
Chalmers University of Technology

Empty page.

00-03-07

Address Visiting address Phone Fax Internet
Box 325 Polacksbacken +46 18 471 6847 +46 18 550225 artes@docs.uu.se
SE-751 05 Uppsala, Sweden Building 1, room 239 http://www.docs.uu.se/artes/

Preface

This volume contains the papers presented at the 2nd ARTES Graduate Student Conference, held at
Chalmers University of Technology in Göteborg, from March 16 to 17, 2000.

As of today, more than 70 graduate students have joined the ARTES network by registering as
Real-Time Graduate Students, and thereby getting access to the benefits provided by ARTES,
including free-of-charge participation at the ARTES Summer School, as well as at other ARTES
conferences and meetings, not to mention the mobility support provided by ARTES. The 70+ real-
time graduate students clearly indicate that a substantial amount of real-time research is conducted
in Sweden today. Due to ARTES and other efforts, it is fair to say that Sweden is one of the world-
leaders in real-time systems research. During 1999 more than 20 papers authored/co-authored by
Swedish researchers were presented at the four leading real-time conferences: IEEE Real-Time
Systems Symposium (RTSS), Euromicro Conference on Real-Time Systems (RTS), IEEE Real-
Time Technology and Applications Symposium (RTAS) and The International Conference on
Real-Time Computing Systems and Applications (RTCSA). In 2000 we expect this number to
increase even further. The ARTES Graduate Student conference is one of the ARTES supported
activities aiming at ensuring this.

The main idea with the ARTES Graduate Student Conference is to provide a forum for technical
presentations and discussions among the Swedish graduate students active in the real-time area. For
newly recruited graduate students it will provide an opportunity to experience ”a real conference
situation” (maybe) for the first time. For everyone, the conference will be an excellent opportunity
to, in a relatively short time, get an overview of the current state of the national research.

As an extra bonus, we have invited Prof. Jack Stankovic from University of Virginia, one of the
founding fathers of modern real-time systems research. He will give an exciting tutorial on
Feedback Control Real-Time Scheduling, as well as sharing his experiences and views on the work
being presented. Our second invited speaker is Alexander Dean from CMU, who will talk about
Automating Hardware to Software Migration for Real-Time Embedded Systems.

This conference has been organized with the support from the Department of Computer
Engineering at Chalmers, for which we are grateful. I would in particular like to thank Ewa
Wäingelin and Jan Jonsson for their excellent support. As always, ARTES deputy programme
director Roland Grönroos has provided invaluable assistance in organizing the event.

The papers included in this volume show an impressing width and quality, and I’m certain that the
conference will be an event with intense technical and other discussion.

Enjoy it!

Hans A. Hansson
ARTES Programme Director
http://www.docs.uu.se/artes/
http://www.mrtc.mdh.se/han/

2000-03-07

Address Visiting address Phone Fax Internet
ARTES, Box 325 Polacksbacken, building 1, room 239 +46 18 471 6847 +46 18 550 225 artes@docs.uu.se
SE-751 05 Uppsala, Lägerhyddvägen 2 http://www.artes.uu.se/
Sweden Uppsala

About ARTES 2000

The ARTES initiative.
Representants for Svenska NAtionella RealTidsföreningen (SNART) called on Bernt Ericson, at that time chairman in
SSFs IT-group, in february 1995. Bernt asked Hans Hansson (at that time chairman in SNART) to coordinate the
planning of a Swedish network for real-time research.

ARTES goals are

1. to increase the number of PhDs and
Licentiates which play important roles in
development of industrial real-time
applications and products. Concretely, the
long term goal is 50 graduate degrees per
year in ARTES related areas (the level 1997
was about 20 degrees per year), and that at
least 80% of the graduates start an industrial
career.

ARTES will reach 30 supported active PhD student
this year, from 2004 will the number of exams
increase and reach the goal at about 2005.

2. to increase the efficiency of graduate
education. The goal is that no ARTES
graduate student should have a study-time
exceeding the nominal times of 2 years for a
licentiate and 4 years for a PhD
(compensating for departmental duties and
periods of industrial work).

It looks good so far, the PhD students keep a good
speed.

3. active industrial involvement in research
and graduate education, as well as
academic involvement in industry.
Concretely, each ARTES supported project
should have at least one active cooperation
activity, e.g., in the form of an industrial
engineer participating in the project, or a
graduate student performing parts of his/her
research in industry.

This goal has been reached.

4. to maximise synergy between the real-
time components in strategic centers
supported by SSF, as well as with other

efforts in the area. Concretely, at least 50%
of the ARTES supported projects should
have a formalised or informal cooperation
(e.g., in terms of joint papers) with related
national programmes.

All projects is carried out in research groups with
support from several capital providers. ARTES has
not evaluated how well this goal has been fullfilled.

5. to increase national and international
cooperation in real-time systems research
and education, and

ARTES have increased the national cooperation
within the area and stimulated international
cooperation.

6. to provide a broad base for Swedish real-
time systems research, and to make
Swedish real-time systems research
world leading in selected areas.

ARTES have increased the cooperation in the area.
Besides research are ARTES supporting SIGURT
(SNART:s interest group for undergraduate
education). This may lead to a higher level on
grauate education due to introduction of more real-
time isues in undergraduate levels. Swedish real
time research is (almost) worldleader in several
areas this is reflected by the contributions to
international conferences (see Thomas Lundqvists,
Man Lins och Andreas Ermedahls, reports in
ARTES Mobility reports). The number of Swedish
publications in leading Real time conferences has
doubled the last year.

Roland Grönroos

IEEE Real-Time Systems Symposium (RTSS’99): 3
Euromicro Conference on RTS (ECRTS’99): 4
IEEE RT Technology and Appl. Symp. (RTAS’99) 2
R-T Computing Systems and Appl. (RTCSA’99) 12

Thursday March 16
09.30-10.00 Registration and Coffee

10.00-10.10 Introduction Hans Hansson
10.10-11.00 Tutorial: Feedback Control Real-Time Scheduling Jack Stankovic
11.00-11.10 Break

11.10-11.30 Tutorial (cont'd)

11.30-12.00 Using Full Simulation for Debugging Real-Time Properties of Operating Systems Lars Albertsson, SICS
12.00-13.00 Lunch

13.00-14.00 Session on RTS Design I

Modelling of Real-Time Embedded Systems in an Object-Oriented Design Environment
with UML Sorin Manolache, LiU
Real-Time System Constraints: Where do They Come From and Where do They Go? Cecilia Ekelin, Chalmers
A Real-Time Animator for Hybrid Systems T. Amnell, A. David, UU

14.00-14.10 Break

14.10-15.10 Session on RT networking
Deadline Dependent Coding - A Framework for Wireless Real-Time Communication Elisabeth Uhlemann, HH
Wireless Networks for Manufacturing Urban Bilstrup, HH

Methods for integration of Heterogeneous Real-Time Services into High-Performance
Networks Carl Bergenhem, HH

15.10-15.40 Coffee

15.40-16.40 Session on RTS Design II
Research Issues on System Architecture for Mechatronics Systems De-jiu Chen, KTH

Formal and Probabilistic Arguments for Component Reuse in Safety-Critical Real-Time
Systems Anders Wall, MdH
Performance Tuning of Multithreaded Applications for Different Multiprocessor Platforms Magnus Broberg, HK/R

16.40-16.50 Break

16.50-17.50 Session on execution time analysis
Supporting Timing Analysis by Automatic Bounding of Loop Iterations Mikael Sjödin, UU

Bounding The Execution Time of Method Calls Combining Static Analysis and Dynamic
Class Loading Patrik Persson, LTH
Obtaining execution time for small program fragments by testing Markus Lindgren, MdH

18.00 Closing

19.30 Conference Dinner

Friday March 17
08.30-09.30 Automating Hardware to Software Migration for RT Embedded Systems Alexander Dean. CMU
09.30-09.40 Break

09.40-10.20 Session on Multiprocessor Scheduling
Fixed-Priority Preemptive Multiprocessor Scheduling: To Partition or not to Partition Björn Andersson, Chalmers
Dynamic Replication Decisions in Fault-Tolerant Multiprocessor-Based Real-Time Systems Monika Andersson Wiklund, Chalmers

10.20-10.40 Coffee

10.40-12.00 Session on Fault Tolerance and Control
Using Massive Time Redundancy to Achieve Node-level Transient Fault Tolerance Joakim Aidemark, Chalmers
AIDA II Automatic control in distributed applications O. Redell, J. Elkhoury, KTH
Feedback Scheduling of Control Tasks Anton Cervin, LTH
Schedulability Analysis for Systems with Data and Control Dependencies Paul Pop, LiTH

12.00-12.10 Summary and closing

12.10 Lunch

Programme for
ARTES Real-Time Graduate Student Conference 2000

Participants at
ARTES graduate student day 2000

Name E-mail Affiliation

Joakim Aidemark aidemark@ce.chalmers.se Chalmers

Lars Albertsson lalle@sics.se SICS

Tobias Amnell tobiasa@docs.uu.se Uppsala University

Björn Andersson ba@ce.chalmers.se Chalmers

Monika Andersson Wiklund monikaw@ce.chalmers.se Chalmers

Bengt Asker bengt.asker@mailbox.swipnet.se ARTES

Johan Bengtsson johanb@DoCS.UU.SE Uppsala University

Carl Bergenhem carl.bergenhem@ide.hh.se Högskolan i Halmstad

Urban Bilstrup Urban.Bilstrup@ide.hh.se Högskolan i Halmstad

Magnus Broberg magnusb@mailix.ide.hk-r.se Högskolan Karlskrona/Ronneby

Anton Cervin anton@control.lth.se Lund Institute of Technology

De-Jui Chen chen@damek.kth.se KTH

Alexandre David adavid@docs.uu.se Uppsala University

Alexander Dean adean@gop.ece.cmu.edu Carnegie Mellon University

Julien d'Orso juldor@docs.uu.se Uppsala University

Cecilia Ekelin cekelin@ce.chalmers.se Chalmers

Jad Elkhoury jad@md.kth.se KTH

Jakob Engblom jakob@docs.uu.se IAR Systems AB & UU

Andreas Ermedahl ebbe@csd.uu.se Uppsala University

Roland Grönroos Roland.Gronroos@docs.uu.se ARTES

Sanny Gustavsson sanny@ida.his.se Högskolan i Skövde

Jörgen Hansson jorha@ida.liu.se Linköping University

Arshad Jhumka arshad@ce.chalmers.se Chalmers

Markus Lindgren markus.lindgren@mdh.se Mälardalens högskola

Birgitta Lindström a96birli@ida.his.se Högskolan i Skövde

Thomas Lundqvist thomasl@ce.chalmers.se Chalmers

Sorin Manolache g-sorma@ida.liu.se Linköping University

Simin Nadjm-Tehrani snt@ida.liu.se Linköping University

Robert Nilsson robert.nilsson@ida.his.se Högskolan i Skövde

Jonas Norberg KTH

Patrik Persson Patrik.Persson@cs.lth.se Lund University

Paul Pop paupo@ida.liu.se Linköping University

Mikael Sjödin mic@docs.uu.se Uppsala University

John A. Stankovic stankovic@cs.virginia.edu University of Virginia

Samuel Stolberg-Rohr samuels@md.kth.se KTH

Diana Szentivanyi diasz@ida.liu.se Linköping University

Mattias Tullberg KTH

Martin Törngren martin@damek.kth.se KTH

Elisabeth Uhlemann elisabeth.uhlemann@cca.hh.se Högskolan i Halmstad

Anders Wall anders.wall@mdh.se Mälardalens högskola

Mattias Weckstén Högskolan i Halmstad

Updated Tuesday, 07-Mar-2000 08:45 by Roland Grönroos
e-mail: artes@docs.uu.se
Location: http://www.docs.uu.se/artes/events/gsconf00/partici
pants.shtml

Empty page.

tisdag 7 mars 2000

http://www.docs.uu.se/artes/events/gsconf00/
jack_s2.shtml

Page: 1

Feedback Control Real-Time
Scheduling

Prof Jack Stankovic

BP America Professor and Chair
Department of Computer Science

University of Virginia

Despite the significant body of results in real-time scheduling, many
real world problems are not easily supported. While algorithms such as
Earliest Deadline First, Rate Monotonic, and the Spring scheduling
algorithm can support sophisticated task set characteristics (such as
deadlines, precedence constraints, shared resources, jitters, etc.), they
are all open loop scheduling algorithms. Open loop refers to the fact
that once schedules are created they are not adjusted based on
continuous feedback. While open-loop scheduling algorithms can
perform well in static or dynamic systems in which the workloads can
be accurately modeled, they can perform poorly in unpredictable
dynamic systems. In this project we are developing a theory and
practice of feedback control real-time scheduling. Feedback control
real-time scheduling defines error terms for schedules, monitors the
error, and continuously adjust the schedules to maintain required and
stable performance. We have developed a practical feedback control
real-time scheduling algorithm, FC-EDF, which is a starting point in
the long-term endeavor of creating of theory and practice of feedback
control scheduling. We are applying out results to applications such as
web servers, agile manufacturing, and defense systems. We are also
proposing a novel way to specify and measure complex real-time
systems based on control theory.

Updated Friday, 04-Feb-2000 16:55 by Roland Grönroos
e-mail: artes@docs.uu.se
Location: http://www.docs.uu.se/artes/events/gsconf00/jack_s2.shtml

1

Feedback Control Real-Time
Scheduling

Professor Jack Stankovic

Department of Computer Science

University of Virginia

Outline of Presentation

• Motivation

• Our Goal

• Feedback Control Scheduling Architecture

• The FC-EDF Algorithm

• Specifications and Metrics

• Simulation Environment

• Performance Results

• Summary

2

Motivation
• The emergence of soft real-time systems in

unpredictable environments
– agile manufacturing

– command and control or other defense applications

– web browsers (audio and video)

– real-time database systems

• For Dynamic RTS in unpredictable environments
– WCET too pessimistic, high variance in execution time, unbounded

arrival rate, overload unavoidable

Applications Requirement

• Missing some deadlines inevitable and OK
– Agile manufacturing

• part or product is produced wrong

Worst Case Assumptions

100 products/day
No errors
$10 profit/product
Profit - $1,000

Plant

Average Case + FC Scheduling

Plant

1010 products/day
10 errors ($2 penalty)
$10 profit/product
Profit - $9,980

3

Motivation - What’s Available

• RT Scheduling Paradigms
– Static - predictable

• all is known a priori (WCET, invocation times or worst case
rates, resource needs, precedence, etc.)

• Cyclic scheduling, RM, table driven, …

• open loop

– Dynamic - high degree of predictability
• all is known except invocation times/rates (use WCET)

• Spring algorithm - admission control and planning, or EDF

• open loop

Claims

• Despite the significant body of results in real-
time scheduling many real world problems and
NOT easily supported!

• We need a new real-time scheduling paradigm
based on feedback !!!

4

Goals
• Theory and Practice of Feedback Control Real-

Time Scheduling

• PID control (but not restricted to this)
– does not require precise analytical model of the

system being controlled

– not ad hoc either

• Explicit use of deadline based metrics

• New Specifications and Metrics for Soft Real-
Time Systems

Feedback

• Front-End
– feedback loops based on

real world control

– generate timing
requirements/rates

– generally fixed

– handed to scheduling
algorithm; recent work
=> tighter linkage

– Future: deadline range,
more flexible periods

P1

P2

P3

P4

S
c
h
e
d
u
l
i
n
g

A
l
g

5

Feedback

• Our Work - Applied to Scheduling itself
– Multi-level feedback queue (ad hoc)

– Network traffic flow - bandwidth or utilization

– AED - RTDB (proportional control)

– Our work:
• Based on FC theory

• Explicit use of deadline based metrics

• PID control

– Future: Direct linkage to front-end (deadline
range)

Practical Issues

• Not all deadlines are created equal (missing
some is worse than missing others)

• Missing n in a row for one periodic task can
cause instability

• Start simple: treat all deadlines as equal in
importance

6

Approach

• Mapping feedback control concepts to scheduling

• Establishing control model for scheduling
– map MR to utilization

• Applying control design/analysis to the scheduler to
satisfy performance requirements

• System-wide evaluation - requirements and metrics
from control theory

Feedback Control System

Controller Actuator
Process

Sensor
feedbackSystem

set point

controlled
variable

manipulated
variable

7

FC-EDF Scheduling Algorithm

PID Controller
Service Level

Controller

Admission
Controller

EDF
Scheduler

CPU

FC-EDF

Accepted Tasks

Submitted Tasks

MissRatios MissRatio(t)

∆CPUo

Completed Tasks

∆CPUi

Task Model

 Each Task T

 ET(1) Val(1)
 ET(2) Val(2)
 . .
 . .
 . .
 ET(N) Val(N)

Service Levels

Nominal execution times used - not worst case

8

PID controller

• The PID controller periodically (sampling period) maps the
error in term of the deadline miss ratio to the control signal - the
required change in the requested CPU utilization

• PID control only requires an approximate system model to
achieve satisfactory performance

• Deadline miss ratio is directly controlled

DW

DWterrorterrorCterrorCterrorCtCPU DIWIP

)()(
)()()(

−−++=∆ ∑

Service Level Controller

• Input - Delta CPU

• choose least important “degradable” task

• reduce level by 1, 2, …

• iterate

• if not all Delta CPU is accommodated, then
pass the rest of the Delta CPU to AC

9

Admission Control

• New arrivals
– Admit task i with highest service level possible such

that the CPU(t) + ET(i) < 1.

– Reject task if its lowest service level not acceptable

• When PID needs to reduce or increase CPU
– Accommodate as much as possible of Delta CPU in

service level controller

– Adjust estimate of cpu utilization in system to modify
amount admitted (in the future)

Two Questions

• Determine coefficients of PID control terms

• Establish link between MR and Delta CPU

10

PID Control Parameters

• How do we choose the parameters?
– Use control theory

• create model of system

• solve model to get the form of the parameters

Example: CI > 0; CD < 1, 2CP - CI + 4CD < 4 and
 2-2*CD*CD > CD*CP + CP - CI > 0

Scheduling Model

z

zC

z

C
C DI

P

)1(

1

−+
−

+ ug(z)
∆CPU’ MissRatio

MissRatios
-

CPU

1

1

−z

FC-EDF
Real-Time System

UB

MR

D

•MissRatio(z): miss ratio
• MissRatios: miss ratio set point
• CPU’(z): estimated CPU utilization
• CPU(z): actual CPU utilization
• ∆CPU’(z): the change in CPU’(z)
• CPU(z) = ug(z)CPU’(z)

11

Soft Real-Time Systems

• Larger and larger

• More complex

• Operate in non-deterministic environments

• Hypothesis: Current requirements specification
and metrics are not sufficient

• Proposing: A (new) set of specifications and
measurements based on control theory.

Today’s Soft Real-Time Systems

• Specifications
– meet as many deadlines as possible

– meet 95% of the deadlines

• Metrics
– missed deadline percentage

• Build Large System
– manipulate algorithms, system parameters, etc. and

run some “workload” to see what happens

– iterate

12

A Proposed (New) Idea

• Exploit the notion of a Theory and Practice of
Feedback Control Scheduling

• Specifications for a control system often
involve requirements associated with the time
response of the system
– Overshoot

– Settling time

– Rise time

Specification - Example

• Miss deadline percentage (MDP) should be 2%

• Overshoot
– MDP should not get greater than 10%

• Settling time - the time it takes the system transients
to decay
– settling time to return to the 2% MDP should be within 3

seconds

13

Measurements

• MDP

• Overshoot

• Settling Time

• Rise Time

• Peak Time

• Steady State Error

• Sensitivity - relative
change to MDP with
respect to a relative
change of a system
parameter
– execution time of tasks

from the average

– blocking time

– external arrivals

Workloads

• Series of step functions as input load
– burst arrivals of various sizes

• Series of ramp functions with different slopes
– period of continuing increased load

Load Load

Time Time

14

Result

• A more complete picture of your system
performance
– average MDP (are you meeting the goal)

– how far off from MDP will your system stray for
given “stressing” workloads

– does the system exhibit any steady state error

– on overload - how soon does the system return to
normal

– what are the parameters that affect your
performance the most, the least

Simulation Experiments

• Baseline algorithms
– EDF: Basic EDF scheduling algorithm

– EDF+AC: EDF with static admission control

– EDF+P: EDF with proportional feedback control

• Periodic and independent tasks

• execution time factor (etf): The measure of the unpredictability
of the workload. The smaller etf is, the more pessimistic the
estimation is.

etf = avg_exe_time / est_exe_time

15

Experiments

• Experiment A
– statistical description of average execution times is the same

throughout the simulation

– vary - how far the actual execution time is off from the
estimated, called eft

• etf = 1 => no error; etf < 1 => pessimistic; etf > 1 => optimistic

• Experiment B
– statistical description of average execution times varies over

the simulation

Experiment A

• Experiment A tests the robustness of the scheduler when the
average execution time keeps the same but deviates from the
estimation.

• Fixed etf for each run.

• Performance Metrics
– MRA: Miss Ratio among admitted tasks

– UTIL: CPU Utilization

– HRS: Hit Ratio among submitted tasks

– VCR: Value Completion Ratio

16

Experiment B

• Experiment B tests the performance under conditions when the
execution time changes dynamically.

• etf is changed every 300 sampling periods.
Interval(SP) 0-300 300-600 600-900 900-1200

etf 0.8 1.3 0.8 1.2

• Performance Metrics
– MRA: Miss Ratio among admitted tasks

– UTIL: CPU Utilization

17

Additional Metrics

Load - step
Overshoot
Settling Time
Steady-State MR
Sensitivity (ET)

162.5%
35%

720 ms
1%
0

18

Summary
• Goal - a theory and practice of feedback control real-time

scheduling

• Real-time systems in unpredictable environments

• FC-EDF

• Future

♦ Link with front-end control

♦ New performance specifications

♦ Model non-linearities

♦ More sophisticated deadline miss semantics

♦ Control design methodology

♦ Real-time web servers

♦ BeeHive real-time database testbed

Related Work

• Ad hoc feedback scheduling
– Mutilevel feedback queue [Blevins76]

– Adaptive Earliest Deadline [Haritsa91]

• Adaptation mechanisms
– Deadline/period adjustment [Abde97][Becc99][Shin99]

– Multimedia QoS [Steinmetz95]

– Imprecise computation [Liu91]

• Feedback resource management in non-rt area
– Web resource management [Abde99]

– Distributed multimedia QoS [Li98][Cen97]

Empty page.

Design and Evaluation of a Feedback Control EDF Scheduling
Algorithm *

* Supported in part by NSF grant CCR-9901706 and contract IJRP-
9803-6 from the Ministry of Information and Communication of
Korea.

Chenyang Lu John A. Stankovic Gang Taoÿ Sang H. Son

Department of Computer Science,†Department of Electrical Engineering
University of Virginia, Charlottesville, VA22903

e-mail: {cl7v, stankovic, son}@cs.virginia.edu,†gt9s@virginia.edu

Abstract

Despite the significant body of results in real-time
scheduling, many real world problems are not easily
supported. While algorithms such as Earliest Deadline
First, Rate Monotonic, and the Spring scheduling algorithm
can support sophisticated task set characteristics (such as
deadlines, precedence constraints, shared resources, jitter,
etc.), they are all "open loop" scheduling algorithms. Open
loop refers to the fact that once schedules are created they
are not "adjusted" based on continuous feedback. While
open-loop scheduling algorithms can perform well in static
or dynamic systems in which the workloads can be
accurately modeled, they can perform poorly in
unpredictable dynamic systems. In this paper, we present a
feedback control real-time scheduling algorithm and its
evaluation. Performance results demonstrate the
effectiveness of the algorithm when execution times vary
from the worst case and when there are major shifts of total
load in the system. A key part of this feedback solution is its
explicit use of deadline based metrics.

1. Motivation and Introduction
Real-time scheduling algorithms fall into two categories:
static and dynamic scheduling. In static scheduling, the
scheduling algorithm has complete knowledge of the task
set and its constraints, such as deadlines, computation
times, precedence constraints, and future release times. The
Rate Monotonic (RM) algorithm and its extensions
[Liu73][Leho89] are static scheduling algorithms and
represent one major paradigm for real-time scheduling. In
dynamic scheduling, however, the scheduling algorithm
does not have the complete knowledge of the task set or its
timing constraints. For example, new task activations, not
known to the algorithm when it is scheduling the current
task set, may arrive at a future unknown time. Dynamic

scheduling can be further divided into two categories:
scheduling algorithms that work inresource sufficient
environments and those that work inresource insufficient
environments. Resource sufficient environments are
systems where the system resources are sufficient toa
priori guarantee that, even though tasks arrive dynamically,
at any given time all the tasks are schedulable. Under
certain conditions, Earliest Deadline First (EDF) [Liu73] is
an optimal dynamic scheduling algorithm in resource
sufficient environments. EDF is a second major paradigm
for real-time scheduling [Stan98]. While real-time system
designers try to design the system with sufficient resources,
because of cost and highly unpredictable environments, it is
sometimes impossible to guarantee that the system
resources are sufficient. In this case, EDF’s performance
degrades rapidly in overload situations. The Spring
scheduling algorithm [Rama84][Zhao87] can dynamically
guarantee incoming tasks via on-line admission control and
planning and thus is applicable in resource insufficient
environments. Many other algorithms (e.g., RED algorithm
[Butt95]) have also been developed to operate in this way.
This planning-based set of algorithms represents the third
major paradigm for real-time scheduling. However, despite
the significant body of results in these three paradigms of
real-time scheduling, many real world problems are not
easily supported. While algorithms such as EDF, RM and
the Spring scheduling algorithm can support sophisticated
task set characteristics (such as deadlines, precedence
constraints, shared resources, jitter, etc.), they are all "open
loop" scheduling algorithms. Open loop refers to the fact
that once schedules are created they are not "adjusted"
based on continuous feedback. While open-loop scheduling
algorithms can perform well in static or dynamic systems in
which the workloads (i.e., task sets) can be accurately
modeled, they can perform poorly inunpredictable
dynamic systems, i.e., systems whose workloads cannot be
accurately modeled. For example, the Spring scheduling
algorithm assumes complete knowledge of the task set

except for their future release times. Systems with open-
loop schedulers such as the Spring scheduling algorithm are
usually designed based onworst-caseworkload parameters.
When accurate system workload models are not available,
such an approach can result in a highly underutilized
system based on extremely pessimistic estimation of
workload.

Unfortunately, many real-world complex problems
such as agile manufacturing, robotics, adaptive fault
tolerance, and C4I and other defense applications are not
predictable. Because of this, it is impossible to meet every
task deadline. The objective of the system is to meet as
many deadlines as possible1. For example, autonomous
robotic systems always suffer from sudden variations in
computational load and overload situations due to highly
variable execution times in robot control algorithms (e.g.,
sensor interpretation, motion planning, inverse kinematics
and inverse dynamics algorithms) [Becc99]. For another
example, in information and decision support systems,
accurate knowledge about transaction resource and data
requirements is usually not knowna priori. The execution
time and resource requirements of a transaction may be
dependent on user input or dependent on sensor values. For
these applications, a design based on the estimation of
worst case execution times will result in extremely
expensive and underutilized system. It is more cost
effective to design for less than worst case, but sometimes
miss deadlines.

Another important issue is that these scheduling
paradigms all assume that timing requirements are known
and fixed. The assumption is that control engineers design
the system front-end control loops and generate resulting
timing requirements for tasks. The scheduling algorithms
then work with this fixed set of timing requirements. Real
control systems, in general, are much more flexible and
robust, e.g., instead of choosing a single deadline for a task
which is passed on to the scheduling system, a deadline
range might be acceptable to the physical system. If this
range was passed to the scheduling system, the on-line
scheduling might be more robust.

We believe that due to all these problems, solutions
based on a new paradigm of scheduling, which we call
feedback control real-time scheduling, is necessary for
some important systems. A case for this was made in
[Stan99]. In this current paper we fully develop a feedback
control scheduling algorithm, discuss stability, and present
the evaluation of the algorithm.

In the past, many forms of feedback control have
appeared in real-time and non-real-time scheduling
systems, but it has not been elevated to a central principle;
rather most of the time it is used more as an afterthought
and is usuallyad hoc. Most of these techniques also did not
address the key performance metric of real-time systems -

1 If such systems have some critical tasks, they are treated
separately by static allocation of resources.

the deadline miss ratios. More discussion of this appears
later in the related work section.

2. Approach
The mapping of control theory methodology and analysis to
scheduling provides a systematic and scientific method for
designing scheduling algorithms. Many aspects of this
mapping are straightforward, but others require significant
insight and future research. We now describe how such a
mapping can be done and what research is necessary. In
section 3 we present an instance of this mapping by creating
an actual algorithm and a runtime scheduling structure.

2.1. Control theory and real-time scheduling
A typical feedback control system is composed of a
controller, a plant to be controlled, actuators, and sensors
(as illustrated in Figure 1). It defines acontrolled variable,
the quantity of the output that is measured and controlled.
The set pointrepresents the correct value of the controlled
variable. The difference between the current value of the
controlled variable and the set point is theerror. The
manipulated variableis the quantity that is varied by the
controller so as to affect the value of the controlled
variable. The system is composed of a feedback loop as
follows. (1) The system periodically monitors and compares
the controlled variable to the set point to determine the
error. (2) The controller computes the required control with
the control function of the system based on the error. (3)
The actuators change the value of the manipulated variable
to control the system. In the context of real-time scheduling
problems, our approach is to regard a scheduling system as
a feedback control system, and the scheduler as the
controller. The scheduler utilizes feedback control
techniques to achieve satisfactory system performance in
spite of unpredictable system dynamics. We believe that the
long term potential for a theory and practice of feedback
control scheduling is significant; partly because we can also
build upon the vast amount of knowledge and experience
from control systems.

As a starting point, we will apply PID (Proportional-
Integral-Derivative) control in schedulers. A basic form
PID control formula is

Controller Actuators
Plant

Sensors
feedbackSystem

Set point

Figure 1 Architecture of Feedback Control Systems

)1(
)(

)()()(
dt

tdError
CdttErrorCtErrorCtControl DtIP ++= �

We choose PID control as the basic feedback control
techniques in feedback control scheduling for the following
reasons. (1) In term of control theory, the scheduling
system is adynamicsystem, i.e., a system whose output
depends not only on the current input, but also on the
previous system inputs. It is known that the current miss
ratio of a scheduling system depends not only on the
currently submitted task, but also on the previously
submitted tasks that remain in the system for queuing,
execution and blocking. It is known that PID control is a
widely applicable control technique in dynamic systems. (2)
Compared with other control techniques, an important
feature of PID control is that it does not require a precise
analytical model of the system being controlled. Instead, a
PID controller designed based on an approximate model
can achieve satisfactory performance. Due to the extremely
complex behavior of current computer systems, it is
impossible to precisely model the dynamics of real world
scheduling systems. However, certain form of approximate
modeling of the scheduling system can be built to help tune
the PID control parameters more systematically (such an
approximate model is presented in section 3.6 of this
paper). (3) According to control theory, basic PID control
can provide stable control in first and second order dynamic
systems. In systems with higher order of dynamics,
however, basic PID control can only provide approximate
control, but an adaptive form of PID control can provide
stable control for high order dynamic systems.

2.2. Feedback control real-time scheduling
To apply feedback control techniques in scheduling, we
need to restructure schedulers based on the feedback control
framework. We need to identify the controlled variable, the
manipulated variable, the set point, the error, the control
function, and the mechanisms of the actuators. We can then
set up the feedback loops based on these selections. The
choice of the controlled variable depends on the system
goal. For example, the performance of real-time systems
usually depends on how many tasks make (miss) their
deadlines. We define the system deadline miss ratio as the
percentage of tasks that miss their deadlines; this is a
natural choice of the controlled variable. The manipulated
variable must be able to affect the value of the controlled
variable. In the real-time scheduling, it is a widely known
fact that the deadline miss ratio highly depends on the
system load, i.e., the requested CPU utilization of tasks in
the system. Thus the requested CPU utilization can be used
as the manipulated variable. Other possible choices of
manipulated variables are the periods/deadlines of tasks in
control applications when there exists the flexibility to
adjust these task parameters [Seto96].

In summary, a feedback control scheduling system
would start with a schedule based on the nominal
assumptions of the incoming tasks (expected start time,
expected execution time and deadline). The system would

then monitor the actual performance of the schedule,
compare it to the system requirements and detect
differences. The system would call control functions to
assess the impact of these differences and apply a
correction to keep the system within an acceptable range of
performance. Research is needed to answer the following
open questions:
• What are the right choices of controlled variables,

manipulated variables, set points, and effective control
functions/mechanisms for feedback control scheduling?

• How to model a feedback control scheduling system?
• How to tune the control parameters to build a stable and

high performance scheduler?
• How to integrate the flexible timing constraints derived

from the front-end feedback control loops in control
systems with an on-line feedback control scheduling
algorithm?

• What is the impact of overhead in feedback control
scheduling and how to minimize it?

3. Feedback Control EDF
We now present an algorithm called Feedback Control EDF
(FC-EDF), which integrates PID control with an EDF
scheduler. With FC-EDF, we demonstrate how to structure
a real-time scheduler based on the feedback control
framework. We will identify specific research issues related
to feedback control scheduling using FC-EDF as a concrete
example. The FC-EDF architecture (shown in Figure 2) can
be generalized to be used as a framework of feedback
control schedulers. For example, we can investigate
feedback control RM by replacing the EDF scheduler in
Figure 2 with a RM scheduler.

3.1. Overview of FC-EDF
To apply PID control to a scheduling system, we need to
decide on the components of a scheduling system
corresponding to those in a feedback control system (Figure
1). First, we need to choose the controlled variable and the
set point of the system. The requirements of an ideal soft
real-time scheduling algorithm should be to (1) provide
(soft) performance guarantees to admitted tasks, i.e.,
maintain low miss ratio among admitted tasks; and (2)
achieve high system throughput and utilization. To satisfy
these requirements, FC-EDF chooses miss ratio among the
admitted tasks,MissRatio(t),as the controlled variable and
an (application dependent) small but non-zero value (e.g.,
MissRatios = 1%) as the set point. Note that 0 is not chosen
as the set point for the following reasons. A system with a
set point of MissRatios = 0 can ignore the second
requirement of soft real-time scheduling, i.e., high
utilization and throughput. When a system achieves a 0%
deadline miss ratio but causes extremely low utilization
(e.g., by unnecessarily rejecting too many tasks), a feedback
control scheduler withMissRatios = 0 will treat it as the
correct state. In contrast, a feedback control scheduler with

a set point ofMissRatios ≠ 0 will always try to (lightly)
overload the system to achieve high utilization. Note that in
an unpredictable environment, it is impossible for a system
to achieve 100% utilization and 0% miss ratio all the time
and a tradeoff between miss ratio and utilization is
unavoidable. There can be two approaches to deal with this
tradeoff. The approach of admission control based on
pessimistic estimation is thepessimisticapproach, which
alwaysavoidsdeadline misses at the cost of low utilization
and throughput. This approach has been widely used in hard
real-time systems. On the other hand, the feedback control
scheduling presented in this paper represents theoptimistic
approach, which maintains a low (but possibly non-zero)
miss ratio and high utilization and throughput. When a high
misses actually happens due to system load changes, the
schedulercorrectsthe system state back to the satisfactory
state, i.e., a state with low miss ratio and high utilization
and throughput. This optimistic approach is especially
preferable in soft real-time systems since it provides a soft
performance guarantee in term of miss ratios while
achieving high utilization and throughput at the same time
(see performance evaluation in section 4).

Second, we choose the requested CPU utilization, i.e.,
the total CPU utilization requested by all the accepted tasks
in the system, as the manipulated variable. The rational is
that EDF can guarantee a miss ratio of 0% given the system
is not overloaded, and in normal situations, the deadline
miss ratios increases as the system load increases2. For
simplicity of description, we will use requested utilization
in place of requested CPU utilization in this paper. Third,
we need to design the mechanisms (i.e., actuators) used by
the scheduler to manipulate the requested utilization. An
Admission Controller and a Service Level Controller are
included in the FC-EDF scheduler as the mechanisms to
manipulate the requested utilization. The Admission
Controller can control the flow of workload into the system,
and the Service Level Controller can adjust the workload
inside the system.

The FC-EDF scheduler is composed of a PID
controller, a Service Level controller, an Admission
Controller and an EDF scheduler (Figure 2). The system
performanceMissRatio(t) is periodically fed back to the
PID controller. Using the PID control formula (1), the PID
controller computes the required control action∆CPU(t),
i.e., the total amount of CPU load that need to be added into
(when∆CPU(t)>0) or reduced from (when∆CPU(t)<0) the
system. Then the PID controller calls the Service-Level
Controller and the Admission Controller to change the CPU
load of the system by∆CPU. This system control forms a
feedback control loop in the scheduling system. The EDF
scheduler schedules the accepted tasks according to the
EDF policy.

2 This is under the assumption that the domino effect is rare in real
world applications.

3.2. Task model
Our initial task model assumes that all tasks have soft
deadlines and all the tasks are independent. For the
convenience of description, this paper assumes a task model
similar to the imprecise computation model [Liu91], but the
scheduling algorithms presented do not depend on the
imprecise computation model. Each task Ti submitted to the
system is described with a tuple (I, ET, VAL, S, D). Each
task Ti has one or more logical versions I = (Ti1, Ti2, … Tik).
Note that when a task has multiple logical versions it does
not necessarily mean that it has multiple implementations.
An imprecise computation can have several different forms
including milestone method, sieve function method or
multiple version method [Liu91]. We call all these methods
that can tradeoff computation value and time as multiple
logical versions of a task for convenience of discussion.
Each version has different execution time and different
value. ET = {ETi1, ETi2, … ETik} (suppose ETi1≥ETi2≥ …
≥ETik) are the nominal execution times of different versions.
Here, nominal execution time instead of worst case
execution time is used in the system to achieve higher CPU
utilization in the system. The execution time is described in
the form of requested utilization. For example, ETi1=0.02
means the 1st version of task Ti requires 2% of the CPU
time. VAL = {VAL i1, VAL i2, … VAL ik} represents the
values of different implementation. In this research, different
versions of a task are called service levels. We call a version
with longer execution time and higher value a higher service
level than another version with less execution time and
lower value. Each task has a soft deadline Di and a start time
Si.

Note that FC-EDF does not depend on the imprecise
computation model. FC-EDF only needs a certain flexibility
to adjust the CPU utilization. In our future work, we will
extend the deadline Di to a range of deadlines (Di,min, Di,max).

PID Controller
Service Level

Controller

Admission
Controller

EDF
Scheduler

CPU

FC-EDF

Accepted Tasks

Submitted Tasks

MissRatios MissRatio(t)

∆CPUo

Completed Tasks

∆CPUi

Figure 2 Architecture of FC-EDF

The deadline of a task Ti could be adjusted dynamically
within the range. By adjusting the deadline of a task, the
Service Level Controller can effectively change the
requested CPU utilization in the system. This extension is
based on the fact that digital control systems are usually
robust, i.e., the task timing constraints are allowed to vary
within a certain range without affecting critical control
functions such as maintenance of system stability [Seto96].
Such extension is also applicable in multimedia systems, in
which the QoS specifications of a multimedia application
can be specified as intervals.

3.3. PID controller
The PID controller is the core of FC-EDF. It maps the miss
ratio of accepted tasks (i.e., error) to the change in
requested utilization (i.e., control signal) so as to drive the
miss ratio back to the set point.

The PID controller periodically monitors the controlled
variableMissRatio(t), and computes the control∆CPU(t) in
terms of requested utilization with the following control
formula, which is an approximation of formula (1).

whereerror(t) = MissRatios – MissRatio(t). SP, CP, CI, CD,
IW and DW are tunable parameters of the PID controller.
SPis the sampling period. The PID controller will be called
everySPseconds. For convenience of presentation, we will
takeSPas the time unit in our following discussion.CP, CI

andCD are the coefficients of the PID controller.IW is the
time window over which to sum the errors. Only errors in
the last IW time units will be considered in the integral
term.DW is the time window of derivative errors. Only the
error change during the lastDW time units will be
considered in the derivative term (i.e., the derivative error is
(MissRatio(t-DW)-MissRatio(t))/DW). The tuning of these
parameters will be discussed in section 3.6.∆CPU(t) is the
output (i.e., control signal) of the PID controller.
∆CPU(t)>0 means that the requested utilization should be
increased, and∆CPU(t)<0 means that the requested
utilization should be decreased.

The PID controller will call the Service Level
Controller and the Admission controller to change the
requested utilization of the system by∆CPU. If the current
requested utilization isCPU(t), the Service Level controller
and Admission Controller will change the requested
utilization to CPU(t)+∆CPU. The PID controller always
tries to change the requested utilization internally by calling
Service Level Controller first so that the system could
respond to the error faster. The admission controller is
called only if the Service Level Controller cannot
accommodate∆CPU completely.

3.4. Service Level Controller
The Service Level Controller (SLC) changes the requested
utilization in the system by adjusting the service levels of
accepted tasks. For example, if it changes the service level
of task Ti from Tik to Tij, it adjusts the requested utilization
of the system by ETij-ETik, where ETij and ETik are the
estimated CPU requirement of Tik and Tij, respectively. SLC
returns the portion of∆CPU not accommodated. This
portion of control will be accommodated by the Admission
Controller

3.5. Admission Controller
The Admission Controller (AC) controls the flow of
workload into the system. When a new task Ti is submitted
to the system, AC decides on whether it could be accepted
into the system. Given current system-wide requested
utilization CPU(t) and the CPU requirement of the
incoming task, the Admission Controller admits Ti with
service level k if k is the highest level that satisfies
CPU(t)+ETik<1; Ti is rejected if it cannot be admitted even
with the lowest level.

The Admission Controller’s parameterCPU(t) may be
adjusted when the PID controller cannot accommodate
∆CPU(t) completely with SLC. Suppose SLC changes the
requested utilization by∆CPUi and∆CPUi<∆CPU, AC will
accommodate∆CPUo=∆CPU(t)-∆CPUi, the portion of
∆CPU not accommodated by SLC. It accommodates
∆CPUo by adjusting the estimation of requested utilization
CPU(t) as following est_cpu_util = 1 - ∆CPUo. The
Admission Controller will admit the workload of at most
∆CPUo (when∆CPUo > 0) or will not admit any new tasks
until the system load has been reduced by amount of more
than|∆CPUo| (when∆CPUo < 0).

3.6. Modeling and Analysis of feedback control
scheduling

3.6.1. Feedback control scheduling model
An important task of building a stable and high-
performance PID-control-based scheduler is to tune the
control parameters (i.e.,CP, CI andCD). One way is to tune
the parameters by simulations. However, this approach
would require large amount of experiments to gain enough
confidence in the selected values of the parameters. A more
scientific and systematic approach is to apply control theory
analysis to select the PID control parameters. Such analysis
requires an analytical model of the scheduling system.
Before we present the model of a PID-control based
scheduling system, we define the following notions in the
discrete time domain:
1. SP is a constant sampling period, which is the time

elapsed in interval [k, k+1], k being time instants.
2. MissRatio(z): the miss ratio - the system output and the

controlled variable.

� ++=∆
IWIP terrorCterrorCtCPU)()()(

)2(
)()(

DW

DWterrorterror
CD

−−

3. MissRatios: the set point (i.e., the target) in term of miss
ratio.

4. CPU’(z): the estimated CPU utilization;
5. CPU(z): the CPU utilization;
6. ∆CPU’(z): the change in the estimated CPU utilization

(CPU’(z)) . This is the system input;
7. ug(k): the ratio of the actual total utilization to the

estimation;
8. mrg(k): the gain that maps the utilization (CPU(z)) to

the miss ratio (MissRatio(z)).
9. d(k): the disturbance (e.g., associated with the

utilization bound).

Using the above notations, the estimated CPU
utilization follows the following equation:

CPU’(z) = ∆CPU’(z)/(z-1) (3)

Since the precise execution time of each task is
unknown and changes over time, the actual requested
utilization is usually different from the estimated requested
utilization. In term of control theory,ug(k) is a time-variant
gain (calledutilization gainin this paper) of the system. We
can get the (actual) CPU utilization usingug(k):

CPU(z) = ug(k)CPU’(z) (4)

We can derive the deadline miss ratio based on the
correlation between the deadline miss ratio and the system
utilization. The relationship between the deadline miss ratio
and the requested utilization can be modeled as

MissRatio(z) = mrg(k)CPU(z)– d(k) (5)

where mrg(k) (miss ratio gain) is a time-variantgain that
mapsCPU(z)to MissRatio(z)in overload situations.

The transfer function of the PID controller is:

H(z) = CP + CI/(z-1) + CD(z-1)/z (6)

In summary, we present the block diagram of the FC-
EDF scheduling system in Figure 3.

3.6.2. Stability Analysis
For a control system, there are two forms of stability:
internal stability and BIBO stability.Internal stability is

related to the system behavior due to initial conditions. If no
input is applied, an internally stable system will settle to be
close to an equilibrium set point within a definite amount of
time. Although a real-time system could enter an internally
unstable mode when the miss ratio rises monotonically over
time (e.g., when deadlock occurs) even when there is no
change in the workload, this paper will assume an
independent task model and the system is assumed
internally stable when it is made BIBO stable. The issue of
internal stability will be investigated in our future research.
BIBO stability means that the system output is always
bounded for a bounded input. In the context of the
scheduling system, this means that the miss ratio will be
bounded for bounded changes in the workload. It is
important to tune the PID controller such that the BIBO
stability is satisfied to avoid uncontrollable performance
degradation in a scheduling system. For convenience of
description, we will use stability in place of BIBO stability
in this paper. To demonstrate the importance of using a
formal theory to describe feedback control real-time
scheduling, we present the following stability analysis result
(The mathematical proof is skipped due to the length limit
on this paper).

