and ¢ = [1.5,1.8] s because of
preemption. The result is low control performance.

3.2 Feedback scheduling

Next, a feedback scheduler is introduced. In its first
version, it is implemented as a high-priority task
with a period Trgs = 100 ms. The utilization setpoint
is set to Usp, = 80%. At each invocation, the feedback
scheduler estimates the current total requested
utilization of the tasks by computing U = >, C;/h;.
The estimate é'i is obtained from filtered execution-
time measurements,

Ci(k) = ACi(k—1) + (1— A)e;

where A is a forgetting factor. Setting A close to
1 results in a smooth, but slow estimate. In this

Control signal

1t]
(013 |

Lower tank level

N N

Total requested utilization

ot TS

0

0 0.5 1 15 2 25 3 35 4
Time [s]

Figure 8 Feedback + feedforward scheduling.

Schedule (high=running, medium=preempted, low=sleeping)

FBS|

n

Task

Task 2

Task 1

0.4 0.5 0.6 0.7 0.8 0.9
Time [s]

Figure 9 Close-up of the schedule under feedback +
feedforward scheduling.

case, A = 0, which gives fast detection of overloads,
was preferred. Finally, new task periods are assigned
according to the linear rescaling

A~

hi = hnomiU/Usp

The execution time of the feedback scheduler is
assumed to be 2 ms. The simulation results are
shown in Figures 6 and 7. The scheduler tries to
keep the workload close to 80%. However, there is
a delay from a change in the requested utilization
until it is detected by the feedback scheduler. This
results in overload peaks at some of the mode change
instants. For instance, Controller 1 is preempted in
the interval ¢ = [0.5,0.6] s. The result is slightly
degraded control performance.

3.3 Feedback + feedforward scheduling

A feedforward mechanism is added to the sched-
uler. The basic period of the scheduler is kept at
Trps = 100 ms. However, when a task in PID mode

detects a new setpoint, it notifies the feedback sched-
uler, which is released immediately. The task periods
are adjusted before the notifying task can continue to
execute in the Opt mode. The execution-time estima-
tion can also benefit from the mode-change informa-
tion, by running separate estimators in the different
modes. A forgetting factor of A = 0.9 was chosen to
give smooth estimates in both modes. The result is
a more responsive and accurate feedback scheduler.
The simulation results are shown in Figures 8 and
9. It is seen that the delay for Controller 1 at time
t = 0.5 s has been reduced, and that the control per-
formance is slightly better.

3.4 Performance Evaluation

The performance of the controllers under different
scheduling policies are evaluated using the criterion

Vi(t) = /Ot(ynomi(r) - yactuali(z—))zdr

where y,om; is the process output when the controller
is running unpreempted at its nominal sampling
interval, and ygcmaq; is the actual process output
when the controller is running in the multi-task real-
time system. V is referred to as the additional loss
due to scheduling. 25 cycles (100 s) are simulated
and the final loss for the different controllers are
summarized below:

Scheduling V1(100) V5(100) V3(100)
Open-loop 420072 20002 5.1oo
Feedback 50002 3200% 1.00078
Feedback+ 15002 1.1002 1.000°8
feedforward

The evolution of the additional loss for Controller 1
is shown in Figure 10. There is a big improvement
when introducing feedback, and feedforward gives
even further improvement.

4. Conclusions

The feedback scheduler presented increases the con-
trol performance and relaxes the requirements of
known executions times for multi-task control sys-
tems. The controllers are allowed to miss an occa-
sional deadline, and are hence not treated as hard
real-time tasks. In case of overload, the scheduler
calculates new sampling periods for all control tasks.
The estimate of the current workload is based on
execution-time measurements. The new sampling
periods are given by simple linear rescaling of the
nominal sampling periods, i.e., the relative impor-
tance order of the controllers is preserved. A more
elaborate rescaling procedure would most likely give
better control performance but also require more

Accumulated loss due to scheduling

0.02
.015+
0.013 Open-loop
0.01f
0.005 Feedback
Feedback + feedforward
O L L L
0 20 40 60 80 100

Timels]

Figure 10 The accumulated additional loss due to
scheduling for Controller 1, Vy(¢).

computational power. The feedback scheduler itself
is implemented as a task, and its period is an impor-
tant design parameter.

5. References

Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation
in real-time systems, and its application to flight control.” In
Proceedings of the IEEE Real- Time Systems Symposium.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model
for adaptive rate control.” In Proceedings of the IEEE Real-
Time Systems Symposium.

Eker, J. and A. Cervin (1999): “A Matlab toolbox for real-time
and control systems co-design.” In Proceedings of the 6th
International Conference on Real-Time Computing Systems
and Applications, pp. 320-327. Hong Kong, P.R. China.

Eker, J. and J. Malmborg (1999): “Design and implementation of
a hybrid control strategy.” IEEE Control Systems Magazine,
19:4.

Li, B. and K. Nahrstedt (1998): “A control theoretic model
for quality of service adaptations.” In Proceedings of Sixth
International Workshop on Quality of Service.

Persson, P., A. Cervin, and J. Eker (2000): “Execution time prop-
erties of a hybrid controller.” Technical Report. Department of
Computer Science, Lund Institute of Technology, Lund, Swe-
den.