Theorem 1: When ug(k)mrg(k)is close to 1, the FC-EDF
scheduling system established by the block diagram in
Figure 3 is stable if one of the following conditions is
satisfied:
1. CI > 0, |CD| < 1, 2CP– CI + 4CD < 4, and

2 - 2CD
2 > CDCP+ CP– CI > 0

2. CI = 0, |CD| < 1, and 0 < CP+ 2CD <2

The assumption thatug(k)mrg(k)is close to 1 implies
that (1) the estimated utilization is not too far from the
actual utilization and (2) domino effect does not happen.
Under this assumption (which we believe is true for most
soft real-time systems), the stability condition gives the
guidance on how to set the coefficients in the PID control
such that the satisfactory scheduling performance can be
maintained. This is one important reason for basing
feedback control real-time scheduling on control theory.

Figure 3. Block diagram of the FC-EDF scheduling system

+

z

zC

z

C
C DI

P

)1(
1

−+
−

+
+

d(k)

-

mrg(k)∆CPU’ CPU’(z) MissRatio(z)
MissRatios

-
ug(k)

CPU(z)

1
1
−z

4. Experiments and Results

4.1. Simulation Model
An uniprocessor simulator of a soft real-time system was
used to study the performance of FC-EDF and baseline
algorithms. The workload consists of independent periodic
tasks. Each task instance has a deadline that equals its
period. If a task instance is not completed by its deadline, it
is immediately aborted. The simulator (Figure 4) has six
components:sources that generate tasks; anadmission
controller that make admission/rejection decisions on
submitted tasks; anexecutorthat models the execution of
the tasks; a monitor that periodically collects the
performance statistics of the system; aPID controller that
periodically computes control signals based on the
performance errors; and aservice level controllerthat
adjusts the service levels of the tasks. A basic EDF
scheduler is embedded in the executor. The admission
controller, service level controller, and PID controller each
can be turned on/off to emulate the different baseline
scheduling algorithms.

4.2. Workload Model
Each source is characterized with a period (P) (the deadline
of each task instance equals its period), a set of worst case
execution times {WCETi}, a set of best case execution
times {BCETi}, a set of estimated execution times {EETi},
a set of average execution times {AETi} (WCETi ≥ AETi ≥
BCETi), and a set of values {VALi}, where #service_level-
1≥ i ≥ 0. Each tuple (P, WCETi, BCETi, EETi, AETi, VALi)
characterizes a service level and

EETi = (WCETi+BCETi)*0.5
AETi = EETi*etf

whereetf (execution time factor)can be tuned to change the
accuracy of the estimation. The larger theetf is, the more
pessimistic the estimation is. For example,etf of 1.0 means
that the estimated execution time is equal to the actual
average execution time. The estimation is less than the
average execution time whenetf < 1.0; and greater than the
average execution time whenetf > 1.0. The actual
execution time of each instance (which is unknown to the
scheduler) is computed as a uniform random variable in
interval [AETi, WCETi] or [BCETi, AETi] depending on a
random Bernoulli trial with probability (AETi-
BCETi)/(WCETi-BCETi). In our experiments, the workload
is composed of 40 periodic tasks and each task has two
service levels.WCET0 = 2*WCET1, WCETi = 4*BCETi,
VAL0 = 1.0 andVAL1 = 0.5. It follows thatetf lies in the
range of [0.4, 1.6]. A uniform distribution is used to
generate WCET0 and P of each task: WCET0 =
uniform(5,10), P = WCET0 *uniform(10,15).P is adjusted
such that 31 of the tasks are harmonious with least common
multiplier of 2400 time units. The same workload is used
for all the experiments. Each different experiment has
varied etf. All the tasks arrive in the beginning of each
experiment to overload the system. Each rejected task will
attempt to get re-admitted all through the experiment.

4.3. Implementation of FC-EDF
The parameter settings of FC-EDF in all the experiments
are listed in Table 1. The set point is the soft real-time
performance target miss ratio that the scheduler will
achieve. In practice, this value depends on the tolerance (to
deadline misses) of the application. TheSP is equal to the
least common multiplier of the majority of the tasks such
that similar number of task instances are submitted in each
SP. IW controls the length of history that the controller
need to consider.DW affects the agility of the controller to
the sudden change in workload.CP, CI and CD are
coefficients of the PID controller. Note that the values of
CP, CI and CD are tuned so that they satisfy the stability
condition established in Theorem 1 to guarantee the
scheduling performance.

Set Point 0.01
SP 2400 (time unit)
IW 100 (SP)
DW 1 (SP)
CP 0.5
CI 0.05
CD 0.1
Table 1 FC-EDF parameter setting

4.4. Baseline Algorithms
The following baseline algorithms are implemented and
compared with FC-EDF in the experiments.

Source 1

Source 2

Source n

… …
Adm
Ctrl

Executor

Service Level
Ctrl

PID
Ctrl

Monitor

ready_q

reject_q

terminate_q
reject

accept finish
abort

performance
statistics

ctrl signalctrl signal

adjust level

Figure 4. Feedback Control Scheduling Simulator

MissRatio(t)

set point

• EDF: This is the basic EDF scheduling algorithm. It is
implemented by turning off the admission controller,
service level controller, and the PID controller.
• EDF+AC (EDF with static admission control):
EDF+AC is implemented by turning off the service level
controller and the PID controller. The admission decision is
made once for each periodic task when it is submitted.
• EDF+P (EDF with proportional control): EDF+P is
implemented and configured the same as FC-EDF except
for CP = CD = 0. This algorithm is to test whether the
simple proportional control can provide comparable
performance as PID control.

4.5. Performance Metrics
• Miss Ratio among admitted tasks(MRA = #Misses /
#(Admitted Task Instances)): Although a soft real-time task

can tolerate a small percent of deadline misses, it usually
requires asoft guaranteein term of miss ratio in order to
maintain its normal functionality. Therefore, the average
miss ratio among admitted tasks should be the most
important performance metric.
• CPU Utilization (UTIL): Soft real-time systems should
avoid under-utilizing the system resources to reduce costs,
thus the CPU utilization is another metric under
consideration.
• Hit Ratio among submitted tasks(HRS = #Hits /
#(Submitted Task Instances)): Hit ratio among submitted
tasks is a measure of the system throughput in term of the
percentage of task instances completed in time among all
the arrivals.
• Value Completion Ratio(VCR =(Σ(Values of hit task
instances) /Σ(Values of Submitted Task Instances)): Value

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0
M

R
A

Figure 5 MRA vs. etf

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0

U
T

IL

Figure 6 UTIL vs. etf

EDF+AC
EDF+P
FC-EDF
EDF

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0

H
R

S

Figure 7 HRS vs. etf

0.5 1.0 1.5

etf

0.0

0.2

0.4

0.6

0.8

1.0
V

C
R

Figure 8 VCR vs. etf

EDF+AC
EDF+P
FC-EDF
EDF

completion ratio considers the quality of the results. A task
that misses its deadline contributes 0 value. A task instance
completed with a lower service level contributes a lower
value.

4.6. Experiment A: Steady execution time
Experiment A evaluates the performance of the scheduling
algorithms (EDF, EDF+AC, EDF+P and FC-EDF) when
the average execution time of each periodic task is
statistically steady, but different from the estimation.etf is
constant through each run, but the actual execution time of
each task instance is a random value that differs over time.
Each algorithm made 13 set of runs with each set for a
different etf values in the range [0.4, 1.6]. These
experiments are interesting since, in real-world
applications, it is impossible to make the estimation of
execution time the same as the average actual execution
time at all times. This problem is avoided in hard real-time
systems by using worst-case estimation (etf << 1.0).
However, soft real-time systems usually usenominal
estimations instead of worst-case estimations due to cost
considerations. It is thus important for a soft real-time
system to maintain satisfactory performance even when the
estimation is different from the average actual execution
times. This is one place the value of feedback control is
demonstrated. Experiment A evaluates the algorithms under
situations when the execution time is statistically steady.
The performance under conditions when the execution time
changes dramatically is studied in Experiment B. This is
another place where feedback proves very valuable.
Experiment A results are illustrated in Figures 5-8. Each
point in Figure 5-8 is the average value of 30 runs. The
90% confidence interval for each point ofMRA, UTIL,
HRS, and VCR is within ±0.0006,±0.0058,±0.0066 and
±0.0046, respectively. Each run lasts for 2880000 time
units (1200 SP).

From Figure 5, we see that both FC-EDF and EDF+P
maintains a very lowMRA (<1%) throughout theetf
interval. TheMRA of FC-EDF is closer to the set point
(1%) and thus slightly higher than EDF+P since the
Integral control reduces the steady state error of the control.
EDF’s MRA increases sharply whenetf > 0.5 and the
system is overloaded. This shows pure EDF cannot provide
acceptable performance in resource-insufficient systems.
EDF+AC maintains lowMRA when etf < 1, however, its
performance degrades sharply when the average execution
time is larger than its estimation (etf > 1). This shows that
static admission control based on nominal estimations
cannot provide (soft) performance guarantees under all
situations. Figure 6 shows that EDF always achieves the
highest CPU utilization since it never rejects any tasks.
EDF+AC under-utilizes the system when the average
execution time is lower than the estimation (etf < 1). This
shows that static admission control cannot avoid wasting
the system resources under all situations. Similarly, EDF+P

also under-utilizes the utilization whenetf < 1 similar to
EDF+AC. This is because EDF+P does not consider the
accumulated error, and the control signal (∆CPU)
computed with proportional control alone is too small to be
accommodated when the task utilization can only be
adjusted in discrete steps3. In comparison, with the PID
control, FC-EDF maintains high CPU utilization in all the
situations. We can also see that the CPU utilization of FC-
EDF is consistently higher than EDF+P even when (etf >
1).

Figures 7 and 8 compare the throughput of the
algorithms in term ofHRSandVCR. EDF+AC and EDF+P
has a low throughput when (etf < 1) as a result of admission
control based on pessimistic estimation. EDF has the
highest throughput when the system is lightly loaded and
degrades fast as the system load increases. We should also
note EDF achieves its throughput by greedily accepting all
the tasks while at the cost of poor performance foreach
task (no performance guarantees for admitted tasks). FC-
EDF’s throughput is slightly lower than EDF when the
system is lightly loaded (This is actually a result in the
initial phase and the PID control drives the throughput to
the same level as EDF after a short learning period). When
the system is overloaded, FC-EDF consistently achieves the
highest throughput in all situations (except for whenetf =
1.6 when it is slightly lower than EDF+P).

In summary, Experiment A demonstrates that under
situations when the estimation of execution time differs
from the (statistically steady) actual execution time, FC-
EDF is able to (1) provide a soft performance guarantee for
admitted tasks; (2) achieving high system utilization; and
(3) high throughput. None of the other algorithms under
comparison can meet these goals simultaneously.

4.7. Experiment B: Dynamic execution time
In experiment B, theetf is dynamically changed every
720000 time units (300 SP) in order to study the response
of the scheduling algorithms when the average system load
changes dramatically. Theetf settings in different intervals
are listed in table 2.

Interval (SP) 0-300 300-600 600-900 900-1200
etf 0.8 1.3 0.8 1.2

Table 2etf setting in Experiment B

3 While a larger CP can amplify the control signal, it will also cause
severe oscillation and even instability in the system response.

Figures 9-11 illustrates the sampledMRA andUTIL of
FC-EDF, EDF+AC and EDF (EDF+P is dropped in this
experiment since its performance is consistently worse than
FC-EDF) in a typical run. From Figure 9, we can see that
the system starts with approximately 80% of utilization (the
top curve) and 0 miss ratio (the bottom curve) as a result of
the pessimistic admission control. However, after a short
learning period (43 SP), the PID control in FC-EDF causes
the system to increase its utilization (by increasing service
levels and admitting more tasks) to close to 100%. The
system maintains a high utilization and low miss ratio until

the end of 300 SP when theetf suddenly increases to 1.3,
which implies that the system load suddenly increases by
over 60%. This causes the big spike on miss ratio at time
300 SP in Figure 9. FC-EDF responds immediately by
reducing the load (i.e., reducing service levels) to below
100% within 3 SP. In addition to the proportional control,
the fast response is also due to the derivative control in FC-
EDF which responses to the sudden increase in the miss
ratio. The system comes back to low miss ratio and high
utilization and stays this way until 600 SP when theetf is
reduced to 0.8 (which corresponds to an over 60% loss in

0 500 1000

Time (2400 unit)

0.0

0.2

0.4

0.6

0.8

1.0

M
R

A
 a

nd
 U

T
IL

Figure 11 Sampling MissRatio and CPU Utilization of EDF

CPU Utilization
MissRatio

0 500 1000

Time (2400 unit)

0.0

0.2

0.4

0.6

0.8

1.0

M
R

A
 a

nd
 U

T
IL

Figure 10 Sampling MissRatio and CPU Utilization of EDF+AC

CPU Utilization
MissRatio

0 500 1000

Time (2400 unit)

0.0

0.2

0.4

0.6

0.8

1.0

M
R

A
 a

nd
 U

T
IL

Figure 9 Sampling MissRatio and CPU Utilization of FC-EDF

CPU Utilization
MissRatio

system load). Again, the FC-EDF responds by increasing
the system load. Within 35 SP, the utilization is driven back
close to 100% and the system maintains low miss ratio and
high utilization afterwards. At the end of 900 SP, theetf is
increased to 1.2 and, similar to the time at 300 SP, the
system is back to a satisfactory performance state. We can
also see that all through the run, theMRA is 0 in most
sampling periods but non-zero (around 10% except for the
short transition periods between differentetf intervals) in a
small portion of sampling periods. This is the penalty for
achieving high utilization (around 95% throughout the run
except for the short transition periods) and throughput of
the system. Note that due to the random nature of the
system load, it is impossible to maintain both 0 miss ratio
and 100% utilization all the time.

In contrast, from Figure 10, we see that EDF+AC
achieves 0 miss ratio at the cost of low utilization (around
80%) in 0-300 SP and 600-900 SP (whenetf < 1.0).
However, the miss ratio is around 20-25% in 300-600 SP
and 900-1200 SP (whenetf > 1.0). From Figure 11, we can
see theMRA is around 40% or 65% at different intervals for
EDF, which performs even worse that EDF+AC.

MRA UTIL HRS VCR
FC-EDF 0.011 0.954 0.796 0.537
EDF+AC 0.127 0.889 0.440 0.431
EDF 0.518 1.000 0.482 0.482

Table 3 Overall performance in Experiment B

In summary, the overall performance of the algorithms
is listed in Table 3 (Each data is the average value of 30
runs. The 90% confidence interval of each value of MRA,
UTIL, HRS, and VCR is within±0.0006,±0.0023,±0.0068,
and ±0.0026, respectively). FC-EDF effectively adapts to
the radical changes in the execution time and system load,
and maintains satisfactory performance throughout the run
time. In contrast, both EDF and EDF+AC are unable to
handle the workload and render poor performance.

4.8. Discussions on overhead
Feedback control scheduling algorithms can introduce extra
overhead compared with open-loop scheduling algorithms.
The overhead is ignored in the simulation experiments for
the following reasons. First, the feedback controller can be
executed at a much lower rate than application tasks. In both
experiments, FC-EDF maintains satisfactory performance
while more than 100 task instances are executed between
two subsequent invocations of the feedback controller.
Second, the control algorithm is not complex. The
bookkeeping of the miss ratio, the PID control function, and
admission control adjustment all cost constant time. The
service-level controller is a linear-time (in terms of the
number of admitted tasks) algorithm. The overhead issue
will be further investigated in our future research as we vary
the period of the feedback controller.

5. Related Work
The idea of using feedback information to adjust the
schedule has been used in general-purpose operating
systems in the form of multi-level feedback queue
scheduling [Blev76]. The system monitors each task to see
if it consumes a time slice or does I/O and adjusts its
priority accordingly. This type of control is a crude
correction term that seems to work viaad hocmethods. No
systematic study has been done. [Stee99] presented a
feedback-based scheduling scheme that adjusts CPU
allocation based on application-dependentprogress
monitors. This work is done in the context of general
operating systems and the performance of real-time tasks is
not addressed.

In the area of real-time databases, Haritsa et. al.
[Hari91] proposedAdaptive Earliest Deadline(AED), a
priority assignment policy based on EDF. In order to
stabilize the performance of EDF under overload
conditions, AED features a feedback control loop that
monitors transactions’ deadline miss ratio and adjusts
transaction priority assignment accordingly.Adaptive
virtual deadline first[Pang95] aims to achieve the fairness
of an EDF based scheduler to transactions with different
sizes. The linear correlation between deadline miss ratio
and transaction size in the system is measured and fed back
to the scheduler, which adjusts scheduling parameters
dynamically. However, the feedback control in these
algorithms is ad hoc and the issues of stability of the
schedulers is not addressed.

[Seto96] and [Ryu98] both propose to integrate the
design of a real-time controller with the scheduling of real-
time control systems. [Seto96] introduced a system
performance indexto describe the control cost and tracking
errors of a control system. Their approach was to assign
frequencies to control tasks that optimize the system
performance index under resource constraints in the system.
[Ryu98] is based on a generic analytical feedback control
system model, which expresses the system performance as
functions of the end to end timing constraints at the system
level. A heuristic algorithm is used to find the end-to-end
timing constraints that can achieve the required system
performance. They then use theperiod calibration method
[Gerb95] to derive the timing constraints for each task in
the system. Both [Seto96] and [Ryu98] aim at providing
design tools that enable control engineers to take into
consideration scheduling in the early design stage of control
systems. The scheduling algorithms in both of these cases
are still open loop scheduling algorithms.

[Becc99] and [Shin99] both utilized the flexible timing
constraints as a mechanism for graceful performance
degradation in control systems. Both of the works assumed
the execution times are known and focused on how to
reassign the periods for tasks to satisfy the utilization
constraints. Instead, our work focuses on using feedback

control loops to maintain satisfactory deadline miss ratio
when the task execution times change dynamically.

Jehuda and Israeli [Jehu98] proposed anautomated
software meta-controllerto dynamically reconfigure real-
time systems. Compared with feedback control real-time
scheduling, the software meta-control is a higher level
control that occurs only when the system mode changes.

In the area of multimedia communication, several
papers [Meer97][Li98][Abde98] presented feedback control
architectures and algorithms for QoS control. These works
are targeted at supporting end-to-end QoS in distributed
multimedia communication and they are not scheduling
algorithms. Meeting task deadlines is not a focus of these
works.

The idea and framework of feedback control
scheduling has been presented in our earlier paper [Stan99].
As an evaluation and extension to our earlier work, this
paper presents simulation experiments that verifies the
advantage of feedback control scheduling in unpredictable
dynamic environments. In this paper, we also present a
discrete control model and stability analysis of the feedback
control scheduling system.

6. Conclusion
In our work, we are systematically exploring the use of
feedback control concepts in soft real-time scheduling
systems. The goal is the development of a theory and
practice of feedback control scheduling. This would be a
new paradigm for real-time scheduling. We have also
demonstrated feasibility of the basic approach by
developing a specific algorithm called FC-EDF and
scheduling architecture as presented here. Another
contribution of our work is that the key performance metric
of the real-time system – the deadline miss ratio – is
directly controlled by the scheduler. The feedback control
scheduler can achieve a soft performance guarantees in
term of deadline miss ratios. An analytical model of the
scheduling system is introduced and analyzed to facilitate
tuning the scheduling algorithm systematically. The
simulation experiments demonstrate that FC-EDF can
maintain satisfactory deadline miss ratio and high system
utilization when the workload changes dramatically.

Acknowledgment
The authors wish to thank Tarek Abdelzaher for finding an
error in the earlier manuscript of this paper.

References
[Abde98] T. F. Abdelzaher and Kang G. Shin, "End-host
Architecture for QoS-Adaptive Communication" IEEE RTAS,
June 1998.
[Becc99] G. Beccari, et. al., “Rate Modulation of Soft Real-Time
Tasks in Autonomous Robot Control Systems”,EuroMicro
Conference on Real-Time Systems,June 1999.

[Blev76] P. R. Blevins and C. V. Ramamoorthy, “Aspects of a
dynamically adaptive operating systems”,IEEE Transactions on
Computers, Vol. 25, No. 7, pp. 713-725, July 1976.
[Butt95] G. Buttazzo and J. A. Stankovic, “Adding Robustness in
Dynamic Preemptive Scheduling”,Responsive Computer Systems:
Steps Toward Fault-Tolerant Real-Time Systems(D. S. Fussell
and M. Malek Ed.), Kluwer Academic Publishers, 1995.
[Gerb95] R. Gerber, S. Hong and M. Saksena, “Guaranteeing
Real-Time Requirements with Resource-Based Calibration of
Periodic Processes”,IEEE Transactions on Software Engineering,
Vol. 21, No. 7, July 1995.
[Hari91] J. R. Haritsa, M. Livny and M. J. Carey, “Earliest
Deadline Scheduling for Real-Time Database Systems”,IEEE
RTSS, 1991.
[Jehu98] J. Jehuda and A. Israeli, “Automated Meta-Control for
Adaptable Real-Time Software”,Real-Time Systems J., 14, 1998.
[Leho89] J. P. Lehoczky, L. Sha and Y. Ding, “The Rate
Monotonic Scheduling Algorithm – Exact Characterization and
Average Case Behavior”,IEEE RTSS, 1989.
[Li98] B. Li, K. Nahrstedt, “A Control Theoretical Model for
Quality of Service Adaptations”, inIEEE International Workshop
on Quality of Service,May 1998.
[Liu73] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”,JACM,
Vol. 20, No. 1, pp. 46-61, 1973.
[Liu91] J. W. S. Liu, et. al., “Algorithms for Scheduling Imprecise
Computations”,IEEE Computer, Vol. 24, No. 5, May 1991.
[Meer97] J. B. de Meer, “On the Specification of EtE QoS
Control”, (A. Campbell and K. Nahrstedt Eds.)Building QoS into
Distributed Systems, Chapman & Hall, 1997.
[Pang95]H. Pang and M. J. Carey, “Multiclass Query Scheduling
in Real-Time Database System”,IEEE Trans. on Knowledge and
Data Engineering, vol. 7, no. 4, August 1995.
[Rama84] K. Ramamritham and J. A. Stankovic, “Dynamic task
scheduling in distributed hard real-time systems”,IEEE Software,
Vol. 1, No. 3, July 1984.
[Ryu98] M. Ryu and S. Hong, “Toward Automatic Synthesis of
Schedulable Real-Time Controllers”,Integrated Computer-Aided
Engineering, 5(3) 261-277, 1998.
[Seto96] D. Seto, et. al., “On Task Schedulability in Real-Time
Control Systems”,IEEE RTSS, December1996.
[Shin99] K. G. Shin and C. L. Meissner, “Adaptation and Graceful
Degradation of Control System Performance by Task Reallocation
and Period Adjustment”,EuroMicro Conference on Real-Time
Systems,June 1999.
[Stan98] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo,Deadline Scheduling for Real-Time Systems – EDF and
Related Algorithms, Kluwer Academic Publishers, 1998.
[Stan99] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The Case
for Feedback Control Real-Time Scheduling”,EuroMicro
Conference on Real-Time Systems,June 1999.
[Stee99] D. C. Steere, et. al., "A Feedback-driven Proportion
Allocator for Real-Rate Scheduling",Operating Systems Design
and Implementation,Feb 1999.
[Zhao87] W. Zhao, K. Ramamritham and J. A. Stankovic,
“Preemptive Scheduling Under Time and Resource Constraints”,
IEEE Transactions on Computers36(8), 1987.

���������
	���
�
������������ ��������
������� !�#"$ &%('(�*)��+�&�,���+�
-.���/
1032����4�657%� !89�*%:�����;�< !">=?8@��%����������A�����������B�

C�D:E�F�G+HJI;KLENMOF�FQPSR
T PSUWV�X�MOKYE�D:R[Z]\+KYM�^�PSEQ_`G�E�acb�deMOKYaYM�X[E�KYF�C�D:I;PSEOD3MOPSENf

g ^hKYZ[dJFQb]i�R�FQMOdjMOX�M�KkP:l T P:UWV[X�MOKLE g aYdJKYR[aLK
HJD:HJHeKnmoF�deaLFLpqF�K

rsKYI[E�XsDtEQf7u:v�wxu:ySySy

z&{}|�~����L��~
�[�Y���/�L�Q�n�����Y���Q�n�����������L�!�Y���,�N�x���L�������L�1���q�Q�������O�����S���L���[���$���������������Y� ��¡

�����Q�����Q�/¢Y��£Y�L¤Q¤����L¤,�����Q�¥¡¦�����!�§�Y���Q�n�����������¨�Q�������!�!�©¢$���e��¢Y����ª©���Q���Q�n���«�N�����L¤
���$�������!��¬}­®¢Y�����q¤Q�¯�Q�}���L�Q�Y¡j���©�����Y�����O���©�Y����¢Y�����«�Q£Y���¨���©�$�¥���Q�L�!���c�����Q��¢Y��£Y�L¤N¡
¤Q���L¤������N�¥¡j�����!�¨�Q�n���«�N�����L¤!���$�������!�x���;�Y���������c����¢°¬��[�L�¨�������Y� �����Q�;£±�N����¢¯���©�©�¥¡
���Q�L�!���c�;�N�q����²x�����Q�³���c�����«�N�������O��¢Y��£Y�L¤�¤Q���L¤!�Q�}�����!�������¥�������Q�:����´c�L���Y�����x²x�L�����
���Q�����������¥�@�Y�������1���$���Y¤���µ$�����Y�����Q�@�����!�¯¶±��²·���Y�¸�N���&�N�������3¬�¹j�&�q���Q���������Y��²x�
�Y��²9�n�������Q���&�N�L���s�$���Qº±�����L¤�¢Y�N�«���$���N�©�q¢Y��¢�£c�§�N�!�q�Y�������L�������Q�!�q���O���L�����/�L�q�N���N�
�����O���Q�3���N�L�����x�Q�}�����Q�¥¡¦���q�!���n�����¸�N���&�Q�L���¨£n�Q���������L���1ª©��¬

» ¼�½¯¾�¿sÀ�ÁkÂoÃ�¾sÄ�À�½

Å±Æ�Ç3È�É§Ê�Ë$Ç°ÌtÍLÎ1Ï°ÉQÐ1É§Ï3ÑYÒ³ÓtÉQÉNÇoÑ,Ð�Æ�Ò1É§Æ Ç+Î1Ï3É�Ô:Ë$Ô3Õ°Ê�Ñ$Ð1Æ Î�Ö�Ë©×[Ñ©Ô°Ô3Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3Ò�Ø¨Æ Î1ÏoÙnÉNÚ�Ñ©ÇtÙ
×¦Ë$Ð�Ò«Ï3Ë$Ð1Î�Ð1É�Ò«Ô:Ë$ÇtÒ«É§Î�Æ Ú¯ÉQÒ�Ñ©ÇtÙoÎ1Ï°Ð�Ë$Õ3Ì$Ï°Ô°Õ°Î�Ì$Õ3Ñ$Ð�Ñ$ÇLÎ1ÉNÉ�ÒNÍtÒ«Õ3È�ÏkÑYÒ�Ú¯ÉQÙ°Æ�Ñ3ÍtÉQÇYÎ�ÉNÐ1Î�Ñ$Æ ÇnÛ
Ú¯ÉNÇLÎ�Ñ$Ç3Ù�Î1ÉQÊ É�È�Ë$Ú¯Ú�Õ°Ç°Æ¸ÈNÑcÎ�Æ ËYÇ!Ò«ÖnÒ«Î1ÉNÚ�ÒQÜ�Ý�Ç3Ê Æ�Þ$ÉxÚ�Ñ$ÇLÖ�Ð�ÉQÑ©Ê ÛJÎ1Æ�ÚhÉxÑ$Ô°Ô°Ê�Æ�ÈQÑcÎ�Æ ËYÇ3ÒNÍNÎ1Ï°É�Ò«É
Ñ©Ô3Ô°Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3ÒsÑ$Ê�Ò1Ë§Ï3ÑOß$É¨Ñ§Ê¸Ñ©Ð�Ì$É�Ç°ÉNÉ�Ù�×¦Ë$ÐsÎ�Ï°Ð1ËYÕ°Ì$Ï3Ô°ÕnÎxÔ:ÉNÐ1×¦Ë$Ð�Ú¯Ñ$Ç3È�ÉYÜ�à�Ç¯Ë$Ð�ÙnÉQÐ[Î1Ë&Ò�ÑcÎ«Û
Æ¸Ò�×¦Ö9Ò«Õ3È�Ï9Ô:ÉNÐ1×¦Ë$Ð�Ú¯Ñ$Ç3È�ÉhÐ�ÉQáLÕ°Æ�Ð1ÉQÚhÉQÇLÎ�ÒQÍ}Î1Ï°É�Ñ$Ô°Ô°Ê�Æ�ÈQÑcÎ�Æ ËYÇ3Ò�Ë©×�Î1ÉQÇâÐ1Õ°Ç9Ë$ÇãÈNË$Ú¯Ú¯Ë±Ù°ÆqÎ�Ö
Ï3Ñ$Ð�ÙnØ³Ñ©Ð�É�Õ3Ò1Æ�Ç°Ì�ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò1ÖnÒ�Î�ÉNÚ�Ò�ÙnÉQÒ1Æ ÌYÇ°ÉQÙ�×¦Ë$Ð³ÙnÉQÒ1ÞLÎ1ËYÔ�Ë$Ð³Ò1ÉNÐ�ß$ÉNÐ*Õ3Ò1É$Üsä�ËcØ�ÉNßYÉNÐ�Í
Î1Ï3ÉQÒ1É�Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì,Ò«ÖnÒ«Î1ÉQÚ¯Ò�Ñ©Ð�É�Ç°Ë$Î�ÙnÉ�Ò«Æ�Ì$Ç3ÉQÙ¯×¦ËYÐxÎ1Ï3É/Ç°ÉQÉQÙ°Ò*Ë©×�Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É�Ñ©Ô3Ô°Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3Ò
Ñ©ÇtÙå×jÑ$Æ Ê[Î�Ë�Ú¯ÉNÉ�Î,áLÕ3Ñ$Ê Æ Î�ÖkË$×³Ò1ÉNÐ�ß±Æ�ÈNÉhÐ�ÉQáLÕ°Æ�Ð�ÉNÚ¯ÉNÇLÎ�ÒQÜ�ä�ÉQÇ3È�ÉYÍ�Ê¸Ñ©Ð�Ì$ÉhÐ1É�Ò«É�Ñ©Ð�È�ÏåÉ�æSË$Ð1Î�Ò
Ï3ÑOßYÉkÓtÉQÉNÇ]Ô°ÕnÎoÆ ÇLÎ1Ë�ÙnÉ�Ò«Æ�Ì$Ç>Ë$×&Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç°Ì®Ò«ÖnÒ«Î1ÉQÚ¯Ò+Ô°Ð�Ëcß±Æ�ÙnÆ�Ç°ÌçáLÕ3Ñ$Ê Æ Î�Ö�Ë©×,Ò1ÉNÐ�ß±Æ�ÈNÉ
Ø¨Æ Î1Ï°ËYÕnÎ/È�ËYÚ¯Ô°Ð1ËYÚ¯Æ�Ò1Æ Ç3Ì�Ô:ÉNÐ1×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉ$Í°Ñ©ÇtÙ�Ñ$Ê�Ò1Ë¯Æ ÇLÎ�Ë�Ñ©Ô°Ô°Ð�Ë$Ô3Ð1Æ¸ÑcÎ�É�Ú¯ËnÙnÆ ètÈNÑ©Î1Æ�Ë$Ç3Ò³Ë$×
É�énÆ¸Ò�Î�Æ Ç3ÌåË$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì@Ò1Ö±Ò«Î1ÉQÚ�ÒNÜãä�ËcØ�ÉNßYÉNÐ�Í�Î1Ï°ÉoÈ�ËYÚhÔ3Ê ÉNé±Æ Î�ÖâË©×�Î�Ï°É+Î�Ñ$Ò1ÞãÑ©Ç3ÙçÊ�ÑYÈ�Þ@Ë$×
Ô:ËcØ*ÉQÐ«×¦Õ°Ê*Î1Ë±ËYÊ�Ò&×¦Ë$ÐhÐ1É�Ñ©Ê ÛeÎ�Æ Ú¯É�Ò1ÖnÒ�Î�ÉNÚêÑ©Ç3Ñ$Ê ÖnÒ1Æ�Ò,Ï3ÑOß$É�Ô°Ð1ÉQß$ÉQÇYÎ�ÉQÙâÉNæ:É�È�Î1Æ�ß$É�ÙnÉNßYÉNÊ�Ë$ÔnÛ
Ú¯ÉNÇLÎ�Ë©×�Ï°Æ�Ì$ÏoÔtÉQÐ«×¦ËYÐ1Ú�Ñ$Ç3È�É�Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É§Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì¯Ò1ÖnÒ�Î�ÉNÚ�ÒQÜ

ë Ï°É¯ÙnÉNÓ3Õ°Ì$ÌYÉNÐ�Æ¸Ò�Ë$Ç°ÉhË©×;Î1Ï°ÉhÚ¯ËYÒ«Î�Æ�Ú¯ÔtËYÐ«Î�Ñ©ÇLÎ�Î�ËLËYÊ�Ò�Õ3Ò1ÉQÙåÆ Ç9È�ËYÚhÔ3ÕnÎ1ÉQÐ§Ò1ÖnÒ�Î�ÉNÚ
Ô°Ð�Ë$ÌYÐ�Ñ$ÚhÚ¯Æ�Ç°Ì3Ü�à�Î/Æ¸Ò�ÔtÑ©Ð1Î1Æ¸Ñ©Ê�Ê Ö+Õ3Ò«ÉN×¦Õ°Ê�×¦Ë$Ð�ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò1Ö±Ò«Î1ÉQÚìÑ$Ç3Ñ©Ê�ÖnÒ«Æ¸ÒQÍ3ÉNßYÉNÇoÎ�Ï°Ë$Õ°ÌYÏ
ÙnÉQÓ°Õ°Ì$ÌYÉNÐ/×¦Õ°Ç3È�Î1Æ�Ë$Ç3Ñ$Ê Æ Î�Ö�ÙnÉNÔ:ÉNÇ3Ù3Ò/ËYÇkÎ�Ï°ÉhÒ1ÉNÐ�ß±Æ�ÈNÉQÒ�Ô°Ð1Ëcß±Æ¸ÙnÉQÙkÓLÖoÎ�Ï°ÉhË$Ô:ÉNÐ�ÑcÎ1Æ�Ç°Ì�Ò1ÖnÒ�Û
Î1ÉQÚoÜ�ä�ËcØ�ÉNßYÉNÐ�ÍSÎ1Ï°É�ÈNË$Ð�Ð1É�È�Î1Ç3ÉQÒ�Ò/Ë$×�Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É�ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò«ÖnÒ«Î1ÉQÚ¯Ò!Ù°ÉNÔ:ÉNÇ3Ù°Ò,Ë$Ç@Î1Ï°É
Î1Æ�Ú¯É�ÉQÊ�Ñ$Ô3Ò«É�Ù¯ÓtÉNÎ�Ø*ÉQÉNÇ�Ô:Ë$Æ�ÇLÎ�Ò;Æ Ç�ÉNénÉQÈ�Õ°Î1Æ�Ë$Ç�Ü[í�ÉQÓ°Õ°ÌYÌ$ÉNÐ�ÒxÌYÉNÇ°ÉQÐ�Ñ$Ê Ê�Ö,Æ�Ì$Ç3Ë$Ð�É³Î1Æ�ÚhÉ�î3ËcØ
Ñ©ÇtÙ@Ë$×�Î1ÉQÇãÔ3Ñ©Õ3Ò1É�Ô°Ð�Ë$ÌYÐ�Ñ$Ú?É�énÉQÈNÕnÎ1Æ�Ë$Ç�Ü ë Ï±Õ3ÒNÍ�Î1Ï3É�Õ3Ò1É�Ë©×¨È�Ë$Ç±ßYÉNÇLÎ1Æ�Ë$Ç3Ñ$ÊxÙnÉNÓ3Õ°Ì$ÌYÉNÐ�Ò

ï

Æ¸Ò�Æ�Ç3Ò1Õnð�È�Æ�ÉNÇLÎ/×¦ËYÐ/ßcÑ$Ê Æ¸Ù°ÑcÎ�Æ ËYÇ�Ë©×;Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É&Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì�Ò«ÖnÒ«Î1ÉQÚ¯ÒQÍ}Ñ$Ò�Î1Ï°É�Ò«É¯ÙnÉNÓ3Õ°Ì$ÌYÉNÐ�Ò
Ê¸Ñ$È�Þ�ÑhÇ°Ë$Î1Æ�Ë$Ç�Ë©×�Î1ÉNÚ¯Ô:Ë$Ð�Ñ©Ê�ÈNË$Ð�Ð1É�È�Î1Ç3ÉQÒ�ÒNÜ

ë Ï°Æ¸Ò;ÔtÑ©Ô:ÉNÐ�Ô°Ð1ËYÔtËLÒ«É�ÒsÎ�Ï°É�Õ3Ò1É�Ë$×�×¦Õ°Ê�Ê}Ò«ÖnÒ«Î1ÉNÚ�Ò1Æ Ú�Õ°Ê¸ÑcÎ1Æ�Ë$Ç¯×¦ËYÐ;Î�ÉNÚ¯Ô:Ë$Ð�Ñ©Ê�Ê Ö�È�ËYÐ1Ð�ÉQÈ�Î
ÙnÉQÓ°Õ°Ì$ÌYÆ Ç3Ì3Ü*ñ3Õ°Ê�Ê�Ò1Ö±Ò«Î1ÉQÚìÒ1Æ�Ú,Õ°Ê¸ÑcÎ�Æ ËYÇ�ÉNæ:É�È�Î�Æ ßYÉNÊ�Ö+Ñ$Ù3ÙnÐ1É�Ò1Ò1ÉQÒ�Î�Ø�Ë�Ú�Ñcò�ËYÐ¨Ô°Ð1ËYÓ°Ê�ÉNÚ�Ò¨Æ�Ç
Ð�ÉQÑ©Ê ÛJÎ1Æ�ÚhÉ!Ñ$Ç3Ñ©Ê�ÖnÒ«Æ¸ÒNó�Ê¸Ñ$È�Þ�Ë$×�Ð�ÉNÔ:ÉQÑ©Î�Ñ©Ó3Æ Ê�ÆqÎ�Ö�Ñ$Ç3Ù+Î1Æ�Ú¯É&ÙnÆ�Ò«Î1ËYÐ«Î�Æ ËYÇ�×¦Ð�Ë$Ú<Æ ÇLÎ1Ð�Õ3Ò1Æ ËYÇ�Ü

Å±É�È�Î1Æ�Ë$Ç®ôoÔ°Ð�ËcßLÆ¸ÙnÉ�Ò,Ò1Ë$Ú¯É�Ó3ÑYÈ�Þ±Ì$Ð�Ë$Õ°Ç3Ù9Ð�ÉNÌLÑ©Ð�ÙnÆ Ç3Ìo×¦Õ°Ê Ê¨Ò1ÖnÒ�Î�ÉNÚêÒ«Æ�Ú,Õ3Ê�Ñ©Î1Æ�Ë$ÇçÑ$Ç3Ù
Î1Ï3É�ÓtÉQÇ°É�è°Î�Ò�×¦Ð�Ë$ÚõÕ3Ò«Æ�Ç°ÌâÆ Î�×¦Ë$Ð�Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯ÉoÑ$Ç3Ñ©Ê�ÖnÒ«Æ¸ÒQÜ`à�Ç�Ò1ÉQÈ�Î1Æ�Ë$Ç�ö°Í�Î1Ï3ÉkÙnÉQÒ1Æ ÌYÇWË$×
ÑâÎ�ÉNÚ¯ÔtËYÐ�Ñ$Ê/ÙnÉQÓ°Õ°ÌYÌ$Æ�Ç°Ì÷ÉNÇ±ß±Æ�Ð1ËYÇ°Ú¯ÉNÇLÎ�Æ¸Ò�ÙnÉ�Ò1ÈNÐ1Æ�ÓtÉ�Ù}ÜøÅ±É�È�Î�Æ ËYÇ>ùçÈ�ËYÇLÎ�Ñ©Æ�Ç3Ò+Ñ÷Ò«Ï3Ë$Ð1Î
Ò1Õ°Ð1ßYÉNÖ@Ë©×¨Ð1ÉQÊ�Ñ©Î1É�ÙâØ*ËYÐ1ÞkÆ�Ç÷Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É�Ñ©Ç3Ñ$Ê ÖnÒ1Æ�Ò&Ñ$Ç3ÙãÒ1Æ Ú�Õ°Ê�Ñ©Î1Æ�Ë$Ç�Üåú*ËYÇ3È�Ê�Õ3Ò1Æ ËYÇ3Ò,Ñ$Ç3Ù
×¦ÕnÎ�Õ°Ð1É!Ø�Ë$Ð�Þ�Ñ©Ð�É§Ô°Ð�ÉQÒ1ÉNÇLÎ1É�Ù�Æ�Ç�Ò«É�È�Î1Æ�Ë$Ç�ûnÜ

ü ý<þ!Ãxÿ��,¿sÀhÂ�½oÁ

����� �	��
	��
�������������������� �"!��$#%����&'�(�����

) Ñ$ÇLÖkÙ°ÉQÒ1Æ ÌYÇ@Ñ©ÇtÙkÐ�ÉQÒ1ÉQÑ©Ð�È�ÏåÑ$Ð1É�Ñ$Ò/ÓtÉQÇ°É�è°Î§×¦Ð�Ë$Ú Ò1Æ Ú�Õ°Ê¸ÑcÎ1Æ�Ë$Ç@Ë©×³È�Ë$Ú¯Ô°Õ°Î1ÉNÐ!Ò1ÖnÒ�Î�ÉNÚ�ÒNÜ
ë Ï±Õ3ÒQÍ$Î�Ï°É/Ê�ÉNßYÉNÊtË©×�ÙnÉNÎ�Ñ©Æ�Ê:Ô°Ð1Ëcß±Æ¸ÙnÉQÙ¯Ó±Ö�Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�ÒsÐ�Ñ©Ç3Ì$É¨×¦Ð�Ë$Ú Ú¯Ë±Ù°ÉNÊ¸Ò;Ë$×�ÚhÆ¸È�Ð�Ë$Ô3Ð1Ë$Û
È�É�Ò1Ò1Ë$Ð*È�Ï°Æ Ô�Ê ËYÌ$Æ¸È¨Î1Ë�È�ËYÑ$Ð�Ò1É�Ú¯ËnÙnÉNÊ¸Ò*Ë©×�É�énÉ�È�ÕnÎ�Æ ËYÇ�ÉNÇ±ß±Æ Ð�Ë$Ç°Ú¯ÉQÇYÎ*Æ Ç3ÈNÊ ÕtÙnÆ Ç3Ì,Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì
Ò1Ö±Ò«Î1ÉQÚ6Ñ©ÇtÙ÷Ê�Æ Ó°Ð�Ñ©Ð�Æ�ÉQÒQÜ+*ìÊ�Ñ$Ð1ÌYÉ�ÌYÐ1ËYÕ°ÔçË$×�Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�Ò�Ô°Ð�ËcßLÆ¸ÙnÉoÑ9ÚhËnÙnÉQÊ¨Ë©×/Ñ9Ú�ÑcÛ
È�Ï°Æ�Ç°É§ÑcÎ³Î1Ï°É�Æ�Ç3Ò�Î�Ð1ÕtÈ�Î1Æ�Ë$ÇoÒ1É�Î³Ê ÉQß$ÉNÊJÍnÑ$Ò�Æ Î³Ð�ÉNÔ3Ð1É�Ò«ÉQÇYÎ�Ò*Ñ�Ø�ÉNÊ�ÊSÙ°É�è3Ç°É�Ù�Ó:Ë$Ð�ÙnÉQÐ*Ó:É�Î�Ø�ÉNÉQÇ
Ï3Ñ$Ð�ÙnØ³Ñ©Ð�É§Ñ©Ç3Ù�Ò«Ë$×�Î�Ø�Ñ$Ð1ÉYÜ

ñ°Õ3Ê Ê}Ò1Ö±Ò«Î1ÉQÚ Ò«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð�Ò;Ù°ÆqæSÉNÐ�×¦Ð�Ë$Ú�Ë©Î�Ï°ÉNÐ³Ò1Æ Ú�Õ°Ê�Ñ©Î1Æ�Ë$Ç�Î�Ë±Ë$Ê¸Ò*Æ�Ç�Î�Ï3ÑcÎ�Î1Ï3ÉNÖ�Ú¯ËnÙnÉNÊ
Ñ©Ê�ÊtÎ1Ï°É/Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É¨Æ Ç�Ñ�Ò«ÖnÒ«Î1ÉQÚ�Í±Ñ©ÇtÙ�Ë$Ç°Ê�Ö�Î1Ï°É�Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É$Ü ë Ë±Ë$Ê¸ÒxÎ�Ï3ÑcÎ³ÙnË,Ç3Ë©Î*Ô3Ð1Ëcß±Æ¸ÙnÉ
Ñ¯È�ËYÚhÔ3Ê ÉNÎ1É!Ï3Ñ$Ð�ÙnØ³Ñ©Ð�É�ÚhËnÙnÉQÊ�Ç°ÉQÉQÙ+Î1Ë�Ñ$Ê�Ò1Ë�Ú¯ËnÙnÉQÊ�Ò«Ë$×�Î�Ø�Ñ$Ð1É§Õ°Ô:Ë$ÇoØ¨Ï°Æ¸È�Ï+Î1Ï°É,Ñ$Ô°Ô°Ê�ÆqÛ
ÈNÑ©Î1Æ�Ë$Ç�Õ3Ç3ÙnÉNÐ¨Ò«Î1Õ3Ù°Ö�Æ�Ò�ÙnÉQÔtÉQÇ3ÙnÉNÇLÎ�ÍnË$Ð¨ÙnÆ¸Ò«Ð�ÉNÌLÑ©Ð�Ùh×¦Ð1ËYÚ.ÑYÒ«Ô:ÉQÈ�Î�Ò�Ç°Ë$Î�Ú¯ËnÙnÉNÊ�Ê�ÉQÙ}Ü-,�Ë©Î�Ï
Ñ©Ê Î1ÉQÐ1ÇtÑcÎ1Æ�ß$É�Ò³È�Ë$Ú¯Ô°Ð�Ë$Ú¯Æ¸Ò«É§Ñ$ÈQÈ�Õ°Ð�Ñ$ÈNÖ�Ò«Æ�Ì$Ç3ÆqètÈQÑ©ÇLÎ1Ê�Ö$Ü
à�ÇåËYÐ�Ù°ÉNÐ�×¦ËYÐ�Ñ�Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�Î1Ë�Ó:É�Õ3Ò1É�×¦Õ3Ê�×¦ËYÐ§Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É,Ð�ÉQÒ1ÉQÑ$Ð�È�Ï�Í°Î1Ï3É�Ú¯ËnÙnÉNÊ[Ô°Ð�Ë©Û

ß±Æ�Ù°ÉQÙ+Ç°ÉNÉ�Ù�Ç°Ë$Î¨Ë$Ç°Ê�Ö�Ó:É/×¦Õ3Ç3È�Î�Æ ËYÇ3Ñ©Ê�Ê Ö+È�Ë$Ð�Ð�ÉQÈ�Î�Í±Ó°ÕnÎ�Ñ©Ê¸Ò«Ë�Î1ÉQÚ¯ÔtËYÐ�Ñ$Ê Ê�Ö�È�ËYÐ1Ð�ÉQÈ�ÎQÜ ë Ï±Õ3ÒNÍ
Æ Î³Æ¸Ò³Ç°É�È�ÉQÒ�Ò�Ñ©Ð�Ö¯Î1Ë�Ñ$ÈQÈ�Ë$Õ3ÇYÎ�×¦Ë$Ð¨Ñ$Ê Ê}Æ Î1ÉQÚ¯Ò¨Ñ©æ:É�È�Î�Æ Ç°Ì¯ÉNé±É�È�ÕnÎ�Æ ËYÇ�Î�Æ Ú¯É&Ñ©Î*Î�Ï°É§Î1ÉQÚhÔ:Ë$Ð�Ñ©Ê
Ð�ÉQÒ1Ë$Ê�ÕnÎ1Æ�Ë$ÇkÑ$Æ Ú¯ÉQÙk×¦Ë$Ð�Ü/ñ3Ë$Ð�Ê�Ñ$Ð1ÌYÉ,Ñ©Ô°Ô3Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3ÒQÍ3Î�Ï°Æ¸Ò/Æ�Ç3ÈNÊ Õ3Ù°ÉQÒ�ÙnÉNÊ¸ÑOÖnÒ�×¦Ð�Ë$Ú?ÙnÉQßLÆ¸È�É�ÒNÍ
Ú¯ÉNÚ¯Ë$Ð�Ö�Ú�Ñ©ÇtÑ©Ì$ÉQÚ¯ÉNÇLÎ�Õ3Ç°ÆqÎ/.)0) Ý21³Ñ©Ç3ÙoÈQÑ$È�Ï°É!Ò1Ö±Ò«Î1ÉQÚoÜ

�ÔtÑ©Ð1Î×¦Ð�Ë$Ú�Ô°Ð�Ëcß±Æ�Ù°Æ Ç°ÌhÑ¯ÙnÉ�Î�Ñ©Æ�Ê É�Ù�Ï3Ñ$Ð�ÙnØ³Ñ©Ð�É�Ú¯ËnÙnÉQÊeÍ°Ñ$Ç�Æ�Ç3Ò�Î�Ð1ÕtÈ�Î1Æ�Ë$ÇoÒ1É�Î¨Ò«Æ�Ú,Õ°Ê¸ÑcÛ
Î1ËYÐ/Ñ$Ê�Ò1Ë�Ô°Ð�Ëcß±Æ�ÙnÉ�Ò�ÙnÉNÎ�Ñ©Æ�Ê�ÉQÙ�Æ�Ç3Ò«Î1Ð�Õ°Ú¯ÉNÇLÎ�Ñ©Î1Æ�Ë$Ç�Ë©×xÉNénÉQÈ�Õ°Î1Æ�Ë$Ç�Ü�à�Î�Ð1É�È�ËYÐ�Ù°Ò�Ò�Î�ÑcÎ1Æ¸Ò«Î1Æ¸ÈNÒ�Ë$×
Ï3Ñ$Ð�ÙnØ³Ñ©Ð�É!ÉNßYÉNÇLÎ�ÒQÍtÑYÒ1Ò1ËnÈ�Æ¸ÑcÎ�ÉQÙoØ¨Æ Î1Ï�Î�Ï°É,Æ�Ç3Ò«Î1Ð�Õ3È�Î�Æ ËYÇoÎ1Ð�Æ ÌYÌ$ÉNÐ�Æ�Ç°Ì�ÉQÑYÈ�Ï�ÉNß$ÉQÇLÎQÜ�3xénÑ$ÚhÛ
Ô°Ê�ÉQÒ§Ë$×*ÉNßYÉNÇLÎ�Ò�Ð�ÉQÈNË$Ð�ÙnÉQÙ�Ó±ÖåÑ�Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ§Ñ$Ð1ÉYó�Æ�Ç3Ò«Î1Ð�Õ3È�Î�Æ ËYÇ@ÉNé±É�È�ÕnÎ�Æ ËYÇ9ÈNË$Õ°ÇLÎ�Í�ÈNÑ$È�Ï3É
Ú¯ÉNÚ¯Ë$Ð�Ö�Ú¯Æ¸Ò1Ò1ÉQÒ¨Ñ$Ç3Ù�Î�Ð�Ñ$Ç3Ò1Ê�Ñ©Î1Æ�Ë$Ç�Ê Ë±Ë$ÞcÑYÒ«Æ¸ÙnÉ�Ó°ÕnæSÉNÐ4. ë65 ,61�Ú¯Æ�Ò�Ò«É�ÒNÜ

ë Ð�ÑYÙnÆqÎ�Æ ËYÇ3Ñ©Ê�Ê�Ö$ÍQÈNË$Ú¯Ô°ÕnÎ�ÉNÐ�Ò«ÖnÒ«Î1ÉNÚ Ò«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð�Ò}Ï3ÑOßYÉsÓtÉQÉNÇ!Õ3Ò1ÉQÙ�×¦ËYÐ}Î1Ï3Ð1ÉQÉxÔ°Õ°Ð�ÔtËLÒ«É�ÒNó

798;:(<>= ?4:�<A@CBD@	<>EGF�<AH9:�IKJ	@+@ML�:�NPOK:�QSRTF�IDU à�ÇçÑåÒ1Æ Ú�Õ°Ê¸ÑcÎ1É�ÙâÉNÇ±ß±Æ Ð�Ë$Ç3ÚhÉQÇLÎQÍ[ÆqÎÆ�Ò�Ô:ËYÒ�Ò«Æ�Ó°Ê�É�Î�ËoÓ°Õ°Æ�Ê�Ù9ÑoÒ«Ë$×�Î�Ø�Ñ$Ð1É�Ô°Ð1Ë$Î1Ë$Î�ÖLÔ:ÉhË©×�ÑoÙnÉ�Ò«Æ�Ì$Çå×¦Ë$Ð&Ñ+Ô°Æ�ÉQÈ�É¯Ë$×*Ï3Ñ$Ð�Ù±Û
Ø�Ñ$Ð1ÉYÜ) ÉQÑYÒ«Õ°Ð�ÉNÚ¯ÉQÇYÎ�Ò¨Ë©×;Ñ+Ò«Æ�Ú,Õ3Ê�Ñ©Î1Æ�Ë$Ç�Ð�Õ°Ç°Ç°Æ�Ç°Ì�Ñ$Ô°Ô°Ê�Æ�ÈQÑcÎ1Æ�Ë$ÇtÒ�Ë$ÇkÎ1Ï°Æ¸Ò�ß±Æ�Ð«Î�Õ3Ñ©Ê
Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É�Ì$Æ�ß$É§Ô:ÉNÐ1×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉ/Ú¯É�Î�Ð1Æ¸ÈNÒ�Ë©×�Î�Ï°É&ÙnÉ�Ò«Æ�Ì$Ç�Ü

7WV�F�EXQY?Z:(<>@[BD@	<>EGF�<AH9:�IKJ	@\@ML�:�NPOK:(Q]RTF�I�U ñ3Ë$Ð�Ú�Ñ©Ç±Ö®Ñ©Ô°Ô°Ê�Æ¸ÈNÑcÎ�Æ ËYÇ3ÒhÎ1Ï3ÉkÔtÉQÐ«Û
×¦Ë$Ð�Ú¯Ñ$Ç3È�É�Æ�Ò�ÙnÉNÔ:ÉNÇ3Ù°ÉNÇLÎhËYÇãÚ¯ÉNÚ¯Ë$Ð�Ö9Ò1ÖnÒ�Î�ÉNÚ Ó:ÉNÏ3ÑOß±Æ�Ë$Õ°Ð�Ü0*�Ò,Î1Ï°ÉoÒ1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ
È�Ë$Ê�Ê�ÉQÈ�Î�Ò�Ò«Î�ÑcÎ�Æ�Ò«Î1Æ¸ÈNÒ�Ë$Ç`Ú¯ÉNÚ¯ËYÐ1Ö®Ò«ÖnÒ«Î1ÉNÚ ÉNßYÉNÇLÎ�ÒQÍ³ÆqÎ+Ð1ÉQß$ÉQÑ$Ê�Ò�ÚhÉQÚ¯Ë$Ð�ÖçÐ�ÉNÊ¸ÑcÎ1É�Ù
ÓtË$Î«Î1Ê�ÉNÇ3ÉQÈ�ÞnÒ³Æ Ç�Ñ$Ô°Ô°Ê�Æ�ÈQÑcÎ1Æ�Ë$ÇtÒNÜ

ô

79^"@M_`OKa�a�RPIKabF�EcF�B�@M<A:�QSRTI'aedSf�dgQ]@MH9dhU�i Ô:ÉNÐ�ÑcÎ1Æ�Ç°Ì�Ò1Ö±Ò«Î1ÉQÚ(ÙnÉQÓ°Õ°ÌYÌ$Æ�Ç°Ì¯Æ�Ò¨Æ�ÇnÛ
Ï°ÉNÐ�ÉNÇLÎ1Ê�Ö÷ÙnÆ ð�È�Õ°Ê ÎQÍ¨Ñ$Ò¯Ò1ÉNÐ�ß±Æ�ÈNÉQÒhÇ°ÉQÈNÉQÒ�Ò1Ñ$Ð1Ö9×¦ËYÐ�ÙnÉNÓ°Õ3Ì$Ì$ÉQÐ¯Ë$Ô:ÉNÐ�ÑcÎ1Æ�Ë$Ç®Ñ©Ð�É+ÔtÑ©Ð1Î
Ë©×�Î�Ï°ÉoÔ°Ð1ËYÌ$Ð�Ñ©Ú Õ°Ç3ÙnÉQÐ�Ò�Î�Õ3ÙnÖ$Ü) Ë$Ð�ÉNËcßYÉNÐ�Í[Ú¯Ñ$Ç±ÖâÑYÒ«Ô:ÉQÈ�Î�Ò¯Ñ©ÇtÙ÷Ô°Ð�Ë$Ó°Ê�ÉNÚ�ÒhÆ�Ç
Ë$Ô:ÉNÐ�ÑcÎ1Æ�Ç°Ì¯Ò«ÖnÒ«Î1ÉQÚ¯ÒQÍ°Ò1Õ3È�Ï�ÑYÒ�Ð�ÑYÈ�É§È�Ë$ÇtÙnÆqÎ�Æ ËYÇ�Ñ$Ç3Ù�ÙnÉQÑYÙnÊ ËnÈ�ÞnÒQÍ°Ñ©Ð�É/Ô°Ð�Ë$Ç3É�Î�ËhÆ�ÇnÛ
Î1Ð�Õ3Ò«Æ�Ë$Ç�Ü ë Ï°ÉNÐ�É�×¦ËYÐ1ÉYÍ±Î1Ï°ÉQÖ+Ñ©Ð�É§Ï3Ñ©Ð�Ù�Î1Ë�Ð�ÉNÔ°Ð�ËnÙnÕ3È�É§Ñ©ÇtÙ+Ú�ÑOÖ�Ó:É&Æ�Ú¯ÔtËLÒ1Ò1Æ Ó3Ê É�Î1Ë
ÈNÑcÎ�È�Ï+Æ�Ç�Ñ¯ÙnÉNÓ°Õ3Ì$Ì$Æ�Ç°Ì¯Ò«É�Ò1Ò1Æ�Ë$Ç�Õ3Ò«Æ�Ç°Ì�È�ËYÇ±ß$ÉNÇLÎ�Æ ËYÇ3Ñ©Ê:Î1Ë±ËYÊ�ÒQÜ

à�Î&Æ¸Ò!Ë$Õ°Ð�Ñ©Æ�Ú Î1ËkÑ$Ô°Ô°Ê�Ö@Ò1Æ Ú�Õ°Ê¸ÑcÎ1Æ�Ë$Ç9×¦ËYÐ&ÙnÉNÓ°Õ3Ì$Ì$Æ�Ç°ÌkÑ$Ç°Ë©Î�Ï°ÉNÐ&ÈNÊ�ÑYÒ1Ò§Ë$×³Ô3Ð1ËYÌ$Ð�Ñ©Ú�Ò
Ø¨Æ Î1Ï�Ò«Ô:ÉQÈNÆ�Ñ$Ê³È�ÏtÑ©Ð�Ñ$È�Î�ÉNÐ�Æ�Ò«Î1Æ¸ÈNÒQÍ[Ç3Ñ©Ú¯ÉQÊ ÖãÐ�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É+ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì@Ò1ÖnÒ�Î�ÉNÚ�Ò¯Ñ©Ç3ÙWÑ©Ô°Ô°Ê�Æ¸ÈNÑcÛ
Î1Æ�Ë$ÇtÒNÜj*�ÒoÑçÒ1Æ�Ú,Õ°Ê¸ÑcÎ�ÉQÙ`ÉQÇLß±Æ�Ð1ËYÇ°Ú¯ÉNÇLÎ+Æ¸Ò�È�Ë$Ú¯Ô°Ê�É�Î�ÉNÊ�Ö`Ñ©Ð1Î1Æ ètÈ�Æ¸Ñ©ÊJÍ�Ú�Ñ©Ç±Ö�Ë©×!Î�Ï°É@Ð�É�Û
Ò«Î1Ð�Æ�È�Î1Æ�Ë$Ç3Ò*Î1ÏtÑcÎ�Ñ©Ô3Ô°Ê Ö�Î1ËhÎ1Ë±Ë$Ê¸Ò�Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç°ÌhÆ�ÇoÑ�Ô°Ï±ÖnÒ«Æ¸ÈNÑ$Ê}ÉNÇ±ß±Æ Ð�Ë$Ç3ÚhÉQÇLÎ³Ñ$Ð1É�Ð1ÉQÚ¯Ëcß$ÉQÙ�Ü
ä�ÉQÇ3È�ÉYÍ�Ú�Ñ$ÇLÖåË©×�Î1Ï°É�Ú�Ñ©ò�Ë$Ð§Ô°Ð�Ë$Ó°Ê�ÉNÚ�Ò!Ø¨Æ Î1ÏâÓ°Õ°Æ�Ê¸ÙnÆ Ç3Ì�Î1Ë±Ë$Ê¸Ò�×¦Ë$Ð,Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É�Ò«ÖnÒ«Î1ÉQÚ¯Ò
Ñ©Ð�É§ÉNÊ�Æ Ú¯Æ�Ç3ÑcÎ�ÉQÙ}Ü

���P� kl
m� n��$����&`o2�������qp

*�Ç�Ñ$Ð«Î�ÆqètÈNÆ�Ñ$Ê�Ò«ÖnÒ«Î1ÉQÚ<Ï3ÑYÒ¨ß$ÉQÐ1Ö¯×¦ÉQØ Õ3Ç°Ô°Ð�ÉQÙnÆ¸È�Î�Ñ©Ó°Ê�É�×jÑ$È�Î�Ë$Ð�ÒNÜ ë Ï±Õ3ÒQÍ3Ñ�Ò1Æ Ú�Õ°Ê¸ÑcÎ1É�Ù+Ò1ÖnÒ�Û
Î1ÉQÚõÒ«Î�Ñ$Ð«Î�Æ Ç°ÌâÉNé±É�È�ÕnÎ�Æ ËYÇWÆ�Ç`Ñ9ÞLÇ3ËcØ¨Ç®Ò«Î�Ñ©Î1É�Ø¨Æ�Ê Ê�Ñ$Ê Ø³ÑOÖnÒ�ÉNénÉQÈ�Õ°Î1ÉkÑ©Ê�Ë$Ç3ÌåÎ�Ï°ÉkÒ1Ñ$Ú¯É
Ô3Ñ©Î1Ï�Ü ë Ï°Æ¸Ò¨Æ¸Ò³ß$ÉQÐ1Ö�ÕtÒ«ÉN×¦Õ°ÊeÍ3ÓtË$Î1Ï�×¦Ë$Ð¨ÉNé±Ô:ÉNÐ�Æ�ÚhÉQÇLÎ�Ò¨Ñ©ÇtÙ+ÙnÉQÓ°Õ°ÌYÌ$Æ�Ç°Ì3Í°ÑYÒ³ÆqÎ�Æ¸Ò¨Ô:ËYÒ�Ò«Æ�Ó°Ê�É
Î1ËhÐ�ÉNÔ°Ð�ËnÙnÕ3È�É�Ñ,Ò«Î�Ñ©Î1É�Ð1É�Ñ$È�Ï°É�Ù¯Æ Ç+É�énÉQÈNÕnÎ1Æ�Ë$Ç�Ü ë Ï±Õ3ÒQÍnÑ,Õ3Ò1ÉNÐ�Ë©×�Ñ!Î1ÉQÚ¯ÔtËYÐ�Ñ$ÊSÙ°ÉNÓ°Õ°ÌYÌ$ÉQÐ
Ú�ÑOÖ,ÙnÉNÎ1ÉQÈ�ÎxÎ1ÏtÑcÎxÉ�é°ÈNÉQÒ�Ò«Æ�ß$É�Î1Æ�Ú¯É¨Ï3Ñ$ÒxÔ3Ñ$Ò�Ò«É�Ù�Ñ©ÎxË$Ç°É³Ô:Ë$Æ�ÇLÎ;Æ Ç¯ÉNé±É�È�ÕnÎ�Æ ËYÇ�ÍYÑ$Ç3ÙhÐ1É�Ò�Î�Ñ©Ð1Î
Ò1Æ Ú�Õ°Ê�Ñ©Î1Æ�Ë$ÇãÎ�Ë@ÉNé°Ñ©Ú¯Æ Ç3É�Î1Ï3É�Ð�ÉQÈNÉNÇLÎ1Ê�ÖâÉ�énÉQÈNÕnÎ1É�Ù÷Ð�Ë$ÕnÎ�Æ Ç3ÉQÒ�ÚhËYÐ1É�ÈNÑ$Ð1ÉN×¦Õ°Ê Ê�Ö$Ü ë Ï°Æ¸Ò�Æ�Ò
Ò1Æ Ú¯Æ�Ê�Ñ$Ð!Î1ËoÎ�Ï°É�Ú¯É�Î�Ï°ËnÙnË$Ê�Ë$ÌYÖåÕ3Ò1ÉQÙ9×¦ËYÐ,ÙnÉNÓ3Õ°Ì$ÌYÆ Ç°Ì�Î�Ï°É�Ê�Ë$Ì$Æ¸ÈNÑ$Ê;È�ËYÐ1Ð�ÉQÈ�Î1Ç°É�Ò1Ò�Ë$×¨ÈNË$ÇnÛ
ß$ÉQÇLÎ1Æ�Ë$Ç3Ñ$ÊxÔ°Ð�Ë$Ì$Ð�Ñ©Ú�ÒQÜ�ä�ËcØ*ÉQß$ÉQÐQÍ[Ñ$Ò§Î�Æ Ú¯É+Æ�Ò�Ô3Ñ©Ð1Î&Ë©×¨Î�Ï°É+Ò«Î�Ñ©Î1É�Î�Ï°É�ÕtÒ«ÉQÐ&Ø¨Æ�Ò1Ï°É�Ò!Î1Ë
ß$ÉQÐ1Æ ×¦Ö$ÍLÆ Î�Æ¸Ò³È�Ð�Õ3È�Æ¸Ñ©Ê3Î1Ï3Ñ©Î*Î�ÉNÚ¯ÔtËYÐ�Ñ$ÊtÓ:ÉNÏtÑOßLÆ�Ë$Õ3Ð;Æ¸Ò*Ô3Ð1É�Ò«ÉQÐ1ßYÉQÙ¯Ó:É�Î�Ø�ÉNÉNÇ�Ô°Ð1ËYÌ$Ð�Ñ©Ú Ð1Õ3Ç3ÒNÜ

���Pr sC�-o���
	�(���
�

à�ÇâÔ°Ï±ÖnÒ«Æ¸ÈNÑ$ÊxÒ«ÖnÒ«Î1ÉNÚ�ÒQÍ�Ú¯ÉQÑYÒ«Õ°Ð�ÉNÚ¯ÉQÇYÎ!Ë$×*Î�Ï°É�Ò«ÖnÒ«Î1ÉQÚ Ë©×�Î�ÉNÇãÑ©Ê¸Ò«ËoÆ�ÇLÎ1Ð�Ë±Ù°Õ3È�É�Ò!Ñ+Ú¯ËnÙ±Û
Æ ètÈNÑ©Î1Æ�Ë$Ç�Ü ë Ï°Æ�Ò§Æ¸Ò§Ð�É�×¦ÉNÐ�Ð�ÉQÙ�Î�Ë�Ñ$Ò/Î1Ï°É¯Ô°Ð�Ë$Ó:É¯É�æSÉQÈ�ÎQÜt*�Ò§Ð�ÉQÑ©Ê ÛJÎ1Æ�ÚhÉ¯Ò1Ö±Ò«Î1ÉQÚ Ñ©ÇtÑ©Ê�Ö±Ò1Æ¸Ò
Î1ÉQÇ3Ù�Î�Ë�×¦ËnÈNÕ3Ò�ËYÇ@Ò1Ï°Ë$Ð1Î/Ô:ÉNÐ�Æ�Ë±Ù3Ò�Ë$×xÎ1Æ�Ú¯É$Í}ÉNßYÉNÇåÒ1Ú�Ñ©Ê�Ê�Ñ$Ú¯Ë$Õ°ÇLÎ�Ò/Ë©×;Î1ÉNÚ¯Ô:Ë$Ð�Ñ©Ê�Æ ÇLÎ�Ð1ÕnÛ
Ò1Æ ËYÇkÑcæSÉQÈ�Î�Ú¯ÉQÑ$Ò1Õ°Ð�ÉNÚ¯ÉNÇLÎ�áLÕ3Ñ$Ê Æ Î�Ö$Ü ë Ï3Æ�Ò�Ê Æ�Ú¯ÆqÎ�Ò�Ó:Ë©Î�Ï�Î1Ï°ÉhÑ$ÈQÈ�Õ°Ð�Ñ$ÈNÖ+Ñ©ÇtÙ�Ñ©Ú¯Ë$Õ°ÇLÎ�Ë$×
Ú¯ÉQÑYÒ«Õ°Ð�ÉNÚ¯ÉQÇYÎ¯Æ�Ç�Ò1Õ3È�Ï�Ò«ÖnÒ«Î1ÉQÚ¯ÒQÜ�ñ°Õ°Ð1Î1Ï°ÉQÐ1Ú¯ËYÐ1ÉYÍxÎ1Ï3ÉoÎ1Æ�ÚhÉoÔ:ÉNÐ�Æ ËnÙ®Æ�Çç×¦ËnÈ�ÕtÒ�Æ�ÒhÎ�Ë±Ë
Ò1Ï°Ë$Ð1Îs×¦Ë$Ð;Ñ§Ï±Õ°Ú�Ñ$Ç�Õ3Ò«ÉQÐsÎ1Ë&Ù°Ð�ÑOØ�È�ËYÇ3È�Ê�Õ3Ò1Æ ËYÇ3ÒsÑ©Ó:Ë$ÕnÎ;Î1Ï°É�ÈNË$Ð�Ð1É�È�Î�Ç°ÉQÒ�Ò[Ë©×:Î1Ï°É�Ò«ÖnÒ«Î1ÉQÚ�Ü
ë Ï±Õ3ÒQÍ3Æ Î�Æ�Ò�Ç°Ë©Î�Ô:ËYÒ�Ò1Æ Ó°Ê�É!Î�Ë�Ò�Î�Ë$ÔoÉ�énÉ�È�ÕnÎ�Æ ËYÇ�Æ�Ç�Ë$Ð�ÙnÉQÐ¨Î1Ë�Ñ$Ç3Ñ©Ê�ÖnÒ«É!ÈNÕ°Ð1Ð�ÉNÇLÎ�Ò«Î�Ñ©Î1É,Ñ$Ç3Ù
Ò«Î1ÉNÔ¯ÈNÑ$Ð1ÉN×¦Õ°Ê�Ê Ö�×¦Ë$Ð�Ø³Ñ©Ð�Ù}ÍOØ¨Ï°Æ�È�ÏhÆ¸Ò�Ñ�È�ËYÚ¯ÚhËYÇ°Ê�Ö!Õ3Ò«É�Ù&Ø³ÑOÖ§Ë©×:Ù°ÉNÓ°Õ°ÌYÌ$Æ�Ç°Ì/ÈNË$Ç±ß$ÉQÇLÎ1Æ�Ë$Ç3Ñ$Ê
Ò1Ö±Ò«Î1ÉQÚ�ÒNÜ
à�Ç�Ñ§Ò«Æ�Ú,Õ°Ê¸ÑcÎ�ÉQÙ¯Ò1Ö±Ò«Î1ÉQÚoÍ©Î1Ï3É³Î1Æ�ÚhÉ/Ò1ÈQÑ©Ê�É�Ë$×tÎ�Ï°É�Ò1Ö±Ò«Î1ÉQÚ·Õ°ÇtÙnÉNÐ;Ò«Î1ÕtÙnÖ,Æ¸ÒxÙnÉ�È�Ë$Õ3Ô°Ê É�Ù

×¦Ð�Ë$Ú Î1Ï3É,Î�Æ Ú¯É�Ò1ÈQÑ©Ê�É,Ë$×xÎ1Ï°É¯Ò1Ö±Ò«Î1ÉQÚ?Ð1Õ3Ç°Ç°Æ�Ç°Ì�Î�Ï°É�Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð�Ü ë Æ Ú¯É¯ÙnÆ�Ò«Î1ËYÐ«Î�Æ ËYÇåÙnÕ°É
Î1ËãÔ3Ð1ËYÓtÉ�ÉNæ:É�È�Î�Æ¸Ò¯Î1Ï°ÉQÐ1ÉQÓ±ÖçÉNÊ�Æ�ÚhÆ�Ç3Ñ©Î1ÉQÙ�Ü ë Ï°Æ¸Ò�ÉNÇ3Ñ$Ó°Ê�ÉQÒ¯Î�Ï°ÉkÆ�ÚhÔ3Ê ÉQÚhÉQÇLÎ�ÑcÎ�Æ ËYÇ�Ë©×!Ñ
Î1ÉQÚ¯ÔtËYÐ�Ñ$Ê3ÙnÉNÓ3Õ°Ì$ÌYÉNÐ�ÍYÒ1Æ Ú¯Æ�Ê�Ñ$ÐsÎ1Ë,Ñ,È�Ë$Ç±ßYÉNÇLÎ1Æ�Ë$Ç3Ñ$Ê°ÙnÉNÓ3Õ°Ì$ÌYÉNÐ�Ü ë Ï°É¨Î�ÉNÚ¯Ô:Ë$Ð�Ñ©ÊtÙ°ÉNÓ°Õ°ÌYÌ$ÉQÐ
Æ¸Ò�Ñ$Ê�Ò1Ë/Ñ$Ó°Ê É;Î1Ë�Ð1ÉQÔtËYÐ«Î�Î1Æ�ÚhÉ³Ñ$Ò�Ô:ÉNÐ�È�ÉNÆ�ß$É�Ù!Ó±Ö§Î1Ï°É�Ñ©Ô°Ô3Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç�Ü�ä�ÉNÇtÈ�É$Í$ÆqÎ[Ú�ÑOÖ/Ó:É*ÕtÒ«É�Ù
×¦Ë$Ð³ßcÑ©Ê�Æ¸Ù°ÑcÎ�Æ Ç°Ì�Î1ÉQÚ¯ÔtËYÐ�Ñ$Ê�È�Ë$Ð�Ð�ÉQÈ�Î�Ç°ÉQÒ�Ò�Ñ©Ç3Ù�è3Ç3ÙnÆ�Ç°Ì¯Ó°Õ°ÌLÒ*ß±Æ�Ë$Ê¸ÑcÎ�Æ Ç°Ì¯ÙnÉ�Ò«Æ�Ð1É�Ù�Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É
Ó:ÉNÏ3ÑOß±Æ�Ë$Õ°Ð�Ü

ö

u vxwcy[Äz�h½ À4{[|+w�}�~@À�¿sþ���vxw���Â��4�Zw�¿�� ½t�+Ä�¿sÀh½;}�w�½¯¾

r���� ����o2�c�-�D���c����
��$�c��&�!��$#%����&'����
9�b&����-� ��n

à�Ç�Ë$Ð�ÙnÉNÐ�Î1Ë¯Ô°Ð�Ëcß±Æ�Ù°É�ÑhÈ�ËYÇLßYÉNÇ°Æ�ÉNÇLÎ³Õ3Ò1ÉNÐ¨Æ�ÇYÎ�ÉNÐ1×jÑ$ÈNÉ�Î�Ë�Î�Ï°É!Ò«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð�Í±ÆqÎ�Æ¸Ò¨È�ËYÇ°Ç°É�È�Î1É�Ù
Ñ$Ò/Ñ�Ó3ÑYÈ�Þ$ÉNÇtÙ�Î1Ë�Ñ�Ù°ÉNÓ°Õ°ÌYÌ$ÉQÐQÜ ë Ï°ÉhÒ«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð/Ò«Õ°Ô3ÔtËYÐ«Î�Ò�Ò1ÉNÐ�ßLÆ¸È�É�Ò¨Ç°ËYÐ1Ú�Ñ©Ê�Ê�Ö+Ô°Ð�Ëcß±Æ�ÙnÛ
ÉQÙ9Ó±ÖkÏ3Ñ$Ð�Ù°Ø�Ñ$Ð1É¯Ñ©Ç3Ù@Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3ÌoÒ1ÖnÒ�Î�ÉNÚoÜ�3sé°Ñ$ÚhÔ3Ê É�Ò/Ë$×³Ò1Õ3È�ÏâÒ«ÉQÐ1ß±Æ¸È�É�Ò!Ñ©Ð�ÉhÐ�ÉQÑYÙnÆ�Ç°Ì
Ú¯ÉNÚ¯Ë$Ð�Ö$Í±Ð�ÉQÑYÙnÆ Ç3Ì,Ð�ÉNÌ$Æ¸Ò«Î1ÉNÐ�ÒQÍLÒ1É�Î1Î1Æ�Ç°Ì�Ó3Ð1É�Ñ©Þ±ÔtËYÆ ÇLÎ�Ò*Ñ$Ç3Ù�Ò1Æ Ç3Ì$Ê�É/Ò«Î1ÉNÔ3Ô°Æ Ç3Ì3Ü-*�ÔtÑ©Ð1Î*×¦Ð�Ë$Ú
Î1Ð�Ñ$Ù°ÆqÎ�Æ ËYÇ3Ñ©Ê³ÙnÉNÓ3Õ°Ì$ÌYÆ Ç°ÌâÒ1ÉNÐ�ßLÆ¸È�É�ÒNÍ[Î�Ï°É�ÙnÉNÓ3Õ°Ì$ÌYÉNÐhÆ ÇLÎ1ÉQÐ«×jÑYÈ�É�Ñ©Ê¸Ò«Ë9Ñ©Ê�Ê ËcØ�Ò,Î1Ï°ÉoÕ3Ò1ÉNÐ�Î1Ë
Ñ$ÈQÈ�É�Ò1Ò�Ò1Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð�Ò1ÉNÐ�ß±Æ�ÈNÉQÒQÜ ë Ï°É,Ò1ÉNÐ�ß±Æ�ÈNÉ!Ú¯ËYÒ«Î�Æ ÇLÎ�ÉNÐ�ÉQÒ«Î1Æ�Ç°Ì¯×¦Ë$Ð/Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É&Ñ©ÇtÑ©Ê�Ö±Ò1Æ¸Ò³Æ�Ò
Î1Ï3É�Ñ©Ó3Æ Ê�ÆqÎ�Ö+Î1Ë�Ô°Ð1É�Ò«ÉQÇLÎ/È�Õ°Ð�Ð�ÉNÇLÎ¨Î1Æ�Ú¯É,Ø¨Æ Î1ÏåÈNÖ±ÈNÊ É�È�Ë$Õ3ÇYÎ/Ì$Ð�Ñ©Ç±Õ°Ê¸Ñ©Ð�ÆqÎ�ÖYÜ ë Ï°Æ¸Ò�Ò1ÉNÚ�Ñ$ÇYÎ�ÆqÛ
ÈNÑ$Ê Ê�Ö�ß$ÉQÐ1ÖkÒ1Ú�Ñ©Ê�ÊsÙnÆqæSÉNÐ�ÉNÇtÈ�ÉhÉNÇ3Ñ$Ó°Ê É�Ò/Î1Ï°É¯Õ3Ò1ÉNÐ�Î1Ë�Ò«Î1ÉQÔåÎ�Ï°Ð1ËYÕ°Ì$Ï9Ñ�Ô:Ë$Ð1Î1Æ�Ë$Ç@Ë©×*ÈNËnÙnÉ$Í
È�Ï°É�È�ÞLÆ�Ç°Ì�×¦Ë$Ð§ÓtË$Î1Ï@×¦Õ°Ç3È�Î1Æ�Ë$Ç3Ñ$ÊxÑ©Ç3ÙkÎ1ÉNÚ¯Ô:Ë$Ð�Ñ©Ê[ÉNÐ�Ð�Ë$Ð�ÒNÜ&ñ�Æ�Ì$Õ°Ð�É ï Ò1Ï°ËcØ�Ò§Ñ©ÇåÉNé°Ñ©Ú¯Ô°Ê�É
Ë$Õ°Î1Ô°ÕnÎ¨×¦Ð�Ë$Ú Î1Ï°É&ÙnÉQÓ°Õ°ÌYÌ$ÉNÐ¨Ê�Æ�Ó°Ð�Ñ$Ð1Ö�Æ�Ç3ÈNÊ Õ3Ù°ÉQÙ�Æ Ç�Î�Ï°É,Å±Æ�ÚhÆ¸ÈNÒ�Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð��) í2�����h�A��Ü
�A�Y���A�g�h�g�> ¢¡A£q¤]�>¤
¥A¦ § ¡	�z¨>© ¦]ªA«q¬g­>®A¯A¦ �z¨b°q±>�A� ªq² ��³z´h¤ ²]µ ±>�¶´j·X¸h� µ °�¹»º/¸ µ ¹»º

µ ¹ ¦]ª ¸A¸A¸A¸A¸ ¯A¦A¦A¦A¦	¼¾½>®]«A«A¦	¿ ³S� µ ±>�¶´	��ÀÁ��Â ®S«>¯
¥M¼Ã§ ¡	�z¨>© ¦]ªA«q¬]ÄS«qÅ]¯ �z¨+�zÆh� ² ¸h�¶¨>� µ ·X¸ ½ ¹ ¦»ÇÁÈS¦A¦A¦ÉÇ ºÊ�$� ½ ¹ ¯»ÇÁÈg­�Ç º

³S�AËe¹ ®S«ÌÇGÍÉÇ�¿ ³S�b¸h�¶¨>� µ ÀÁ��Â ¼¾«>¦
¥>Å § ¡	�z¨>© ¦]ªA«qÅ	¼$­qÎ]« �z¨+�zÆh�SÏ ÅA² ¸h�z¨>� µ ·X¸ ½ ¹ ¦ÌÇGÈ]¦A¦A¦ÉÇ º��Y� ½ ¹ ¯»ÇÁÈg­ÐÇ º

³S�AËe¹ ®S«ÌÇGÍÉÇ�¿ ³S�9�gÆq� ² �z°h³g�h�SÏ Å ÀG��Â ®A¦A¦
¥ Ï § ¡	�z¨>© ¦]ªA«>¦ ¸A¤ Î]« �z¨ µ �z¨AÑ ªq² �z°h³S�h� ² �gÆh�A�S³ µAµ · ¿;Òb¦]ª Ï « �z¨

Óz� µ �z¨]Ñ ªqÔAÅ À ¼ À ¼zÅ]®AÔ	¼ ÀÁ�g�>³ ­ �

�A�Y���A�g�h�g�> µ �A�g�
®]« ÏbÕ>Ö0×q¤]�q�g¸AÆ�³WØ¶�g�A�]Ñ	�z�b¸ µ ±>�¾´mØ0³g¨ ½ �S±g°>Æ9�g�Ù�q±Ù³WØ¶�g�A�]Ñ	�z�e¸h� µ ¤ ²]µ ±>�¶´mØ
®]«A« ÖÙ³>�l³lÚhÛAÜ>ÝzÞ9�g�AÆ µ ¤ µ ±>�¶´ À
®]«q¬ Ö]Õ
®]«>® �g�q³S�h�]�e�z¨>�¢°q±>�A� ªq² ��³z´h¤ ²]µ ±>�¶´ ·Á�g�A�]Ñ	�z�C¸h� µ ¤eÖg¸h� µ °Ðº��g�A�]Ñh�g�e¸h� µ ¤ ²Aµ ±>�¶´CÖz¸ µ º
®]«>Î �g�]�]Ñ	�g�e¸ µ ±>�¶´WÖ µq¿
®]«>¯bß
®]«>Ä ±S¸]¸ ² �9�g�>³S�A�Ðà
®>¬]¦
®>¬	¼ �M¤¾�(�S¤]�Ð·P¸ µ º ¦ º��]�gá>¤>±S¸É·�Ög¸ µh¿]¿ à
®>¬AÅ
®>¬ Ï ¸ µ]Ô S¸ µA² ¸ µ ³SËh�b¹lâ]ã ² ÚhÛ]Ü>ÝgÞÐà

�A�Y���A�g�h�g�> ¢°>�h�z¨>� Ô �h�Y�M¤
ä Ñg� ­ ¤]�e±S¸9�gÆh� µ ¤q�Ù¤ ª ¤>�zÑ>�>¤ ½ ·XåSÚ]æ ¦	¿ Â ® Ï ¦A¦ Ï «A«>¯A®

ñ�Æ ÌYÕ°Ð�É ï ó`3sé°Ñ$ÚhÔ3Ê É�Ë$×�Î1Ï3É�Å±Æ�Ú¯Æ�ÈQÒ�Ò1Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð*Ù°ÉNÓ°Õ°ÌYÌ$Æ�Ç°Ì&Æ�ÇLÎ1ÉNÐ1×jÑ$ÈNÉ$Ü ë Ï°É�Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Æ ËYÇ
Ò1ÉQÒ�Ò«Æ�Ë$ÇoÒ«Ï3ËcØ¨Ç�Æ¸Ò¨Ô3Ñ©ÕtÒ«É�Ù+ÙnÕ3Ð1Æ�Ç°Ì¯ÓtË±Ë$Î�Ë©×�Ý�ÊqÎ�Ð�ÑYÒ«ÔtÑ©Ð�È 5 Æ Ç±Õné}Ü

ë Ï°É¨Î�ÉQÈ�Ï°Ç3Æ�áLÕ°É�ÕtÒ«É�ÙhÎ1Ë,ÙnÉQÓ°Õ°Ì!×¦ËYÐxÎ�ÉNÚ¯ÔtËYÐ�Ñ$Ê°ÉNÐ�Ð�Ë$Ð�Ò[Æ�Ò;ß$ÉNÐ�Ö�Ò1Æ�ÚhÆ�Ê¸Ñ©ÐsÎ�Ë,Ñ§×jÑ©Ú¯Æ�Ê Æ¸Ñ©Ð
Î1É�È�Ï°Ç°Æ¸áLÕ°É[×¦Ë$Ð�Ù°ÉNÓ°Õ°ÌYÌ$Æ�Ç°Ì�È�ËYÇ±ß$ÉNÇLÎ�Æ ËYÇ3Ñ©ÊcÑ©Ô3Ô°Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3ÒQÜ ë Ï°É;Õ3Ò«ÉQÐ�Ò�Î�Ñ©Ð1Î�ÒSÎ�Ï°É;Ò1Æ Ú�Õ°Ê¸ÑcÎ1É�Ù
Ò1Ö±Ò«Î1ÉQÚ Ñ©ÇtÙ@Ò1É�Î�Ò§Ó°Ð1É�Ñ©Þ±Ô:Ë$Æ�ÇYÎ�Ò§ÑcÎ&Ñ©Ô°Ô3Ð1ËYÔ°Ð1Æ¸ÑcÎ�É�Ô3Ê�ÑYÈ�ÉQÒQÜ/ç`Ï°ÉNÇ°ÉQß$ÉQÐ§Ñ�Ó°Ð�ÉQÑ$Þ±ÔtËYÆ ÇLÎ§Æ�Ò
Î1Ð�Æ�Ì$Ì$ÉQÐ1É�Ù}ÍYÎ1Ï°É§Õ3Ò1ÉNÐ�ß$ÉQÐ1Æ è3ÉQÒ;Î1ÏtÑcÎ³Î1Ï°É§Ò1Ö±Ò«Î1ÉQÚ�Æ�Ò�Æ�Ç�Ñ$Ç�ÉNé±Ô:ÉQÈ�Î1É�Ù�Ò«Î�ÑcÎ�É$Ü[à�Ç+Î1Ï°Æ¸Ò³ÈNÑ$Ò1É$Í
Î1Ï3É�Ò«Î�ÑcÎ�É&Æ�Ç3È�Ê�Õ3ÙnÉ�Ò�È�Õ3Ð1Ð�ÉNÇLÎ�Î�Æ Ú¯É$Ü ë Ï°É,È�Õ3Ð1Ð�ÉNÇLÎ¨Î1Æ�Ú¯É�Ò«Î�Ñ$ÚhÔåÆ�Ò/È�Ë$Ú¯Ô3Ñ$Ð1É�Ù�Ø¨ÆqÎ�Ï�Î1Ï°É
Î1Æ�Ú¯É�Ò«Î�Ñ$ÚhÔåË©×sÎ1Ï3É,Ô°Ð�ÉNß±Æ�Ë$Õ3Ò/Ò�Î�ÑcÎ1ÉYÜ�à�×xÚ¯Ë$Ð�É!Î1Æ�Ú¯É,Î�Ï3Ñ©ÇoÎ�Ï°É¯Ò«ÖnÒ«Î1ÉNÚ Ñ©Ê�Ê�ËcØ�Ò¨×¦Ë$Ð/Ï3Ñ$Ò
ÉNÊ¸Ñ©ÔtÒ«É�Ù}Í�Ñ�ÙnÉ�Ñ$ÙnÊ�Æ�Ç°É�ß±Æ ËYÊ�Ñ©Î1Æ�Ë$Ç9Æ�Ò&Ù°É�Î1É�È�Î�ÉQÙ}Ü ë Ï°É�Õ3Ò1ÉNÐ!Ú�Ñ©ÞYÉQÒ&Ñ�Ç°Ë$Î1É�Ë$×�Î�Ï°É�Ô:Ë$Æ�ÇYÎ