Rajkumar, R., C. Lee, J. Lehoczky, and D. Siewiorek (1997): “A
resources allocation model for QoS management.” In Proceed-
ings of the IEEFE Real- Time Technology and Applications Sym-
posium.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time
controller design: From performance specifications to end-to-
end timing constraints.” In Proceedings of the IEEE Real
Time Technology and Applications Symposium.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task
schedulability in real-time control systems.” In Proceedings of
the 17th IEEE Real Time Systems Symposium, pp. 13-21.

Shin, K. and C. Meissner (1999): “Adaptation of control system
performance by task reallocation and period modification.” In
Proceedings of the 11th Euromicro Conference on Real Time
Systems, pp. 29-36.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The case for
feedback control real-time scheduling.” In Proceedings of the
11th Euromicro Conference on Real- Time Systems, pp. 11-20.

Schedulability Analysis for Systems with Data and Control Dependencies

Paul Pop, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science,
Linkdping University, Sweden
{paupo, petel, zebpe}@ida.liu.se

Abstract cies. Moreover, knowledge about these dependencies can
. .. be used in order to improve the accuracy of schedulability
In this paper we present an approach to SChedmab'“tyanalyses and the quality of produced schedules.
analysis for hard real-time systems with control and data Static cyclic scheduling of processes with both data and
dependencies. We consider distributed architecture%Ontrol dependencies has been addressed by us in [2, 3].

CO”S'S“T‘Q of ”.‘“'“P'e programmable. Processors, and .th%e have discussed the particular aspects concerning com-
scheduling policy is based on a static priority preemptlveg]unication in such distributed systems in [11, 12].

strategy. Our mode_I of the system capturg; both data and one way of dealing with data dependencies between
control dependencies, and the schedulability approach i rocesses with static priority based scheduling has been

able to reduce the pessimism of the analysis by using thﬁlﬁdirectly addressed by the extensions proposed for the

knowle_dge aboyt control and data de.pendenc'essoheduIabiIity analysis of distributed systems through the

Extensive expenm(_an_ts as well as a real life examplquse of thaelease jitte[15]. Release jitter is theovst case

demonstrate the efficiency of our approach. delay between the arrival of a process and its release (when

1. Introduction it is placed in the run-queue for the processor) and can in-

Depending on the particular application, a real-timeC|Ude thecommunication del_ay QUe to the transmission of
3 message on the communication channel.

system has certain requirements on performance, cost,) . .
dependability, size, etc. For hard real-time applications the [14] and [16] usdime offsetelationships an@hases

timing requirements are extremely importahus, in respectively, in order to model data dependencies. Offset

order to function correctly, a real-time system implementingand phase are similar concepts that express the existence

such an application has to meet its deadlines. of a fixed |n1t_irval It?] tlmehbetvxt/;]a etnbth_e tarrcljvals of seﬁs of
In this paper we present an approach to schedulabilit)processes' € authors show that by Introducing such con-

analysis for hard real-time systems that have both data an%epts mtq th? cp_mputanonal model, the PEssImISm Of. the
control dependencies. We consider systems that are impl _nalys_|s is significantly reduced when bounding the time
mented on distributed architectures consisting of multiple er\ll\%lour of Ihel Zystemd. . ist then. d di
programmable processors and, in our approach, the sys- "’ en control dependencies exist then, depending on
tem is modeled through a so callednditional process cond|t|_ons, on]y asupset of the set of processes is execut-
graph (CPG) [3]. Such a graph captures both the flow Ofed during an mvocathn of the systeModeshave be_en
data and that of control. Process scheduling is based on ed to model a certain class of control dependencies [4].
static priority preemptive approach uch a model basically assumes that at the starting of an
Process scheduling for performance estimation angxecution cycle, a particular functionality is known in ad-
vance and is fixed for one or several cycles until another

synthesis of real-time systems has been intensively re- de ch ; ¢ 4 H d th
searched in the last years. The existing approaches differ fiiode change IS performed. However, modes cannot han-

the scheduling strategy adopted, system architectures coﬂl—e fmef%ra;med (cj:ontr(tnl dlzpend%nue_s, oré:ertafur: con;bll_na—

sidered, handling of the communication, and process intert—'o.n"S of data and control dependencies. L.areiul modeling

action aspects. using theperloc_isof processes (lower bound between_sub-
Static non-preemptive scheduling of a set of processegequent re-arrivals of a process) can also be a solution for

on a multiprocessor system has been discussed in [3, 5, gome cases of control dependencies [6]. If, for example,