ù

Æ�Ç+ÉNé±É�È�ÕnÎ�Æ ËYÇ+Ø¨Ï3ÉNÐ�É/Î�Ï°É§ß±Æ ËYÊ�Ñ©Î1Æ�Ë$Ç�ËnÈQÈ�Õ°Ð�Ð1É�Ù}Í°Ñ©ÇtÙ�Î�Ï°É!Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Æ ËYÇ+Æ¸Ò³Ð�ÉQÒ«Î�Ñ©Ð1Î1É�Ù�×¦Ð�Ë$Ú
ÑoÞ±Ç°ËcØ¨ÇâÒ�Î�ÑcÎ1ÉYÜÊç`Ï°ÉQÇâÎ1Ï°É�Ó3Ð1É�Ñ©Þ±ÔtËYÆ ÇLÎ&Ô°Ð�ÉQÈNÉQÙnÆ�Ç°Ì�ÙnÉ�Ñ$ÙnÊ�Æ Ç3É�ßLÆ�Ë$Ê¸ÑcÎ�Æ ËYÇ@Æ¸Ò&Ð�ÉQÑYÈ�Ï°ÉQÙ�Í
Î1Ï3ÉåÕ3Ò1ÉNÐ�Ô3Ð1ËnÈ�ÉQÉQÙ°Ò�Ó±Ö®Ò«Î1ÉQÔ°Ô°Æ�Ç°ÌãÎ1Ï3Ð1ËYÕ°Ì$Ï>Ò1Õ°Ó°Ð�Ë$ÕnÎ�Æ Ç3ÉQÒ�Ò1Õ3Ò1ÔtÉ�È�Î�ÉQÙ�Ë©×,ÈQÑ©Õ3Ò1Æ�Ç°ÌâÎ1Ï°É
Ô°Ð�Ë$Ó°Ê�ÉNÚoÜ�ñ°ËYÐ,É�Ñ$È�Ï÷Ò1Õ°Ó°Ð�Ë$ÕnÎ�Æ Ç°ÉYÍ�Î�Ï°É�Î�Æ Ú¯É�Ò«Ô:ÉNÇLÎ,Æ¸Ò,ÈNË$Ú¯Ô3Ñ©Ð�ÉQÙ9Ø¨Æ Î1ÏãÎ�Æ Ú¯É+Õ3Ò«ÕtÑ©Ê�Ê Ö
Ò1ÔtÉQÇYÎ�ÙnÕ°Ð�Æ�Ç°Ì®Ò1Õ3ÈQÈ�ÉQÒ�Ò«×¦Õ°Ê§É�énÉQÈNÕnÎ1Æ�Ë$Ç�Ü�à�×�Î1Ï°É@Î1Æ�Ú¯ÉãÙnÆqæSÉNÐ�ÒoÒ«Æ�Ì$Ç3ÆqètÈQÑ©ÇLÎ1Ê�Ö®×¦Ð1ËYÚ Î1Ï°É
Ç°ËYÐ1Ú�Ñ©Ê[ÈNÑYÒ«ÉYÍ:Ñ�ÔtËLÒ1Ò1Æ�Ó°Ê É¯ÈNÑ$Õ3Ò1É&Ë©×xÎ�Ï°É¯ÙnÉQÑYÙnÊ Æ�Ç°É�ßLÆ�Ë$Ê¸ÑcÎ�Æ ËYÇkÆ¸Ò�Ù°É�Î1É�È�Î�ÉQÙ}Ü�*�ÌLÑ©Æ�Ç�Í:Î1Ï°É
Ò1Æ Ú�Õ°Ê�Ñ©Î1Æ�Ë$Ç!Æ¸Ò�Ð�ÉQÒ«Î�Ñ$Ð«Î�ÉQÙ§Æ�Ç&Ë$Ð�ÙnÉQÐ�Î1Ë�Ò�Î�ÉNÔ&Æ�ÇLÎ1Ë¨Î�Ï°É�ßLÆ�Ë$Ê¸ÑcÎ�Æ Ç3Ì�Ð1ËYÕnÎ1Æ�Ç°ÉYÜ ë Ï°Æ¸Ò�Ô°Ð�ËnÈ�É�ÙnÕ°Ð�É
Æ¸Ò¨Ð1ÉQÔtÉ�ÑcÎ�ÉQÙ�Õ°ÇLÎ1Æ�Ê�Î�Ï°É&Ô°Ð�ÉQÒ1Õ°Ú¯ÉQÙ+Ô°Ð�Ë$Ó°Ê�ÉNÚìÈNÑ©ÕtÒ«É!Ï3ÑOßYÉ§ÓtÉQÉNÇoÎ1Ï3Ë$Ð�Ë$Õ°ÌYÏ°Ê Ö�É�é°Ñ©Ú¯Æ�Ç°ÉQÙ}Ü
*�Î;Î�Ï°Æ¸ÒxÔ:Ë$Æ�ÇYÎ�Í$Î�Ï°É�ÕtÒ«ÉQÐxÏ°Ë$Ô:É�×¦Õ3Ê Ê�Ö¯Ï3Ñ$Ò*Ñ&È�Ê�Õ°É�Ë$×:Î�Ï°É/ÈQÑ©Õ3Ò1É¨Ë©×}ß±Æ�Ë$Ê¸ÑcÎ1Æ�Ë$Ç�Ü i Î�Ï°ÉNÐ�Ø¨Æ�Ò1É$ÍÏ°É�È�ËYÇLÎ1Æ�ÇLÕ3ÉQÒ�Ø¨ÆqÎ�ÏâÉ�é°Ñ©Ú¯Æ�Ç°Æ Ç3Ì+Ë$Î1Ï°ÉQÐ�Ð�Ë$Õ°Î1Æ�Ç°ÉQÒ§Ø¨Ï°ËLÒ«ÉhÉ�énÉ�È�ÕnÎ�Æ ËYÇkÎ1Æ�Ú¯É�ÙnÆ æ:ÉQÐ�Ò�×¦Ð�Ë$Ú
Î1Ï3ËYÒ1É�Ë$×[Ñ¯Ò1Õ3ÈNÈNÉQÒ�Ò�×¦Õ3Ê}É�énÉQÈNÕnÎ1Æ�Ë$Ç�Ü

r��P� sC��&��Gè>é¢�$#ê�»k���
�ë¾�-
m#�&����É�ì��� o��c���������jí+�Á��îï�	��
	��
���#�� �D�Mè
� nð!6��#%����&'�������

ë Ï°É�Ú¯É�Î1Ï3Ë±Ù°Ë$Ê�Ë$Ì$Ö&Ù°ÉQÒ�È�Ð�Æ Ó:ÉQÙ�Ñ©Ó:Ëcß$É;ÑYÒ1Ò1Õ°Ú¯ÉQÒ�Î1ÏtÑcÎ�Î1Ï°É³Õ3Ò1ÉNÐ[ÉNßYÉNÇLÎ1ÕtÑ©Ê�Ê Ö§Ø¨Æ�Ê ÊnÙnÆ¸Ò1ÈNËcß$ÉQÐ
Ñ©ÇoÉQÐ1Ð�Ë$Ç°ÉQË$Õ3Ò�Ô°Æ�ÉQÈNÉ§Ë©×sÈ�ËnÙnÉ$Ü ë Ï°Æ�Ò�Ô°Æ É�È�É!Ë$×[ÈNË±Ù°É!Æ�Ò�ÑYÒ1Ò1Õ°Ú¯ÉQÙ�Î1Ë¯Î�Ñ©ÞYÉ§Ñ$ÇoÕ°Ç3ÙnÉ�Ò«Æ�Ð1É�Ù
É�énÉ�È�ÕnÎ�Æ ËYÇ�Ô3ÑcÎ�Ï�Í3ËYÐ¨Î1Ë�Ò1É�Î�Î1Ï°É&Ô3Ð1ËYÌ$Ð�Ñ©Ú Æ�ÇkÑ©Ç�Õ°ÇtÙnÉQÒ1Æ Ð�ÉQÙ�Ò«Î�Ñ©Î1ÉYÍtÑcæSÉQÈ�Î1Æ�Ç°Ì�Ê¸ÑcÎ�ÉNÐ�ÉNéLÛ
ÉQÈNÕnÎ1Æ�Ë$Ç�Ü ë Ï3Æ�Ò¨ÑYÒ1Ò1Õ°Ú¯ÔnÎ1Æ�Ë$Ç+Æ�Ò�Ð�ÉQÑYÒ«ËYÇ3Ñ©Ó°Ê�É¨×¦ËYÐ³ÈNË$Ç±ß$ÉQÇLÎ1Æ�Ë$Ç3Ñ$Ê:Ñ$Ô°Ô°Ê�Æ�ÈQÑcÎ1Æ�Ë$ÇtÒNÜ[ä�ËcØ�ÉNßYÉNÐ�Í
Æ Î&Æ�Ò!Ç3Ë©Î,Ñ©Ê�Ø³ÑOÖ±Ò/Î�Ð1Õ°Éh×¦ËYÐ!Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É�Ò«ÖnÒ«Î1ÉQÚ¯ÒQÍ�ÑYÒ�Î1Æ�Ú¯É�Ò«Ô:ÉNÇLÎ&Æ�ÇâÑ�Ò1Ô:ÉQÈ�Æ ètÈ¯Ð�Ë$ÕnÎ�Æ Ç3É
Ú�ÑOÖ�ÓtÉ�Ù°ÆqæSÉNÐ�ÉNÇLÎ!ÓtÉNÎ�Ø*ÉQÉNÇ9É�énÉQÈNÕnÎ1Æ�Ë$ÇtÒNÍ�ÉQß$ÉQÇåÎ�Ï°Ë$Õ°ÌYÏ@Ô3Ð1ËYÌ$Ð�Ñ©Ú?Ò�Î�ÑcÎ�É¯Ñ$Ç3Ù@Æ Ç°Ô3ÕnÎ!Æ�Ò
Æ¸ÙnÉNÇLÎ1Æ¸ÈNÑ$ÊeÜ ë Ï3Æ�Ò¨Æ¸Ò�ÙnÕ3É§Î1ËhÎ1Ï°É&×jÑ$È�Î¨Î�Ï3ÑcÎ�Ñ$Ô°Ô°Ê�Æ�ÈQÑcÎ�Æ ËYÇ+Ô:ÉNÐ1×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉ/Æ¸Ò�ÙnÉQÔtÉQÇ3ÙnÉNÇLÎ�ËYÇ
Ú¯ÉNÚ¯Ë$Ð�Ö�Ò1ÖnÒ�Î�ÉNÚ Ó:ÉNÏ3ÑOß±Æ�Ë$Õ°Ð�Ü ë Ï±Õ3ÒNÍ3É�énÉQÈNÕnÎ1Æ�Ë$Ç+Î1Æ�Ú¯É§×¦Ë$Ð�Ñ�×¦Ð�Ñ$È�Î�Æ ËYÇ+Ë$×[ÑhÔ°Ð�Ë$ÌYÐ�Ñ$Ú.Æ�Ò
Ñ©Ê¸Ò1Ë¯Ù°ÉNÔ:ÉNÇ3ÙnÉQÇLÎ�Ë$Ç�Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É�Ò«Î�Ñ©Î1É$Í°Ò1Õ3È�ÏoÑ$Ò¨ÈQÑ$È�Ï°É§Ú¯ÉNÚ¯Ë$Ð�Ö�ÈNË$ÇLÎ1ÉQÇYÎ�ÒNÜ
à�Ç�ËYÐ�Ù°ÉNÐ*Î1Ë,ËYÓnÎ�Ñ$Æ Ç�È�Ê�Õ°ÉQÒ³Ñ$ÓtËYÕnÎ�Ô:ÉNÐ1×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉ�Ï3ÑhñQÑ$Ð�Ù°Ò�ÈNÑ$Õ3Ò1ÉQÙ�Ó±Ö�ÈNÑYÈ�Ï°É�ÉNæ:É�È�Î�ÒNÍ

Î1Ï3É,Æ�Ç3Ò�Î�Ð1Õ3ÚhÉQÇLÎ�ÑcÎ�Æ ËYÇ�Ô°Ð�ËcßLÆ¸ÙnÉ�Ù+Ó±Ö+Î1Ï°ÉhÒ«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð�Ú¯ÑOÖ+ÓtÉhÈ�ËYÇ3Ò«Õ3ÊqÎ�ÉQÙ}Ü ë Ï°É�Ò«Æ�Ú,Õ°Ê¸ÑcÛ
Î1ËYÐ§Ô°Ð1É�Ò«ÉQÇLÎ�Ò�Ò�Î�ÑcÎ1Æ¸Ò«Î1Æ¸ÈNÒ�Ë©×;ÏtÑ©Ð�ÙnØ�Ñ$Ð1É,ÉNß$ÉQÇLÎ�ÒQÍSÑYÒ1Ò1ËnÈ�Æ¸ÑcÎ�ÉQÙ�Ø¨Æ Î1Ï9Æ ÇtÒ�Î�Ð1Õ3È�Î1Æ�Ë$Ç9Ñ$Ù°ÙnÐ�ÉQÒ�ÒQÜ
à�Ç@ÈQÑ$Ò1É&Î�Ï°É,Î�Æ Ú¯ÉhÉNÊ¸Ñ©Ô3Ò1ÉQÙ@ÙnÆ æ:ÉQÐ�Ò/Æ Ç9Ò«Æ�Ú¯Æ Ê¸Ñ©Ð�É�énÉ�È�ÕnÎ�Æ ËYÇåÔ3Ñ©Î1Ï3Ò�Ë©×;Ñ+Ô°Ð�Ë$ÌYÐ�Ñ$Ú�Í3Î1Ï°É�Ò«É
Ò«Î�ÑcÎ�Æ�Ò«Î1Æ¸ÈNÒ�Ø¨Æ Ê�Ê�Ô:Ë$Æ�ÇLÎ�Ë$ÕnÎ/Æ Ç3Ò«Î1Ð�Õ3È�Î1Æ�Ë$Ç3Ò�ÈQÑ©Õ3Ò1Æ�Ç°Ì�ÈNÑYÈ�Ï°É!Ú¯Æ�Ò�Ò«É�ÒNÜ¨ÅLÎ�ÑcÎ1Æ¸Ò«Î1Æ¸ÈNÒ¨×¦ËYÐ�Ñh×¦Ð�Ñ$È�Û
Î1Æ�Ë$ÇåË©×[Î1Ï°É�É�énÉQÈNÕnÎ1Æ�Ë$Ç�Ú�ÑOÖ�ÓtÉ�Ë$ÓnÎ�Ñ©Æ�Ç°ÉQÙoÓ±ÖoÒ«Õ3ÓnÎ1Ð�Ñ$È�Î1Æ�Ç°Ì�Î1Ï3É�Ò«Î�ÑcÎ�Æ�Ò«Î1Æ¸ÈNÒ�ÓtÉN×¦Ë$Ð�É�Ñ$Ç3Ù
Ñc×�Î�ÉNÐ/É�énÉQÈNÕnÎ1Æ�Ë$Ç�Ü ë Ï3É,ßcÑ©Ê�Õ°ÉQÒ�Ë$ÓnÎ�Ñ©Æ�Ç°ÉQÙ�Ñ$Ð1É�È�Ë$Ú¯Ô3Ñ$Ð1É�Ù+Î1Ë�ßcÑ©Ê�Õ°É�Ò¨×¦Ð�Ë$Ú?Ñ�Ò1Õ3ÈNÈNÉQÒ�Ò�×¦Õ°Ê
Æ Î1ÉNÐ�ÑcÎ�Æ ËYÇ�Í}Ï°Æ�Ì$Ï°Ê�Æ�Ì$ÏLÎ1Æ�Ç°Ì+Î1Ï°É�Ò1ÔtÉ�È�Æ ètÈhÏ3Ñ©Ð�ÙnØ³Ñ©Ð�É,ÉNßYÉNÇLÎ�Ò§ÈQÑ©Õ3Ò1Æ Ç3Ì�ÙnÉQÊ�ÑOÖYÜ ë Ï°É�ÙnÉQÓ°Õ°Ì©Û
Ì$ÉQÐ&Ñ©Ç3Ù9Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�ÉQÇ±ßLÆ�Ð�Ë$Ç°Ú¯ÉNÇLÎ!Ô°Ð�Ëcß±Æ�ÙnÉ¯ÑoÒ«Õ3ÚhÚ�Ñ$Ð1ÖkË$×�Ò«Î�Ñ©Î1Æ¸Ò�Î�Æ�ÈQÒ!È�Ë$Ð�Ð�ÉQÒ1ÔtËYÇ3ÙnÆ�Ç°Ì
Î1Ë9Ò«ËYÕ°Ð�È�É�ÈNË±Ù°É�Ê�Æ Ç°ÉYÍ[Î1Ï°ÉQÐ1ÉQÓ±Ö9ÉNénÔtËLÒ«Æ�Ç°ÌåÈNË±Ù°É�Ô:Ë$Ð1Î1Æ�Ë$Ç3ÒhÑcæSÉQÈ�Î1ÉQÙ÷ÓLÖãÈQÑ$È�Ï°É�ÉNæ:É�È�Î�ÒNÜ
ñ�Æ ÌYÕ°Ð�É!ôhÒ1Ï°ËcØ�Ò¨Ñ©Ç�É�é°Ñ$ÚhÔ3Ê É§Ë©×sÑ©Ç3Ç°Ë©Î�ÑcÎ1É�Ù+Ò1Ë$Õ3Ð�ÈNÉ�ÈNË±Ù°É!Ê Æ¸Ò�Î�Æ Ç3Ì3Ü

ò ó w���þ�¾'w�Áõô À�¿sÿ

à�ÇâÚ�Ñ©Ç±ÖkÉ�énÆ¸Ò�Î�Æ Ç3Ì�Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯É�ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò«ÖnÒ«Î1ÉQÚ¯Ò!Ñ$Ç3Ù@ÉNÇ±ß±Æ Ð�Ë$Ç°Ú¯ÉQÇYÎ�ÒNÍ�Ë$Ç°Ê�ÖåÈ�ËYÇ±ß$ÉNÇ°Û
Î1Æ�Ë$ÇtÑ©ÊsÙnÉNÓ3Õ°Ì$ÌYÆ Ç°Ì�Î1Ë±Ë$Ê¸Ò�Ñ©Ð�É�ÑOßcÑ©Æ�Ê�Ñ$Ó°Ê�É$Ü ë Ï°ÉQÒ1É¯Ò«ÖnÒ«Î1ÉNÚ�Ò/Ú�ÑOÖ�ËYÇ°Ê�Ö�ÓtÉhÕ3Ò1ÉQÙ�×¦ËYÐ§ßOÑ$ÊqÛ
Æ¸Ù°ÑcÎ�Æ Ç°ÌâÑ©ÇtÙçÙnÉQÓ°Õ°Ì$ÌYÆ Ç3Ìk×¦Õ°Ç3È�Î1Æ�Ë$Ç3Ñ$ÊeÍ*Ç°Ë©ÎhÎ1ÉQÚ¯ÔtËYÐ�Ñ$ÊeÍ;ÈNË$Ð�Ð1É�È�Î�Ç°ÉQÒ�ÒNÜãä�ËcØ*ÉQß$ÉNÐ�ÍsÒ«ËYÚ¯É
ß$ÉQÇ3ÙnËYÐ�Ò�Ô°Ð�Ëcß±Æ�ÙnÉ!Ò1Ë$Ú¯É!Ò«Õ3Ô°ÔtËYÐ«Î³×¦ËYÐ�Ñ©Ê Î1ÉNÐ�Ç3Ñ©Î1Æ�ß$É§ÙnÉNÓ°Õ3Ì$Ì$Æ�Ç°Ì¯Ú¯É�Î�Ï°ËnÙ°ÒNÜ

ç`Ï°ÉQÇâÙ°ÉNß$ÉQÊ ËYÔ°Æ�Ç°ÌoÔ°Ð1ËYÌ$Ð�Ñ©Ú�Ò/×¦Ë$Ð,Ò1Ú�Ñ©Ê�ÊeÍ�ÉNÚ�ÓtÉ�Ù°ÙnÉQÙãÒ1ÖnÒ�Î�ÉNÚ�ÒQÍ�Æ Î,Æ�Ò,È�Ë$Ú¯Ú¯Ë$Ç@Î1Ë
Õ3Ò1É�Ñ©ÇâÉNÚ�Õ°Ê¸ÑcÎ1ËYÐ,Ñ$Ò,ÙnÉNÓ°Õ3Ì$Ì$Æ�Ç°ÌoÓ3ÑYÈ�Þ$ÉNÇtÙ}Ü�ä�ËcØ�ÉNßYÉNÐ�Í�Ñ©ÇâÉQÚ,Õ°Ê¸ÑcÎ�Ë$Ð&ÌYÉNÇ°ÉQÐ�Ñ$Ê Ê�ÖåÙnË±ÉQÒ
Ç°Ë$Î�Ú¯ËnÙnÉNÊ±È�ËYÚ¯ÔtËYÇ°ÉNÇLÎ�Ò�Ð�ÉNÊ�ÉNßcÑ©ÇLÎ�Î�Ë/ÉNénÉQÈ�Õ°Î1Æ�Ë$Ç!Î�Æ Ú¯É$Í©Ò1Õ3È�ÏhÑ$Ò�ÈNÑ$È�Ï3ÉQÒQÜ ë Ï±Õ3ÒNÍ©Ñ�Õ3Ò1É�×¦Õ°Ê
Î1ÉQÚ¯ÔtËYÐ�Ñ$Ê}ÚhËnÙnÉQÊ�Ë©×�É�énÉQÈNÕnÎ1Æ�Ë$Ç�ÈQÑ©Ç°Ç°Ë$Î¨ÓtÉ!Ô°Ð�Ëcß±Æ�Ù°ÉQÙ}Ü

û

·XË ½S­hÔ �A�Y���A�A� ¿ °>�q±g¸ Ô �z¨>¸>±
ö �g�q�gÓ>¤Ù°>�q±g¸h� µ ¤]�q��ºt¸A�q±¾� ÇÁµ ¤]¸A�e�>±l�h�gËS£>� Ç Â
å>± µ Ñg�h¨ ¼ Â÷Ýz¨	�g�A�SÑ	�g�h�]±z¨W�]³>�z£q¤0���A�A�S¤q�Ù�]³gÑ	�S¤ ½b­ Æ¢°>�>±SËA�q³¾� µ �z¨q¤

·ÁøAÜ>Ýzù ² ÜAÜ ² Ý ä ÜSú]û ² ù	Ý]ÜAÜ ²züAý ÝSþSÿAú�¹ ¦ À ¦A¦A¦A¦A¦]¦	¿
å>± µ Ñg�h¨ Å Â å>³>�z£q¤��(�A�A�S¤>�[·P¡>�h�z�>¤q� ¿ �]³gÑh�S¤ ½Ù­ Æ¢°>�q±SËA�>³¾� µ �z¨q¤

·ÁøAÜ>Ýzù ² ÜAÜ ²gü û	Ýgú ýh² ù	Ý]ÜAÜ ²züAý ÝSþSÿAú�¹ ¦ À ¦A¦A¦A¦A¦]¦	¿
å>± µ Ñg�h¨9ÏÐÂ å>³>�z£q¤��(�A�A�S¤>�[·X�>¤>³ ½ � ¿ �]³gÑh�S¤ ½b­ ÆÙ°A�q±SËA�q³Y� µ �z¨q¤

·ÁøAÜ>Ýzù ² ÜAÜ ² û ý ö �h² ùhÝ]ÜAÜ ²gü]ý ÝSþSÿ>úW¹ ¦ À ¦]¦A¦A¦A¦A¦h¿
å>± µ Ñg�h¨ « Â ú]ã��0���A�A�S¤q�l°q³>�A�S¤ ½ ±z¨b�q±0æA¨	� ª ¤¶�qÑ µ ³S�h�S±g¨

·ÁøAÜ>Ýzù ² ú]ã�� ² ù	Ý]ÜAÜ ²züAý ÝSþSÿAúC¹ ¦ À ¦A¦A¦A¦]¦A¦	¿
å>± µ Ñg�h¨ ¬ Â ä Ñg� ­ ¤S��±S¸ì·X�>³z´h¤S¨ ¿;­ �q³g¨	�z£>¤q�eÖg�q±>Ö0�]£q¤��]± ½ ¤ ­hµ ±A�¶´

·ÁøAÜ>Ýzù ² úqÛ ²gü]ý ÝSþSÿ>ú9¹ ¦ À ¦A¦A¦A¦]¦A¦	¿
å>± µ Ñg�h¨ ® Â ä Ñg� ­ ¤S��±S¸ì·X�>³z´h¤S¨ ¿;­ �q³g¨	�z£>¤q�eÖg¸A�q±Y�(Öl�]£q¤e�]± ½ ¤ ­qµ ±>�¶´

·ÁøAÜ>Ýzù ² â]ûhÛgù ²güAý ÝSþgÿ>úW¹ ¦ À ¦A¦]¦A¦A¦A¦	¿
å>± µ Ñg�h¨ Î Â å>±gÑA¨>�e±S¸9�z¨	�z�A�]Ñ	�g�q�]±g¨9¤ ª ¤>�zÑ>�h�]±z¨�· ­ ³>�S¤ ½ ±g¨ ­ �q³z¨	�z£9³S�q�A� ¿

·ÁøAÜ>Ýzù ² Úqå ²gü]ý ÝSþSÿ>ú9¹ ¦ À ¦A¦A¦A¦]¦A¦	¿
å>± µ Ñg�h¨ ¯ Â ä Ñg� ­ ¤S��±S¸�³ ½]½ �>¤q�A�g¤q�¢¸A�q±¾��¡A£	�A�z£W�¶¨	�g�A�]Ñh�g�h�]±g¨h�Ù£q³SÓ>¤

­ ¤A¤S¨e¸A¤]�h�z£q¤ ½ ·ÁøAÜ>Ý¶ù ² Ý ä Ügú]û ²güAý ÝSþSÿ>úW¹ ¦ À ¦]¦A¦A¦A¦A¦h¿

·XË ½S­hÔ �A�Y���A�A� ¿Ùµ �A�z�9Ö ¦]ª�¼ ¸ Å ¤q�
¦]ª�¼ ¸ Å ¤q�e�A�Ù�z¨ ­ �	¤ ª ¤q�»·T´A¡	�S¤]��ÀG��Â ¬]®A¦h¿ À
¬A¬A¬ ß
¬A¬]®Ù¦Ù¦ ®]®b¦Ù¯ Ï ÄA® ¦ÙÅ]¦>Å]¯]Ä Ï ½ ¹ ½�¼m§ æ ·X�]° §PÔ	¼ © ¿ ©Éº��S° Ò ¹ ½ à
¬A¬]ÎÙ¦Ù¦W¼¶¦]®b¦ ¦ ¦9¼¶®AÎAÄAÅeÅ ½ ¹ ½�¼m§ æ ·X�]° §PÔ	¼ © ¿ ©Éº��S° Ò ¹ ½ à
¬A¬]¯Ù¦Ù¦ ¦b¦ ¦+¼¾«q¬S¦eÅA¬	¼¶¯]¯ Ï �z¸ì· ½ ¹]¹ ¦	¿
¬A¬]Ä Ëq±S�q±Ù¸>±gÑA¨ ½ à
¬]®A¦Ù¦Ù¦W¼A¼¶¬Ù¦ ¦ ¦ÙÅ]¦A¯ Ï ¯ Ï ½ ¹ ½�¼m§ æ ·X�]° §PÔ	¼ © ¿ ©Éº��S° Ò ¹ ½ à
¬]®M¼Ù¼�¦W¼¶¦S«e¦ ¦ ¦ÙÅ]¦A¯ Ï ¯ Ï ½ ¹ ½�¼m§ æ ·X�]° §PÔ	¼ © ¿ ©Éº��S° Ò ¹ ½ à
¬]®>Å¢¦Ù¦W¼zÅS®b¦ ¦ ¦9¼ Ï ¯AÄAÅeÅ ½ ¹ ½�¼m§ æ ·X�]° §PÔ	¼ © ¿ ©Éº��S° Ò ¹ ½ à
¬]® Ï ¦Ù¦ ¦b¦ ¦+¼A¼¶¦]ÄeÅ]¦A¯ Ï ¯ Ï �z¸ì· ½ ¹]¹ ¦	¿
¬]®]« Ëq±S�q±Ù¸>±gÑA¨ ½ à

ñ�Æ ÌYÕ°Ð�É�ô°ó&Å±Ë$Õ°Ð�È�É�ÈNË±Ù°É�Ê Æ¸Ò�Î�Æ Ç3Ì�Ø¨Æ Î1ÏâÔ:ÉNÐ1×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉhÔ3Ð1Ë$è3Ê Æ�Ç°Ì�Ù°Ñ©Î�Ñ°Ü 3xénÑ$Ú¯Ô°Ê Éh×¦Ð�Ë$Ú
Å±Æ�Ú¯Æ�ÈQÒ³Î1ÕnÎ�Ë$Ð�Æ�Ñ$Ê�Ò«Ï3ËcØ¨Æ Ç°ÌhÎ�Ï°É4����Ý ÙnÉQÓ°Õ°ÌYÌ$ÉNÐ�ÑYÒ�×¦Ð1ËYÇLÎ1ÉNÇtÙ�Î�Ë�Å±Æ Ú¯Æ¸ÈNÒ¨Æ�Ç�Ý�Ç°Æ é+ÉQÚ,ÕnÛ
Ê¸ÑcÎ1Æ�Ë$Ç�Ú¯ËnÙnÉ$Ü

�

Å±ËYÚhÉ§ÙnÉQÓ°Õ°Ì$ÌYÆ Ç3Ì,Î�ËLËYÊ�Ò�Ø�Ë$Ð�Þ�Æ ÇoÈ�ËYÚ,Ó°Æ�Ç3Ñ©Î1Æ�Ë$Ç�Ø¨Æ Î1ÏoÒ1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�Ò�Ô°Ð�Ëcß±Æ�ÙnÆ�Ç°ÌhÈNÑ$È�Ï3É
Ú¯ËnÙnÉNÊ�Ê Æ�Ç°ÌtÍ©Ð1É�Ò«Õ3ÊqÎ�Æ Ç°Ì§Æ�Ç�ÌYË±Ë±Ù�É�énÉ�È�ÕnÎ�Æ ËYÇ,Î�Æ Ú¯É³Ô°Ð�ÉQÙnÆ¸È�Î�Æ ËYÇ�Ü��;Ð1Æ�Ë$Ð�Î�Ë�Ð�ÉQÈNÉNÇLÎsÑ$ÙnßcÑ©ÇtÈ�ÉQÒ
Æ�Çk×¦Õ°Ê�ÊxÒ«ÖnÒ«Î1ÉQÚ Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Æ ËYÇ�Í}Ò«ÕtÈ�Ï@Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�Ò/Ø*ÉQÐ1É�Ç°Ë©Î§Õ3Ò1É�×¦Õ°Ê�×¦ËYÐ�Ð�Õ°Ç°Ç3Æ Ç°ÌoÙnÉ�Ò«ÞLÎ1ËYÔ
Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì�Ò1ÖnÒ�Î�ÉNÚ Ñ©ÇtÙåÊ¸Ñ©Ð�Ì$ÉhÑ©Ô°Ô°Ê�Æ¸ÈNÑcÎ�Æ ËYÇ3ÒQÜ ë Ï°ÉhÎ1Ë±ËYÊ�Ò§ÑOßcÑ©Æ�Ê�Ñ$Ó°Ê�É�Ï3ÑOßYÉ,ÉQÆqÎ�Ï°ÉNÐ!Ó:ÉNÉQÇ
Î1Ë±Ë�Æ�Ç3ÈNË$Ú¯Ô°Ê�É�Î1É&Î1Ë±Ë�Ó:ËLË$Î/Ñ�È�ËYÚ¯ÚhËnÙnÆ Î�Ö�Ë$Ô:ÉNÐ�ÑcÎ1Æ�Ç°Ì�Ò1ÖnÒ�Î�ÉNÚoÍ3ËYÐ¨Î1Ë±Ë�Ò1Ê ËcØ]Î1Ë�Ð1Õ°ÇkÑ$Ç
Ñ©Ô3Ô°Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç�Ë©×[Ð1É�Ñ©Ê�Æ�Ò«Î1Æ¸È�Ò«Æ ñNÉ�� 3*Å ë Ím*�Ç3Ù��$ù>�JÜ

Å±Õ°Ô3ÔtËYÐ«Î!×¦ËYÐ!Ç°Ë$ÇnÛ�Æ�ÇYÎ�ÉNÐ�Ñ$È�Î1Æ�ß$É¯ÙnÉNÓ°Õ3Ì$Ì$Æ�Ç°ÌoÚ�ÑOÖkÓ:É�Ô°Ð1Ëcß±Æ¸ÙnÉQÙ@Ó±ÖkÆ�Ç3Ò«ÉQÐ«Î�Æ Ç3Ì�ÉNé±Î1Ð�Ñ
È�ËnÙnÉ,Î1Ë+ÚhËYÇ°Æ Î1Ë$Ð�Ò«ÖnÒ«Î1ÉQÚìÉQß$ÉQÇYÎ�ÒNÜ�* Î1Ð�Ñ$ÈNÉ,Æ¸Ò�ÌYÉNÇ°ÉQÐ�Ñ©Î1ÉQÙ�Ñ$Ç3ÙkÒ1ÉNÇLÎ�Î�Ë+Ñ�Ú¯ËYÇ°ÆqÎ�Ë$Ð�Æ Ç3Ì
Ò1Ö±Ò«Î1ÉQÚoÜ ë Ï°Æ¸Ò&Ú¯ÉNÎ1Ï°ËnÙâÆ¸Ò&Æ�ÇYÎ�Ð1ÕtÒ«Æ�ß$É�Ñ©ÇtÙâÏ3Ñ$Ò&ÑoÔ:ÉNÐ1×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉ�Æ Ú¯Ô3ÑYÈ�Î�Ü�ä�ÉNÇ3ÈNÉ$Í�Î1Ï°É
Ñ©Ú¯ËYÕ°ÇLÎxË©×SÚhËYÇ°Æ Î1Ë$Ð�Æ�Ç°Ì§Æ�ÒsÊ�Æ�ÚhÆ Î1É�Ù}Üxñ°Õ3Ð«Î�Ï°ÉNÐ�Ú¯Ë$Ð�É$Í©Æ ÎxÆ�Ò;Æ Ç°î3É�énÆ�Ó°Ê ÉYÍYÑYÒ[Î1Ï°É¨Ú¯ËYÇ°ÆqÎ�Ë$Ð�Æ Ç3Ì
Ô°Ð�ËnÈ�ÉQÒ�Ò[Ú�ÑOÖ,Ç°Ë$Î*áLÕ°ÉNÐ�Ö&×¦ËYÐ;Ù°Ñ©Î�Ñ§Ç°Ë$Î;Ô°Ð�ËcßLÆ¸ÙnÉ�Ù}Ü�à�Ç�ËYÐ�ÙnÉQÐ[Î1Ë,ÑOßYË$Æ¸Ù&Î�Ï°É�Ô°Ð�Ë$Ó:É¨É�æSÉQÈ�ÎQÍ
Ò1Ë$Ú¯ÉhÒ1ÖnÒ�Î�ÉNÚ�Ò§ÙnÉ�ètÇ°ÉhÎ1Ï°ÉhÎ1Ð�Ñ$ÈNÉ�ÌYÉNÇ°ÉQÐ�Ñ©Î1Æ�Ë$ÇåÎ1Ë�ÓtÉ¯Ô3Ñ$Ð«Î§Ë©×*Î1Ï°É¯Ô°Ð�ËnÙnÕ3È�Î�Æ ËYÇ9Ò1ÖnÒ�Î�ÉNÚ
� ,
	Lä 5 � � Í��2�) �h�q�JÜ
ë Ï°É!Æ�ÇLÎ1Ð�Õ3Ò«Æ�Ë$ÇoÆ¸Ò1Ò1Õ°É!Ú�ÑOÖ�Ó:É,ÑOß$ËYÆ�Ù°ÉQÙ+Õ3Ò«Æ�Ç°Ì�ÙnÉ�ÙnÆ¸ÈNÑcÎ�ÉQÙ�Ï3Ñ$Ð�ÙnØ³Ñ©Ð�É�×¦Ë$Ð¨Ó°ÕtÒ�Ú¯Ë$ÇnÛ

Æ Î1Ë$Ð�Æ�Ç°Ì3Ü�ä�ËcØ*ÉQß$ÉNÐ�Í3Ð�ÉQáLÕ°Æ�Ð�Æ Ç°Ì�ÉNé±Î1Ð�Ñ�Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É!Æ�Ò�Ì$ÉQÇ°ÉNÐ�Ñ©Ê�Ê Ö�Æ�Ç3È�ËYÇLßYÉNÇ°Æ�ÉNÇLÎ�Ü�ñ°Õ°Ð1Î1Ï°ÉQÐ«Û
Ú¯Ë$Ð�É$Í°Ó:Ë©Î�Ï�Î1Ï3É&Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É�Ñ$Ç3Ù�Ò1Ë©×�Î�Ø³Ñ©Ð�É�Ú¯ËYÇ°ÆqÎ�Ë$Ð�Æ Ç3Ì�Ñ©Ô°Ô°Ð�ËYÑYÈ�Ï°ÉQÒ�Ô°Õ°Î�Ñ¯Ì$Ð�ÉQÑ©Î�ÔtÉQÐ«Û
×¦Ë$Ð�Ú�Ñ©Ç3ÈNÉ�Ù°ÉNÚ�Ñ©Ç3ÙWË$ÇWÎ1Ï3É�Ð�ÉQÈNÉNÆ�ß±Æ Ç°ÌâÒ1Ö±Ò«Î1ÉQÚ6ÙnÕ°É�Î�Ë9Ï3Æ ÌYÏWßYË$Ê�Õ°Ú¯ÉQÒhË©×§Ì$ÉQÇ°ÉNÐ�ÑcÎ�ÉQÙ
Ù°Ñ©Î�Ñ°Ü�à�×¨Ò1Õ3È�ÏãÑ�Ò1Ë$Ê�ÕnÎ1Æ�Ë$ÇâÆ¸Ò&Ñ$ÈQÈ�ÉNÔ°Î�Ñ©Ó3Ê ÉYÍ�Æ Î&Æ�Ò,É�æSÉQÈ�Î�Æ ßYÉ$Í�Ñ$Ò!Æ Î�ÈNÑ$ÔnÎ1Õ3Ð1É�Ò!Ñ©Ê�ÚhËLÒ�Î,Ñ$Ê Ê
Ñ$È�Î1Æ�ß±ÆqÎ�Æ É�Ò³Ë©×[Æ ÇLÎ1ÉQÐ1É�Ò�Î�� ë ñ�ú �
�nÍ�� ë � ï Í��xÊ¸Ñh�$ùA�JÜ

ë Ï°É���ô$í�ôWÙnÉNÓ3Õ°Ì$ÌYÉNÐe� �SÉNÇ(�&Æ¸ÒoÓ3Ñ$Ò1ÉQÙ]Ë$Ç Ú¯Ë$Ç°Æ Î1ËYÐ1Æ�Ç°Ì®Ë©×¯Ò«Ë$×�Î�Ø�Ñ$Ð1É9Ì$ÉQÇ°ÉNÐ�ÑcÎ�ÉQÙ
Î1Ð�Ñ$ÈNÉQÒQÜ�à�Î&Ï3Ñ$Ò§Ó:ÉNÉQÇãÉ�é±Î1ÉQÇ3ÙnÉ�Ù@Ø¨Æ Î1ÏãÑ�Ê�ËcØøÔ°Ð�Æ�Ë$Ð�ÆqÎ�ÖoÎ�Ñ$Ò1ÞkÆ ÇâÎ�Ï°É¯Î�Ñ$Ð1ÌYÉ�Î&Ò1Ö±Ò«Î1ÉQÚ?Î1Ë
Ñ©ÇtÒ«Ø�ÉNÐxáLÕ°ÉQÐ1Æ�ÉQÒ[×¦Ð�Ë$ÚøÎ1Ï3É�ÙnÉNÓ3Õ°Ì$ÌYÉNÐxÆ�Ç�ÈNÑYÒ«É³Î�Ï°É�Ò1Ö±Ò«Î1ÉQÚ·Æ¸ÒxÆ¸ÙnÊ�É$Ü ë Ï°Æ¸ÒxÔ°Ð�Ëcß±Æ�ÙnÉ�ÒsÒ«ËYÚ¯É
Ò1Õ°Ô°Ô:Ë$Ð1Î&×¦Ë$Ð&Æ�ÇLÎ1ÉQÐ�ÑYÈ�Î1Æ�ß$É�Ù°ÉNÓ°Õ°ÌYÌ$Æ�Ç°Ì3Í[Ñ©Ê Î1Ï3Ë$Õ°ÌYÏãÇ°Ë©Î,ßYÉNÐ�ÖåÐ�Ë$Ó°ÕtÒ�Î�Ü�ñ3Õ°Ð«Î�Ï°ÉNÐ�Ú¯Ë$Ð�É$Í�ÆqÎ
ÙnË±ÉQÒ�Ç°Ë$ÎsÔ°Ð1Ëcß±Æ¸ÙnÉ*Ñ$Ç±Ö!Æ Çn×¦ËYÐ1Ú�Ñ©Î1Æ�Ë$Ç,Ø¨Ï3ÉNÇ&Î�Ï°É¨Ò«ÖnÒ«Î1ÉQÚ Æ�Ò�Õ°ÇtÙnÉNÐxÒ«Î1Ð�ÉQÒ�ÒNÍOØ¨Ï°Æ¸È�ÏhÕ3Ò«ÕtÑ©Ê�Ê Ö
Æ¸Ò�Î1Ï°É!Æ�Çn×¦Ë$Ð�Ú�ÑcÎ�Æ ËYÇ�Ò1Ë$Õ°ÌYÏLÎQÜ

) Õ°ÉQÊ Ê�ÉNÐ�Ñ©Ç3ÙÙç`Ï3Ñ$Ê Ê�ÉNÖW�) ç��$ùq�;Ô3Ð1ËYÔtËLÒ«É�ÙnÉQÓ°Õ°ÌYÌ$Æ�Ç°ÌoË©×¨Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É�Ñ©Ô3Ô°Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3Ò
Õ3Ò1Æ Ç3Ì�É�énÉQÈNÕnÎ1Æ�Ë$Ç�Î�Æ Ú¯É,Ô3Ð1É�ÙnÆ�È�Î1Æ�Ë$Ç�Ü ë Ï°É�Ñ©Ô°Ô°Ê�Æ¸ÈNÑcÎ�Æ ËYÇoÆ�Ò�É�énÉQÈNÕnÎ1É�ÙoÆ ÇåÑ�ÈNË$Ç±ß$ÉQÇLÎ1Æ�Ë$Ç3Ñ$Ê
ÙnÉQÓ°Õ°Ì$ÌYÉNÐ�ÍsÒ«Õ°Ô3ÔtËYÐ«Î�ÉQÙãÓ±ÖãÑåÈQÑ$È�Ï°É�Ò1Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð�Ü ë Æ�ÚhÉ+ÉNÊ¸Ñ©Ô3Ò1ÉQÙ÷Æ�Ò�Ô°Ð�ÉQÙnÆ¸È�Î�ÉQÙãÓ±Ö9Î1Ï°É
Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�Ñ©ÇtÙ÷Ð�ÉNÔ:Ë$Ð1Î1ÉQÙçÙnÕ°Ð�Æ Ç°Ì9ÙnÉNÓ3Õ°Ì$ÌYÆ Ç°ÌtÜ@ä�ËcØ*ÉQß$ÉNÐ�Í�Î1Ï°Æ¸ÒhÔ°Ð�ÉQÙnÆ¸È�Î�Æ ËYÇçÙnË±ÉQÒ�Ç°Ë©Î
Î�Ñ$Þ$É§Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3ÌhÒ1ÖnÒ�Î�ÉNÚ<ÉNæ:É�È�Î�Ò¨Æ ÇLÎ�Ë¯ÑYÈNÈNË$Õ°ÇLÎQÍ°Ñ$Ç3Ù+Ø*ËYÐ1ÞnÒ�ÓtÉ�Ò�Î¨×¦ËYÐ�Ò«Ú�Ñ$Ê Ê}Ô°Ð�Ë$ÌYÐ�Ñ$Ú�ÒNÜ

*·×¦ÉNØ·Ò1Æ Ú�Õ°Ê¸ÑcÎ1ËYÐ/Ð�ÉQÒ1ÉQÑ$Ð�È�Ï�ÌYÐ1ËYÕ°Ô3Ò/Ï3ÑOß$É�Ú�Ñ©Ç3Ñ$Ì$ÉQÙ�Î1Ë�ÚhËnÙnÉQÊxÑ�ÈNË$Ú¯Ô°Ê�É�Î1ÉhÏ3Ñ$Ð�Ù±Û
Ø³Ñ©Ð�É�Ò«ÖnÒ«Î1ÉQÚ Ø¨Æ Î1Ï®Ò«Õ°ð�ÈNÆ ÉQÇLÎhÙnÉNÎ�Ñ©Æ�Ê³Ñ©Ç3ÙãÉNð�È�Æ�ÉNÇ3ÈNÖ@Î�ËåÐ�Õ°ÇWÈNË$Ú¯Ú¯ËnÙnÆqÎ�Ö9Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì
Ò1Ö±Ò«Î1ÉQÚ�Ò¨Ø¨ÆqÎ�ÏkÊ¸Ñ©Ð�Ì$É§Ø*ËYÐ1Þ±Ê�ËYÑYÙ°Ò�� í) �$ùq��ÍK�) í2�����h�A��Ü ë Ï°É�Å±Æ�Ú i Å�Ô°Ð1Ë$ò�ÉQÈ�Î4� ä�ÉNÐ¾�h�A�Ï3ÑYÒ;Ú�Ñ$Ù°É/Ò1Æ Ú¯Æ�Ê�Ñ$Ð�ÑYÈ�Ï°Æ ÉQß$ÉQÚhÉQÇLÎ�ÒQÍLÑ$ÊqÎ�Ï°Ë$Õ°ÌYÏ�Î1Ï3É/Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ*Ô°Ð�ÉQÒ1ÉNÇLÎ�ÉQÙ�Æ¸Ò;Ç3Ë©Î¨Ò�Î�Ð1Æ¸È�Î�Ê Ö
Ô°Ð�ÉQÙnÆ¸È�Î�Ñ©Ó°Ê�É�Ñ©Ç3Ù@Ð�ÉQáLÕ°Æ�Ð1É�Ò�ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò1ÖnÒ�Î�ÉNÚ Ú¯ËnÙnÆ ètÈNÑ©Î1Æ�Ë$Ç3ÒQÜ¯í�Õ°ÉhÎ�Ë+Î�Ï°É�Ñ$ÈQÈ�Õ°Ð�ÑcÎ�É
Î1Æ�Ú¯Æ Ç3ÌåÚ¯ËnÙnÉNÊ�Ô°Ð�ËcßLÆ¸ÙnÉ�Ù}Í�Î�Ï°ÉQÒ1É+Ò1Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð�Ò!Ï3ÑOß$É�Ô°Ð1ËcßYÉNÇ9Î1Ë@ÓtÉ+É�æSÉQÈ�Î1Æ�ß$É�Î�Ë±Ë$Ê¸Ò!×¦Ë$Ð
Ô:ÉNÐ1×¦Ë$Ð�Ú¯Ñ$Ç3È�É!Ñ$Ç3Ñ©Ê�ÖnÒ«Æ¸Ò��)0) ���S��Í � �c,³í/ä����]��Ü

� �.À�½oÃc�QÂ�y�ÄNÀ�½�yìþ&½oÁ��oÂ+¾sÂo¿�w ô À�¿sÿ

à�Î!Ï3Ñ$Ò�Ó:ÉNÉQÇ9ÙnÉQÚ¯Ë$Ç3Ò«Î1Ð�ÑcÎ�ÉQÙ�Î�Ï3ÑcÎ§×¦Õ°Ê�ÊxÒ1Ö±Ò«Î1ÉQÚ Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ�Ò�Ñ©Ð�É,ßYÉNÐ�Ö�Õ3Ò«ÉN×¦Õ°Ê[Î1Ë±ËYÊ�Ò/×¦Ë$Ð
Î1ÉQÚ¯ÔtËYÐ�Ñ$Ê�ÙnÉQÓ°Õ°ÌYÌ$Æ�Ç°Ì÷Ë©×�Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯ÉkËYÔtÉQÐ�Ñ©Î1Æ�Ç°ÌWÒ1ÖnÒ�Î�ÉNÚ�ÒNÜj*�Ò�ÑçÒ1Æ�Ú,Õ°Ê¸ÑcÎ�ÉQÙ7Ò1ÖnÒ�Î�ÉNÚ
Ë$Ô:ÉNÐ�ÑcÎ�ÉQÒ,Æ Ç®Ñ©ÇWÑ$Ð«Î�Æqè:È�Æ¸Ñ©ÊxÎ�Æ Ú¯É�Ò�ÈNÑ©Ê�É$Í[Æ ÎhÚ�ÑOÖâÓ:É+Ô3Ñ$Õ3Ò1ÉQÙâÎ�Ë9Ñ$Ê Ê�ËcØ ×¦Ë$Ð¯Æ ÇLÎ�ÉNÐ�Ñ$È�Î�Æ ßYÉ
ÙnÉQÓ°Õ°Ì$ÌYÆ Ç3Ì!Ø¨ÆqÎ�Ï°Ë$ÕnÎ�ÙnÆ�Ò«Î1Õ3Ð1Ó°Æ�Ç°Ì!Î�Ï°É¨Î�ÉNÚ¯ÔtËYÐ�Ñ$Ê3È�ËYÐ1Ð�ÉQÈ�Î1Ç°É�Ò1Ò[Ë$×SÎ1Ï°É�Ò1ÖnÒ�Î�ÉNÚoÜ�*�ÈQÈ�Õ°Ð�ÑcÎ�É
Ñ©ÇtÑ©Ê�Ö±Ò1Æ¸Ò�Ë©×;Î1ÉNÚ¯Ô:Ë$Ð�Ñ©Ê[È�ËYÐ1Ð�ÉQÈ�Î1Ç°É�Ò1Ò�Æ�Ò�Ô:ËYÒ�Ò«Æ�Ó°Ê�É$Í}Ñ$Ò/Ï3Ñ©Ð�ÙnØ³Ñ©Ð�É&ÙnÉNß±Æ¸È�É�Ò�Ñ©æ:É�È�Î�Æ Ç°Ì+É�énÉ�Û
È�Õ°Î1Æ�Ë$Ç�Î�Æ Ú¯É¯Ñ©Ð�É,Ú¯ËnÙnÉNÊ�Ê É�Ù�Æ�Ç@Ñ$Ù°ÉQáLÕ3ÑcÎ�É�ÙnÉNÎ�Ñ$Æ ÊJÜ�ñ3Õ°Ð1Î1Ï°ÉQÐ1Ú¯Ë$Ð�É$ÍSÙnÕ°É,Î1ËoÑ$ÙnßcÑ$Ç3È�É�Ò�Æ�Ç

�

Ò1Æ Ú�Õ°Ê�Ñ©Î1Æ�Ë$ÇoÎ�ÉQÈ�Ï°Ç°ËYÊ ËYÌ$ÖYÍn×¦Õ°Ê�Ê�Ò1ÖnÒ�Î�ÉNÚ Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Ë$Ð�Ò�Ñ©Ð�É!Ç°ËcØ ÈNÑ$Ô3Ñ©Ó3Ê É&Ë$×sÐ1Õ°Ç3Ç°Æ Ç3Ì�Ê�Ñ$Ð1ÌYÉ
È�ËYÚ¯ÚhËnÙnÆ Î�Ö�ËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò«ÖnÒ«Î1ÉNÚ�ÒQÜ
à�Ç3Ò«Î1Ð�Õ3È�Î�Æ ËYÇâÊ ÉQß$ÉNÊ*Ò«Æ�Ú,Õ°Ê¸ÑcÎ�Æ ËYÇ9Î1Ë±Ë$Ê¸Ò!Ï3ÑOßYÉhÔ3Ð1ÉQßLÆ�Ë$ÕtÒ«Ê�ÖkÓ:ÉNÉNÇãÕtÒ«É�Ù@Æ�Ç÷Ò1Ú¯Ñ$Ê Ê*Ò1ÈQÑ©Ê�É

Ë$Ç3Ê ÖYÜ ë Ï°ÉQÐ1ÉN×¦Ë$Ð�É$ÍYÕ3Ò«ÉQÐ;Ò1Õ°Ô°Ô:Ë$Ð1ÎxÆ�Ò;Ê Æ�Ú¯ÆqÎ�ÉQÙ}Í±Ñ©Ç3Ù¯Ú�Ñ$ÇLÖ,Î�ÑYÒ«ÞnÒxÈNË$Õ°Ê¸ÙhÓtÉ�Æ�Ú¯Ô°Ð�Ëcß$ÉQÙ¯Ñ$Ç3Ù
Ñ©Õ°Î1Ë$Ú�Ñ©Î1ÉQÙ�Ü÷ñ°Ë$Ð¯ÉNénÑ$Ú¯Ô°Ê ÉYÍxÐ�ÑcÎ1Ï3ÉNÐ�Î1Ï3Ñ$ÇçÏ3ÑOß±Æ�Ç°ÌkÎ�Ï°ÉoÕ3Ò«ÉQÐhÈNË$Ú¯Ô3Ñ$Ð1É�Î1Æ�ÚhÉoÉQÊ�Ñ$Ô3Ò«É�Ù
Æ�Ç÷Ò«Õ°Ó3Ð1ËYÕnÎ1Æ�Ç°ÉQÒQÍ�Æ Î,Æ¸Ò&Ô:ËYÒ�Ò«Æ�Ó°Ê�É¯Î1ËkÓ3Õ°Æ Ê¸ÙãÑ�Î1Ë±ËYÊx×¦Ë$Ð�Ñ©ÕnÎ�Ë$Ú�ÑcÎ�Æ�È�ÈNË$Ð�Ð1ÉQÊ�Ñ©Î1Æ�Ë$ÇåË$×³Î1Æ�ÚhÉ
Ò1ÔtÉQÇYÎ*Æ Ç�Ò1Õ°Ó°Ð�Ë$Õ°Î1Æ�Ç°ÉQÒ[Î�Ë,ÙnÉ�Ñ$ÙnÊ�Æ Ç3É�ß±Æ ËYÊ�Ñ©Î1Æ�Ë$Ç�ÜsÅ±Õ3È�Ï�Ñ§Î�Ë±Ë$Ê3Ø�Ë$Õ3Ê�Ù¯Ô:Ë$Æ�ÇLÎ;Ë$ÕnÎ*Ð1ËYÕnÎ1Æ�Ç°ÉQÒ
×¦Ð�ÉQáLÕ°ÉNÇLÎ�Ê Ö�Î�Ð1Æ�Ì$ÌYÉNÐ�Æ Ç3ÌhÙnÉ�Ñ$ÙnÊ�Æ�Ç°É§ÚhÆ¸Ò�Ò«É�ÒNÜ

*�Ê Î1Ï3Ë$Õ°ÌYÏ@Î�Ï°É�ÉQÇLß±Æ�Ð1ËYÇ°Ú¯ÉNÇLÎ&ÙnÉQÒ�È�Ð�Æ�ÓtÉ�Ù@Æ�ÇâÎ1Ï3Æ�Ò,Ô3Ñ©Ô:ÉNÐ&Æ¸Ò!Ê�Æ Ú¯Æ Î1É�Ù9Î1ËkÙnÉQÓ°Õ°Ì$ÌYÆ Ç3Ì
Ë©×sËYÔtÉQÐ�Ñ©Î1Æ�Ç°Ì�Ò1Ö±Ò«Î1ÉQÚ�Ò¨Ë$Ç°Ê�Ö$Í:Æ Î/Æ¸Ò�Ô:ËYÒ�Ò«Æ�Ó°Ê�É,Ñ©Ç3Ù�Ù°ÉQÒ1Æ Ð�Ñ©Ó°Ê�É§Î1Ë+É�é±Î1ÉQÇ3ÙoÆ Î�Ò/Õ3Ò«É&Î1Ë�Õ3Ò1ÉNÐ
Ò1Ô3Ñ$ÈNÉ;Ñ©Ô°Ô3Ê Æ¸ÈNÑ©Î1Æ�Ë$Ç3ÒQÜ�ä�ËcØ�ÉNßYÉNÐ�ÍNÎ�Ï°Æ¸Ò�Æ¸Ò�Ç°ËYÇnÛJÎ1Ð�Æ ß±Æ¸Ñ©ÊJÍ�ÑYÒ�Ñ�ÕtÒ«ÉQÐ�Ò1Ô3Ñ$ÈNÉ;ÙnÉNÓ3Õ°Ì$ÌYÉNÐ�ÉNé±Ô:ÉQÈ�Î�Ò
Î1Ë�Ð�ÉQÑYÙ�ß±Æ�Ð«Î�Õ3Ñ©Ê}Ú¯ÉQÚhËYÐ1Ö+Ñ©Ç3Ù+Ð1ÉQÌ$Æ¸Ò�Î�ÉNÐ�ÒNÍ±Ø¨Ï°ÉQÐ1É�Ñ$Ò�Î�Ï°É&Ò«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð¨Ô3Ð1Ëcß±Æ¸ÙnÉQÒ³Ñ$ÈQÈ�É�Ò1Ò*Î1Ë
Ô°Ï±ÖnÒ«Æ¸ÈNÑ$ÊsÙnÉNß±Æ¸È�ÉQÒ�ËYÇ°Ê ÖYÜ,à�Ç@Ë$Ð�ÙnÉNÐ�Î1Ë�Ô:ÉNÐ1×¦Ë$Ð�Ú Î1Ð�Ñ©Ç3Ò1Ê�Ñ©Î1Æ�Ë$Ç@Ë©×*ÙnÉQÓ°Õ°ÌYÌ$ÉNÐ!ÑYÈNÈ�É�Ò1Ò1ÉQÒQÍSÆqÎ
Æ¸Ò;Ç°É�È�É�Ò1Ò�Ñ©Ð�Ö!Î1Ë,Î1Ð�ÑOß$ÉQÐ�Ò1É³ßLÆ�Ð1Î1Õ3Ñ$Ê3Ú¯ÉNÚ¯Ë$Ð�ÖhÚ¯Ñ$Ç3Ñ©ÌYÉNÚ¯ÉNÇLÎ*Ù3ÑcÎ�Ñ,Ò�Î�Ð1Õ3È�Î1Õ°Ð�ÉQÒ;Ø¨ÆqÎ�Ï°Æ�Ç�Î1Ï°É
Ë$Ô:ÉNÐ�ÑcÎ�Æ Ç3Ì¯Ò1ÖnÒ�Î�ÉNÚoÜ

ó wc{qw�¿�w�½oÃ6wcy

� *�Ç3Ù��$ùq� ç`Æ�Ê Ê�Æ�Ñ$Ú *�Ç3Ù°ÉNÐ�Ò«ËYÇ�Ü�*�ÇåËcß$ÉQÐ1ß±Æ�ÉNØ Ë©×) Ë$Î1ËYÐ1ËYÊ�Ñ�� Ò��[ËcØ�ÉNÐ���ú7Ò1Æ Ú�Õ°Ê�Ñ©Î1ËYÐ
×jÑ©Ú¯Æ�Ê ÖYÜ���� �!�#"%$'&)(+*-,.&)�-$�/#�10�,32�465#��7�Ítö8�(. � 1�ó � ù-9 � �3Í
	YÕ°Ç°É ï �h�©ùtÜ

� ,
	Lä 5 � � �) ËYÇ°Æ�ÈQÑÊ,�Ð�Ë±È�Þ±Ú¯ÉNÖYÉNÐ�Í3ñ3Ñ$Ð1ÇtÑ©Ú:	YÑ$Ï3Ñ©Ç°Æ¸Ñ©Ç�Í}ú*ËYÇ3Ò�Î�Ñ©Ç3ÈNÉ,ä�ÉQÆqÎ�Ú¯ÉNÖ$ÉQÐQÍ}Ñ$Ç3Ù
,�Ð1ÕtÈ�É 5 Ñ©Ó3ÑOØ!Ü�*�Ç�Ñ©Ô3Ô°Ð1ËLÑ$È�Ï�Î1Ë!Ú¯Ë$Ç3ÆqÎ�Ë$Ð�Æ Ç°Ì&Ñ$Ç3Ù�Ñ$Ò�Ò1ÉNÐ1Î1Æ�Ë$ÇnÛ�È�Ï°ÉQÈ�Þ±Æ�Ç°Ì�Ë$×
Ð�ÉQÑ©ÊSÎ�Æ Ú¯É,Ò1Ô:ÉQÈ�Æ ètÈQÑcÎ1Æ�Ë$ÇtÒ³Æ Ç) ËnÙnÉ�È�Ï3Ñ©Ð1ÎQÜ[à�Ç<;
=>�?(�4+4�@-&3$�A-/B�10�,C2�4BDE4�(�� $F@
G>HIH�HKJ 4�* LNMPOQ&3�R4SO'4�(+2%$F�-LT�>AVUW*-$F@X5ZYVYELN&)(�* ,[&)� $�/BD'U �\Y�� /]&3"%��Í�,*ËLÒ�Î�Ë$Ç�Í
Ý/Å�*&Í'	YÕ°Ç°É ï �h� � Ü±à�3�3�3`ú*Ë$Ú¯Ô°Õ°Î1ÉNÐ�Å±ËnÈ�Æ�É�Î�Ö$Ü

� í) �$ùq� 	tÜ
^¯Ü³í�ËcÖ±Ê�ÉåÑ©ÇtÙ_^¯Ü*à�Ü) Ñ$Ç3ÙnÉNÊ�Ó:ÉNÐ�Ì3Ü * ÔtËYÐ«Î�Ñ©Ó°Ê�É<�*í6�xÛ ïYï Ò«Æ�Ú,Õ°Ê¸ÑcÛ
Î1ËYÐQÜED`�a0�,[bI* =>4
;
=>*
(c,[&)(�46*-$F@ H�d Y�4e=]&)4c$E(+4NÍ ï ù�. ï$ï 1�ó ï �©ù%�P9 ï �Yûh�°Íc��ËcßYÉNÚ�ÓtÉQÐ
ï �	�©ùtÜ

� 3*Å ë � 3xÚ�ÓtÉ�Ù°ÙnÉ�Ù�Ò1Õ°Ô°Ô:Ë$Ð1Î¨Î1Ë±ËYÊ�Ò¨ÈNË$Ð�ÔtËYÐ�Ñ©Î1Æ�Ë$Ç�Ü�Ø¨Ø¨Ø!Ü É�Ò�Î�È©Ü È�Ë$ÚoÜ
� � ë � ï � ñ�ÜÉ��Æ�ÉNÊ�ÉNÇ@Ñ©Ç3Ù) Ü ë Æ�ÚhÚ¯ÉQÐ1Ú�Ñ©Ç�Ü ë Ï°É�Ù°ÉQÒ1Æ ÌYÇ�Ë©×xíc*\� ë ÅSóÐ*øÙnÖ±Ç3Ñ©Ú¯Æ¸È

ÙnÉQÓ°Õ°Ì$ÌYÉNÐ�×¦Ë$Ð§Ú�Õ°ÊqÎ�Æ Ô3Ð1ËnÈ�É�Ò1Ò1Ë$Ð§Ð�ÉQÑ$ÊqÛJÎ1Æ�Ú¯ÉhÑ$Ô°Ô°Ê�Æ�ÈQÑcÎ1Æ�Ë$ÇtÒNÜ&à�Çf;
=>�?(�4�4+@-&3$�A-/
�a0Xg-h
h
g G+H�H�H ��� $?0c4c=>4e$F(�4i�-$ J 4�* LNMPOQ&3�R4S��� �\YF"%,j4c=�5ZY
YFLN&)(�* ,[&)� $�/!&3$
k "�(eLT4�* =�lI;m*-=],.&)(eLT4R* $E@R;
LT*�/]�R*i;�28U�/]&)(c/�Í:ÔtÑ©Ì$É�Ò ï û$ö�9 ïP�°ï Í�	$Õ3Ê Æ¸È�Ï�Í���ÉQÐ«Û
Ú�Ñ©Ç±Ö$Í'	$Õ°Ç3É ï �h� ï Ü

� ä�ÉNÐ¾�h�q� ÅLÎ�ÉNÔ°Ï°ÉQÇ0*�Ê¸Ñ©Ç�ä�ÉQÐ1Ð�ËnÙ}ÜXnQ/]&3$8Ao��� �\YFLp4c,j4q7o*
(+2%&3$F4#DF&3�#"%LT*-,.&)�-$<,j�rn�$�M
@V4e=�/],s*-$F@S���-��YE"%,s4e=\DFU�/],s4e�ut\4�2�*-vP&)�-=�Üw�xÏ3í7Î1Ï°É�Ò«Æ¸ÒQÍnÅ±Î�Ñ©Ç°×¦Ë$Ð�Ù�Ý�Ç°Æ�ß$ÉQÐ«Û
Ò1ÆqÎ�ÖYÍ3ñ°ÉQÓ°Ð1ÕtÑ©Ð�Ö ï �h�	�°Ü

�) í2�����h�>���[É�Î�ÉNÐ�ÅSÜ) Ñ©Ì$Ç±Õ3Ò�Ò1Ë$Ç�Í�ñ3Ð1É�ÙnÐ�Æ Þ.í/Ñ$Ï°Ê�Ì$Ð�ÉNÇ�Í�äyxÑ©ÞcÑ$Ç ��Ð�Ñ$Ï°Ç�Í) Ñ©Ì$Ç±Õ3Ò
^!Ñ©Ð�Ê¸Ò1Ò1Ë$Ç�Ísñ3Ð1É�ÙnÐ1Æ�Þ 5 Ñ©Ð�Ò�Ò«ËYÇ�Ísñ°Ð�ÉQÙnÐ�Æ Þ 5 Õ3Ç3ÙnÏ°ËYÊ ÚoÍ�*�Ç3ÙnÐ�ÉQÑ$Ò) Ë±ÉQÒ«Î1É�Ù±ÎQÍ
	YÆ Úz��Æ Ê¸Ò1Ò1Ë$Ç�Í8�[ÉQÐ�ÅLÎ�ÉNÇ3Ò«Î1Ð�{Ë$ÚoÍnÑ©ÇtÙÊ,�ÉNÇ°Ì$ÎDç9ÉNÐ�Ç°ÉNÐ�Ü�Å±Æ�Ú¯à1ú³Å�|cÒ1Õ°Ç°ùYÚoó`*
} Æ�Ð1Î1Õ3Ñ$Ê-ç@ËYÐ1ÞnÒ«Î�Ñ©Î1Æ�Ë$Ç�Ühà�Ç~;
=>�?(+4�4�@ &3$8A /y�10X,32�4yg-h
hV�KnQD Hwk\G>� 56$�$�"�*-L
O'4+(�28$'&)(�* L
�w�-$P0c4e=>4e$F(�4�Í ï �h�	�°Ü

�

�)0) ���A� 	YË$Ï3Ñ$Ç) Ë$ÇLÎ�ÉNÊ�Æ Õ3Ò�Ñ©ÇtÙo�[É�Î�ÉNÐ) Ñ©Ì$Ç±Õ3Ò�Ò1Ë$Ç�Ü�Ý/Ò«Æ�Ç°ÌoÅ±Æ Ú¯à1ú³Å�Î1Ë�ÉQßcÑ©Ê�Õ3ÑcÎ�É
Î1Ï3Éy�[ÉNÇ°Ç±ÖåÒ1ÖnÒ�Î�ÉNÚoÜ�à�Ç�	YÑ$Ç) Ñ-�Ê�Õ3Ò�ñQÖ��Ç3Ò«Þ±ÆJÍ�ÉQÙ°ÆqÎ�Ë$Ð�Í�;
=>�?(�4�4+@-&3$�A-/W�a0X,C2�4
G $',s4e=]$F*-,.&)�-$F*-L�D'U �\Y�� /�&3"%��� $����+A-&)(X;
=>�+A-=+* �!�#&3$8A�� G ��;ZD'Mah��a�cÍ�Ô3Ñ$Ì$ÉQÒ
ï öYö�9 ï ù	�3Ínú�Ñ$Ú,Ó°Ð�Æ¸ÙnÌ$ÉYÍ i È�Î1ËYÓtÉQÐ ï ö�9 ïP��ï �h�8�±Ü) à ë �xÐ�ÉQÒ�ÒNÜ

�) ç��©ùh� ñ°Ð�Ñ©Ç3Þ) Õ°ÉNÊ�Ê ÉQÐ�Ñ$Ç3Ù�í�ÑOß±Æ�Ù�,�Ü�ç`Ï3Ñ$Ê Ê�ÉNÖYÜ i Ç�ÙnÉQÓ°Õ°Ì$ÌYÆ Ç3Ì&Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É�Ñ©Ô°ÔnÛÊ�Æ�ÈQÑcÎ1Æ�Ë$ÇtÒNÜ®à�Ç�5#��7�D G-� ;I�Q5 k�� � =>� />2���Y�� $���* $8A-"�*PA
4clW���-��YE&3LT4c=�l
* $E@�O'�?� L`DF"?YVY�� =],E0c� = J 4�*-LNMPOQ&3�X4qD'U�/],j4c�#/�Í�	$Õ3Ç°É ï �	�©ù3Ü

� ���) �	�>� 3;Ù°ÌYÑ©ÐS��ÉNÎ«Î�Í) Ñ$Ð«Î�Æ ÇÌ��ÉNÐ�Ì$ÉQÊ ÉQÆqÎ�Í/Ñ©ÇtÙ) Æ¸È�Ï3Ñ©ÉQÊ) Ë±È�ÞSÜ *�Ç]Ñ$Ù3Ñ©ÔnÎ�Æ ßYÉ
Ñ©Ô3Ô°Ð1ËLÑ$È�Ï�Î�Ë+ËYÓnò�ÉQÈ�Î«Û�Ë$Ð�Æ ÉQÇLÎ1ÉQÙkÐ1É�Ñ©Ê ÛeÎ�Æ Ú¯É¯È�Ë$Ú¯Ô°Õ°Î1Æ�Ç°Ì3Ü&à�Ç�^§Ð1Æ¸Ò«Î1Æ�Ç°É!^§ÉQÊqÛ
Ê�Ö$Í°É�ÙnÆqÎ�Ë$Ð�Í�;
=>�?(+4�4�@ &3$8A /#�10\�I&3=�/�, G $',s4e=]$F*-,.&)�-$F* L�D'U �\Y�� /�&3"%�:� $��m�)�e4�(c,[M
��=]&)4c$',s4�@ J 4�*-LNMPOQ&3�X4��q&�/],.=]&)�e"%,j4+@#��� �\YF"%,[&3$�AR� G D�� J ��� hV�]�cÍOÔ3Ñ$Ì$ÉQÒ�ö©ùLô�9
ö©ùM�°Í ^§Ö$Ë$Î1ËtÍ?	LÑ©Ô3Ñ$Ç�ÍA*�Ô°Ð�Æ Ê ï �	�h�3Ü�à�3�3D3@ú*Ë$Ú¯Ô°ÕnÎ�ÉNÐ[Å±ËnÈ�Æ�É�Î�Ö$ÍOà�3D3�3@ú*ËYÚ�Û
Ô°ÕnÎ�ÉNÐ/ÅnË±ÈNÆ ÉNÎ�Öy�xÐ�ÉQÒ�ÒQÜ

� �xÊ¸Ñh�©ùh� ,�ÉNÐ�Ç°Ï3Ñ$Ð�ÙB�;Ê�Ñ©Î«Î�Ç°ÉNÐ�Ü
�¨É�Ñ©Ê ÛeÎ�Æ Ú¯É*É�énÉQÈNÕnÎ1Æ�Ë$Ç�ÚhËYÇ°Æ Î1Ë$Ð�Æ�Ç°Ì3Ü G>H�H�H O�=>*-$�/e*V(eM
,[&)� $�/q�-$oDE�10�,.bI*-=>4 H $�AV&3$F4�4e=]&3$�A$Í:Å(3xÛ ï �m. � 1�óN�©û � 9�� � ùtÍV��ËcßYÉNÚ,Ó:ÉNÐ ï �h�©ùtÜ

� �c,³í/ä����]�) ÉQÇ3ÙnÉNÊ��¨ËLÒ«ÉQÇLÓ3Ê Õ°ÚoÍ 3;Ù°Ë$Õ3Ñ$Ð�Ù ,�Õ°Ì$Ç°Æ�Ë$Ç�ÍBÅ°È�Ë©Î1Î í/ÉNß±Æ Ç3É$Í Ñ$Ç3Ù
ÅLÎ�ÉNÔ°Ï°ÉQÇ�*�Ê¸Ñ©Ç�ä�ÉQÐ1Ð�ËnÙ}Ü3Ý/Ò«Æ�Ç°Ì�Î1Ï°É�ÅnÆ Ú i Å�Ú�Ñ$È�Ï°Æ�Ç°É¨Ò«Æ�Ú,Õ3Ê�Ñ©Î1Ë$Ð[Î�Ë!Ò�Î�Õ3ÙnÖÈ�ËYÚ¯Ô°Ê ÉNéWÈ�ËYÚ¯Ô°ÕnÎ1ÉQÐ�Ò«ÖnÒ«Î1ÉNÚ�ÒQÜ�5#��7�O�=>* $�/e*V(e,.&)�-$�/o� $�7<�P@
4cL�&3$�A�* $F@
��� �\YF"%,j4c=BD'&3�!"%LT* ,[&)� $tÍF�(. ï 1�óN�>� 9 ï �$ö°Í�	YÑ$Ç±Õ3Ñ©Ð�Ö ï �	���±Ü

� ë ñ�ú �V�q� 	YÉ�æSÉNÐ�ÖB	3Ü �[Ü ë Ò1Ñ$ÆeÍ-^§Ø³Ñ©Ç°Ì$Û.�;Ñ�ñ3Ñ©Ç3Ì3Í©Ñ©ÇtÙ,ä�ËYÐ1Ç3Ì©Û[�xÕ3Ñ©Çhú*Ï3ÉNÇ�Ü(*®Ç°Ë$Ç3Æ ÇnÛ
ßcÑ$Ò1Æ ßYÉ!Ñ©Ð�È�Ï°ÆqÎ�ÉQÈ�Î1Õ°Ð�É�Î1Ë¯Ú¯Ë$Ç°Æ Î1ËYÐ¨Ð1É�Ñ©Ê ÛeÎ�Æ Ú¯É!ÙnÆ¸Ò�Î�Ð1Æ�Ó°ÕnÎ�ÉQÙoÒ«ÖnÒ«Î1ÉQÚ¯ÒQÜ���� �!M
YF"%,j4e=�Ítô©ö�.jö	1�ó ïYï 9°ô©ö°Í) Ñ©Ð�È�Ï ï �h�
�°Ü

���:ÉNÇ(� ��ô$í�ô¯ÙnÉQÓ°Õ°ÌYÌ$ÉNÐ�Í��:ÉNÇLÎ�Ð1ËYÔ°Æqé}Ü[Ø¨Ø¨Ø!Ü ñNÉNÇLÎ�Ð1ËYÔ°Æqé}Ü È�ËYÚ�Ü

�

Empty page.

Modelling of Real-Time Embedded Systems in an Object-Oriented Design
Environment with UML

Razvan Jigorea, Sorin Manolache, Petru Eles, Zebo Peng
Linköping University

{g-razji, g-sorma, petel, zebpe}@ida.liu.se

Abstract
This paper explores aspects concerning system-level
specification, modelling and simulation of real-time
embedded systems. By means of case studies, we investigate
how object-oriented methodologies, and in particular
UML, support the modelling of industrial scale real-time
systems, and how different architectures can be explored by
model simulation. We are mainly interested in the problem
of system specification as it appears from the prospect of the
whole design process. The discussion is illustrated by a
large system model from the telecommunications area, the
GSM base transceiver station.

1. Introduction

Current real-time embedded systems have to fulfill more
and more complex requirements concerning functionality,
timing, power consumption, reliability, cost, etc. Typical
application areas for such systems are telecommunications,
automotive industry, avionics, or industrial process control.
Embedded systems are very often implemented on
distributed architectures consisting of several
programmable processors and application specific
integrated circuits (ASICs) [1].

Due to the complexity of such systems, design
environments have to be developed in order to assist the
designer throughout the whole design process, starting from
the system specification, going through the design phase,
until the final implementation. In Figure 1 we show a very
simplified view of such a design flow. One of the important
tasks performed during the design phase is architecture
exploration. Several architectures (which differ in number
and kind of processors, interconnection structure, number
of ASICs, memory structure, etc.) and alternatives for task
partitioning are explored in order to find an efficient
solution which also satisfies the imposed requirements.

An essential aspect of such an iterative design process is
the ability to check the functionality of a certain design
alternative and to estimate different parameters
characteristic to it like, for example, timing. Although
formal verification and static analysis are more and more

used in this context, simulation is still the basic technique
which allows to get a feedback concerning the degree to
which a specification or design alternative fulfils certain
requirements [2].

An important trend in current design methodologies for
embedded systems is towards the reuse of pre-designed
components as an alternative to the complete synthesis of
the whole system. Such an approach is well known for the
software design community but has been only recently
considered by hardware designers as a practicable strategy
in order to cope with increasing system complexity [3].
According to such a methodology, pre-designed
programmable cores and ASICs (called intellectual
property (IP) components), stored in a module library
(Figure 1), are used as building blocks for new system
designs.

In order to support such a complex design process, the
system specification has to fulfill several requirements.
Some of them are well known and have been much
discussed in the literature [4, 5, 8]. Such are the support for
concurrency, exception handling, timing, hierarchy, or
nondeterminism. In this paper, however, we are mainly
interested in the problem of system specification as it
appears from the prospect of the whole design process.
Thus, requirements like support for IP-based design,
separation of control and dataflow, or facilities for system
simulation and architecture exploration are of particular
interest. Our main focus is on how object-oriented

Figure 1. The design cycle of RT systems

System speci-
fication

Implementation

Design

Simulation

Module
library

methodologies, and in particular UML, support such
requirements and how they can be used for the specification
and design of complex embedded systems. The discussion
is based on the experience gained from the modelling of a
large application in the telecommunications area, namely
the GSM Base Transceiver Station (BTS). This is a
representative example of a large reactive embedded system
and is therefore well suited to illustrate some design
problems and possible solutions. Another example, an
intelligent traffic lights controller, has been used for a set of
experiments concerning the architecture exploration
aspects.

In the following section we identify some of the main
problems to be discussed. Section 3 describes the basic
functionality of a GSM BTS, our main case study. Section
4 presents solutions to the problems identified in section 2,
in the particular context of UML. In section 5 we focus on
aspects related to architecture exploration. The last section
presents our conclusions.

2. Modelling of Real-Time Embedded Systems

Embedded systems, and in general all real-time (RT)
systems, have characteristics that make their design very
complex. They usually exhibit a reactive behaviour,
meaning that they respond in a well-defined manner to input
stimuli. Moreover, the response is time-constrained,
therefore it must occur within a more or less specific time
window. Safe critical embedded systems must be also
robust, showing correct behaviour even in unexpected
circumstances.

Concerning the specification and design of RT embedded
systems, several particular issues have been identified and
discussed in the literature [4, 5, 8]. Such are state-transition
oriented behaviour, inherent parallelism, timing aspects,
exception handling, environment dependency, and non-
functional characteristics (performance, safety, reliability,
power consumption etc.).

As mentioned in the previous section, in this paper we
are interested in particular aspects of system specification,
which are related to the whole design process. Some of
these problems have been identified as result of our work
related to the modelling and design of RT systems in the
telecommunications area. They are briefly introduced here
and will be further discussed in the following sections:
• Data and control flow separation. The model should

be organized as a set of functional and control layers.
A functional layer performs operations on the incom-
ing data, while a control layer coordinates clusters of
units situated in a lower layer. The amount of control
implemented in a certain layer should not exceed the
minimum needed in order to coordinate the operation
of the lower layers.

• Generic functional and control units.Many functional
or control blocks share certain basic characteristics,
differing just in some aspects. Identifying such generic

units and specifying them as superclasses is essential
in order to manage complexity during the modelling
process.

• Support for architecture exploration. Both the specifi-
cation methodology and the related design environ-
ment should provide the support for exploration of
alternative implementation architectures.

• Timeliness verification. The model must be checked
not only for functional correctness, but also for tempo-
ral correctness. We therefore need mechanisms for
specification and checking of timing aspects.

• Multiple abstraction levels. The specification of a RT
system often consists of blocks which are described at
very different levels of abstraction. In the initial speci-
fication some blocks can be treated as black boxes and
be specified at a high level of abstraction, while other
blocks are specified in more detail. As result of subse-
quent design steps, some of the blocks are further
refined while other are left unchanged. Despite such an
unbalance in the abstraction level, a clear separation
between specification of interfaces and that of the
internal behaviour, allows the whole system to be kept
coherent and executable.

• Support for reuse. As mentioned earlier, the reuse of
predefined components (IP-based design) is of
extreme importance in managing the complexity of the
design process. Thus, specifications and models
should be built with a high-degree of reusability as an
essential goal. At the same time, the specification and
design methodology has to support the reuse of exist-
ing components.

In the following section we introduce a typical
telecommunication application of high complexity which in
the subsequent sections will be used in order to illustrate the
discussion. All the problems highlighted above will be
analysed, along with proposed solutions, in the context of
an OO design environment based on the UML.

3. The Base Transceiver Station (BTS)

The BTS is one of the devices in the canonical
architecture of the Global System for Mobile
Communication (GSM), as defined by the GSM
standardisation group [7]. Figure 2 shows the place of the
BTS in the context of the GSM architecture. The radio
interface connects the BTS with the mobile stations (MS).
A terrestrial link, the Abis interface, connects the BTS with
the Base Station Controller (BSC). The BSC is further
connected with the Network Switching Subsystem (NSS).
The BTS comprises radio transmission and reception
devices, and also all the signal processing specific to the
radio interface. The radio interface is characterized by a
high bit error rate. To counter this, complex modulation/
demodulation algorithms are deployed in the BTS and
computation intensive channel encoding/decoding methods
are applied. Because of the large range of services GSM

offers, the number of these channel encoding/decoding
algorithms is also very large. The BTS also performs the so
called characterization of the radio interface, i.e. it measures
interference level and bit error rates, processes
measurements of received power, and reports the results to
the NSS. In order to adapt more users, a time division
multiple access (TDMA) scheme is used. This allows a BTS
to manage several communication channels multiplexed
both in time and frequency. The BTS allocates/deallocates
and changes the channel mode at the request of the NSS.
Signalling protocols between the BTS and the mobile
stations as well as between the BTS and the infrastructure
are used in order to make such a channel management
possible.

4. The BTS Model

In this section we first present the general structure of the
BTS model. Next, solutions to the problems identified in
section 2 are discussed. The underlying specification and
design strategy is based on an OO methodology. The
discussion here is in the particular context of the UML [5,
10]. General aspects concerning OO methodologies and the
basics of the UML have been much discussed in the
literature [8, 9, 10], and therefore are not mentioned in this
paper.

4.1. General Description of the Model Architecture

In Figure 3 we show the structure of the BTS model. Our
model has been organized on four layers. The bottom layer
consists of purely functional processing units (called
functional units — FU). The control tasks to be performed
by the BTS are distributed among the other three layers. The
responsibilities of the functional units are related to channel
encoding/decoding and to data interleaving/deinterleaving.

The encoding/decoding algorithms are the following:
• CRC encoding/decoding;

• convolutional encoding/decoding in its various vari-
ants (punctured or not);

• tailing;
• fire codes (similar to CRC codes).

Subsequent interleaving/deinterleaving schemes are
applied in order to build radio-bursts from data-blocks and
to assemble data-blocks out of the incoming radio-bursts.
Functional units in the model are specialized for a certain
encoding/decoding or interleaving/deinterleaving task.

The first layer of control, above the functional layer,
consists of the baseband controllers (BC). Their
responsibility is to assure a correct sequence of operations
(performed by the FUs) for each channel mode. BCs are
specialized for the control of channels in a certain channel
mode. By channel mode we understand a set of properties
that characterize the channel. Such properties are:
• semantics of carried data (speech, data, signalling);
• gross data rate, which classifies channels in full and

half rate channels;
• nett data rate;
• whether the channel is dedicated to a particular user at

a moment in time or it is a broadcast (common) chan-
nel;

• whether the channel is a duplex one or not.
The next level of control consists of the transmitter-

receivers (TRX). A TRX controls a set of BCs. It emits or
receives continuously, but on a single frequency at a given
moment. From the signalling point of view, each TRX
corresponds to a signalling link. A TRX manages traffic and
signalling for eight (due to the TDMA scheme) physical
channels.

The TRXs use the services of the LAPD (Link Access
Protocol for the “D” Channel) and LAPDm (Link Access
Protocol for the “Dm” Channel) protocol interpreters [6].
These modules receive from the TRX the signalling bursts/
blocks and are responsible for assembling the frames,
maintenance of the link, and notification of the TRX
regarding the received message. The two LAPD blocks

network
switching sub-
system (NSS)

BTS

Figure 2. The BTS in the context of the GSM architecture

MS

basestation
controller

(BSC)

radio interface Abis interface

represent the third and highest layer of control.
The Radio Burst Generator (BuG) is the module that

models the radio subassembly of the BTS. It generates
bursts which are sent to the TRX. The BuG has to be aware
of the time division scheme, as demodulation is performed
differently for different channels.

The Abis Block Generator (BlG) has a similar role to the
Radio BuG. It generates blocks, simulating the time
division scheme deployed on the terrestrial link. These
blocks are then forwarded to the TRXs.

The BTS model has been specified and simulated with
the UML using the iLogix Rhapsody environment [12].

4.2. Deployment of Control

Functional units can be, in principle, reused over many
generations of a telecommunication application and often
they can be also included in different designs. Such different
designs and successive generations of the same design
usually differ in their control aspects (e.g. the protocols) but
not in the basic functions performed. The same philosophy
applies to control units, as well. Protocols are organized on
different layers and from one product to another only
particular layers are modified (upgraded) while other layers
are reused. Therefore, in order to support reusability of
functional and control units, a minimal amount of control
has to be deployed to any processing unit in the model. By
doing this, the potential of reusing the modelling units
increases significantly. Figure 4 shows the UML statechart
for one of the functional units which performs a part of the
channel encoding. The unit, a CRC encoder, is unaware of

the channel whose processing chain it belongs to. Thus, it
could be used as a building block for both speech encoding
and for fire codes, as well as for any other design in which
CRC encoding is performed. The unit has a very simple
interface: after a processing delay (procD) has elapsed from
the moment it receives a processing command
(evCRCEncCmd) from a controlling entity, it will notify the
controlling entity about completion of the processing and
offer the transformed data (evCmdCompleted(result)).

The same principle of minimum amount of control
deployment was adopted for the controlling units. A
baseband controller, for example, manages functional units
according to the mode of the channel it controls. At the
same time, it is completely unaware of the existence of the
other channels and it does not know anything about the
time-slots structure of the access scheme (a statechart of a
baseband controller is shown in Figure 8).

The TRX, on the other hand, is in charge of the eight
channels it manages. It is the only unit which has to be
aware of the timing scheme in order to identify a channel
correctly and to activate the right baseband controller (the
statechart of the TRX is depicted in Figure 9).

4.3. Separation of Control and Data Flows

Another aspect which improves the reusability of the
various elements of the model is the separation of data and
control flows. Object-oriented modelling particularly suits
this requirement. There are objects which model entities on
the data path, and objects which model controlling units.
Due to the inherent loose coupling between objects, the
separation of control and data flow is easy to achieve. This
aspect is well highlighted in Figure 3. Functional units are
operating on the data path, while no control functions are
embedded within them. On the other hand, baseband
controllers as well as TRXs do not perform any processing
on the data flow. They just coordinate lower level entities
(other controllers or functional units).

...

...

...FU FU FU FU

BCBCBC

TRX TRX
Radio
BuG

Abis
BlG

LAPDm PI LAPD PI

FU – functional unit
BC – baseband controller
TRX – transmitter-receiver

PI – protocol interpreter
BuG – burst generator
BlG – block generator

Figure 3. Structure of the GSM BTS model

Abis interfaceradio interface

evCRCEncCmd

tm(procD)/itsController->evCmdCompl(result);

idle CRC

Figure 4. Statechart for CRC processing unit

4.4. Uniform Interfaces and Generic Units

Various types of low level control or processing units are
treated uniformly by the upper layers. This highly simplifies
the modelling process. Such an uniformity is achieved by
means of the inheritance relationship.

Figure 5 illustrates a class hierarchy for functional units.
Particular interleavers are derived from a generic interleaver
which again is a specialization of a generic functional unit.
For the upper, control layers, every functional unit appears
as this generic unit. A similar strategy also applies to control
units.

Figure 6 shows the class diagram of a generic downlink
baseband controller. The generic controller aggregates
generic functional units of the classes Interleaver (see also
Figure 5), ConvEnc, and ParityEnc. A specific BC
aggregates specialized FUs, depending on the particular
channel mode it controls. A data downlink controller, for
example, is an instantiation of the generic class
DownLkCtrl, and aggregates an instantiation of the class
DataConvEnc and of the class DataIntl (see also Figure 5).
The corresponding class diagram is shown in Figure 7.

4.5. Timing Aspects

Specification of timing aspects is mandatory in order to
verify timeliness and to perform architecture exploration.

Modelling of such timing aspects comprises specification of
deadlines and execution delays.

Execution delays are modelled as time-triggered state
transitions (see Figure 4). The parameter which
characterizes the execution delay on a certain functional
unit is specified as an attribute of that unit. During
architecture exploration, this delay depends on the
particular processor to which the unit is assigned for
execution. This delay has to be estimated [11] and the
resulting value is assigned to the unit. The delay attribute is
specified in the superclass of all functional units (procD in
Figure 5).

The controlling units are in charge of coordinating the
functionality of lower lever units. They are not
characterized by a processing delay in the sense the
functional units are. However, the control units have to

Figure 5. Generic functional units

FuncUnit

Interleaver

SpeechIntl DataIntl CtrlIntl FastAssocI

procD:int

DownLkCtrlConvEnc ParityEnc

Interleaver

Figure 6. Structure of a downlink controller

0, 0,1

0,

1 1

1

Data
DownLkCtrl

Data
ConvEnc

DataIntl

Figure 7. Specialization of a downlink controller

1

1

1

1

DownLkCtrlConvEnc ParityEnc

Interleaver

0,1 0,1

0,

1 1

1

idle

watchdog

deinterl

convDec

CRCDec

errConv

errCRC

active

evBursts/deI->GEN(evDeICmd(params->bursts));
evDeICompl/conv->GEN(evConvCmd(params->block));

evConvCompl

[params->status==0]

[else]

evCRCDecCompl

[else]

[params->status==0]

tm(deadline)

Figure 8. Statechart of a baseband controller

monitor whether certain predefined time intervals have
passed and to take certain decision if a deadline has been
reached. Deadline is modelled by introducing an additional
state, which is entered after a certain time interval has
elapsed. In Figure 8 we illustrate this mechanism for a
baseband controller. If the execution delay of the processing
chain exceeds the predefined value ofdeadline, the
watchdog state is entered. The TRX interprets this as an
exceptional situation.

4.6. Concurrency Issues

Usually, telecommunication devices, and the BTS makes
no exception, perform a set of well specified operations on
multiple data flows. Identification of this parallelism is
important in the analysis phase because it significantly
influences the object structure of the model. In the UML,
parallelism can be expressed in two ways. First, all the
objects are considered to be parallel entities.
Synchronization is easily achieved by means of message
exchanges. Second, an entity which has been modelled as a
single object can exhibit itself a concurrent behaviour. In
this case the statechart corresponding to the object is
specified as a set of orthogonal (concurrent) components.
Such a case is shown in Figure 9, where the statechart of a
TRX is depicted. The TRX has to handle both uplink and
downlink traffic, as well as signalling information
addressed to it. Those activities are independent to each
other and can be performed concurrently.

4.7. Multiple Abstraction Levels

Our main focus was set on the specification and design
of the digital components of the BTS. However, in order to
perform simulation and architecture exploration, the whole
functionality of the BTS had to be modelled. Thus, the radio
subassembly was simply modelled as a radio burst
generator, at a very high abstraction level. The strong
encapsulation, typical to the object-oriented approach,
allows for an uniform treatment of entities specified at
different abstraction levels. They permit us to concentrate
on the refinement of that part of the model we are mainly
interested in.