12]. Preemptive scheduling of independent processes with® know that a certain set of processes will only.exec_ute
very second cycle of the system, we can set their periods

static priorities running on single processor architecture$. :
P g gle p the double of the period of the rest of the processes in

has its roots in [9]. The approach has been later extende X .
to accommodate more general system models and hd0e system. However, using the worst case assumption on
eriods leads very often to unnecessarily pessimistic

been also applied to distributed systems [15]. The reade? . . ;
is referred to [1] for a survey on this topic. schedulability evaluations. A more refined process model
In many of the previous scheduling approaches re 2" produce much better schedulability results, as will be

searchers have assumed that processes are scheduled in%l%qwn later. . .
We propose in the next section a system model based

pendently. However, this is not the case in reality, where e .
process sets can exhibit both data and control dependeﬂ-n a conditional process graph that is able to capture both

data and control dependencies. Then, we introduce a less The mapping of processes to processors and busses is
pessimistic schedulability analysis technique in order togiven by a functionM: V- PE, wherePE={pe,, pe,, ..,
bound the response time of a hard real-time system modd&\pd is the set of processing elements (processors and
eled in such a way. In this paper we insist on various asbusses). For any proceBsM(P;) is the processing element
pects concerning dependencies between processes. Otti@whichP; is assigned for execution.
issues like communication protocol, bus arbitration, pack- Each proces®;, assigned to processor or bMgP)), is
aging of messages, clock synchronization, as discussed I§j1aracterized by a worst case execution t®nén the pro-
us in [11], can easily be included in the analysis. cess graph depicted in FigureFy andP3, are the source
This paper is divided into 7 sections. The next section@d Sink nodes respectively. Nodes dendtgd,, .., P17,
presents our graph-based abstract system representatiGii€ “ordinary” processes specified by the designer. Figure
Section 3 formulates the problem and sections 4 and & &/S0 shows the mapping of processes to three different
present the schedulability analyses proposed. The teclf0Cessors. The communication processes are represented

nigues are evaluated in section 6, and section 7 presen'l% Flgure 1 as So“fj circles and are introduced for ea_ch con-
our conclusions nection which links processes mapped to different

processors. Ithis paper we do not consider the message
2. Conditional Process Graph passing aspects which we have analyzed in [11, 12].

As an abstract model for system representation we use a An edge?ijEC s a con_ditiodnal e((jj.ge(thick Iines. in.
directed, acyclic, polar gragh(V, Eg, E). Each nod® 0V Figure 1) and it has aassociated condition. Transmission

represents one process. Such a process can be an “or@h such an edge takes place only if the associated condi-

nary” process specified by the designer or a so called'on is satisfi.eq. Wg call a node with conditional_ edges at
communication procesghich captures the message pass-'ts outp.u.t ad|§junct|on noddand the correspondmg pro-
ing activity. Eg and E. are the sets of simple and cess _athspnc'uon proces_)sAIternatlve paths starting from _
conditional edges respectiveBs n Ec =0 andEgD Eq a d|SJunct|pn pode, which corre§pond toa ce'rtaln'cond|-
= E, whereE is the set of all edges. An edggllE from P, tion, are disjoint and they meet in a so caltmm!unct!on

to P, indicates that the output & is the input ofP;. The node(with the _c_orrespondlng process callemhjuncnon_
graph is polar, which means that there are two nodeéoroces$. Conditions are dynamically computed by dis-

called sourceandsink that conventionally represent the junction processes and their value is unpredictable at the

first and last process. These nodes are introduced as durpiart of an execution cycle of the _cond|t|(_)nal process
raph In Figure 1 circles representing conjunction and

my processes so that all other nodes in the graph arg. “ . d depicted with thick bord Wi
successors of the source and predecessors of the sifiglunction nodes are depicted with thick borders. We

respectively. assume that conditions are independent.

We consider a distributed architecture consisting of According to our model, we assume that a process,
severalprocessorgonnected throughussesThese bus- WhiCh is not a conjunction process, can be activated only
ses can be shared by several communication channeﬁtera_” its inputs have arrlved.Agonjunctlon process can
connecting processes assigned to different processors. P€ activated after messages coming on one of the alterna-

We assume that each process is assigned to a proces$tyf Paths have arrived. All processes issue their outputs
and each communication channel which connects procesg\lhen they terminate. If we consider the activation time of

es assigned to different processors is assigned to a bus.the source process as a reference, the finishing time of the
sink process is the delay of the system at a certain execu-

tion.

3. Problem Formulation

An application is modeled as a sptof n conditional
process graph§;, i = 1..n. Every proces$; in such a
graph is mapped to a certain processor, has a known worst-
case execution tim€;, a deadlineD;, and a uniquely as-
signed priority. All processes belonging to the same CPG
I; have the same periol; which is the period of the re-
spective conditional process graph. Each CPG in the ap-
plication has its own independent period. Typically, global

_ Rl

- deadlinesdr; on the delay of each CPG are imposed and
~ g -
& not individual deadlines on processes.
Process mapping We consider a priority based preemptive execution en-
Processope;: Py, Py, Py, Ps, Py, Pio, P13 vironment, which means that higher priority processes
Processope,: Ps, Ps, Py, Pry, Pia, Pis, Pr7 will interrupt the execution of lower priority processes. A

Processope;: Pg, P, Pig

Communications are mapped to a unique bus lower priority process can block a higher priority process

(e.g., itisin its critical section), and the blocking time is
Figure 1. Conditional Process Graph

/Py 4. Schedulability Analysis for Task Graphs

\ with Data Dependencies
\
\ = Methods for schedulability analysis of data dependent
30 AN processes with static priority preemptive scheduling have

25 32‘. been proposed in [14] and [16].