5. Architecture Exploration

In order to complete our goal in exploring the way UML
suits the real-time systems design cycle, we imagined a
simpler case study, which allows to easily demonstrate how
architecture exploration can be performed. The example we
have chosen is an intelligent, adaptive traffic lights
controller (see Figure 10).

The controller was designed for a typical two road
crossing (one main road, crossed by a secondary road),
including pedestrian sideways. It is connected with the
controllers in the previous and next crossing on the main
road. Beyond the crossing, on the main road, there is a
departure sensor, used for detecting if a car left the current
crossing, heading to the next crossing on the main road.
This is needed in order to perform statistical analysis on the
time needed for a car to get from one crossing to another.
According to the statistical data, the intelligent subsystem
will adjust the synchronization and traffic lights timing in
order to have an optimal “green wave” on the main road,

inactive idle

access dispatch

idle

idle

signalling uplink downlink
main

evAlloc/
alloc(params);

evBurstTick

[else]

[else]

[TSN()==3] [isAlloc()]

evAbisBlock/
extract(params);

Figure 9. Statechart of a TRX

Figure 10. Intelligent traffic lights controller

controller

departure
sensor

controller in
prev. crossing

controller in
next crossing

intelligent
subsystem

event queue traffic lights

Figure 11. Deployment diagram

processor µcontroller

traffic light

comm. line

sensor

1 1 1 2

1
*

1

1

departure
sensor

controller
int. subsys.

ev. queue

which adapts to the current traffic condition.
In Figure 10, the shaded blocks represent the core of the

traffic lights controller. We considered that the controller is
physically mapped on a microcontroller, and the intelligent
subsystem (which performs statistical analysis and adjusts
the timing accordingly) is mapped on a processor. This
mapping is illustrated by the UML deployment diagram in
Figure 11.

A high-level object model diagram of the intelligent
traffic lights controller is presented in Figure 12. The model
was conceived in a way which allows code generation and
simulation with or without the intelligent subsystem.

We assumed that the average waiting time for a car is the
performance parameter of interest. Thus, we explored how
different processors and communication lines affect this
performance parameter. The processing efficiency (PE) is a
parameter of the processor which runs the intelligent
subsystem, and the communication efficiency (CE) reflects
the performance of the communication lines connecting our
controller to the two controllers in the adjacent crossings.

We define PE and CE as follows:

where v is the execution time for the intelligent
subsystem on the currently considered processor,δ is the
communication delay for an instance of data transfer on the
currently considered infrastructure for the communication
lines, vmin is the value ofv corresponding to the fastest
processor in the module library, andδmin is the value ofδ

corresponding to the fastest communication link in the
module library.

The experimental results are presented in Table 1. We

run the same scenario (i.e., input vectors), first for the traffic
lights controller without the intelligent subsystem, and
second for the traffic lights controller with intelligent
subsystem, departure sensor and communication lines. For
the case without an intelligent subsystem, the controller
works by granting access to the tracks according to a round
robin strategy. For both settings we explored several values
for PE and CE. As it can be seen from Table 1, the
intelligent subsystem produces a significant increase in
performance. The quality of the system is degraded for
lower performances of the processor and/or communication
line.

6. Conclusions

We discussed several issues concerning the modelling of
complex embedded real-time applications using an OO
methodology with the UML.

We have concentrated on particular issues which are
characteristic to the modelling of large telecommunication
applications. Using the particular example of a GSM BTS
we showed how the UML based methodology allows the
proper layering of a model, the separation of control and
data flows, as well as the definition and combination of
generic units. The main objective is to facilitate complexity
management during the modelling phase. At the same time,
reusability (IP-based design) and architecture exploration
are supported.

Using a smaller example, which allows for a more
detailed discussion, we also presented an example of
architecture exploration and gave some experimental
results.

References

[1] R. Ernst, “Codesign of Embedded Systems: Status and
Trends”, IEEE Design & Test of Computers, April-June, 1998, pp.
45-54.
[2] J. Axelsson, “Holistic Object-Oriented Modelling of
Distributed Automotive Real-Time Control Applications”,
Proceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 1999, pp. 85-92.

Figure 12. Object model diagram

departure
sensor

traffic lights

pedestrian
traffic lights

car
traffic lights

intelligent
subsystem

timer

controller

previous
crossing

next
crossing

car

1 1

*1

*

1

10,1

PE
vmin

v
----------=

CE
δmin

δ
----------=

 Table 1. Simulation results

Intelli-
gent sub-
system

Average waiting time for a car (seconds)

PE=0.9
CE=0.9

PE=0.9
CE=0.6

PE=0.6
CE=0.9

PE=0.6
CE=0.6

No 11.56 11.56 11.56 11.56

Yes 1.66 5.82 9.09 11.31

[3] M. Keating, P. Bricaud,“Reuse Methodology Manual for
System-on-a-Chip Designs”, Kluwer Academic Publishers, 1998.
[4] A. Sarkar, R. Waxman, J. Cohoon,“Specification-Modelling
Methodologies for Reactive-System Design”, in “High-Level
System Modelling: Specification Languages”, eds. J. M. Bergé et
al., Kluwer Academic Publishers, 1995, pp. 1-34.
[5] B. Douglass,“Doing Hard Time”, Addison-Wesley, 1999.
[6] M. Mouly, M. Pautet, “The GSM System for Mobile
Communication”, Palaiseau, 1992.
[7] “GSM 03.02”, European Telecommunications Standards
Institute (ETSI),
http://www.etsi.org.
[8] B. Selic, G. Gullekson, P. Ward,“Real-Time Object-Oriented
Modeling”, John Wiley & Sons, 1994.
[9] G. Booch,“Object Oriented Design With Applications”, The
Benjamin/Cummings Publishing, 1991.
[10] G. Booch, J. Rumbaugh, I. Jacobson,“The Unified Modeling
Language User Guide”, Addison-Wesley, 1999.
[11] J. Gong, D. Gajski, S. Bakshi,“Software Estimation Using A
Generic Processor Model”, Proceedings of the European Design
and Test Conference, 1995, pp. 498-502.
[12] “Rhapsody Reference Guide, Release 2.1”, iLogix, 1999.

Real-Time System Constraints: Where do They Come From and
Where do They Go?

Cecilia Ekelin and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology

S–412 96 G̈oteborg, Sweden
fcekelin,janjog@ce.chalmers.se

Abstract
Within the real-time community a great deal of research

has been, and is being, conducted on scheduling. There ex-
ist a diversity of different scheduling algorithms as well as
constraints that should be satisfied by a feasible schedule.
What is not commonly discussed though is how the con-
straints relate to the requirements on the actual real-time
system. In fact, many constraints are mere artifacts that
cannot be traced to the system design. This often results in
an over-constrained and infeasible scheduling problem. To
avoid this we are conducting a survey on industrial real-
time system requirements. The aim is to give a better under-
standing of how to derive adequate constraints. Further-
more, we believe that by considering constraints imposed
by industrial requirements such as product cost or hardware
limitations, the time complexity of schedule generation can
be greatly reduced. In this paper we present some early
results from our survey. This includes a description of real-
time system requirements and how they relate to commonly
used real-time constraints.

Keywords: real-time constraints, real-time scheduling,
system design, constraint programming, complexity reduc-
tion

1 Introduction
Scheduling in distributed real-time systems involves as-

signingn tasks tom processors such that all constraints on
the tasks are satisfied. A common instance of the problem is
to find the optimal schedule according to some objective. In
real-time literature, several scheduling algorithms that deal
with specific real-time constraints (periods, release times
etc.) have been proposed. However, in most cases there
is no clear connection between the theoretical scheduling
problem and the practical design of the real-time system
being scheduled. This makes it difficult to verify the cor-
rectness of the constraints with respect to the requirements

in the system design. Are the scheduling constraints due to
limitations in hardware, cost or system behavior? Or are
they more or less intelligent guesses? Previous research
[1, 2] have argued that the latter often is the case. Adding
constraints manually is an iterative process because thead
hoc assignment often leads to an over-constrained and in-
feasible system. Apparently, the reason for fabricating con-
straints is the lack of expressive power in current tools and
the lack of scheduling tools that handle complex constraints.
The facility to consider factors such as cost and hardware
performance is also lacking in most proposed scheduling
algorithms. However, for industrial real-time system devel-
opers, these factors are extremely important in order to pro-
vide cost-effective solutions. In particular since the trend in
real-time system development is moving towards open sys-
tems [3], that is, the system designer is restricted to use
the hardware components available on the market. Design-
ing real-time systems with these prerequisites also affects
the definition of an optimal schedule. The optimality of a
schedule might not only concern the behavior of the tasks
but also the cost of the resulting hardware configuration.

In an attempt to aid industry in this design process, we
have begun work that attempts to identify requirements like
cost and hardware limitations, as well as behavioral aspects
of industrial real-time systems. This paper reports some re-
sults from this work and also demonstrates how these re-
quirements can be translated into constraints. Apart from
increasing the expressive power we also believe that, by
introducing additional constraints, the scheduling search
space will be reduced without making the system over-
constrained. In particular, we are interested in investigating
how this hypothesis can aid in reducing the search complex-
ity for optimal schedule generation.

The rest of this paper is organized as follows. Section
2 describes some common real-time system requirements.
Section 3 lists some real-time constraints typically found in
literature. Section 4 presents our allocation and scheduling

approach. In Section 5 related work is discussed and Sec-
tion 6 outlines our future work.

2 Identification of requirements
When trying to identify the requirements on a real-

time system from an industrial perspective it is necessary
to work in close relation to industry. We are therefore
performing our investigation in cooperation with Mecel
AB in Göteborg, Sweden. Mecel AB develops tools and
distributed real-time systems for the automotive industry.
However, as an initial attempt we have limited the survey to
requirements and constraint constructs found in literature.
So far, we have found that the requirements can be divided
into three groups which are further described below.

2.1 Behavioral requirements
A model of a real-time system includes tasks, that de-

termine the behavior of the system, and resources, that are
used by tasks. The behavior of the system imposes restric-
tions on its implementation which affects the scheduling
constraints. Typical behavioral requirements could be task
execution order or task allocation.

2.2 Temporal requirements
Most development tools for real-time systems focus on

modeling the system behavior but lack the expressive power
to handle temporal requirements [4]. This is a serious dis-
advantage since real-time systems have a temporal behavior
as well as an operational. The temporal behavior depends
on the environment that the system interacts with. That is
why the requirements rarely are stated for each task indi-
vidually but rather on chains of tasks constituting a specific
function. For instance, a function like cruise control might
have a required update rate which is set independent of the
number of tasks that are part of the function. Most schedul-
ing constraints stem from temporal requirements.

2.3 Cost requirements
Apart from mere system requirements, it is in the interest

of industry that development of real-time systems is made
cost-effective. That is why development using off-the-shelf
hardware components has become an interesting alterna-
tive. Instead of making hardware for the software, the soft-
ware has to be made for the hardware. This puts additional
strain on the system design since the flexibility is decreased.
Even though less flexibility is likely to reduce scheduling
complexity, additional hardware constraints have been in-
troduced.

3 Derivation of constraints
In the introduction it was stated that most real-time sys-

tem constraints are artifacts. The reason for this is the in-
ability of current tools to translate system requirements into
system constraints in an adequate way. In the translation
the requirements are usually divided into a number of sim-
ple constraints. Unfortunately, thead hocmethods used to

derive the constraints often leads to an over-constrained and
infeasible system. In our approach we try to keep the con-
straints as close as possible to the original requirements.
Below we discuss how a number of constraints, that fre-
quently appear in real-time literature, relates to typical sys-
tem requirements.
3.1 Task model

We use the following variables to denote task properties
for a taski.

Si actual start time

Ei worst-case execution time

Ri release time, i.e., the earliest allowed start time

Di deadline, i.e., the latest allowed finish time

Pi period, i.e., the rate that the task is executed with

Bi blocking time, i.e., the time the task is spent preempted
by other tasks

Ni execution node, i.e., the processor the task is scheduled
to execute on

Also, c is used to denote an arbitrary constant where ap-
plicable.
3.2 Preemption

Apart from the derivation of constraints, it has to be
decided whether or not tasks are allowed to preempt each
other. By allowing preemption it might be possible to find
schedules for designs that are otherwise infeasible. Letn

denote the number of tasks. Then the time a taski is blocked
due to preemption is defined as:

Bi =
nX

j=1

Bj :

fi 6= j; Si � Sj ; Sj � Si +Bi + Ei; Ni = Njg

Context switching or task invocation time is usually as-
sumed to be small enough to be neglected or included in the
task’s worst-case execution time. However, there might be
some real-world problems where this approximation is not
desirable. For example, in preemptive scheduling where it
is not known beforehand how many times a task will be pre-
empted. Most likely, the context switch occurring at a pre-
emption will be significant since the state of the preempted
task must be stored away or retrieved. The context switch
timec can easily be incorporated into our previous equation
as:

Bi =
nX

j=1

(Bj + c) :

fi 6= j; Si � Sj ; Sj � Si +Bi + Ei; Ni = Njg

3.3 Absolute timing constraints
Absolute timing constraints are direct restrictions on the

temporal behavior of a task.

Execution times express the worst-case execution times
of the tasks. They depend on the hardware the task is sched-
uled to execute on. This is of importance in a distributed
system where the execution time for a task may differ be-
tween the nodes. LetEi;N be the execution time of taski
on nodeN . Then this constraint is defined as:

Ei = Ei;N : fN = Nig

Deadlines correspond to the responsiveness required by
the system. Usually, there only exists an explicit deadline
for a chain of tasks (end-to-end deadline) and not for each
individual task. A common approach is to split the end-to-
end deadline into shorter deadlines which are assigned to
each task [5]. This operation may put an unnecessary strain
on the task set. To avoid this, we assign the end-to-end
deadline as the deadline for all tasks in the chain. LetD be
the end-to-end deadline. LetTD be all tasks restricted by
D. Then the deadline constraint is defined as:

8i 2 TDjDi = D

To ensure that no deadlines are missed, the following con-
straint is needed:

Si +Bi + Ei � Di

This assumes that the precedence relations have been
modeled as described later in this paper.

Release times are mostly connected to periodic processes
where they restrict the start time of task invocations. This is
explained further below. Many scheduling algorithms im-
pose release times on the tasks as a way to obtain mutual
exclusion between tasks that access the same resource. The
drawback of this technique is the same as for the deadline
assignment mentioned previously, namely the risk of over-
constraining the task set. To ensure that a task is not started
before its release time, the following constraint is needed:

Si � Ri

Periods express how often a task should be executed.
This is linked to how accurate the system needs to be for
interaction with its environment. Periods may restrict the
deadlines since the deadline of a task often is less than its
period (Di � Pi). Even if that is not true (Di > Pi), the
k:th invocation of a task must be completed before invoca-
tion k + 1. A way to handle scheduling of periodic tasks
is to find the least common multiple of all periods and then

schedule each invocation as an individual task. The differ-
ent scenarios impose the following constraints:

Ri;k = (k � 1) � Pi : fk > 0; Di � Pig

Ri;k = (k � 1) �Di : fk > 0; Di > Pig

Separation constraints [1] express an interval of values
that the period of a task should belong to. In contrast to
deadlines, periods might be limited by a maximum and/or
minimum period value which ensures that the required func-
tionality is obtained. Letl andu be the minimum and max-
imum value respectively. Then this constraint is defined as:

l � Pi � u

3.4 Relative timing constraints
Relative timing constraints are also known as local con-

straints. That is, they express how two tasks relate to each
other. Some common constructs are explained below. Other
constructs are possible [6, 7] and can be expressed in a sim-
ilar manner.

Precedence constraints deal with the order the tasks
should be executed in. Such constraints are often derived
from the system design because the behavior of a system is
modeled as sequences of operations. If taski should pre-
cede taskj the constraint is defined as:

Si +Bi + Ei � Sj

Distance constraints are a stronger variant of precedence
constraints. In addition to constraining their order of exe-
cution, they also express the minimum distance in time be-
tween two tasksi andj. A reason for this could be limi-
tations in the processing speed of the environment that the
tasks interact with. It could also be derived from delays in
the communication hardware between two communicating
tasks. If the distance isc, the constraint is defined as:

Si +Bi + Ei + c � Sj

Freshness constraints [1] are the opposite of distance
constraints. They express the maximum distance in time
between two (consecutive) tasksi andj. This is used to ex-
press that a task uses some result produced by another task.
If the tasks are too far apart in time, the result have become
inaccurate when it is about to be used. This constraint is
typically found in database applications. If the freshness is
c, the constraint is defined as:

Si +Bi + Ei � Sj � Si +Bi + Ei + c

Correlation constraints [1] are related to freshness con-
straints in that they describe the maximum difference be-
tween the finish times of two (concurrent) tasksi and j.
This appears when a third task uses the results from the two
tasks and a too large a time-skew between the parameters
makes the task’s computation faulty. If the correlation isc,
the constraint is defined as:

j(Si +Bi + Ei)� (Sj +Bj + Ej)j � c

Harmonicity constraints [1] relate the periods of two
communicating tasks. It is desired that the period of the
consumer taski is exactly divisible by the period of the
producer taskj. If this is the case it is much easier for the
consumer to keep track of the received messages since they
always will arrive with the same interval. This constraint is
defined as:

Pi = c � Pj : fc > 0g

3.5 Resources
To be able to perform their operations, the tasks may

require to use specific hardware components. The perfor-
mance or functionality of the available components is lim-
ited by how expensive the hardware is allowed to be.

Locality constraints concern the allocation of tasks to dif-
ferent nodes. A task might require a specific unit for its
execution that is not present on all nodes. We express this
by simply removing impossible nodes from the task’s node
set. This is ahard-codedconstraint. LetN be an impossible
node. This is then defined as:

Ni 6= N

It could also be the case that communicating tasks (i and
j) should be located on the same node. A reason for this
could be that the operating system requires that all tasks
within a process are located on the same node. Another
reason could be to lower the cost for the communication
network. This is known as aclusteringconstraint. The con-
straint is defined as:

Ni = Nj

Locality constrains are often implementation recommen-
dations made by the designer, and less frequently given in
the specification.

Communication between tasks requires a communica-
tion media. The time to send a message depends on perfor-
mance offered by the communication channel. Messages
sent between tasks must themselves be scheduled on the
communication network which affects the scheduling of the
tasks. Message scheduling is non-preemptive. There exist
predefined constraint constructs for this kind of scheduling,
e.g., theserializedconstraint [8].

Devices are resources other than processors used by the
tasks during execution. It might be the case that only a lim-
ited number of tasks can access a device at the same time,
e.g., shared memory or bus communication. This means en-
suring that the amount of the resource used, by concurrent
tasks, never at any point in time is exceeding a given limit.
This can be expressed using thecumulativeconstraint [8].
3.6 ORing

ORing constraints [6] are not that common but can be
used to express alternative operations. For instance, to ex-
plicitly state that a taski must not preempt another taskj
(an EXCLUDES relation) means than taski must execute
before or after taskj. Any types of constraints can be ORed.
For c constraints this is simply defined as:

constraint1 _ constraint2 _ ::: _ constraintc

4 Allocation and scheduling
Most published real-time scheduling algorithms are

“hard-coded” with respect to the constraints, task proper-
ties and resources they can handle. Even-though a specific
method in most cases outperforms a generic, the former
soon becomes quite complex and it becomes difficult to in-
clude new features. That is why we have chosen the con-
straint programming approach.

The tool we have selected for our experiments is SIC-
Stus Prolog [8] and its associated constraint solver for fi-
nite domains [9]. The identified real-time system require-
ments can be expressed using primitive (low-level) con-
straints which are combined to express more complex (high-
level) constraints. The advantage of this generality is that it
is easy to introduce new high-level constraints as long as
they can be composed by a combination of low-level con-
straints. The translation of the constraints into code is pretty
straightforward. An interesting feature is the possibility to
guide the search for feasible schedules by varying the search
parameters. By using ”correct” parameters the search time
can be significantly reduced. We hope that it will be possi-
ble to automatically detect which heuristic that is best suited
for a specific problem instance.

5 Related work
A great motivation for this paper was the analysis of the

origins of timing constraints presented by Ramamritham in
[2]. The gap between the system design process and the
implementation has been discussed in [10]. We continue
this work by proposing guidelines for the derivation of con-
straints from system requirements. In [1], a technique to
automatically generate periods and deadlines for each task
from end-to-end deadlines, is proposed. A similar tech-
nique to generate intervals instead of single numbers for the
start times has been presented in [7]. Both techniques are
based on constraint solving using Fourier-Motzkin variable
elimination. The ideas and techniques for constraint solving

are already contained in the concept of constraint program-
ming systems.

The use of constraint programming for scheduling has
been investigated in the areas of operations research and
artificial intelligence. However, the scheduling aspects in
these areas are somewhat different from the ones concern-
ing real-time systems. For instance, the optimization objec-
tive is different as well as the constraints to be considered.
So far, we have only found one paper that addresses the use
of constraint programming for scheduling of real-time sys-
tems [11]. However, this work only addresses the problem
of finding a feasible schedule, while we are more interested
in finding the optimal and most cost-effective schedule.

6 Future work
As previously mentioned, we are currently working to-

gether with the industry on a survey on real-time system
requirements. A remaining issue of importance is the defi-
nition of an optimal schedule. To this end, we plan to imple-
ment a scheduling framework in SICStus Prolog which will
incorporate the described real-time constraints, including a
new notion of optimality. At a later stage we will investi-
gate how the constraints and search heuristics can be used to
reduce the complexity of the scheduling process. Previous
work have shown that this is a viable approach [12, 13].

References
[1] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing

Real-Time Requirements with Resource-Based Cali-
bration of Periodic Processes,”IEEE Trans. on Soft-
ware Engineering, vol. 21, no. 7, pp. 579–592, July
1995.

[2] K. Ramamritham, “Where do Time Constraints Come
From and Where do They Go?,”International Jour-
nal of Database Management, vol. 7, no. 2, pp. 4–10,
1996.

[3] J. A. Stankovic, “Real-Time and Embedded Systems,”
http://www-ccs.cs.umass.edu/sdcr/.

[4] G. Bucci, M. Campanai, and P. Nesi, “Tools for Spec-
ifying Real-Time Systems,”Real-Time Systems, vol.
8, no. 2/3, pp. 117–172, Mar. 1995.

[5] M. Di Natale and J. A. Stankovic, “Dynamic End-to-
End Guarantees in Distributed Real-Time Systems,”
Proc. of the IEEE Real-Time Systems Symposium, San
Juan, Puerto Rico, Dec. 7–9, 1994, pp. 216–227.

[6] T. M. Chung and H. G. Dietz, “Language Con-
structs and Transformation for Hard Real-Time Sys-
tems,” Proc. of ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Real-Time Systems,
La Jolla, Canada, June 1995, pp. 4–10.

[7] R. Gerber, W. Pugh, and M. Saksena, “Parametric Dis-
patching of Hard Real-Time Tasks,”IEEE Trans. on
Computers, vol. 44, no. 3, pp. 471–479, Mar. 1995.

[8] Intelligent Systems Laboratory, SICStus Prolog
User’s Manual, Swedish Institute of Computer Sci-
ence, 1995, http://www.sics.se/sicstus/.

[9] M. Carlsson, G. Ottosson, and B. Carlson, “An Open-
Ended Finite Domain Constraint Solver,”Proc. of the
Int’l Symposium on Programming Languages: Imple-
mentations, Logics, and Programs, H. Glaser et al.,
Eds., Southampton, UK, Sept. 3–5, 1997, vol. 1292
of Lecture Notes in Computer Science, pp. 191–206,
Springer Verlag.

[10] M. Saksena, “Real-Time System Design: A Temporal
Perspective,”Proc. of IEEE Canadian Conference on
Electrical and Computer Engineering, Waterloo, May
1998.

[11] M. Schild and J. Ẅurtz, “Off-Line Scheduling of a
Real-Time System,”Proc. of CP97 Workshop on In-
dustrial Constraint-Directed Scheduling, Schloss Ha-
genberg, Austria, Oct. 1997.

[12] J. Jonsson, “Effective Complexity Reduction for Op-
timal Scheduling of Distributed Real-Time Applica-
tions,” Proc. of the IEEE Int’l Conf. on Distributed
Computing Systems, Austin, Texas, May 31 –June 5,
1999, pp. 360–369.

[13] I. Ahmad and Y.-K. Kwok, “Optimal and Near-
Optimal Allocation of Precedence-Constrained Tasks
to Parallel Processors: Defying the High Complex-
ity Using Effective Search Techniques,”Proc. of the
Int’l Conf. on Parallel Processing, Minneapolis, Min-
nesota, Aug. 10–14, 1998, pp. 424–431.

Empty page.

A Real-Time Animator for Hybrid Systems

(Extended Abstract)

Tobias Amnell, Alexandre David

Wang Yi

Department of Computer Systems, Uppsala University

fadavid, tobiasa, yig @docs.uu.se

Abstract

In this paper, we present a real time animator
for dynamical systems that can be modeled
as hybrid automata i.e. standard �nite au-
tomata extended with di�erential equations.
We describe its semantic foundation and its
implementation in Java and C using CVODE,
a software package for solving ordinary di�er-
ential equations. We show how the animator
is interfaced with the Uppaal tool to demon-
strate the real time behavior of dynamical sys-
tems under the control of discrete components
described as timed automata.

1 Introduction

Uppaal is a software tool for modeling, sim-
ulation and veri�cation of real time systems
that can be described as timed automata. In
recent years, it has been applied in a number
of case studies [4, 5, 6, 7, 8], which demon-
strates the potential application areas of the
tool. It suites best the class of systems that
contain only discrete components with real
time clocks. But it can not handle hybrid
systems, which has been a serious restriction
on many industrial applications. This work is
to extend the Uppaal tool with features for
modeling and simulation of hybrid systems.

A hybrid system is a dynamical system that
may contain both discrete and continuous
components whose behavior follows physical

laws [1], e.g. process control and automotive
systems. In this paper, we shall adopt hybrid
automata as a basic model for such systems.
A hybrid automaton is a �nite automaton ex-
tended with di�erential equations assigned to
control nodes, describing the physical laws.
Timed automata [2] can be seen as special
class of hybrid automata with the equation
_x = 1 for all clocks x. We shall present an op-
erational semantics for hybrid automata with
dense time and its discrete version for a given
time granularity. The discrete semantics of
a hybrid system shall be considered as an ap-
proximation of the continuous behavior of the
system, corresponding to sampling in control
theory.

We have developed a real time animator
for hybrid systems based on the discrete se-
mantics. It can be used to simulate the dy-
namical behavior of a hybrid system in a
real time manner. The animator implements
the discrete semantics for a given automa-
ton and sampling period, using the di�eren-
tial equation solver CVODE. Currently the
engine of the animator has been implemented
in Java and C using CVODE. We are aiming
at a graphical user interface for editing and
showing moving graphical objects and plot-
ting curves. The graphical objects act on the
screen according to physical laws described
as di�erential equations and synchronize with
controllers described as timed automata in
Uppaal.

1

The rest of the paper is organized as follows:
In the next section we describe the notion of
hybrid automata, the syntax and operational
semantics. Section 3 is devoted to implemen-
tation details of the animator. Section 4 con-
cludes the paper.

2 Hybrid Systems

A hybrid automaton is a �nite automata ex-
tended with di�erential equations describing
the dynamical behavior of the physical com-
ponents.

2.1 Syntax

Let X be a set of real-valued variables X
ranged over by x; y; z etc including a time
variable t.

We use _x to denote the derivative (rate) of
x with respects to the time variable t. Note
that in general _x may be a function over X;
but _t = 1. We use _X to stand for the set of
di�erential equations in the form _x = f(X)
where f is a function over X.

Assume a set of predicates over the values
of X; for example, 2x+1 � 10 is such a pred-
icate. We use G ranged over by g; h etc to
denote the set of boolean combinations of the
predicates, called guards.

To manipulate variables, we use con-
current assignments in the form: x1 :=
f1(X) : : : xn := fn(X) which takes the cur-
rent values of the variables X as parameters
for fi and updates all xi's with fi(X)'s simul-
taneously. We use � to stand for the set of
concurrent assignments.

We shall study networks of hybrid au-
tomata in which component automata syn-
chronize with each other via complementary
actions. Let A be a set of action names. We
use Act = f a? j � 2 A g[f a! j � 2 A g[f � g
to denote the set of actions that processes can
perform to synchronize with each other, where
� is a distinct symbol representing internal ac-
tions.

A hybrid automaton over X, _X , G, Act and
� is a tuple hL;E; I; T; L0;X0i where

� L is a �nite set of names standing for
control nodes.

� E is the equation assignment function:
E : L! 2

_X .

� I is the invariant assignment function: I :
L ! G which for each node l, assigns an
invariant condition I(l).

� T is the transition relation: T � L�(G�
Act��)�L. We denote (l; g; �;
; l0) by

l
g;�;

���! l0.

� l0 2 L is the initial node.

� X0 is the initial variable assignment.

To study networks of automata, we intro-
duce a CCS-like parallel composition opera-
tor. Assume that A1; :::; An are automata.
We use A to denote their parallel composi-
tion. The intuitive meaning of A is similar
to the CCS parallel composition of A1; :::; An

with all actions being restricted, that is, A =
(A1j:::jAn)nAct. Thus only synchronization
between the components Ai is possible. We
call A a network of automata. We simply view
A as a vector and use Ai to denote its ith com-
ponent.

Example In �gure 1 we give a simple ex-
ample hybrid automaton which describes a
bouncing ball and a touch sensitive
oor. The
left automaton de�nes three variables, x, the
horizontal distance from the starting point,
the height y and the speed upwards u. Ini-
tially the x-speed is 1, the ball is at 20 m
height and the gravitational constant is 9:8.
The variables will change according to their
equations until the transition becomes en-
abled when y <= 0. The middle automaton
is a model of a sensor that will issue a signal
when the ball hits the
oor. The right au-
tomaton is on the Uppaal side. It synchro-
nizes with the sensor signal and resets a clock

2

z. If the intervals between signals are longer
than 5 time units it will return to the initial
location, but the �rst interval that is shorter
will lead to the location low bounces.

bounce!

init

y<=0
u:=-0.8*u

bounce?

z:=0
bounce?
z>5

z<=5

y<=0y=20

y= u
u=-9.8

x=0

u=0

x=1
.

.
.

low_bounces

Figure 1: Bouncing ball with touch sensitive

oor and control program.

2.2 Semantics

To develop a formal semantics for hybrid au-
tomata we shall use variable assignments. A
variable assignment is a mapping which maps
variablesX to the reals. For a variable assign-
ment � and a delay d (a positive real), � + d
denotes the variable assignment such that

(� + d)(x) = �(x) +

Z
�

_xdt

For a concurrent assignment
, we use
[�]
to denote the variable assignment �0 with
�0(x) = V ale� whenever (x := e) 2
 and
�0(x0) = �(x0) otherwise, where V ale� de-
notes the value of e in �. Given a guard g 2 G
and a variable assignment �, g(�) is a boolean
value describing whether g is satis�ed by � or
not.

A node vector l of a network A is a vec-
tor of nodes where li is a location of Ai. We
write l[l0i=li] to denote the vector where the
ith element li of l is replaced by l0i.

A state of a network A is a con�guration
(l; �) where l is a node vector of A and � is a
variable assignment.

The semantics of a network of automata A
is given in terms of a labelled transition sys-
tem with the set of states being the con�gu-
rations. The transition relation is de�ned by
the following three rules:

� (l; �) ; (l[l0i=li];
i[�]) if li
gi
i
�! l0i and

gi(�) for some li, gi,
i.

� (l; �) ; (l[l0i=li; l
0

j=lj]; (
j [
i)[�]) if

li
gi a!
i
�! l0i, lj

gj a?
j
�! l0j , gi(�), gj(�), and

i 6= j, for some li; lj , gi, gj , �,
i,
j.

� (l; �) ; (l; �+�) if I(l)(�) and I(l)(�+
�).

where I(l) =
V

i I(li).

2.3 Tick semantics

The operational semantics above de�nes how
an automaton will behave at every real-valued
time point with arbitrarily �ne precision. In
fact, it describes all the possible runnings of
a hybrid automata, that are the sequences of
alternating transitions between delays and ac-
tions in the form:
s0

�0

;(l0; �0 +�0)
�
;(l1; �1)

�1

;(l1; �1 +�1)
�
;

(l2; �2) : : : (li; �i)
�i
;(li; �i +�i)

�
;(li+1; �i+1)

In practice, the \sampling" technique is of-
ten used to analyze a system. Instead of ex-
amining the system at every time point, only
certain typical time points are chosen to cap-
ture or approximate the full system behav-
ior. Based on this idea, we shall adopt a
time{step semantics called Æ{semantics rela-
tivized by the granularity Æ, which describes
how a hybrid system shall behave in every Æ
time units. In practical applications, the time
granularity Æ is chosen according to the na-
ture of the di�erential equations involved. In
a manner similar to sampling of measured sig-
nals the sampling interval should be short for
rapidly changing functions. To achieve �ner
precision, we can choose a smaller granularity.
We identify the Æ{transitions as follows:

� (l; �)
Æ
7!(l; � + Æ) if (l; �)

Æ
;(l; � + Æ) and

3

� (l; �)
�
7!(l

0

; �0) if (l; �)
�
;(l

0

; �0)

The \sampled" runnings of a hybrid au-
tomaton will be in the form:
(l0; �0)

Æ
7!(l0; �0+Æ)

�
7!(l1; �1)

Æ
7!(l1; �1+Æ)

�
7!

(l2; �2) : : : (li; �i)
Æ
7!(li; �i + Æ)

�
7!(li+1; �i+1)

In the following section, we shall present a
real time animator based on the Æ-semantics.
For a given hybrid automaton, the anima-
tor works as an interpretor computing the Æ-
transitions step by step but in real time, using
CVODE, a di�erential equations solver.

3 Implementation

Our goal is to extend the Uppaal tool to deal
with hybrid systems. The Uppaal GUI is
written in Java and the di�erential equation
solver that we have adopted, CVODE, is writ-
ten in C. This gives the natural architecture of
the animator: the animator itself with the ob-
jects is written in Java and the engine of the
animator in C, connected through the Java
native interface (JNI). The two main layers of
the implementation are the animation system
and the CVODE layers.

3.1 The Animation System Layer

The system to be modeled is de�ned as a col-
lection of objects. Each object is described
by a hybrid automaton with its corresponding
variables. Every state of the hybrid automa-
ton has a set of equations and transitions.
The equations, conditions (guards) and as-
signments are given as logical/arithmetic ex-
pressions with ordinary mathematical func-
tions such as sine, cosine : : : , and also user
de�ned functions.
The evaluation of the object equations, con-

ditions and assignments is written in C. Each
animator object, i.e. a hybrid process, is as-
sociated with one Uppaal process that is an
abstraction of the hybrid part and a bridge
to Uppaal. The abstraction is modeled as
a stub process that performs the same syn-
chronizations as the hybrid counterpart. This

choice of implementation is motivated by the
desire to model-check the rest of the Uppaal
processes as a closed system. Figure 2 shows
the association of animator objects with Up-

paal automata.

uppaal

simulator

uppaal

plug-in

controller model environment model

Figure 2: Association between animator ob-
jects and Uppaal automata.

3.2 The CVODE Layer

At the heart of the animator we have used
the CVODE [9] solver for ordinary di�erential
equations (ODE's). This is a freely available
ODE solver written in C, but based on two
older solvers in Fortran.
The mathematical formulation of an initial

value ODE problem is

_x = f(t; x); x(t0) = x0; x 2 R
N : (1)

Note that the derivative is only �rst order.
Problems containing higher order di�erential
equations can be transformed to a system of
�rst order. When using CVODE one gets a
numerical solution to (1) as discrete values xn
at time points tn.
CVODE provides several di�erent methods

for solving ODE's, suitable for di�erent types
of problem. But since we aim at general us-
age of the animator engine we cannot assume
any certain properties of the system to solve.
Therefore we only use the full dense solver and
assume that the system is well behaved (non-
sti� in numerical analysis terminology). This
will give neither the most memory eÆcient nor
the best solution, but the most general.

4

We use one CVODE solver for the whole
system. This is set up and started with new
initial values at the beginning of each delay
transition. The calculations are performed
stepwise, one \tick" (Æ{transition) at a time.
After each tick all the conditions of the cur-
rent state are checked, if any is evaluated to
true one must be taken, continuing in the
same state is not possible. If an assignment
on the transition changes a variable the solver
must be reinitialized before the calculations
can continue.

It is worth pointing out that the tick length
Æ is independent of the internal step size used
by the ODE solver, the solver will automati-
cally choose an appropriate step size accord-
ing to the function calculated and acceptable
local error of the computation. From the
solvers point of view the tick intervals can be
seen as observation or sampling points.

After each tick the system variables are re-
turned to the Java side of the animator where
they are used either to update a graph or as
an input to move graphical objects.

Example, continued In �gure 3 a plot of
the system described in �gure 1 is shown. The
plot shows the height and the distance of the
bouncing ball. Not shown in the �gure is that
the touch sensitive
oor will create a signal
every time the ball hits the
oor, and that the
system will continue running until the time
between bounces is less than 1 second.

4 Conclusion

We have presented a real time animator for
hybrid automata. For a given hybrid au-
tomaton modeling a dynamical system and a
given time granularity representing sampling
frequency, the animator demonstrates a pos-
sible running of the system in real time, which
is a sequence of sampled transitions. The an-
imator has been implemented in Java and C
using CVODE, a software package for solving
di�erential equations. As future work, we aim

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18

20

Figure 3: Bouncing ball on touch sensitive

oor that continues until bounces are shorter
than 1 second

at a graphical user interface for editing and
showing moving graphical objects and plot-
ting curves. The graphical objects act on the
screen according to the di�erential equations
and synchronize with controllers described as
timed automata in Uppaal.

References

[1] Thomas A. Henzinger. The Theory of
Hybrid Automata. Proceedings of the
11th Annual IEEE Symposium on Logic
on Computer Science (LICS 96), pp. 278-
292.

[2] R. Alur and D.L. Dill. A Theory of
Timed Automata. Theoretical Computer
Science, 125:183-235,1994.

[3] J. Bengtsson, K.G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Uppaal: a
Tool-Suite for Automatic Veri�cation of
Real-time Systems. In R. Alur, T.A. Hen-
zinger, and E.D. Sontag, editors, Hybrid
Systems III, Lecture Notes in Computer
Science 1066, pages 232-243. Springer-
Verlag 1996.

5

[4] K�are J. Kristo�ersen, Kim G. Larsen,
Paul Pettersson and Carsten Weise. Ex-
perimental Batch Plant - VHS Case
Study 1 Using Timed Automata and
UPPAAL. Deliverable of EPRIT-LTR
Project 26270 VHS (Veri�cation of Hy-
bird Systems).

[5] Magnus Lindahl, Paul Pettersson and
Wang Yi Formal Design and Analysis
of a Gear Controller. In Proceedings of
the 4th International Workshop on Tools
and Algorithms for the Construction and
Analysis of Systems. Gulbenkian Foun-
dation, Lisbon, Portugal, 31 March - 2
April, 1998. LNCS 1384, pages 281-297,
Bernhard Ste�en (Ed.).

[6] Henrik L�onn and Paul Pettersson. For-
mal Veri�cation of a TDMA Protocol
Start-Up Mechanism. In Proceedings of
1997 IEEE Paci�c Rim International
Symposium on Fault-Tolerant Systems,
pages 235-242. Taipei, Taiwan, 15-16 De-
cember, 1997.

[7] Klaus Havelund, Arne Skou, Kim G.
Larsen and Kristian Lund. Formal Mod-
elling and Analysis of an Audio/Video
Protocol: An Industrial Case Study Us-
ing UPPAAL. In Proceedings of the 18th
IEEE Real-Time Systems Symposium,
pages 2-13. San Francisco, California,
USA, 3-5 December 1997.

[8] P.R. D'Argenio, J.-P. Katoen, T.C.
Ruys, and J. Tretmans. The bounded re-
transmission protocol must be on time!
In Proceedings of the 3rd International
Workshop on Tools and Algorithms for
the Construction and Analysis of Sys-
tems. Enschede, The Netherlands, April
1997. LNCS 1217, pages 416-431.

[9] S. Cohen and A. Hindmarsh. CVODE, a
Sti�/Nonsti� ODE Solver in C. Comput-
ers in Physics, 10(2):138-43, March-April
1996.

6

Abstract -- A framework for real-time traffic over a wireless
channel is proposed in this paper. The deadline dependent
coding (DDC) scheme makes use of modern tools from the
information theory. A combination of hybrid ARQ and soft
decision decoding is used to maximise the probability of
delivering information before a deadline. The strategy of DDC
is to combine different coding and decoding methods with
ARQ in order to fulfil the application requirements. These
requirements are formulated as two QoS parameters: deadline
(tDL) and probability for delivery before this deadline (Pd).
The application can negotiate these parameters with the DDC
protocol, thus creating a flexible scheme. It is still possible to
make probabilistic guarantees on the communication
mechanism.

Index Terms -- real-time, communication

I. INTRODUCTION

There is a tremendous development in the wireless
communication field. New technologies and products reach
the market at increasing rate. Some parts of this evolution
look very promising for industrial applications.
Cabling always caused the industry problems in terms of
costs and feasibility in general. Some applications even
demand a wireless access in order to function.
There have been some implementations of wireless
communication systems for industrial use. The problem of
guaranteeing real-time delivery has been solved in quite an
ad hoc manner. The consequence is that it is hard or
impossible to make any judgement of the security aspects.
In this paper we will describe a framework of working with
such unsecure transfer mechanisms as radio channels.
A real-time communication channel is characterised by the
fact that it is equally important to deliver in time, as it is to
deliver the correct data. In literature the real-time field often
mentions two classes of real-time systems; hard and soft
real-time systems. A hard real-time system is a system
where you cannot tolerate any late delivery of a result. In a
soft system on the other hand you can tolerate a late
delivery but with a degraded value to the system.
The uncertainty concerning security in wireless
transmission has prevented it from being used in hard real-
time systems.
If we have control over the communication channel
security, wireless communication can replace cables in a
vast number of applications. A class of industrial

applications is measurement and control on rotating parts.
Here it is obvious why wireless communication is
necessary.
Another application is communication to and from different
kind of vehicles in factory automation situations. In control
systems in general, cabling is something we would like to
replace.
In all these cases it is not clear if it is a hard – or a soft real-
time system. In general we would like to turn away from
the notion of hard and soft real-time systems as if there only
exist these two classes. In our framework we introduce a
probabilistic view of the communication mechanism. This
means it is no longer meaningful to talk about hard or soft
real-time systems. We rather talk about deadline for
delivery and the probability to succeed in delivering before
this deadline. We therefore introduce two parameters:
deadline (tDL) and probability for delivery (Pd). These two
parameters can be used for setting bounds on the
communication system, or stating requirements.
The values of these parameters can be derived by means of
classical safety analysis methods. In the process of making
requirement analysis of the system tDL and Pd is one result.
If this shall be a powerful tool in designing real-time
systems including wireless communication links, there must
be mechanism in the protocol for guaranteeing the
parameters.
If the two parameters are viewed as quality of service
parameters (QoS) of a communication mechanism it means
that a protocol layer can negotiate the parameters with an
underlying layer. If we give the protocol these properties
the communication system can guarantee the delivery based
on the parameters or reject the transmission request. If the
request is rejected the application have a possibility through
an exemption.
What we strive for is to maximise the probability that the
communication system will be able to accept the
transmission request. Aspects that must be considered is not
only static and dynamic channel properties like throughput
and error rate, but also multi-user interference.
In communication systems one can use several means for
increasing the probability of success. Different diversities
are such means. Time diversity is one and frequency
diversity is another. Both these tools are used in our
approach to guarantee tDL and Pd.
The main idea is that the tDL and Pd parameters are mapped
onto a retransmission protocol. The retransmission protocol

Deadline Dependent Coding - A Framework for
Wireless Real-Time Communication

Elisabeth Uhlemann and Per-Arne Wiberg

 Halmstad University, SE-301 18 Halmstad,

http://www.hh.se, {elisabeth.uhlemann, per-arne.wiberg}@ide.hh.se

plays the role of maximising the success rate and still being
able to reject requests that cannot be handled.
The protocol performs a series of transmissions with
different amount of redundant information, thus the closer
to the deadline the more information the receiver will have
in the decoding process. We denote this series of
transmissions a transmission suite.
In a multi-user radio system it is important to keep the
interference, from all acting nodes, down. This is one of the
reasons for trying to get the information across with as little
redundant information as possible, thus the lower amount of
redundant bits in the beginning of the transmission suite.
Closer to deadline it is more important to get the
information across than not interfering with others; so more
redundant information is needed.
In section II the background and the main ideas behind the
DDC scheme are described. A previous work by the authors
[1] evaluating a DDC scheme based on hard decision
decoding is discussed.
In this work a decoder based on a soft decision mechanism
will be evaluated. Different decoding techniques and
algorithms using soft decision decoding are examined in
section III. The application of these algorithms to the DDC
scheme is discussed.

II. BACKGROUND

A node communicating in real-time must not only remit the
correct information, but also deliver it within a certain limit
of time, the deadline. As a missed deadline can have
disastrous consequences, a real-time system must leave
some sort of performance guarantee, a quality of service.
When a hard real-time system is designed it is often
assumed that the deadline must be met with unity
probability. This is a situation that cannot be achieved with
any physical system. As the consequences for missing a
deadline is disastrous in a hard real-time system we want to
quantify the probability for this event.
The application designer states the probability as a
requirement. The communication mechanism then
transforms this request into actions in the protocol, using
models of the communication channel and different
communication methods.
We base our system on the Code Division Multiple Access
(CDMA) method, the Deadline Dependent Coding (DDC)
scheme, and linear block codes as explained below.

A. Media Access Method

Code Division Multiple Access (CDMA) uses orthogonal
codes in order to separate the different users and thereby
providing multiple access.
The advantage of CDMA in our case is that it rejects
multipath reception to some extent. Multipath reception is a
typical phenomenon in radio communication and is the
result of the message bouncing of obstacles and having to
travel different paths of different length. Thus, multiple
copies of the same message are received within a certain
time window. The radio channel also experiences fading,

usually with a Rayleigh distribution. By spreading the
messages to be sent, by means of orthogonal codes, they
use a wider frequency spectrum, thus reducing the fading
damages on a particular frequency band. CDMA also gives
instant access to the media, an important issue in a real-time
system, where time is a valuable resource. Less
administration is required when a new user is added as
opposed to TDMA for example. Naturally here is a limit to
the number of simultaneous users in a CDMA system, but it
still degenerates gracefully.

B. Deadline Dependent Coding

In [1] the Deadline Dependent Coding (DDC) scheme was
used. This coding scheme strives to meet the demands on
deadline (tDL) and probability of a correct delivery before
the deadline (Pd), and at the same time keeping the activity
factor of the network as low as possible. This is realised by
using hybrid ARQ [2], which means that both an error
correcting code and a retransmission scheme is used as
opposed to just an error detecting code and retransmissions.
The message to be transmitted is coded differently
depending on the deadline and the requested delivery
probability. In the beginning of the time window a high rate
coded message, i.e. few redundant bits, is transmitted, see
Fig. 1. If no acknowledge signal is received, the procedure
will be repeated until a certain retransmission deadline is
reached. When this occurs the receiver performs a bit-wise
majority voting procedure in order to restore the correct
message. If the receiver still fails to decode the result from
the majority voting procedure a low rate coded message, i.e.
a large number of redundant bits, will be sent as a last
attempt to get a correct delivery before deadline.

Fig. 1. The Deadline Dependent Coding (DDC)
Transmission Suite.

C. Linear Block Codes

The error correcting codes used in the DDC scheme are
Reed-Solomon codes. These codes are especially good at
correcting burst errors, which is a common error type in a
wireless system due to the fading.
Block codes introduce controlled amounts of redundancy
into a transmitted data stream, providing the receiver with
the ability to detect and correct errors caused by noise on

No. of
Transmissions

Time

Retransmission
Deadline

Deadline

 HC

 HC

 HC

 LC

the communication channel. The data stream is divided into
blocks and redundancy is added to each block
independently, thus producing a larger block.
Each code can be described by a generator matrix, which is
multiplied with the data bits to produce a code word, and a
parity check matrix, which when multiplied with the
received code word is zero if no errors are present.
The data source generates blocks of k messages symbols
taking values from the Galois Field, GF(q) [2]. Each
message block is then encoded, generating a code word of n
code word symbols, each symbol taking values from GF(q).
Consequently, the total amount of redundancy, r,
introduced is r = n - k. The code word symbols are then
sent to the modulator. We have used a BPSK modulation
technique and as Reed-Solomon codes are nonbinary, the
q–ary code word symbols must be translated into binary
channel symbols before transmission. The receiver recovers
the channel symbols from the demodulator and passes them
along to the translator for conversion back to q-ary code
word symbols. The received code word symbols are sent in
n-symbol blocks to the error control decoder. As the noisy
channel corrupts the modulated carrier, the symbol block
arriving at the error control decoder contains errors.

D. Hard Decision Decoding

To decode the Reed-Solomon codes a bounded distance
decoder was used in [1].
A bounded distance decoder will select the code word
closest in hamming distance [2] to the received code word if
and only if that distance is less than the bounded distance. If
there is no code word within the bounded distance a
decoder failure is declared. The hamming distance between
two code words is the number of positions in which they
differ. A bounded distance decoder will make an error
whenever the received code word is within the bounded
distance of another code word than that which was sent, see
Fig. 2.

Fig. 2. Bounded Distance Decoding. In the centre of each
sphere is a code word. P(F) is the probability of decoder
failure and P(E) the probability of decoder error.

The hamming distance implies hard decision decoding, i.e.
the decoder first determine whether it is a binary one or a
zero in a particular position of the received code word by
means of quantization and thereafter calculates the code
word distance based on the binary representation of the

code word. Decisions based directly on the unquantized
demodulator output, so-called soft decisions decoding,
requires a more complex decoder that can handle analog
inputs, but offers a significant performance improvement
over hard decision decoding.

III. SOFT DECISION DECODING OF LINEAR BLOCK CODES

Soft decision decoding is now introduced in the DDC
scheme in order to enhance the performance with respect to
probability of delivering before the deadline.
We have developed a toolbox with different decoding
methods which can used in the DDC framework. These
methods are based on a trellis representation of block code.
The trellis concept is explained in section III.A. Two
different decoding algorithms, the Viterbi and the BCJR
algorithm, are explained in section III.B and III.C
respectively. Both these decoding algorithms are used in
conjunction with the trellis. The Viterbi algorithm has a
lower complexity and is thus faster. The BCJR algorithm on
the other hand can be used in a turbo decoding scheme,
explained in section III.D, resulting in a faster and more
powerful decoding strategy. Turbo decoding, which is an
iterative decoding strategy, used in conjunction with ARQ
gives new possibilities for adapting the transmission suite
and the coding to a particular tDL and Pd request.
Which strategy to use in which situation to make the most
of the remaining time is what is to be examined and
simulated in the near future.

A. Trellis Representation of Linear Block Codes

For many years the algebraic decoding of linear block codes
was considered the only possible. Convolutional codes on
the other hand could be decoded using soft decision
decoding with the Viterbi algorithm on a trellis. The fact
that block codes also can be interpreted as trellises was first
described in [3] and later in [4].
Consider a binary (n,k) block code C over GF(q) with parity
check matrix, H. A message of k information bits is shifted
into the encoder and is encoded into a code word of n code
bits [5]. The code words in C are all the n-tuples x with
elements from GF(q), such that Hx=0. One n-bit code word
is shifted out on the channel each interval t. This procedure
can be viewed as a finite state machine, FSM, and C can be
represented by an n-section trellis diagram of length t. A
trellis is a directed graph consisting of n+1 states and
branches, see Fig. 3.
A branch in the i-th section of the trellis connects a state

)(11 ¦ ��
� ii CS to a state ¦� ii CS)(and is labeled with a

code bit ui that represents the encoder output at the bit

interval from time (i-1) to time i. A branch represents a
state transition. The branches diverging from the same state
have different labels. Each path from the initial state S1 to

the final state St is a code word in C.

P(F)P(E)

Fig. 3. Trellis for RM(8,4). Horizontal branches represent
the label binary zero.

The collection of nodes at time i is obtained from the nodes
at time (i-1) by:

,1,...,1,0;)()(1 � �
�

qmjSlS imii hD

¦�� i Cj)(
(1)

The transitions between the nodes at time i-1 and i are
labeled by the particular value of miu D .

The trellis representation described can be used for soft
decision decoding of the block codes in the DDC scheme
described in section II.C.

B. Decoding with Viterbi

A trellis can be used to perform soft decision decoding
based, no longer on the hamming distance between code
words, but the Euclidean distance. We simply search trough
the trellis looking for the sequence that minimizes the
Euclidean distance. However, we do not have to compute

the distance for all kq possible sequences. We can use the

Viterbi algorithm [6] to eliminate certain sequences that
merge in the trellis with other sequences that are much
closer to the received sequence. The Viterbi algorithm
works as follows:
Step 1) For block codes we know that we start at time t=0 in
the all zero state, so we initialize its metric to zero. We then
calculate the branch metric for the branches emerging from
the all zero state. Either Euclidean metric or hamming
metric may be used. The paths or survivors and their metric
are stored for each new state.
Step 2) Increase t by one. Compute the metric for all the
paths entering a state by computing the new branch metric
and adding that to the corresponding state metric of the
surviving state from the previous time step. For each step
with a merger, store the path with the largest metric, the
survivor, and its metric and discard all other paths.
Step 3) If t is smaller than the length of the trellis repeat
step 2, otherwise choose the all zero state as "winner" and
choose the corresponding sequence of survivors as output

sequence. It should be noted that it is only for block codes
that we know that we are in the all zero state in the end,
otherwise it would not be a code word.

C. Decoding with BCJR

The Viterbi algorithm is optimal in the sense that it
minimizes the word error probability by selecting the
maximum likelihood sequence (called maximum likelihood
sequence detection, MLSD). It does not, however, minimize
the symbol or bit error probability, by choosing in each case
the symbol or bit with the maximum aposteriori probability
(MAP). The complexity of a MAP decoder is significantly
higher and is, in general, not an alternative to MLSD since
in most applications a MLSD decoder and a MAP decoder
will have virtually identical performance. The main asset of
the MAP decoder is that it produces aposteriori information
bit probabilities, which can be used, in an iterative or
concatenated decoding scheme.
An algorithm that does perform MAP decoding is the
BCJR-algorithm [3]. The BCJR algorithm calculates the
aposteriori probabilities for each symbol using the trellis as
described below.
We define

};Pr{)(1
t

tt YmSm D (2)

as the joint probability of the partial received sequence
(11 ,...,

�tYY) and the state mSt

},Pr{)(1 mSYm ttt
�

WE (3)

as the conditional probability of the remaining sequence
(

W
YYt ,...,1�) excluding t given the state at time t is mSt ;

and
}|;Pr{),(1 mSYmSmm tttt c c

�
J (4)

as the joint conditional probability of tY and that the state

at time t is mSt , given that the state at time t-1 is

mSt c
�1 .

Step 1))(0 mD and)(mtE are initialized according to:

0for,0)(and,1)0(00 z mmDD (5)

and
0for,0)(and,1)0(z mm

WW
EE (6)

Step 2) As soon as tY is received, the decoder computes:

¦
�

 c

�
 c

1

0
11 };;Pr{)(

M

m

t
ttt YmSmSmD

¦
c

�
c�c

m
tt mmm),()(1 JD

(7)

and
¦ �c�c c

X
tttt XYRmmXqmmpmm),(),|()|(),(J (8)

where)|(mmpt c are the transition probabilities of the

trellis,),|(mmXqt c the output, where X belongs to some

finite discrete alphabet, and),(XYR t are the derived block

transition probabilities.

Step 3) Once the complete sequence tY1 has been received,

the decoder recursively computes:

¦
�

 c

��
 c

1

0
11 }|;Pr{)(

M

m
tttt mSYmSm WE

¦
c

��
c�c

m
tt mmm),()(11 JE

(9)

and the APP can then be calculated as:

�c c
�

�
};Pr{),(1

11
t

tt YmSmmV

 �c
��

},Pr{}|;Pr{ 11 mSYmSYmS ttttt
W

)(),()(1 mmmm ttt EJD �c�c
�

(10)

It should be noted that the BCJR has to go through the
trellis twice, once for calculating),(and)(1 mmm tt cc

�
JD

while the sequence is being received and once recursively
to calculate)(mtE and the APP.

D. Turbo Decoding

If some sort of concatenated coding scheme is used,
iterative or turbo decoding can be used. The idea with
iterative decoding is to divide the aposteriori probabilities,
obtained from the BCJR algorithm, into three parts, a priori
information, intrinsic information and most importantly
extrinsic information. The extrinsic information is the
indirect information you gain about a particular data bit
from the other bits in the concatenated scheme. This
extrinsic information is the fed back into the decoder as a
priori information and the information is decoding once
again, but this time with enhanced a priori knowledge, see
Fig. 4.

Fig. 4. Iterative (Turbo) Decoding

The advantage of turbo decoding is that one approaches the
optimality of the MAP decoder with each iteration, but a
much lower decoder complexity is required. The BCJR
algorithm used in an iterative decoding scheme is now an
option to the low complexity Viterbi algorithm.
In the DDC scheme the turbo decoding scheme may be
used in conjunction with ARQ. The receiver may, for
example, choose to do additional iterations on the already
received results instead of asking for a new transmission, if
the channel is sensitive to multi-user interference or
alternately, ask for more information while iterating the
already received data.

IV. CONCLUSIONS

We have put forward a framework for transmitting real-
time data over a radio channel based on the Quality of
Service parameters deadline (tDL) and probability for correct
delivery before deadline (Pd). Initial studies show a high
probability of delivering the data before deadline. In this
ongoing work we use a set of tools for handling
information, such as hybrid ARQ, trellis representation of
linear block codes, the Viterbi algorithm, the BCJR
algorithm and Turbo decoding. These methods are used in
conjunction with the deadline dependent coding (DDC)
scheme in order to maximise the probability of delivering a
message before a given deadline.
The DDC-protocol strategies for using the tools in different
situations are not yet studied in detail. As an example, when
high probability, Pd is required and the deadline, tDL is
small, two simultaneous actions can be taken: require more
information from the transmitter and simultaneously
performing some turbo decoding iterations for maximising
the probability of correctly decoding the data block before
deadline.
The required deadline and probability of delivery can be
negotiated by the application, thus forming a flexible
transmission mechanism. We believe that DDC might be a
way of making it possible to use wireless radio channels in
time- and safety critical applications.

V. REFERENCES

[1] H. Bengtsson, E. Uhlemann and P.-A. Wiberg, "Protocol for
wireless real-time systems", Proc. of the 11th Euromicro Conference
on Real Time Systems, York, England, UK, June 9-11, 1999.

[2] S. Lin and D. J. Costello, Jr., "Error Control Coding:
Fundamentals and Applications", Prentice-Hall, Inc. Englewood
Cliffs, New Jersey 07632, 1983.

[3] L. R. Bahl, J. Cocke, F.Jelinek, and J. Raviv, Optimal decoding of
linear codes for minimizing symbol error rate, IEEE Transaction on
Information Theory, vol. IT-20, pp. 284-287, Mar. 1974.

[4] J. K. Wolf, "Efficient maximum-likelihood decoding of linear
block codes using a trellis", IEEE Transaction of Information
Theory, vol. 24, pp. 76-80, 1978.

[5] S. Lin, T. Kasami, T. Fujiwara and M. Fossorier, Trellises and
Trellis-Based Decoding Algorithms for Linear Block Codes, Kluwer
Academic Publishers, 1998.

[6] G. D. Forney, Jr.,"The Viterbi Algorithm", Proceedings IEEE,
Vol. 61, pp. 268-278, 1973.

Soft-
In/Soft-Out
Decoder

Soft-
In/Soft-Out
Decoder

sequence
received

.Inf
prioriA

.. InfExt

.. InfExt

Soft
output at
the final
iteration

.Inf
prioriA

APP

APP

Empty page.

Wireless Networks for Manufacturing

Urban Bilstrup Per-Arne Wiberg
Centre for Computer Systems
Architecture, Halmstad University

Centre for Computer Systems
Architecture, Halmstad University

urban.bilstrup@cca.hh.se per-arne.wiberg@cca.hh.se

Abstract

Wireless technology’s like Bluetooth and W-LAN has
reached a tremendous attention the last years. The
manufacturing industry could probably make large
benefits from using these technologies. In this paper we
propose new definitions of QoS parameters to be able to
handle real-time traffic in wireless networks. Initial
assumptions regarding media access in a multihop
network is presented. Finally simulations showing that it
is possible to map the new QoS parameters on a routing
algorithm.

1. Introduction

The last years, tremendous steps have been taken in the
field of local wireless communication. Concepts like
Bluetooth, homeRF and W-LAN have been developed.
These technologies will be found in all kind of different
electronic devices, like mobile phones laptops, palmtops,
and watches. We have found that the industry can benefit
from using these technical advances in an industrial
manufacturing environment. Likely applications are;
mobile test-instruments, temporarily sensors, sensors
mounted at moving machine parts and autonomous robots.
The traffic in these types of systems is often delay
sensitive and/or error sensitive. Unfortunately are the
radio media known to be stochastic in its nature, causing
non-deterministic delay by re-transmissions or bit errors in
the messages.

A voice channel from a bas-station to a mobile phone,
this is a real-time communication link with delay
constraints on the delivery of a packet, but a voice channel
can tolerate a bit error rate (BER) of 0.1 %. If a sampled
data value from a sensor should be sent over a
communication link, such a high BER can not be
tolerated. Often when real-time communication is
discussed, the message delivers before deadline is the
quality parameter and that is true, as long as the media not
causing any message errors or any re-transmission is
preformed. When the message is totally destructed by
interference (forward error correction have not been able
to extract the information), then the only way of

recovering the information is re-transmission of the packet
or accepting that the information is lost.

If we want time and safety deterministic
communication over the radio media, we have to define
the quality of the media. The quality of a radio channel is
often defined by the bit error rate (BER). From this we
can define the probability of error free delivery (P) before
a deadline (D). These two parameters (P, D) can be used
for setting bounds on the communication system, or
stating requirements of a link or a path through a network.

The layers in a communication protocol stack are given
the requirements from the layer above. And the resources
from the layer below, each layer has the possibility to
optimize the resources given from below with the
requirements from the layer above. Each layer strives to
maximize the performance of the communication system
with respect to D and P.

2. Link management

Meeting quality of service (QoS) guaranties over one
radio link in a real-time communication system is
fundamental, but because of the insecure radio media
adaptation to the physical environment is necessary.
Aspects considered of a radio media is not static like bit
error rate of wired link, the error rate is variable
depending on the fading radio signal, multi-user
interference, interference caused from certain types of
equipment, like microwave ovens and arc welders.
Different types of diversity can be introduced to combat
the interference, examples of diversity methods are; time
diversity, space diversity, code diversity or simply
increase the signal power. But all these methods have their
drawback; our aim is to dynamically find the most
efficient method or combination of methods to maximize
the performance over a link or a path over a number of
links through a network. At the same time minimizing the
multi-user interference (signal power) to not reduce the
system performance due to the requirements of the QoS
parameters P and D for the link, one method with code
and time diversity is presented in [2].

3. Media access

If a large number of units should be able to
communicate with each other, media access methods must
be used. Deterministic media access methods like TDMA
and polling schemes does not scale with increased number
of units, the bandwidth must be reused on a very local
basis. Today this is often done with bas-stations, dividing
an operation area into cells, each unit in the cell is
accessed by the base station according to a TDMA
schedule or different units are given different frequencies
(FDMA). This gives a static infrastructure, but when the
number of units continue to increase the size of the cell
will get smaller and smaller and the number of base-
stations increases and the wired backbone will get more
and more complex. There are already today industries that
are considering putting a Bluetooth [1] units in their
products in order to down load software wireless in the
factory. Sooner or later there will be large amounts of
such units per 100 square meters that wants to connect to
access points.

One possible way out of this is the use of ad-hoc
networks forming clusters depending on the density of
units, the units in a cluster adapting their signal power to
physical size of a cluster minimizing the multi-users
interference. This is possible if each cluster is able to
perform the media access function of the base-station and
repeating a message through the cluster to neighbor
clusters until an access point (base station) to the wired
network is reached by the message. The Bluetooth [1]
standard provide the possibility creating these clusters.
The standard provides both synchronous messages and
asynchronous messages inside a cluster, very close to the
function of a field bus [15], synchronous message are time
triggered and the asynchronous messages are event
triggered. Also inter cluster communication is possible but
there is however no support for inter cluster synchronous
messages. The exchange between two clusters will be
done through a gateway unit, belonging to two clusters.
This unit will experience a scheduling problem to which
clusters it should belong to at the moment. The standard
has no support for routing a message through a network of
clusters. Is it possible to match the QoS parameters P and
D to each cluster and solving media access scheduling at
the gateway units between two cluster, then it should be
possible to route a message through a network of clusters.

Each cluster schedule the traffic inside the cluster, a
synchronous channel (time-triggered) passing through the
cluster is scheduled statically as virtual circuit. Event-
triggered messages are scheduled dynamically as
asynchronous traffic. A message must be routed either to
an access point to the wired backbone or to a destination
in the local area.

4. Network layer simulations

In this section an on-going work on mapping the QoS
parameters D and P on a routing protocol for a wireless
real-time multihop network is described. Multihop
networks [3,4,5,6,7] means that a packet is able to travel
longer distance then the nodes radio range (single hop), by
using multiple hops over other nodes.

In this work no clustering methode is used, forcing us
to use a non-deterministic media access method,
combining direct sequence spread spectrum (DSSS) with
carrier sense multiple access (CSMA). This is not a time
deterministic media access, because of the collisions that
can happen at the receiver, but as mentioned in previous
chapter the cluster method will be implemented and then
asynchronous messages are possible through the network.
The interesting part so far is the behavior of the routing
algorithms and the possibility to match the parameters P
and D to an insecure media. No access points to a wired
network are yet present which will probably be the
bottleneck points of the local multihop network.

The advantage of a wireless multihop networks, is that
it does not use an infrastructure like the base station
networks. The multihop network does not have any
critical nodes that the network survival is dependent upon.
A transmitting node only has to reach its nearest
neighbors, instead of covering the whole area; this causes
less interference to the surrounding traffic. Multihop
networks gives a local and distributed view of the
network, and probably the most intense traffic are local in
an industrial environment.

In a wireless network, a node has radio connection with
multiple nodes. The environment is mobile and the radio
link between nodes is subject to frequent changes,
therefore the flexibility of the routing is very important.

The higher layers above the network layer is able to
negotiate with the network layer protocol about the QoS
parameters.

The higher layer asks the network layer protocol about
the possibility to send a packet over the network with a
deadline (D). The network protocol answers with a P that
tells the about the possibility for a packet to reach the
destination nod before D expires. Then the higher layers is
able to reconsider D and try again until an agreement
about the QoS parameters D and P is reached, and then
the transmission starts.

 Weights (W) are assigned to each radio connection
(links) between neighbor nodes. The value of W reflects
the QoS of a link between two nodes. In this work, the
link weight W is the time between a node generating or
receiving a packet until it is received correct by next
destination node. Other properties can be mapped to W

such as: bit error rate (BER), probability of error free
delivery or number of hops.

Information is stored in every node about W for each
outgoing link. The update mechanism [8] below is used to
update W; this gives a moderate adaptation of W value on
each link. The learning rate η moderates the update of W,
to combat frequent link weight fluctuations (ping pong
effects between two links)

)(WWupdateWWnew −+= η

The routing algorithm tries to find a path through the
network; it calculates the sum of the weights (Wt) for
different paths from source to destination. The path with
the best Wt is chosen, this path gives the highest
probability for a packet to reach the destination node,
before deadline expires.

The routing algorithm in use at the moment is the
highly dynamic Destination-Sequenced Distance-Vector
routing algorithm (DSDV) [9]. DSDV is more distributed
and gives less routing control overhead than the more
centralized link-state method [10], which is another well-
known routing algorithm.

The calculation of P given Wt and D, is one of the
most critical parts of this protocol. At a source node a
routing table gives Wt and the next node address along the
path to the destination, D is given by the application. P is
then retrieved from a look-up table with the index D and
Wt. The look-up table is developed using statistics from
simulations, modeling the distribution of P in respect to D
and Wt.

4.1 Simulations

A discrete event, network simulator (NESU)[12] has
been developed and used for the performance evaluation.
NESU is a flexible platform, designed for evaluating and
comparing network routing algorithms. All the nodes have
their individual parameters, such as speed, trajectory, and
packet intensity etc. The nodes can move in a rectangular
region (in this case 60 x 60 m) according to a given
motion model. All nodes have a fixed radio transmitting
power, which in our case gives a transmitting radius about
20 m, depending on the interference in the area. The radio
channel model [2,13] determines the radio connection
between two nodes, the BER is calculated for every
packet sent over the link. If the BER ratio is over a
specified threshold, the packet is considered destroyed.

A 25-node mobile multihop network has been
simulated, using the following simulation parameters. The
radio transmitter/receiver has been assumed the PRISM
chipset [14]. The PRISM chipset gives a bandwidth of

1Mbit/s and a transmitting power of 63 mw, it is based on
DSSS multiplexing. The nodes move with a speed ranging
from 0 to 3 m/s. The time between two data packets are
generated at each node, is exponential distributed. If there
is no possible path between source and destination the
packet is deleted and counted as destroyed, a data packet
is 3000 bits long and takes 3ms to send one hop.

In this, ongoing work initial simulations have shown
following results: When the node motion is Brownian,
there is a possibility that the nodes are grouped into
different clusters without any connections. Due to this
effect, only 85% of correct arrival are reached even if the
deadline approaches infinity, this can be considered by
power control inside a cluster where the nodes control
their transmitting power according to the density of nodes.

We have also investigated a more likely motion model
for the nodes, where the nodes are moving in a more
predictable way. The intense traffic with small deadlines
(20ms, average 1,5 hop) is local, typically this can be a
moving smart sensor sampling a value on a large machine
sending the value to a smart actuator. An autonomous
robot traveling around the factory delivering things at
different machines, has a less intense but more ”global”
traffic with longer deadline (50ms, average 2,5 hop).
Some nodes are not mobile at all they may be control
computers sampling data from sensors and sending data to
actuators. In a more planed environment like this, about
95% of the packets arrive correct before their deadline is
expired. Multi-user interference in this case causes packet
loss. Collisions occur when two nodes tries to send to the
same node at the same time or when a node is busy
transmitting and another nod tries to reach the busy node.
These collisions are very time consuming and the deadline
expires sometimes, because of re-transmission.

Ppredicted Preal

0.3 0.34
0.4 0.39
0.5 0.50
0.6 0.62
0.7 0.73
0.8 0.82
0.9 0.89
1.0 0.97

Table 1: Real probability Vs predicted probability
for a message path through the network before
deadline is expired.

Although the degree of correct arrival have not been
the best depending on the insecure radio media and
collisions, the prediction of a packets correct arrival is
possible (Table1). This is the key to map the parameters P
and D to a multihop network. We can say that a message
has probability P of reaching its destination before the
deadline is expired.

5. Conclusions

Industries have a great interest of using the wireless
technical advances in an industrial manufacturing
environment. But the problem is that today, are the
definitions for real-time communication traffic not
suitable for the radio media.

The ability to say that a message has a probability of
correct delivery to destination before deadline gives the
opportunity to discuss real-time communication over the
wireless media.

The multihop network simulations show that the one
most important factor for delivering a packet in time is the
control of collisions in receiving nodes, which possible
can be done with clusters and another media access
protocol then the combining of DSSS and CSMA.

Another important guarantee is that every node in the
network has a path to the other nodes. This problem can
be solved with clusters that adapt their physical size to the
density of nodes. The fact that multihop network is
scaleable with respect to bandwidth when new nodes are
added is very much in favor of these network.

6. Future work

We will focus our future work on refining the protocol
and dealing with the receiving collision problem, this will
be done by introducing the method of clustering nodes
and use a time deterministic media access scheme inside
each cluster.

 The scheduling protocol for the gateway nodes
between two clusters must be dealt with. And the
parameters P and D must be mapped on this schedule.

One other thing that should be looked into are the use
of power control to control the physical cluster size with
respect to the density of nodes.

7. References

[1] J. Haartsen, “Bluetooth – The universal radio interface for ad
hoc, wireless connectivity“, Ericsson Review, No. 3, 1998, pp.
110-117.

[2] H. Bengtsson E. Uhlemann and P. Wiberg “Protocol for
Wireless Real-Time Systems”, Proc. ECRTS’99, York , UK,
June. 9-11 1999.

[3] J. Jubin and J. D Craighill, ”The DARPA packet radio
network protocol”, Proc IEEE, Jan. 1997.

[4] T. Chen, J. T. Tsai, and M. Gerla, "QoS Routing
Performance in Multihop, Multimedia, Wireless Networks", in
Proc. IEEE ICUP97 part2, 1997, pp. 557-451.

[5] C. Cheng and R. Riley, “A loop-free extended bellman-ford
routing protocol without bouncing effect”, In Proc. Of ACM
SIGCOMM Conf., 1989.

[6] D. B Johnson, ”Routing in Ad Hoc Networks of Mobile
Hosts”, Proceedings of the IEEE Workshop on Mobile
Computing and Applications, Dec. 1994.

[7] V.D. Park and M.S. Corson, “A Highly Adaptive Distributed
Routing Algorithm for Mobile Wireless Networks”, in Proc.
IEEE INFOCOM’97, Kobe, Japan, Apr. 7-11 1997.

[8] S. Kumar, ”Confidence based Dual Reinforcement Q-
Routing: an On-line Adaptive Network Routing Algorithm”,
Report AI98-267 The University of Texas at Austin, Artificial
Intelligence Laboratory, May. 1998.

[9] C. E. Perkins and P. Bhagwat, ”Highly Dynamic
Destination-Sequenced Distance-Vector Routing (DSDV) for
Mobile Computers”, Proc. of ACM SIGCOMM , Aug. 1994, pp.
234-244.

[10] A.S. Tanenbaum, Computer Networks, Third Edition,
Prentice Hall PTR, Upper Saddle River, New Jersey, USA,
1996, ISBN 0-13-349945-6.

[11] R.C. Dixon, Spread spectrum systems, third edition, John
Wiley & Sons inc., USA, 1994, ISBN 0-471-59342-7

[12] S. Ackmer U. Bilstrup L. Svalmark, “Routing Protocol for
Wireless Real-Time Multihop Network”, technical report CCA-
9906, Halmstad University, Jan. 1999.

[13] S.Y. Seidel, “914 MHz Path Loss Prediction Models for
Indoor Wireless Communication in Multifloored Buildings”,
IEEE Transactions on Antennas and Propagation, vol 40, NO.
2, Feb. 1992.

[14] Advanced Micro Device, AM79C930, Advanced Micro
Device Inc. 1995.

[15] J.R. Pimentel, Communication Networks for
Manufactoring, first edition, Prentice-Hall inc., USA, 1990,
ISBN 0-13-154402-0

Empty page.

Position Statement for:

Methods for integration of Heterogeneous Real-Time Services
into High-Performance Networks

Carl Bergenhem1

CC-lab, School of information science, computer- and electrical engineering, Halmstad
University, Box 823, S-301 18 Halmstad, Sweden email: carl.bergenhem@ide.hh.se,

Phone: +46 (0)35 167483, Fax: +46 (0)35 120348

1. Introduction:

The work described in this statement is to be performed within the ARTES project with
the same name as above. The project has been active since January 2000. The described
areas of focus only account for a part of the ARTES project. This work package,
together with the survey of research and industrial applications, accounts for the work
to be done during the first year.

Current work is based on previous work reported in [1 - 5]. The network, referred to as
control channel based fibre ribbon ring (CC-FPR), is based on fibre ribbon links
connected together in a ring topology, see fig. 1. Each link is unidirectional and consists
of 10 fibres. A medium access method referred to here as one cycle method (OCM) was
proposed in [1,2]. The medium access method together with the network provides
support for, among other services, slot reservation and spatial reuse of slots. The
medium access method uses a separate fibre or channel for sending network arbitration
information between the nodes in the network. This implies that there is no arbitration
overhead sent over the data channel. The medium access method supports both fair
sharing and reservation of bandwidth.

The future work proposed in this report is aimed at an increased understanding of how
different classes of real-time traffic (hard and soft traffic) affect each other in a CC-FPR
network. Simulation of the network loading will be used as a method to gather results.
We believe that this study also will result in a more general understanding, or at least
directions for further study, in the area of integrated support for hard and soft real-time
traffic.

Previous work [3, 4] has shown that it is possible to extend the functionality of the
network with functions for parallel processing. This support may increase performance
in parallel processing applications and will be further studied and analysed with focus
on real-time support. Again, simulation will account for a large part of the results

1A large portion of this document is copied from the ARTES project application authored by Magnus
Jonsson and Bertil Svensson

In [5] a new medium access method referred to as the two cycle method (TCM) was
proposed in order to get better support for heterogeneous real-time traffic. Its properties
will be analysed and compared to the original method OCM by making simulations. A
comparative study will be performed based on simulations of both OCM and TCM.
Conclusions will be drawn as to the two methods suitability for different applications.

Lastly a case study of current and emerging real-time communication methods and
network technologies will be performed in parallel with this first-year work-package.
Possible target applications, which future work may be directed towards, will be
identified.

2. Main areas of focus (work package)

2.1. Extra functionality
In the studied network a separate fibre is used for distributing network arbitration
information. This control fibre may also be used for “special services”; sending extra
information such as barrier synchronisation, global reduction, acknowledge of packets
and flow control. Services such as global reduction and barrier synchronisation, are
useful in parallel processing and may increase performance. Some research has already
been published [3, 4]. The extended functionality of the control channel will be further
investigated and the results of it studied, especially in terms of real-time support.
Implications of its use, latency of packet acknowledgement etc. will also be studied.

Node 3Node M

Node 4

Node 2

Node 5

Node 1

=Clock, Control

=Data

Fig 1. The control channel based fibre ribbon
pipeline ring network.

2.2. A new medium access method
A proposition of a new medium access method, two-cycle method (TCM), was reported
in [5]. The method has not yet been presented or published at an international
conference. TCM differs from the original method, OCM, in that the nodes in the
network may vote for access to slots. A control package is sent twice around the ring as
opposed to once in OCM. This gives some drawbacks such as latency but also, as
further research may prove, advantages. For example since it is always the message
with highest priority, e.g., earliest deadline that gets to reserve a slot, one can regard the
TCM method as to provide global optimisation of message timing constraints. How to
best make use of this will be investigated. The integration with already supportedd real-
time services in OCM will also be investigated. Simulations of TCM will be carried out,
see below. Average- and worst case analysis of the method will confirm the simulation
results.

2.3. A study and simulation of network load
A study of the implications of combining hard real-time traffic with soft quality of
service (QoS) constrained real-time traffic in a ring network, such as previously studied,
will be conducted. The motivation for this study is to see how useful the network
capacity, remaining after a network already has a certain load of hard real-time (HRT)
traffic, is to soft real-time (SRT) traffic. In other words, the capacity overhead required
in a network to successfully perform certain tasks will be investigated? This knowledge
is useful when designing networks and making capacity planning and performance
predictions.

The questions posed in the part of the research will be answered partly by doing
simulations. Statistical models of hard real-time, QoS constrained soft real-time will be
defined together with a definition of the network, see fig. 2. These parameters may be
decided by studying similar work and by using common sense.

The simulation will be executed with the notion that the HRT load will affect the
possible load of SRT traffic and that it may not be possible to schedule traffic to 100%
of maximum network capacity.

Fig 2. The model used for simulation

100%

Hard
Load

QoS SRT
(Stat. model)

Reject Rate

HRT
(Stat.

model)

Questions that simulation will try to answer:
• How does a certain load level of hard traffic effect incoming soft traffic, e.g. reject

rate, jitter etc.?
• How much QoS SRT traffic the network can be loaded with at a certain HRT load

level.
• Can an optimum balance of traffic be found?

Simulations will be carried out with varying parameters on a basic network
configuration. The performance of TCM and OCM will be evaluated and compared.
Conclusions may be drawn as to the suitability of the two methods in different
situations. A metric for best describing network load will be chosen or developed.

2.4. Case study and future work
A survey of state of the art communication networks will be conducted in parallel to the
rest of the work. This will also give an opportunity to study emerging industrial
applications with high communications demands and will thus give guidelines for
future work. In the survey it will thus be possible to identify applications that may draw
benefit from the technology conceived within the scope of this work. Further research
efforts may be directed towards studying particular applications. Examples of systems
that have previously been studied are radar signal processing systems [6].

3. Summary
CC-FPR, the network that this research is based on has in previous work demonstrated
promising properties of determinism etc. In this work proposal, we present ideas for
further investigation and improvements towards integration of heterogeneous real-time
services. We believe that the simulations and study will give indications of how to best
integrate soft and hard real-time communication in high performance networks.

4. References
[1] Jonsson, M., "Control-channel based fiber-ribbon pipeline ring network," Proc.
Massively Parallel Processing using Optical Interconnections (MPPOI'98), Las Vegas,
NV, USA, June 15-17, 1998, pp. 158-165.

[2] M. Jonsson, “Two fiber-ribbon ring networks for parallel and distributed computing
systems,” Optical Engineering, vol. 37, no. 12, pp. 3196-3204, Dec. 1998.

[3] M. Jonsson, C. Bergenhem, and J. Olsson, "Fiber-ribbon ring network with services
for parallel processing and distributed real-time systems," Proc. ISCA 12th
International Conference on Parallel and Distributed Computing Systems (PDCS-99),
Fort Lauderdale, FL, USA, Aug. 18-20, 1999, pp. 94-101.

[4] M. Jonsson, C. Bergenhem, and J. Olsson, "Fiber-ribbon ring network with services
for parallel processing and distributed real-time systems," Proc. SNART'99 Real-Time
Systems Conference, Linköping, Sweden, Aug. 24-25, 1999, pp. 46-54.

[5] C. Bergenhem and J. Olsson, “Protocol suite and demonstrator for a high
performance real-time network,” Master thesis, Centre for Computer Architecture
(CCA), Halmstad University, Sweden, Jan. 1999.

[6] M. Taveniku, A. Åhlander, M. Jonsson, and B. Svensson, "The VEGA moderately
parallel MIMD, moderately parallel SIMD, architecture for high performance array
signal processing," Proc. 12th International Parallel Processing Symposium & 9th
Symposium on Parallel and Distributed Processing (IPPS/SPDP’98), Orlando, FL,
USA, Mar. 30 - Apr. 3, 1998, pp. 226-232.

Empty page.

Research Issues on System Architecture for Mechatronics Systems

De-jiu Chen
Royal Institute of Technology, Mechatronics Laboratory, Department of Machine Design,

100 44 Stockholm, Sweden
chen@damek.kth.se

Abstract: The ARTES project no: A4-9805 aims to progress the state of the art on software
architectures for complex control systems. A specific goal of the project is to provide a system
architecture suitable for scalable, maintainable and reconfigurable mechatronics systems controlled
by an embedded distributed computer system. This are requirements found by the legged locomotion
systems that are being studied and used as a case study within the project. In this report, we briefly
introduce the system characteristics and give introductory knowledge on the key research issues
around system architecture.

Background
A mechatronics system embodies technologies
from several engineering disciplines in the
domains of mechanics, automatic control,
computer software and hardware. In such a
system, the major portion of system functionality
is realized by adopting automatic control through
computer software and hardware, as well as a
variety of sensors and actuators. As this
approach promises enhanced functionality,
performance and flexibility, more and more
traditional mechanical solutions in modern
machinery are being improved or replaced by the
mechatronics solutions. For example, ABS
(Antilock Brake Systems) for the performance of
the breaking system of a car or the x-by-wire
flight controls in a modern passenger airplane.

There is inherent complexity in this
multidisciplinary approach. First, the complexity
arises from the multidimensional
interdependency across the involved domain
technologies (i.e., mechanics, electronics,
automatic control, computer software and
hardware). To complete a specific task or to
satisfy a desired non-functional quality attributes
(e.g., versatility, modifiability, maintainability,
etc.), this interdependency needs to be correctly
established and handled in the system. Second,
the software makes the system structure and
behavior less comprehensible and controllable.
This is caused by the lack of physical constraints
and the large "state-space" of software (e.g., the
fine-grained codes and their complex
interrelations). In contrast to the physical
constraints in other engineering disciplines, there
are only storage and (temporal) performance
constraints on software. This gives tremendous
design freedom of software; however, also
makes the design more error-prone. As a

mechatronics system has physical impact on its
environment, software failure is often
intolerable.

To facilitate the development and maintenance
of the system, a variety of measures managing
the complexity are needed. At this point,
managing the software complexity becomes
extremely important for the system functionality
and dependability. In the following sections, we
will list some key concepts on how to handle the
complexity with the focus on software. The aim
is to illustrate some important research issues
around the system architecture.

An architecture-based design
approach
To handle the complexity, the design must
progress in a top-down and evolutionary manner.
In a systematic top-down approach, the system is
hierarchically decomposed into lower level
constituent units and their relationships. With the
abstractions, we can concentrate on the system
temporal and spatial structures, which in turn
determine the essential properties of the system.
For software, it means that programming-in-the-
large and the programming-in-the-small issues
are separated. Meanwhile, the design should also
progress evolutionarily in the sense that we map
requirements on the system decompositions and
remedy any inconsistency as the design goes on.

The above mentioned design approach is an
architecture-based design approach. Although no
consensus on the definition of system
architecture has been reached today, we believe
architecture is a high-level (i.e., abstract)
representation of the logical, temporal and spatial
structures of the system. It shows how the
system properties in terms of functional and non-

functional quality attributes are determined by its
constituent units and their relations. Working
concretely with architecture for the system
design implies the following issues.

System architectural description
One of the most important research issues
around system architecture is the description of
the system abstractions, i.e. system architectural
description. It is the basis for all design
activities, e.g., comprehension, communication
quality prediction, trade-off, decision-making,
manipulation, modification, reuses, etc.

The most fundamental requirement on the
description is completeness in the sense that the
described information should be sufficient for
the purposes. For mechatronics software, the
description should at least include the functional
and behavioral/temporal aspects of the system.
To facilitate the comprehension, the description
should be based on the principle of separation-
of-concerns. It means that the description should
be given in multiple hierarchical layers and
orthogonal views (e.g., the structural, functional,
behavior, and reliability views, etc.).

The research of architectural description for
mechatronics systems should focus on
elaborating the needed information for the
design, as well as integrating and improving
legacy modeling techniques.

Software components
In practice, no design proceeds in a purely top-
down manner. During the design, the designers
have to use knowledge relating to the system
implementation. Otherwise, a semantic gap
between an architecture and its implementation
may arise. For instance, they may consider
similar control algorithms and software codes for
quality prediction, and available off-the-shelf
components (e.g., sensors, microprocessors,
communication bus system, real-time operating
system, drive units and actuators, etc.) for
implementation. Thus, accessing bottom-up
information is unavoidable in a top-down design
approach and has impacts on the system
architecture.

Fundamentally, a software component is a
constituent unit of a software system. As the
system exists in different hierarchical layers,
there are also different classes of software
components. For the real-time software, we may

consider the software hierarchy runs from the
automatic control solutions at the top level to the
software implementation at the lower level (e.g.,
class and object in an Object-Oriented language).
The constituent parts in these layers have
multiple interrelations established by the adopted
automatic control logic (e.g., required control
data flow, desired timing and synchronization),
the chosen software implementation (e.g., time
consumption and shared timing resource), and
the shared hardware resources (e.g., I/O,
memory, processor). Thus, to support the design
and to achieve flexibility and reuse, the interface
of a software component should provide
sufficient information so that these multiple
interrelations can be established properly.

Some answers on how to classify the software
components in the system and how to define
their logical, structural and temporal contexts, as
well as the required implementation resources
and services, should be provided by the research.

Architectural principles and styles
During the design, the designers also use the
knowledge from the engineering background
(i.e., evaluation criteria, and mature solutions on
partitioning/structuring, allocating/distributing,
scheduling, etc.). Architectural principles and
styles formulate the essential features of existing
mature solutions of software, which can be
compared with the principles and mature
solutions in other well-established engineering
domains. Under the circumstances, it is easier to
reuse the existing solutions, to elicit hidden
requirements in time, and to provide early
quality predictions for the domain systems. Thus,
research efforts are needed to identify and
categorize useful architectural principles and
styles.

Conclusions
To illustrate the key research issues around
system architecture, we have briefly introduced
the system characteristics and the architecture
based system design approach. The fundamental
problems needs to be tackled by the research are:
what constitute the system software and how
they interact with each other; how the system
architectural description should be provided so
that comprehension and analyses are facilitated;
how to make software engineering more mature
and constrained. A summarization of the project
status can be found in the project homepage
(http://www.damek.kth.se/~chen.html).

)RUPDO�DQG�3UREDELOLVWLF�$UJXPHQWV�IRU�&RPSRQHQW�5HXVH�LQ
6DIHW\�&ULWLFDO�5HDO�7LPH�6\VWHPV

$EVWUDFW�� In this paper we are going to introduce a novel framework for formal and probabilistic
arguments of component reuse in safety-critical real-time systems. Using both quantitative and qualitative
descriptions of component attributes and assumptions about the environment, we can relate input-output
domains, temporal characteristics, fault hypotheses, reliability levels, and task models. Using these
quantitative and qualitative attributes we can deem if a component can be reused or not. We can also deem
how much and which subsets, of say input-output domains, that need additional functional and safety
verification. This framework will give formal and probabilistic arguments for reuse of components in
safety-critical real-time systems.

�� ,QWURGXFWLRQ
The introduction of computers into safety-critical systems lays a heavy burden on the software
designers. The public and the legislators demand reliable and safe computer systems, equal to or
better than the mechanical or electromechanical parts they replace. The designers must have a
thorough understanding of the system and more accurate software design and verification
techniques than have usually been deemed necessary for software development. However, since
computer related problems, relating to safety and reliability, have just recently been of any
concern for engineers, there exists no holistic engineering knowledge of how to construct safe
and reliable computer based systems. There exist only tidbits of knowledge and no silver bullets
that can handle everything. Some people do nonetheless, with an almost religious glee, decree
that their method, principle or programming language handles or kills all werewolves (bugs) [8].

In order to be able to design software that is as safe and reliable as the mechanical or
electromechanical parts it replaces, and to reduce the time to market (TTM) focus of current
research and practice has turned to the reuse of proven software components. The components
can be arbitrary small or large in terms of functionality. The basic idea is that the system designer
should be able to procure (or reuse) software components in the same manner as hardware
components can be acquired. Hardware component like nuts, bolts, CPUs, memory, A/D
converters can be procured based on functionality, running conditions (environment) and their
reliability. Hardware components are typically divided into two classes, commercial and military
grade components, where military grade electronics can withstand greater temperature spans,
handle shock and humidity better than commercial components. However, for software it is not so
easy to make the same classification since the metrics of software are not based on physical
attributes, but rather on its design, which is unique for each new design. In fact, software has no
physical restrictions what so ever, like mass, size, number of components. Software has neither
structure nor function related attributes like strength, density and form. The sole physical entity
that can be modeled and measured by software engineers is WLPH. With but a few exceptions all
safety critical systems are also real-time systems.