They use the concept offsetor phaserespectively, in
22 Yo order to handle data dependencies. [14] shows that the
/ e pessimism of the analysis is reduced through the introduc-
/ tion of offsets. The offsets have to be determined by the
’ designer.
[16] provides a framework that iteratively finds the
M M2 phases (offsets) for all processes, and then feeds them

Figure 2. System with Control and Data Dependencies back into the schedulability analysis which in turn is used
computed according to the priority ceiling protocol [13]. @dain to derive better phases. Thus, the pessimism of the

We are interested to develop a schedulability analysi@n@lysis is iteratively reduced. _
for a system modeled as a set of conditional process Ve have used the framework provided by [16] as a
graphs. For the rest of the paper we will consider that g|o_start|ng point for our analysis. The response time of a pro-
bal deadlines are imposed on each CPG. The approach c&RSSPi IS:
be easily extended if individual deadlines are imposed on ro=Ci+ DZ eri —Oij—‘ (1)
processes.) 0j Ohp(R) T .

To show the relevance of our problem, let us considetVNere hp(R) is the set of processes that have higher
the example depicted in Figure 2, where we have a systefiority thanP;, andG; is the phase d¥; relative toP;.
modeled as two conditional process graphandr, with _ As a first step we have extend(_ed this analysis to real-
a total of 9 processes (processgs Pg, Py andP, are lMe systems that use Fhe jume—trlggered protocol as the
dummy processes and are not counted), and one conditioHNderlying communication infrastructure [12]. However,
The processes are mapped on three different processors@§ the sake of simplicity, we do not consider the commu-
indicated by the shading in Figure 2, and the worst caséication of messages in this paper.
execution time in milliseconds for each process on its re- N [16] & system is modeled as a Saf n task graphs
spective processor is depicted to the left of each nbge. Gi» 1= 1..n. The system model assumed and the definition
has a period of 200 ms$,, has a period of 150 ms. The o_f a t_ask graph are _S|m|Iar to our CPG , but without con-
deadlines are 100 ms 6q and 90 ms off . sidering any conditions. The aim of the schedulability

Table 1 presents the estimated worst case delay on tfinalysis in [16] is to derive an as tight as possible worst

two graphs. In the column labeled “no conditions” we have DelayEstimate(task graph G, system S)
the results for the case when the analysis is applied to the derives the worst case delay of a task graph G considering
set of processes, ignoring control dependencies. This re= the influence from all other task graphs in the system S
. for each pair (P;, P)in G
sults in a worst case delay of 120 ms fgrand 82 ms for maxsep[P, ,’3_] 7 -
I,. Thus, the system is considered to be not schedulable. end for "
However, this analysis assumes as a worst case scenar- step = 0
io the possible activation of all nine processes for each ex- repeat
ecution of the system. This is the solution which will be LatestTimes(G)
obtained using a dataflow graph representation of the sys- EarliestTimes(G)
tem. However, considering the CHG in Figure 2, it is for each P;0 G
easy to observe that procesgdh the one side and pro- MaxSeparations(F)

. . . end for
cessed, and P, on the other side will not be activated until_ maxsep is not changed or step < limit

during Fhe same pe_rio_d bf. _ _ return the worst case delay 8 of the graph G
Making use of this information for the analysis we ob- end DelayEstimate
tain a worst case delay of 100 ms, foy, as shown in Ta-

ble 1 in the column headed “conditions”, which indicates SchedulabilityTest(system S)
-- derives the worst case delay for each task graph in the system

\\/H
8
N2

that the system is schedulable. -- and verifies if the deadlines are met
Worst Case Delays for each task graph G;O S
— — DelayEstimate(G;, S
CPG no conditions| conditiong elayEstimate(G;, 5)
end for
M 120 100 if all task graphs meet their deadline system S is schedulable
end Schedulability Test
r, 82 82 y

Figure 3. Delay Estimation and Schedulability

Table 1: Worst Case Delays for the System in Fig. 2 Analysis for Task Graphs

maxsepable, or a certain imposéiinit on the number of
iterations is reached.

Finally, the DelayEstimate function returns the worst-
case delay; estimated for a task grapB, as the latest
time when the sink node db can finish its execution.
Based on the delays producedimlayEstimate, the func-
tion SchedulabilityTest in Figure 3 concludes on the sched-
ulability of the system.

5. Schedulability Analysis for CPGs

Before introducing our approach to schedulability
analysis of conditional process graphs, two concepts have
to be introduced: theinconditional subgraphsind the

M M process guards
Figure 4. Example of two CPGs _ Depending on the values calculated for _the conditions,
case delay on the execution time of each of the task graphq's”cferent alter'nanve paths' through a_condltlonal process
) . L . graph are activated for a given activation of the system. To
n the system. T_hls delay estimation is done using the alT”nodel this, a boolean expressi¥p;, calledguard, can be
goxpm DeIayEstlfr?ﬁFe dlescr_lttr)]ed n F|guret3. associated to each noékin the graph. It represents the
" Ie cior_e Ob |s;gor|ﬁ misa V_/Iors Cise reSipo_ns_enecessary condition for the respective process to be acti-
ime calculation based on offsets, similar to the analysis i jtaq. |n Figure 4, for exampleXp,=CID, Xps=C,

[14]. Thus, in thelLatestTimes function worst case re- Xpg=true, %oy =true, andXp; =K.
sponse times and upper bounds for the offsets are calculat- e Cé" an altérnative path through a conditional
ed, while theEarliestTimes function calculates the lower process graph, resulting from a combination of conditions,
bounds of the offsets. 3 N an unconditional subgraphdenoted byg. For example,
TheLatestTlmes function is a modified critical-path al- e CPQ; in Figure 4 has three unconditional subgraphs,
gorithm that calculates for each node of the graph th&rresponding to the following three combinations of
longest path to the sink node. Thus, during the topologicalynditions: CD. CD. and C. The unconditional
traversal of the grap® within LatestTimes, for each pro- subgraph corresponding to the combinat®fD in the

cessP;, the worst case response timds calculated ac- cpg I, consists of processdy, Py, Py, Pg, P, Pg and
cording to the equation (1). This value is based on thes_

values of the offsets known so far. Oncergis calculated, 1Q|_he guards of each process, as well as the

it can be used to determine and update offsets for othgginconditional subgraphs resulting from a conditional
successor processes. Accordingly, HagliestTimes func- process grapi™ can be determined through a simple
tion determines the lower bounds on the offsets. The influjgcrsive topological traversal bf

ence on graph G from other graphs in the system is) .
considered in both of the functions mentioned earlier. -1 Ignoring Conditions (IC)

These calculations can be improved by realizing thatA straightforward approach to the schedulability analysis
for a proces®;, there might exist a proce® mapped on of systems represented as CPGs is to ignore control
the same processor, with prioriBf < priority(P)), such ~ dependencies and to apply the schedulability analysis as
that their execution windows never overlap. In this casedescribed in section 4 (the algoritt®ohedulabilityTest in
the term in the equation (1) that expresses the influence dfigure 3).

P; on the execution oP; can be dropped, resulting ina This means that conditional edges in the CPGs are con-
tighter worst case response time calculation. This situatiosidered like simple edges and the conditions in the model
is expressed through the so calledxsepable, computed are dropped. What results is a syst8eonsisting of sim-
by theMaxSeparations function, whose valuenaxsep[P, ple task graphs&;, each one resulted from a CRGof the
Pj] is less than or equal to O if the two processes nevegiven systemy. The systengcan then be analyzed using
overlap during their executioomaxsepstands formaxi- the algorithm in Figure 5. It is obvious that if the syst&m
mum separationan analysis modified from [10] that is schedulable, the systapnis also schedulable.
builds themaxsepable based on the worst case execution
times and offsets determined BarliestTimes andLatest- SANC(system W . i

) -- verifies the schedulability of a system consisting of a set of
Times. -- conditional process graphs

Having a better view on the maximum separation be- transform each I'; 0) into the corresponding G; U S
tween each pair of processes, tighter worst case execution SchedulabilityTest(S)
times and offsets can be derived, which in turn contribute ~ if Sis schedulable, system) is schedulable
to the update of thmaxsefable. This iterative tightening €nd SA/IC

process is repeated until there is no modification to therigure 5. Schedulability Analysis Ignoring Conditions

DE/CPG(CPGT, system S)

-- derives the worst case delay of a CIP€Gonsidering
-- the influence from all other task graphs in the system S

extract all unconditional subgraphs g; from I
for each g;
DelayEstimate(g;, S)
end for
return the largest of the delays, which is
the worst case delay &r of CPG I

end DE/CPG

a) DE/CPG -- Delay Estimate for Conditional Process Graphs

SA/BF(system)

-- verifies the schedulability of a system consisting of >
-- conditional process graphs

transform each I'; O into the corresponding G; 0S
for each I; O
DE/CPG(T';, {Gy1, Gz ---Gj.1 Gjvs Gp})
end for
if all CPGs meet their deadline the system U is schedulable
end SA/BF

b) SA/BF -- S chedulability Analysis: the Brute Force approach
Figure 6. Brute Force Schedulability Analysis

point of view, because it is applied for each unconditional
subgraph. In general, the number of unconditional sub-
graphs can grow exponentially. However, for many of the
practical systems this is not the case, and the brute force
method can be used. Alternatively, less expensive meth-
ods, like those presented below, should be applied.

5.3 Condition Separation (CS)

In some situations, the explosion of unconditional
subgraphs makes the brute force method inapplicable.
Thus, we need to find an analysis that is situated
somewhere between the two alternatives discussed in 5.1
and 5.2, which means its should be not too pessimistic and
should run in acceptable time.

Afirstideais to go back to theelayEstimate algorithm
in Figure 3, and use the knowledge about conditions in or-
der to update thenaxsepable. Thus, if two processé}
andP; never overlap their execution because they execute
under alternative values of conditions, then we can update
maxsep[R, Pj] to 0, and thus improve the quality of the
delay estimation. Two processBsandP; never overlap
their execution if there exists at least one condition C, so
thatC O Xp; (Xp; is the guard of proce$%) andC O Xpj.

In this approach, called CS, we practically use the same

This approach, which we call IC, is, of course, Very gigorithm as for ordinary task graphs and try to exploit the
pessimistic. However, this is the current practice Whefpformation captured by conditional dependencies in or-
worst case arrival periods are considered and classical daffayr to exclude certain influences during the analysis. In Fi-

flow graphs are used for modeling and scheduling.
5.2 Brute Force Solution (BF)

gure 7 we show the algorith®A/CS which performs the
schedulability analysis based on this heuristic.

The pessimism of the previous approach can be reduced

by using a conditional process graph model. A simple,SA/CS(system)

brute force solution is to apply the schedulability analysis~.
presented in section 4, after the CPGs have been
decomposed into their constituent unconditional
subgraphs.

Consider a systeny which consists oh CPGs[', i =
1..n Each CPG’; can be decomposed intouncondition-
al subgraphgj' ,j = 1..n;. In Figure 4, for example, we
have 3 unconditional subgrapg’, g,*, gs* derived from
I, and two,g,2, g,2 derived from .

At the same time, each CPG can be transformed (as
shown in subsection 5.1) into a simple task gré&phby
transforming conditional edges into ordinary ones and
dropping the conditions. When deriving the worst case de-
lay onl"; we apply the analysis from section 4 (algorithm
DelayEstimate in Figure 3) separately to each uncondi-
tional subgraprgj' in combination with the graph3,

Gy, ..Gj.1, Gj+1, Gy). This means that we consider each al-
ternative path fronfr; in the context of the system, instead
of the whole subgrap@; as in the previous approach. This

is described by the algorithmE/CPG in Figure 6 a). The
schedulability analysis is then based on the delay estima-
tion for each CPG as shown in the algoritls#/BF in Fi-

gure 6 b).

verifies the schedulability of a system consisting of apswt
conditional process graphs

transform each I'; O Y into the corresponding G;0 S
and keep guard Xp; for each P;
foreach G;OS
-- derives the worst case delay of a task graphddsidering
-- the influence from all other task graphs in the system S
for each pair (P;, P) in G;
maxsep[P;, P] = e
end for
step=0
repeat
LatestTimes(G)
EarliestTimes(G)
for each P;0 G;
MaxSeparations(P)
end for
for each pair (P;, P) in G;
if OC, C O Xp; 0 C U Xpjthen
maxsep[P;, P] =0
end if
end for
until maxsep is not changed or step < limit
Or;jis the worst case delay for I';
end for

if all CPGs meet their deadline, the system UJ is schedulable

Such an approach, we call it BF, while producing tight end SA/CS
bounds on the delays, can be expensive from the runtime Figure 7. Schedulability Analysis using Condition

Separation

DelayEstimateRT1 (task graph G, system) S 6. Experimental Results
LatestTimes(G)

end DelayEstimateRT1 We have performed several experiments in order to
evaluate the different approaches proposed. The two main
a) Delay Estimation for RT1 aspects we were interested in are the quality of the

schedulability analysis and the scalability of the
algorithms for large examples. A first set of massive
experiments were performed on conditional process
graphs generated for experimental purpose.

DelayEstimateRT2 (task graph G, systen) S
for each pair (P;, P) in G;
maxsep[P;, P] =«
end for

LatestTimes(G) We considered architectures consisting of 2, 4, 6, 8 and
EarliestTimes(G) 10 processors. 40 processes were assigned to each node,
foreach P0G resulting in graphs of 80, 160, 240, 320 and 400 processes,

MaxSeparations(P) having 2, 4, 6, 8 and 10 conditions, respectively. The num-
end for ber of unconditional subgraphs varied for each graph di-
LatestTimes(G)

mension depending on the number of conditions and the
randomly generated structure of the CPGs. For example,
a) Delay Estimation for RT2 for CPGs with 400 processes, the maximum number of
unconditional subgraphs is 64.

i] 30 graphs were generated for each graph dimension,
5.4 Relaxed Tightness Analysis (RT) thus a total of 150 graphs were used for experimental eval-
The two approaches discussed here are similar to the bruteation. Worst case execution times were assigned random-
force algorithm (Figure 6) presented in section 5.2.ly using both uniform and exponential distribution. All
However, they try to improve on the execution time of the experiments were run on a Sun Ultra 10 workstation.
analyses by reducing the complexity of thelayEstimate In order to compare the quality of the schedulability ap-
algorithm (Figure 3) which is called from theE/CPG proaches, we need a cost function that captures, for a cer-
function (Figure 6 a). This will reduce the execution time tain system, the difference in quality between the
of the analysis, not by reducing the number of subgraphschedulability approaches proposed. Our cost function is
which have to be visited (like in section 5.3), but by the difference between the deadline and the estimated
reducing the time needed to analyze each subgraph. Agorst case delay of a CPG, summed for all the CPGs in the
our experimental results show (section 6) this approaclsystem:

can pg very effective in practice. Of course, by the cost function= i(Dr' -5)

simplifications applied t@elayEstimate the quality of the i Pt

analysis is reduced in comparison to the brute forcewherenis the number of CPGs in the systedy; is the
method. estimated worst case delay of the CPGandDr; is the

We have considered two alternatives of which the firstdeadline orT';. A higher value for this cost function, for a
one is more drastic while the second one is trying a mor@iven system, means that the corresponding approach
refined trade-off between execution time and quality of theproduces better results (schedulability analysis is less
analyses. pessimistic).

With both these approaches, the idea is not to run the For each of the 150 generated example systems and
iterative tightening loop inDelayEstimate that repeats each of the five approaches to schedulability analysis we
until no changes are made neaxsepor until thelimit is have calculated the cost function mentioned previously,
reached. While this tightening loop iteratively reduces thebased on results produced with the algorithms described in
pessimism when calculating the worst case responsgection 5. These values, for a given system, differ from
times, the actual calculation of the worst case responsene analysis to another, with the BF being the least
times is done inatestTimes, and the rest of the algorithm pessimistic approach and therefore having the largest
in Figure 3 just tries to improve on these values. For thevalue for the cost function.
first approach, calle®T1 the functionDelayEstimate has We are interested to compare the five analyses, based on
been transformed like in Figure 8 a). the values obtained for the cost function. Thus, Figure 9 a)

However, it might be worth using at least the presents the average percentage deviations of the cost
MaxSeparations in order to obtain tighter values for the function obtained in each of the five approaches,
worst case response times. For the alternaive in compared to the value of the cost function obtained with
Figure 8 b) DelayEstimateRT2 first callsLatestTimes and ~ the BF approach. A smaller value for the percentage
EarliestTimes, thenMaxSeparations in order to build the deviation means a larger cost function, thus a better result.
maxseptable, and agaihatestTimes to tighten the worst The percentage deviation is calculated according to the
case response times. formula:

end DelayEstimateRT2

Figure 8. Delay Estimation for the RT Approaches

COSEF - Costalpproach

deviation =
cose

£1oo

Average Percentage Deviation [%)]

100 450
BF —8— BF —g——
RT2—4A 400 RT2—4A
CS—+— CS——+——
80 RT1—X—— —350 RT1—X——
IC—— L2 IC—o—
(]
£
£ 300
60 s
o
£ 250
(5]
&
i 200
40 %
§ 150
<
20 100
A A
& 50
A A
ol—=s & & & I — 0l—s
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of Processes Number of Processes

Figure 9. a) Average Percentage Deviation (left) and b) Average Execution Time (right) for each of the five analyses

Figure 9 b) presents the average runtime of theneeded, RT1 can be used instead, as itis twice faster in ex-
algorithms, in seconds. ecution time than RT2.

The brute force approach, BF, performs best in terms of We were also interested to compare the five approaches
quality and obtains the largest values for the cost functiorwith respect to the number of unconditional subgraphs in
of the systems at the expense of a large execution time system. For the results depicted in Figure 10 we have as-
The execution time can be up to 7 minutes for large graphsumed CPGs consisting of 2, 4, 8, 16, and 32 uncondition-
of 400 processes, 10 conditions, and 64 unconditionaal subgraphs of maximum 50 processes each, allocated to
subgraphs. At the other end, the straightforward approacB processors. Figure 10 shows that as the number of sub-
IC that ignores the conditions, performs worst andgraphs increases, the differences between the approaches
becomes more and more pessimistic as the system sizgow while the ranking among them remains the same, as
increases. As can be seen from Figure 9 a), IC has even foesulted from Figure 9. The CS approach performs better
smaller systems of 160 processes (3 conditions, maximurthan RT1 with a smaller number of subgraphs, but RT1 be-
8 unconditional subgraphs) a 50% worse quality than theeomes better as the number of subgraphs in the CPGs in-
brute force approach, with almost 80% loss in quality, increases.
average, for large systems of 400 processes. It is Finally, we considered a real-life example implement-
interesting to mention that the low quality IC approach hasng a vehicle cruise controller modeled using a conditional
also an average execution time which is equal omrocess graph. The graph has 32 processes, two conditions
comparable to the much better quality heuristics (excep(4 subgraphs), and it was mapped on an architecture con-
the BF, of course). This is because it tries to improve orsisting of 4 nodes (processors), namely: Anti Blocking
the worst case delays through the iterative loop presente8ystem, Transmission Control Module, Engine Control
in DelayEstimate, Figure 3. Module and Electronic Throttle Module. The period of the

Let us turn our attention to the three approaches CSCPG was 200 ms, and the deadline was set to 110 ms.
RT1, and RT2 that, like the BF, consider conditions duringWithout considering the conditions, IC obtained a worst
the analysis but also try to perform a trade-off betweercase delay of 138 ms, thus the system resulted as being
quality and execution time. Figure 9 shows that the pessi- 100

mism of the analysis is dramatically reduced by consider-_, RE;';—E—
ing the conditions during the analysis. The RT1 and RT2~ 0 cs—+—
approaches, that visit each unconditional subgraph, pers RTL—X—

form in average better than the CS approach that consider§
condition separation for the whole graph. However, CSi is g 60

comparable in quality with RT1, and even performs better £ =
for graphs of size smaller than 240 processes (4 condi-g 540
tions, maximum 16 subgraphs).
The RT2 analysis that tries to improve the worst case]
response times using tMaxSeparations, as opposed to g

RT1, performs best among the non-brute-force ap-

ge P

proaches. As can be seen from Figure 9, RT2 has less than 0 —a— S8 35 > 35—
20% average deviation from the solutions obtained with Number of Unconditional Sugraphs
the brute force approach. However, if faster runtimes are Figure 10. Average Percentage Deviations

unschedulable. The same result was obtained with the CBublishers, 1997.

approach, and this is because the alternative paths wefg] H.Kopetz, G. Griinsteidl, “TTP-A Protocol for Fault-

mapped on different processors, thus not influencing eackg|erant Real-Time SystemdEEE Computer27(1), 14-
other. However, the brute force approach BF produced 85 1994

worst case delay of 104 ms which proves that the systerF . B . .
implementing the vehicle cruise controller is, in fact, o) C- L. Liu, J. W. Layland, “Scheduling Algorithms for
schedulable. Both RT1 and RT2 produced the same wordflultiprogramming in a Hard-Real-Time Environment”,
case delay of 104 ms as the BF. Journal of the ACM20(1), 46-61, 1973.
7 C lusi [10] K. McMillan and D. Dill, “Algorithms for interface

- Lonclusions timing verification”, Proceedings of IEEE International
In this paper we proposed solutions to the schedulabilityConference on Computer Design, 48-51, 1992.
analysis of hard real-time systems with control and dat"’tll] P. Pop, P., Eles, Z., Peng, “Schedulability-Driven

dependencies. . Communication Synthesis for Time-Triggered Embedded
The systems are modeled through a set of condltlonaéystems,., Proceedings of the 6th International

process graphs that are able to capture both the flow %onference on Real-Time Computing Systems and
data and that of control. We consider distributed arChiteCApplications 1999.

tures, and the scheduling policy is based on a static prior- B . .
ity preemptive strategy. [12]. P'. Pop, P, Eles., Z Peng, Sghedulmg with
Five approaches to the schedulability analysis of sucfpPlimized - Communication for Time-Triggered

systems are proposed. Extensive experiments and a reﬁ-mbeddEd Systems”, Proceedings of the International

life example show that by considering the conditions dur-Workshop on Hardware-Software Co-design, 78-82,

ing the analysis, the pessimism of the analysis can be drad999-

tically reduced. [13]L. Sha, R. Rajkumar, J. Lehoczky, “Priority
While the brute force approach BF performed best atnheritance Protocols: An Approach to Real-Time

the expense of execution time, the RT2 approach is able tdynchronization”, IEEE Transactions on Computers

obtain results with less than 20% average loss in quality39(9), 1175-1185, 1990.

in a very short time. [14] K. Tindell, “Adding Time-Offsets to Schedulability

References Analysis”, Department of Computer Science, University of

[1] N.C.Audsley, A. Burns, R. I. Davis, K. Tindell, A J, YOk Report Number vCS-94-221, 1994, ~
Wellings, “Fixed Priority Pre-emptive Scheduling: An [15] K. Tindell, J. Clark, “Holistic Schedulability

Historical Perspective’Real-Time System8(2/3), 173- Analysis for Distributed Hard Real-Time Systems”,
198, 1995. Microprocessing and MicroprogrammingtO, 117-134,

[2] A. Doboli, P. Eles, “Scheduling under Control 1994.

Dependencies for Heterogeneous Architectures”,[l6] T. Yen, W. Wolf, “Performance estimation for real-

International Conference on Computer Design, 602-608time distributed embedded systemEZEE Transactions
1998 on Parallel and Distributed System#lume: 9(11), 1125

[3] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop, -1136, Nov. 1998
“Scheduling of Conditional Process Graphs for the

Synthesis of Embedded Systems”, Proceedings of Design

Automation & Test in Europe, 23-26, 1998.

[4] G. Fohler, “Realizing Changes of Operational Modes
with Pre Run-time Scheduled Hard Real-Time Systems”,
Responsive Computer SysteimskKopetz and Y. Kakuda,
editors, 287-300, Springer Verlag, 1993.

[5] G. Fohler, “Joint Scheduling of Distributed Complex
Periodic and Hard Aperiodic Tasks in Statically
Scheduled Systems”, Proceedings of the 16th IEEE Real-
Time Systems Symposium, 1995.

[6] R. Gerber, D. Kang, S. Hong, M. Saksena, “End-to-
End Design of Real-Time Systemd”ormal Methods in
Real-Time ComputingD. Mandrioli and C. Heitmeyer,
editors, John Wiley & Sons, 1996.

[7] H. Kopetz,Real-Time Systems-Design Principles for
Distributed Embedded ApplicationKluwer Academic

	Frontpage
	Preface
	About ARTES 2000
	Programme
	Participants
	Tutorial Abstract Jack Stankovic
	Tutorial OH pictures
	Tutorial paper Lu, Stankovic, Tao and Son
	L. Albertsson
	R. Jigorea, S. Manolache, P. Eles, Z. Peng
	C. Ekelin and J. Jonsson
	T. Amnell, A. David, W. Yi
	E. Uhlemann and P.-A. Wiberg
	U. Bilstrup P.-A. Wiberg
	C. Bergenhem
	De-jiu Chen
	H. Thane and A. Wall
	M. Broberg
	C. Healy, M. Sjödin, V. Rustagi, D. Whalley and R. van Engelen
	P. Persson
	M. Lindgren
	A. Dean
	B. Andersson and J. Jonsson
	M. Andersson Wiklund and J. Jonsson
	J. Aidemark and J. Karlsson
	O. Redell, J. El-khoury and M.Törngren
	A. Cervin and J. Eker
	P. Pop, P. Eles, and Z. Peng