H. Thane and A. Wall

Mälardalen Real-Time research Center (MRTC)

Mälardalen University, Västerås, Sweden

{awl,hte}@mdh.se

In this paper we are going to introduce a framework for formal and probabilistic arguments of
component reuse in safety-critical real-time systems, based on the restrictions that time, and the
component contracts impose on the system behavior.

���� :KDW�DUH�VRIWZDUH�FRPSRQHQWV"
There exists yet no commonly agreed upon definition of what constitutes a software component.
Most people do however agree that the concept of components is the idea of reusable software
entities. In this paper, for the sake of enabling analysis of components in safety-critical real-time
systems we do not only define a component in terms of software. A component must also be well
documented in terms of design documentation and preferably also in terms of test documents, and
in evidence of the reliability achieved.

We have chosen a hierarchical/recursive definition of components in real-time systems (RTS).
The smallest components are the actual assembly instructions provided by the processor, some
way up in the hierarchy a component is a task or process. A task is a unit that usually performs a
single calculation, for instance calculating a new process value based on measurements collected
by another task. On the next level, several tasks can work together in a transaction where the
transaction itself is a component. A transaction is a set of functionally related and cooperating
tasks, e.g., sample-calculate-actuate loops in control systems. The relationship between the
cooperating tasks with respect to precedence (execution order), interactions (data-flow), and a
period time typically define each transaction.

All tasks and transactions together make up a software system that also might be a component
from the complete systems point of view. As an example, the software controlling the air bag in a
car could be considered as a component from the air bags point of view.

As this definition eventually forces us to define the universe as a software component, we have to
stop the recursion somewhere. At least on the level of abstraction in this paper, the operating
system is not considered a component. We like to think of the operating system as the
infrastructure for the computer system. It provides the necessary services for the software but it
also restricts the possibilities of implementing the requirements put upon tasks and transactions.

)LJXUH����+LHUDUFKLFDO�GHILQLWLRQ�RI�FRPSRQHQWV�IRU�UHDO�WLPH�V\VWHPV�

task

transactions

software system

software and

�� &RPSRQHQW�FRQWUDFWV
A contract is a specification for a component in terms of what functionality a component
provides. Furthermore, the contract states the conditions under which the specified functionality
works. In other words, a contract of a software component is a statement saying that: provided
that certain assumptions are fulfilled, the specified functionality will be provided and error free.
Such contracts can be described with arbitrary formality. The more formal the contracts are, the
richer possibilities of verifying that the component will work correctly in a system, or that the
software system will work correctly with the new component as a part of it. In this paper we will
settle for a functional description in some natural language although we could use some formal
temporal language such as timed automata [1]. However, the main focus in this paper is on the
specific demands put on component contracts in safety-critical real-time systems.

As the temporal behavior is of great importance for the correctness of real-time systems, the
temporal assumptions have to be specified in the contracts. The temporal attributes make up the
task model that is used when formally verifying the temporal behavior of the system, i.e., if the
system is schedulable or not. However, there exist two different task models for tasks in a real-
time system, one that exists on the design level and one that is actually provided by the given
infrastructure. Typically, the design task model consists of end-to-end deadlines for transaction,
jitter constraints, etc which is realized in the implementation using the temporal attributes at hand
in the infrastructure. As a consequence, we will divide the contract into two different main parts,
the design task model and the infrastructure task model.

���� 7KH�GHVLJQ�WDVN�PRGHO
As discussed in the introduction, our view on components in real-time systems is that they are
either single tasks or a transaction consisting of tasks and transactions. Thus, the contract must
specify whether or not the component is a transaction or not. If the component is indeed a
transaction it has a precedence relation between the cooperation tasks and there is a flow of data
between the tasks. Note that a single task is a specialization of a transaction as it is a transaction
without any precedence relations or data-flow. There might be several different ways to represent
precedence relations. We will, however settle with a simple graphical notation called a
precedence graph. A precedence graph is simply a directed graph visualizing all tasks in the
transaction interconnected by an arrow indicating the direction of the precedence relation between
those tasks. In Figure 2 a simple precedence graph is shown where task $ precedes, task % and
task &. We can also see that task % and &� precede task '.

A

B

C

D

)LJXUH���$�VLPSOH�SUHFHGHQFH�JUDSK

Concerning the data-flow in a component we are interested in exposing three different attributes
in the contract namely: where, how and what. The attribute “Where”, declares the receiver of
data, i.e. another task within the component. The data can flow throughout the component using
different strategies. The two different possibilities are synchronous and asynchronous. If data is
transported in an asynchronous manner, the contract must specify how the data is treated on the
receiver side. This is important since data can be consumed either faster or slower than it is
produced in a multi-rate transaction. If data is produced in a faster pace than it is consumed, the
contract must specify whether or not new data should overwrite old data or if data should be
buffered to provide history. Finally, concerning communication, the size of data is important, as
the size will restrict the speed at which the component can execute.

The temporal attributes for a real-time component specifies the required temporal behavior for the
component. As discussed, these attributes must not necessarily have there correspondence in the
infrastructure, but should rather be realized using the constructions provided by the infrastructure.
As we focus on reuse in this paper, we want our components to be as general as possible in terms
of the temporal constraints. The generality is obtained by specifying the temporal constraints as
time intervals. Later on in Section 3, we will elaborate further on how these intervals are
obtained. Transaction components (where a single task is a special case) have period times, jitter
constraints on period times, end-to-end deadlines, etc. However, it is not trivial to represent the
period time for a component consisting of several tasks all running with different period times
(multi-rate). We propose that period times are only valid for single-task components. The period
time of a transaction is inherited from the system in which the component will be reused. The
tolerances on the period times of a component are given in terms of decreased/increased inter
arrival times, however where the precedence, and mutual exclusion relations, are preserved
between the sub-components. This is a way of parameterize the component to fit in a new
environment.

���� ,QIUDVWUXFWXUH
Derived from the recursive definition of components and component relations, we can with
respect to real-time systems define the components forming the basis for running the real-time
tasks as the infrastructure, i.e., the real-time operating system and its attributes. We are now going
to give a qualitative classification of the infrastructure for real-time operating systems based on
their execution strategy, synchronization mechanisms, and communication mechanisms.

([HFXWLRQ�VWUDWHJ\

The execution strategy of a real-time system defines how the tasks of the system are run. A usual
classification is event and time triggered systems. An event-triggered system is a system where
the tasks activation is determined by an event that can be of external or internal origin, e.g., an
interrupt, or a signal from another task. There are usually no restrictions what so ever on when
events are allowed to arrive, since the time base is dense (continuos). For time-triggered systems
events are only allowed to arrive into the system, and activate tasks, with a certain minimum and
maximum inter-arrival time; the time-base is sparse. The only event allowed is the periodic
activation of the real-time kernel, generated by the real-time clock.

Another characteristic of an execution strategy is the support of single tasking or multitasking.
That is, can multiple tasks share the same computing resource (CPU), or not? If the infrastructure
does support multitasking does it also support task interleavings, i.e., does it allow an executing
task to be preempted during its execution by another task, and then resumed after the completion
of the preempting task?

A very common characteristic of an execution strategy, especially for multi-tasking RTS, is the
infrastructure task model. The task model defines execution attributes for the tasks [2][7][11][12].
For example:

• ([HFXWLRQ�WLPH, &M. Where &M�⊆ [%&(7M, :&(7M], i.e., the execution time for a task, M, varies
depending on input in an interval delimited by the task’s best case execution time (%&(7M)
and its worst case execution time (:&(7M).

• 3HULRGLFLW\, 7M� Where 7M� ⊆ [7M
PLQ,�7M

PD[], i.e., the inter-arrival time between the activations of
a task, M, is delimited by an interval ranging from the minimum inter-arrival time, to the
maximum inter-arrival time. For strictly periodic RTS, 7M

PLQ�=�7M
PD[.

• 2IIVHW, 2M. Where 2M defines an offset relative the period start at which the task M should be
activated. Offsets also go by the name release times.

• 3ULRULW\, 3M. Where 3M defines the priority of task M��When several tasks are activated at the
same time, or when an activated task has higher priory than the currently running task, the
priority determines which task should have access to the computing resource.

• 'HDGOLQH, 'M. Where 'M defines the deadline for the task, M, that is, when it has to be finished.
The deadline can be defined relative task activation, its period time, absolute time, etc.

For different infrastructures the task model vary with different flavors of the above-exemplified
attributes.

6\QFKURQL]DWLRQ

Depending on the infrastructure we can either make necessary synchronizations between tasks
off-line if it is time triggered and supports offsets, or we can synchronize tasks on-line using
primitives like semaphores. In the off-line case we guarantee precedence and mutual exclusion
relations by separating tasks time-wise, using offsets.

&RPPXQLFDWLRQ

Communication between tasks in RTS can be achieved in a multitude of ways. We can make use
of shared memory which is guarded by semaphores, or time synchronization, or we can via the
operating system infra structure send messages, or signals between tasks. Depending on the
relation between the communicating tasks, in respect to periodicity, the communication can vary
between totally synchronous communication to totally asynchronous communication. That is, if
task L sends data to task M, and both tasks have equal periodicity, 7M = 7L, we can make use of just
one shared memory buffer. However, if 7M > 7L�or�7M < 7L�the issue gets more complicated. Either
we make use of overwriting semantics (state-based communication), using just a few buffers, or
we record all data that has been sent by the higher frequency task so that it can be consumed by
the lower frequency task when it is activated. There are several approaches to solving this
problem [3][4][5].

����)DLOXUH�VHPDQWLFV
Components can fail in different ways. The manner in which they fail can be categorized into
failure modes. Failure modes are defined through the effects, as perceived by the component user:

1. 6HTXHQWLDO�IDLOXUH�EHKDYLRU

This failure mode includes:

• &RQWURO�IDLOXUHV, e.g., selecting the wrong branch in an if-then-else statement.

• 9DOXH�IDLOXUHV, e.g., assigning an incorrect value to a correct (intended) variable.

• $GGUHVVLQJ�IDLOXUHV, e.g., assigning a correct (intended) value to an incorrect variable.

• 7HUPLQDWLRQ� IDLOXUHV, e.g., a loop statement failing to complete because the termination
condition is never satisfied.

• ,QSXW�IDLOXUHV��H�J�, receiving an (undetected) erroneous value from a sensor.

0XOWLWDVNLQJ�DQG�UHDO�WLPH�IDLOXUH�EHKDYLRU

2. 2UGHULQJ�IDLOXUHV, e.g., violations upon precedence relations or mutual exclusion relations.

3. 6\QFKURQL]DWLRQ�IDLOXUHV, i.e., ordering failures but also deadlocks.

4. ,QWHUOHDYLQJ� IDLOXUHV, e.g., side effects caused by non-reentrant code, and shared data, in
preemptively scheduled systems.

5. 7LPLQJ�IDLOXUHV��This failure mode, yields a correct result (value), although the procurement
of the result is time-wise incorrect. For example, deadline violations, early start of task,
incorrect period time, too much jitter, too many interrupts (too short inter-arrival time), etc.

6. %\]DQWLQH� DQG�DUELWUDU\� IDLOXUHV. This failure mode is characterized by a non-assumption,
meaning that there is no restriction what so ever with respect to which effects the component
user may perceive. Therefore, has the failure mode been called malicious or fail-uncontrolled.
This failure mode includes two-faced behavior: a component can output “X is true” to one
component user, and “X is false” to another component user.

The above listed failure modes build up a hierarchy where byzantine failures are based on the
weakest assumption (a non-assumption) on the behavior of the components, and sequential
failures are based on the strongest assumptions. Hence byzantine failure is the most severe and
sequential failure the least severe failure mode. The byzantine failure mode covers all failures
classified as timing failures, which in turn covers interleaving failures, and so on.

More formally: Sequential failures ⊂ Ordering failures ⊂ Synchronization failures ⊂ Interleaving
failures ⊂ Timing failures ⊂ Byzantine failures. That is, 1 ⊂ 2 ⊂ 3 ⊂ 4 ⊂ 5 ⊂ 6.

The component user can also characterize the failure modes according to the viewpoints domain
and perception. A distinction can be made between primary failures, secondary failures and
command failures [6]:

• 3ULPDU\�IDLOXUHV

A primary failure is caused by an error in the software of the component so that its output
does not meet the specification. This class includes byzantine failure modes, and
sequential failure modes.

• 6HFRQGDU\�IDLOXUHV

A secondary failure occurs when the input to a component does not comply with the
specification. This can happen when the component is used in an environment not
designed for, or when the output of a preceding task (component) does not comply with
the specifications of a succeeding task’s (component) input. This class includes
interleaving failures, and sequential input failure modes.

• &RPPDQG�IDLOXUHV

Command failures occur when a component delivers the correct result but at the wrong
time or in the wrong order. This class covers timing failures, synchronization failures,
and ordering failures.

The above classification of failure modes is not restricted to individual instances of failures, but
can be used to classify the failure behavior of components, which is called a component’s failure
semantics [9].

•)DLOXUH�VHPDQWLFV

A component exhibits a given failure semantic if the probability of failure modes, which
are not covered by the failure semantic, is sufficiently low.

If a given component is defined to have ordering failure semantics, then all individual failures of
the component should be ordering or sequential failures. The possibility of more severe failures,
like timing failures, should be sufficiently low. The failure semantic is a probabilistic
specification of the failure modes a component may exhibit, which has to be chosen in relation to
the application requirements. In other words, the failure semantics defines the most severe failure
mode a component user may have to consider. Fault-tolerant systems are designed with the
assumption that any component that fails will do so according to a given failure semantic. If
nonetheless, the failure of a component violates the failure semantic, then nothing is guaranteed
and the whole system might fail. This consideration leads to the important concept of assumption
coverage [10], which is closely related to the definition of failure semantics.

• $VVXPSWLRQ�FRYHUDJH

Assumption coverage is defined as the probability that the possible failure modes defined
by the failure semantic of a component proves to be true during practical conditions on
the fact that the component has failed.

For components defined as having byzantine failures semantics the assumption coverage is
always 1.0, i.e., the confidence in the failure semantic is total. This is safe since byzantine failures
belong to the most severe failure mode. In all other cases the assumptions of the failure semantics
may be violated because the component may show byzantine behavior. Consequently, will
assumption coverage (confidence) be less than total (1.0).

The assumption coverage is a critical parameter when designing and reusing reliable components.
If the assumptions are relaxed too much in order to achieve good assumption coverage, the design
becomes overly complicated since severe failure semantics (like byzantine) have to be
considered. On the other hand, if too many assumptions are made, the system design is easier, but
the assumption coverage might be unacceptably low. In practice there is thus a need to
compromise between system complexity and assumption coverage.

�� &RPSRQHQW�EDVHG�DQDO\VLV
In this section we are going to introduce a framework for formal and probabilistic arguments of
component reuse in safety-critical real-time systems. The basic idea is to provide evidence, based
on the components contracts and the experience accumulated, that a component can be reused
immediately, or if only parts can be reused - or not at all. That is, we want to relate the
environment for which the component was originally designed and verified for, with the new
environment where it is going to be reused. Depending on the match with respect to input-output
domains and temporal domains we want to deem how much of the reliability from the earlier use
of the component can be inherited in the new environment. Faced with a non-match we are
usually required to re-verify the entire component. However, we would like to make use of the
parts that match and only re-verify the non-matching parts.

Specifically, we are now going to introduce two analyses, one with respect to changes in the
input-output domain, and one with respect to changes in the temporal domain.

���� ,QSXW�RXWSXW�GRPDLQ�DQDO\VLV

We are now going to establish a framework for comparative analysis of components input-output
domains, i.e. their respective expected inputs and outputs, as defined by the components contracts
(interfaces). But, we are also going to relate the input-output domain to its verified and
experienced reliability, according to certain failure semantics. We can represent the input-output
domain for a component, F, as a tupel of inputs and outputs; Π(F) ⊆ ,(F)�× 2(F). Where the input
domain, ,(F), is defined as a tupel of all interfaces and their respective sets of input; ,(F)�⊆ ,(F)��∪
… � ∪ ,(F)Q. Further, the output domain, 2(F), is defined as a tupel of all interfaces and their
respective sets of output; 2(c)�⊆ 2(F)��∪ … �∪ 2(F)Q.

The basic idea is that, given that we have a reliability profile, 5(F), of a component’s input-output
domain, Π(F� and that the attributes for the real-time components are fixed, we can deem how
well the component would fare in a new environment. That is, we would be able to make
comparative analysis of the experienced input-output domain and the domain of the new
environment.

For example, assume that we have designed and verified a component, F, that has an input
domain ,(F) corresponding to a range of integer inputs, ,(F) = [40,70], to a certain level of
reliability.

Consider now that we reuse this component in another system, where all things are the same
except for the input domain, ,�(F) = [50,80], and that we by use and verification have achieved
another level of reliability.

We can now introduce a new relation called the experienced input-output-reliability domain, ((F)
⊆ (Π�(F) × 5�(F))∪ … ∪ (ΠQ(F) × 5Q(F)), which represent the union of all input-output domains
and the achieved reliability for each of these domains. This union is illustrated in Figure 4. Using
this ((F) we can deem if we can reuse the component immediately in a new environment ΠQHZ(F)
and inherit the experienced reliability, or we can put another condition on the reuse, a reliability
requirement.

40 70 ,�F�

5�F�

)LJXUH���7KH�UHOLDELOLW\�IRU�LQSXW�GRPDLQ�>�����@�

40 70 ,�F�

5�F�

80

)LJXUH���7KH�UHOLDELOLW\�IRU�MRLQW�LQSXW�GRPDLQ�

In Figure 5, the new environment and the area named ;, illustrates the reliability requirement. If
it can be shown that ΠQHZ(F) × 5QHZ(F) ⊆ (�F� then the component can be reused without re-
verification. However if the reliability requirement cannot be satisfied as illustrated in Figure 5,
reuse cannot be done without additional verification.

If the ΠQHZ(F) × 5QHZ(F) ⊂ ((F), then we cannot immediately reuse the component without re-
verification, however we need not re-verify the component entirely. It is sufficient to verify the
part of the input domain that is non-overlapping with the experienced one, i.e., (ΠQHZ(F) × 5QHZ(F))
\ (�F�.

By making this classification we can provide arguments for immediate reuse, arguments for re-
verification of only cut sets and non-reuse. For example, assume that the ΠQHZ(F) (the area named
< in the Figure 6) has an ,QHZ(F) = [35,45] then we can calculate the cut set for ,QHZ(F) and ,(F) to
be ,FXW(F) = [35,40]

���� 7HPSRUDO�DQDO\VLV

Whenever a new component is to be used in a real-time system, the new temporal behavior of the
system must be verified, i.e. that all tasks are schedulable. For real-time systems schedulability
means that no task in the system will ever violate its timing requirements, for instance deadlines,
start times, jitter, etc. In order schedule a system the components have to be decomposed into
their smallest possible entities, i.e., their tasks. Thus, the level of abstraction provided by the
component concept is violated.

In this section we will discuss the impact of changing some of the temporal attributes for a
component when reusing it. The following situations are dealt with:

• The same infrastructure and the same input-output domain

• The same input-output domain but a different infrastructure

5�F�

40 70 ,�F�

5�F�

80

)LJXUH�� 5HOLDELOLW\� FDQQRW� EH� JXDUDQWHHG� LQ� QHZ
HQYLURQPHQW�

;

40 70 ,�F�80

)LJXUH���9HULILFDWLRQ�RQO\�QHFHVVDU\�IRU�OLPLWHG�DUHD�

<

A change in the temporal domain is always initiated by the system in which the component will
run in. For instance, if the new system executes on different hardware, the execution times might
vary (a faster or slower CPU). The changes can also originate from the requirements of the new
system, for example the component has to run with a higher frequency than originally designed
for.

������ 7KH�VDPH�LQIUDVWUXFWXUH�DQG�LQSXW�RXWSXW�GRPDLQ

In this case, the infrastructure is exactly the same in the new environment as the one previously
used. Consequently, we have an exact match between the sets of services provided (denoted as 6
below). The services required by the design task model for the component have been satisfied
earlier which implicates that they still are satisfied in the new environment. Thus, 6(F) ⊆
6ROG(LQIUDVWUXFWXUH) and 6QHZ(LQIUDVWUXFWXUH) = 6ROG(LQIUDVWUXFWXUH) holds, where 6(F) is the set of
services required by component�F.

Moreover, the new input-output domain for the new instance of component F, ΠQHZ(F), is
completely within the verified range of input-output for the component Π(F). Formally the
following must hold: ΠQHZ(F) ⊆ Π(F).

The only alteration is in one or several of the temporal attributes for the component. Such a
change requires the system to undertake a schedulability analysis [2][7][12] where the component
is decomposed into its smallest constituents, the tasks. The component can be considered to fit
into the new system if the system is schedulable and the relations between the tasks in the
component, as well as the tasks in the new system, are not violated.

������ 7KH�VDPH�LQSXW�RXWSXW�GRPDLQ�EXW�GLIIHUHQW�LQIUDVWUXFWXUH

There exist two different types of infra-structural changes:

• One where the infrastructures are different, but where the infrastructure parts pertaining to the
component are the same. More precisely, if 6(F) ⊆ 6QHZ(LQIUDVWUXFWXUH)∩Sold(LQIUDVWUXFWXUH),
then the necessary services are provided by the new infrastructure. If this is the case, and a
correct mapping of the services required by the component to the new infrastructure is
performed, we can reuse the component with same confidence in its reliability as in the
original environment.

• One where the infrastructures are different and the infrastructure parts pertaining to the
component are non-compliant. Formally if the 6(F) \ Snew(LQIUDVWUXFWXUH) ≠ ∅.

In the latter case where the new infrastructure does not enable the same implementation of the
design task model, a new mapping from the design must be performed. This mapping is a matter
of implementing the new infrastructure model using the services provided in the new
infrastructure. If this mapping is not possible then we cannot reuse the component at all. If the
mapping is possible, we can still argue if this is reuse at all, since major parts of the component
must be modified. Here we make a clear distinction between modify and parameterize, where
modifications are changes in the source code and parameterizations leave the source code
unchanged, but its behavior can be changed dynamically.

As an example, consider a component that has been proven to have certain reliability in an
infrastructure that provides synchronization between tasks using time-wise separation. If now the
component is reused in an infrastructure that handles synchronization using semaphores the
synchronization strategy has to be changed. Consequently, we cannot assume anything about the
reliability regarding synchronization failures. We have to assume weaker failure semantics since

the preconditions for which the reliability estimates regarding synchronization failures are no
longer valid. That is, we cannot guarantee anything regarding synchronization failures in reusing
the component.

The graph below illustrates the different reliabilities for the fault hypotheses (assumptions of
failure semantics as introduced in section 2.3), 1 through 5 for component F�

5�F�

2 4 +�F�51 3

)LJXUH���7KH�UHOLDELOLW\�IDXOW�K\SRWKHVLV�EHIRUH�UHXVH�LQ�D�QHZ�LQIUDVWUXFWXUH�

If the assumptions made for the reliability measure of fault hypothesis 3 is changed, the reliability
is inherited from fault hypothesis 2 (see Figure 8), and we cannot say anything about the
reliability regarding stronger failure semantics.

5�F�

2 4 +�F�51 3

)LJXUH���7KH�QHZ�UHOLDELOLW\�IDXOW�K\SRWKHVLV�DIWHU�UHXVH�LQ�D�QHZ�LQIUDVWUXFWUH�

Just as in the previous case where the infrastructure was not changed, the schedulability analysis
must be performed all over again, ensuring that no temporal constraints are violated in the
component as well in the rest of the system.

������ $�PHDVXUHPHQW�RI�UHXVDELOLW\�IRU�FRPSRQHQWV

For every new environment in which a component is successfully reused, the broader is the
usability of that component. That is, it has been empirical proven that the component can be used
in different environments, and is thus highly reusable. The graph in Figure 9 exemplifies this for
changes in the period times of a component. The greater the reliability (denoted as 5�� the more
confident we can be that the component will work correctly for that given period time. The
greater the number of period times covered by the diagram, the more reusable the component is.
However, one can argue that a component that has been reused in a lot of different environments
but where every reuse resulted in a low reliability is really reusable? Consequently, the reusability
is a combination of the number of environments where the component has been used, and the
success of every such reuse.

Such a graph can be generated for every type of attribute in the component contract. For instance,
the different types of real-time operating systems for which the component has been reused. In
this case, the distribution is also a measurement of the portability for the component.

�� &RQFOXVLRQV
In this paper we have presented a novel framework for arguments of reuse of components in
safety-critical real-time systems. In this framework, we formally describe component contracts in
term of its temporal constraints given in the design phase (the design task model) and the
temporal attributes available in the implementation (the infrastructure). Furthermore, the input-
output domain for a component is specified in its contract. By relating the input-output domain,
fault hypotheses, probabilistic reliability levels and the temporal behavior of the component, we
can deem if a component can be reused or not. We can also deem how much and which subsets,
of say input-output domains, that need additional functional and safety verification based on
reliability requirements in the environment in which the reuse is intended.

�� 5HIHUHQFHV
[1] Alur R. and Dill D. A theory of timed automata, Theoretical Computer Science vol. 126

pp. 183-235, 1994

[2] Audsley N. C., Burns A., Davis R. I., Tindell K. W.)L[HG� 3ULRULW\� 3UH�HPSWLYH
6FKHGXOLQJ�� $� +LVWRULFDO� 3HUVSHFWLYH� Real-Time Systems, The Int. Journal of Time-
Critical Computing Systems, Vol. 8(2/3), March/May, 1995.

[3] Eriksson C., Mäki-Turja J., Post K., Gustafsson M., Gustafsson J., Sandström K., and
Brorsson E. $Q�2YHUYLHZ�RI�577��$�GHVLJQ�)UDPHZRUN�IRU�5HDO�7LPH�6\VWHPV��Journal of
Parallel and Distributed Computing, vol. 36, pp. 66-80, Oct. 1996.

[4] H. Kopetz and J. Reisinger The Non-Blocking Write Protocol NBW: A Solution to a Real-
Time Synchronization Problem. In Proceedings of he 14th Real-Time Systems
Symposium, pp. 131-137, 1993.

[5] J. Chen and A. Burns Asynchronous Data Sharing in Muliprocessor Real-Time Systems
Using Process Consensus. 10th Euromicro Workshop on Real-Time Systems, June 1998,

[6] Leveson N. G. 6DIHZDUH���6\VWHP��6DIHW\�DQG�&RPSXWHUV. pp. 414. Addison Wesley 1995.
ISBN 0-201-11972-2.

[7] Lui C. L. and Layland J. W.��6FKHGXOLQJ�$OJRULWKPV�IRU�PXOWLSURJUDPPLQJ�LQ�D�KDUG�UHDO�
WLPH�HQYLURQPHQW. Journal of the ACM 20(1), 1973.

1 2 3 4 5 6

7

5

)LJXUH��� 'LVWULEXWLRQ�RI�SHULRG�WLPHV�IRU�ZKLFK�WKH�FRPSRQHQW�KDV�EHHQ�UHXVHG

[8] Parnas D.L., van Schouwen J., and Kwan S.P. (YDOXDWLRQ� RI� 6DIHW\�&ULWLFDO� 6RIWZDUH.
Communication of the ACM, 6(33):636-648, June 1990.

[9] Poledna S. 5HSOLFD�'HWHUPLQLVP�LQ�'LVWULEXWHG�5HDO�7LPH�6\VWHPV��$�%ULHI�6XUYH\. Real-
Times systems Journal, Kluwer A.P., (6):289-316, 1994.

[10] Powell D.)DLOXUH� 0RGH� $VVXPSWLRQV� DQG� $VVXPSWLRQ� &RYHUDJH� In Proc. 22nd

International Symposium on Fault-Tolerant Computing. IEEE Computer Society Press,
pp.386-395, July 1992.

[11] Puschner P. and Koza C. Calculating the maximum execution time of real-time programs.
Journal of Real-time systems, Kluwer A.P., 1(2):159-176, September, 1989.

[12] Xu J. and Parnas D. 6FKHGXOLQJ�SURFHVVHV�ZLWK�UHOHDVH�WLPHV��GHDGOLQHV��SUHFHGHQFH��DQG
H[FOXVLRQ��UHODWLRQV. IEEE Trans. on Software Eng. vol. 16, pp. 360-369, 1990.

Empty page.

- 1 -

Performance Tuning of Multithreaded Applications
for Different Multiprocessor Platforms

Magnus Broberg

Department of Computer Science
University of Karlskrona/Ronneby

Soft Center, S-372 25 Ronneby, Sweden
Magnus.Broberg@ipd.hk-r.se

Abstract
Performance tuning of a parallel application is often hard. The use of standards, such as
POSIX threads, makes it possible to move a multithreaded application from one platform to
another. Doing performance tuning for many platforms are even tougher since the implemen-
tation of the standards may vary on different operating systems. The developer need tools for
analysing how the application will behave on different operating systems in order to do ade-
quate performance tuning.

In this paper we present a technique based on cross-simulation that will solve the issues
above. The technique uses a monitored execution of a multithreaded application on a single
processor workstation running the Solaris operating system. Then the technique, which has
been implemented in a tool, simulates a multiprocessor with an arbitrary number of proces-
sors running either Solaris or Linux. The tool then displays the behaviour of the application
on the selected target configuration.

Validation, using a subset of the SPLASH-2 benchmark suite, shows that the tool predicts
speed-ups correctly. The average error in the predicted speed-up when simulating Linux is
5.8%. All this can be done using the ordinary Solaris workstation on the developer’s desk,
without even having a multiprocessor.

1. Introduction

Writing parallel applications for multiprocessors is often hard. In many cases the reason for using
a multiprocessor is to achieve more computing power for the application. Doing performance tun-
ing of a multithreaded application for a multiprocessor is an important but tedious task and few
tools are available for the developer. Most tools require the application to be executed on the tar-
get multiprocessor, e.g., [5, 7, 9, 18].

When introducing standards, such as POSIX threads [3], the aim is to make applications port-
able. This makes it possible to move one application from one operating system, e.g. Solaris, to
another operating system, e.g. Linux. However, it is not obvious that an application tuned for one
operating system will run efficiently on another operating system. Different characteristics for the
operating systems may lead to different tuning or trade-offs when tuning the application for both
operating systems.

The developer then has to tune the application for several operating systems, using different
tools for the different operating systems. The developer must also have access to all combinations
of multiprocessors and operating systems in order to do the performance tuning. Not only a tedi-
ous task to do, in many cases it is impossible (and expensive) to have all the machines needed.

In this paper we present a tool called VPPB (Visualization of Parallel Program Behaviour).
The tool is capable of executing a multithreaded application (using POSIX Threads) on a single
processor workstation with Solaris and shows how the execution would be if the application were
executed on an SMP (Symmetric MultiProcessor) with an arbitrary number of processors, running

- 2 -

either Solaris or Linux. The predictions are with good accuracy. The tool has perviously been
used for prediction on Solaris for Solaris-threads [1, 2, 15]. The tool has now been extended to
cover the major parts of POSIX threads as well. The tool can now also mimic the Linux 2.2 oper-
ating system. Based on an execution of an application on a single processor Solaris workstation,
the tool is able to predict the behaviour of the application on a multiprocessor running Linux.
Thus, the tool is able to perform cross-simulation. We use the term cross-simulation when a pro-
gram is monitored on one operating system and then simulated for another (target) operating sys-
tem. The performance tuning of the application can be done on the developer’s ordinary
workstation without the need for a multiprocessor.

The rest of this paper is as follows. In Section 2 we give an overview of the VPPB system and
in Section 3 Solaris, Linux, and POSIX threads are briefly discussed. Section 4 shows the valida-
tion of the predictions and Section 5 shows that the same application will execute differently on
different operating systems. Section 6 discusses the result and points at some future work, the
conclusions are found in Section 7.

2. Overview of VPPB

The VPPB consists of three major parts, theRecorder, the Simulator, and theVisualizer. The
workflow when using the VPPB system is shown in Figure 1. The developer writes the multi-
threaded program (a) in Figure 1, compiles it, and an executable binary file is obtained. After that,
the program is executed on a uni-processor. When starting the monitored execution (b), the
Recorderis automatically placedbetweenthe program and the standard thread library. Every time
the program uses the routines in the thread library, the call passes through theRecorder(c) which
records information about the call, i.e., the identity of the calling thread, the name of the called
routine, the time the call was made, and other parameters. TheRecorderthen calls the original
routine in the thread library. When the execution of the program finishes all the collected informa-
tion is stored in a file, therecorded information(d). The recording is done without recompilation
or relinking of the application, making our approach very flexible.

The Simulatorsimulates a multiprocessor execution. The main input for the simulator is the
recorded information(d) in Figure 1. The simulator also takes the configuration (e) as input, such
as the target operating system, number of processors, etc. The output from the simulator is infor-
mation describing the predicted execution (f).

Using theVisualizerthe predicted parallel execution of the program can be inspected (g). The
Visualizer uses the simulated execution (f) as input. The main view of the (predicted) execution is
a Gant diagram. When visualizing a simulation, it is possible for the developer to use the mouse to
click on a certain interesting event, get the source code displayed, and the line making the call that
generated the event highlighted. With these facilities the developer may detect problems in the
program and can modify the source code (a). Then the developer can re-run the execution to
inspect the performance change. The VPPB system is designed to work for C or C++ programs
that uses the built-in thread package [7] and POSIX threads [3] on the Solaris 2.X operating sys-
tem. The Simulator is able to simulate both Solaris and Linux.

3. POSIX Threads and Some Key Differences Between Solaris and Linux

Both Solaris and Linux 2.2 implement the POSIX thread interface [3]. However, there are differ-
ences between the implementations. Solaris uses a two-layered approach illustrated in Figure 2
[6, 12]. In the user level there are user level threads. These threads are executed in a non preemp-
tive way. This means that the thread must, in some way, voluntarily give up the execution in favor
of another thread. This could be done explicitly or implicitly by calling a synchronization primi-
tive that blocks the thread or releases a previously blocked thread with higher priority.

- 3 -

The kernel level threads (also known as LightWeight Process, LWP [15]) are scheduled by the
kernel in a pre-emptive fashion. The scheduling is priority based, with a round robin policy on
each priority level. The priority is changed over time, the longer time an LWP executes the lower
priority and longer time slices it gets. Each CPU has it’s own run queue. In order to migrate an
LWP to another CPU the LWP must have been in the queue for some pre-defined time without
being selected by the current CPU. The user level threads are executed by the LWPs. This means
that the kernel only schedules LWPs, the user level threads are not seen by the kernel. From the
user level threads’ point of view the LWPs could be seen as virtual CPUs. A user level thread
might be bound to a specific LWP, i.e., the user level thread will (indirectly) be scheduled in a pre-
emptive manner. Non-bound user level threads will execute on the LWPs that are not bound to any
thread. There could be many LWPs to serve this kind of user level threads.

No of Processors
Operating system

C or C++ source code

Compiler

Binary file

Execution

Thread Library

Calls

Calls Returns

Returns

Recorder
(Instrumented

Thread Library)
 Encapsulating

Recorded
information

Simulator

Information describing

Visualizer

b

f

g

d

e

a

c

Start

Figure 1: A schematic flowchart of the VPPB system.

Configuration

simulated execution

VPPB

Binding of threads
Thread priorities

Thread Thread Thread Thread

A Multithreaded Solaris Process

LWP LWP LWP

User level

Kernel level

Figure 2: The thread model in Solaris. A bound thread may only execute on the LWP that it is bound to,
whereas a non-bound thread may execute on any LWP that is not bound to a user level thread.

Bound threadNon-bound threads

- 4 -

Linux [8] uses an single-layered approach, similar to merging the Thread and LWP concepts
in Solaris together into one single unit. The creation of threads is made by cloning the parent
thread, using the system call clone. This is quite similar to fork, but the cloned threads share the
same address space, open files, etc. However, each thread gets its own process id and is scheduled
as a process. The scheduling is pre-emptive and time-sliced, as for any other process in Linux.
The time-slices are fixed (210 milliseconds). Linux calculates a goodness-value in order to choose
between which thread/process to execute next. This goodness-value represents two things, first it
represents how long the thread has executed in its current time slice. A thread that has been exe-
cuted a small part of its time slice will be given a higher goodness value than threads that have
executed a longer part of their time slice. The second thing is that threads are favourized to run on
the same processor as previously. This is done by increasing the goodness value for the thread
when the processor it previously executed on looks for a new thread to execute. Newly awakened
threads can force another thread from a processor when the newly awakened thread has a higher
goodness value than the other thread.

There are also differences between synchronizations as well. In Linux all locks has ordered
queues. When a thread releases the lock, the first thread in the queue is given the lock and put in
the running queue. In Solaris, there is no ordered queue (for guaranteed). When a thread releases
a lock, it may lock it again, before any other thread (both those waiting in the queue or other) has
been able to grab the lock.

4. Validation of the Predicted Execution Times

4.1. The SPLASH-2 benchmark suite
The validation of the predictions was made using a subset of the SPLASH-2 benchmark suite
[17]. The applications that we used from the SPLASH-2 suite are listed with the data set in Table
1. All applications that we used are from the scientific and engineering domain.

All executions were made on a Sun Ultra Enterprise 4000 with 8 processors and 512 MByte
memory. The operating systems in this validation was Solaris 2.6 and Linux 2.2 (RedHat 6.1).
The compiler used for both Solaris and Linux was the egcs-1.1.2 (a.k.a. gcc 2.91.66). Since the
SPLASH-2 applications are designed to create one thread per physical processor, one log file

Table 1: The parallel applications together with the data set sizes we used.

Application Description Data set size/Input data

Ocean (contiguous) Simulate eddy currents in an ocean basin 258-by-258 grid

Water-Spatial Molecular dynamics simulation, O(N) algorithm 512 molecules, 30 time steps

FFT 1-D Six-step Fast Fourier Transform 4M points

Radix Integer radix sort 16M keys, radix 1024

LU (contiguous) Blocked LU-decomposition of a dense matrix 768x768 matrix, 16x16 blocks

Raytrace Producing a raytraced picture balls4

Barnes Simulates interaction between a number of bodies
in three dimensions

2048 bodies

Cholesky Factors a sparse matrix into the product of a lower
triangular matrix and its transpose

tk29.0

Radiosity Producing a raytraced picture Default, batch mode, en 0.1

n

- 5 -

were made for each processor setup when using the Recorder. Thus, 9 applications running each
on 4 different CPU setups generated a total of 36 log files. The benchmarks were modified in
order to remove spinning locks and task stealing as described in [2].

4.2. Validation results
Table 2 shows the measured and predicted speed-up for the 9 applications from the SPLASH-2
benchmark suit on the Solaris platform. The real speed-up is the middle value of 5 executions of
the application. The error is defined as |((Real speed-up) - (Predicted speed-up))/(Real speed-up)|,
where |-x| = |x| = x, for all x > 0.

Due to the recordings, the monitored uni-processor execution takes somewhat longer than an
ordinary uni-processor execution of the application. However, our measurements showed that the
execution time overhead for doing the recordings was very small. The maximum overhead, which
was obtained for Radiosity, was 16.4% of the total execution time, but still more than half of the
36 log files caused less than 0.5% overhead. Another concern was the size of the log files. 75% of
the log files were less than 2Mbyte in size. The largest log file, which was obtained for Radiosity,
was 20.4 MByte. This file could be handled without any problems. Consequently, neither the exe-
cution time overhead, nor the size of the log files caused problems for these applications.

Table 3 shows the measured and predicted speed-up for the 9 applications from the SPLASH-
2 benchmark suite on the Linux 2.2 platform. The columns are the same as in Table 2.

The mean error for Solaris was 1.6% while when simulating the Linux platform the mean
error was less than 5.8%. Thus, the error on the Linux platform is then on average 3.6 times larger
than on the Solaris platform.

4.3. Study of the application with the largest error, Ocean
There are three applications in Table 3 that has large errors in the predictions. These are Ocean,
FFT, and Radiosity. Ocean has the largest error and we will focus on that application for this
study.

The first thing to notice is the total CPU time needed to execute the application (without the
Recorder) behaves quite differently on Solaris and Linux. Since the monitoring is done on Solaris
all the overhead, etc., on Solaris is incorporated in the monitoring. Thus, if Solaris behaves differ-
ently than Linux, the estimation can be no good. The CPU time needed to execute Ocean is shown
as the first row in Table 4. The values are normalized to the case for 1 processor for easy compar-
ison reasons. As can be seen, Solaris increases the needed CPU time with up to twelve percent
when executing the 8 threaded Ocean. On the other hand, Linux needs three percent less CPU
time to execute Ocean with 8 threads than with one thread. The difference between Solaris and
Linux is then 15.5% (1.12 / 0.97).

By increasing the data set for Ocean to 514 and 1026, theses differences decrease as shown in
the two last rows in Table 4, to 5.0% and 1.1%, respectively for the case with 8 threads. It is then
most likely that the predictions also will be more accurate for Linux as the needed CPU time does
not differ. In Table 5 the predictions for Ocean on Linux is shown. As assumed the error in the
predictions drops as the data set increases. The measured CPU time can then act as an indicator of
the degree of reliability of the prediction.

The measured CPU time may not only act as an indicator, it could also be used to compensate
the prediction. In the case of Ocean with data set 258 there is an difference of 15.5% between
Solaris and Linux. Thus, the monitored execution on 8 processors was 15.5% longer on Solaris
than on Linux and this made the predicted execution for Linux 15.5% longer as well, assuming an
even distribution of the overhead over the whole execution. If the predicted execution was 15.5%
longer, the predicted speed-up will only be 86.6% (1 / 1.155) compared to the speed-up without
the differences in CPU time. Thus, by adding 15.5% more speed-up we are able to compensate for

- 6 -

the differences in CPU time. The predicted speed-up is 4.35 and with a 15.5% increase it will be
5.02. The latter is much closer the real measured value of 5.77.

The result of calculating in the same way for the other data sets and number of processors is
shown in Table 5 within square brackets. The average error in Table 4 has decreased from 7.8% to
5.6% due to this compensation. In three cases the predictions become worse than without com-
pensation, however, those errors are still within the range of errors for the Solaris prediction in
Table 2 as well as the errors reported in [2].

Table 2: Measured and predicted speed-ups for the benchmark applications on Solaris 2.6.

Application 2 processors 4 processors 8 processors

Ocean

Real Speed-up 1.98 3.67 4.39

Pred. Speed-up 1.90 3.35 4.35

Error 4.0% 8.7% 0.9%

Water-spatial

Real Speed-up 1.99 3.93 7.41

Pred. Speed-up 1.97 3.83 7.24

Error 1.0% 2.5% 2.3%

FFT

Real Speed-up 1.58 2.22 2.76

Pred. Speed-up 1.59 2.23 2.80

Error 0.6% 0.5% 1.4%

Radix

Real Speed-up 1.99 3.96 7.66

Pred. Speed-up 1.99 3.96 7.79

Error 0.0% 0.0% 1.7%

LU

Real Speed-up 1.78 3.02 4.45

Pred. Speed-up 1.78 3.00 4.50

Error 0.0% 0.7% 1.1%

Raytrace

Real Speed-up 1.88 2.97 4.86

Pred. Speed-up 1.88 2.94 4.83

Error 0.0% 1.0% 0.6%

Radiosity

Real Speed-up 1.85 3.60 5.78

Pred. Speed-up 1.81 3.42 5.89

Error 2.2% 5.0% 1.9%

Barnes

Real Speed-up 1.94 3.56 6.35

Pred. Speed-up 1.93 3.57 5.97

Error 0.5% 0.3% 6.0%

Cholesky

Real Speed-up 1.60 2.30 2.94

Pred. Speed-up 1.60 2.30 2.90

Error 0.0% 0.0% 1.4%

- 7 -

5. Scheduling Differences

When dealing with performance debugging, the speed-up metric does not give all the information
needed. If the speed-up is not as the desired speed-up there are some kind of performance bottle-
necks in the application. The VPPB system has, as mentioned in Section 2, the ability to show the
execution flow as a Gant diagram. This diagram can help the developer understand where the bot-
tlenecks are and how to remove them.

Table 3: Measured and predicted speed-ups for the benchmark applications on LINUX 2.2.

Application 2 processors 4 processors 8 processors

Ocean

Real Speed-up 1.99 3.75 5.77

Pred. Speed-up 1.90 3.35 4.35

Error 4.5% 10.7% 24.6%

Water-spatial

Real Speed-up 1.99 3.95 7.75

Pred. Speed-up 1.97 3.83 7.24

Error 1.0% 3.0% 6.6%

FFT

Real Speed-up 1.71 2.56 3.40

Pred. Speed-up 1.59 2.23 2.80

Error 7.0% 12.9% 17.6%

Radix

Real Speed-up 1.98 3.93 7.17

Pred. Speed-up 1.99 3.96 7.79

Error 0.5% 0.8% 8.6%

LU

Real Speed-up 1.81 3.11 4.80

Pred. Speed-up 1.78 3.00 4.50

Error 1.7% 3.5% 6.2%

Raytrace

Real Speed-up 1.82 2.85 4.41

Pred. Speed-up 1.88 2.94 4.83

Error 3.3% 3.2% 9.5%

Radiosity

Real Speed-up 1.85 3.75 5.05

Pred. Speed-up 1.81 3.42 5.89

Error 2.2% 8.8% 16.6%

Barnes

Real Speed-up 1.94 3.51 6.03

Pred. Speed-up 1.93 3.57 5.98

Error 0.5% 1.7% 0.8%

Cholesky

Real Speed-up 1.60 2.30 2.93

Pred. Speed-up 1.60 2.30 2.90

Error 0.0% 0.0% 1.0%

- 8 -

In Section 4 there is very little difference between the predicted speed-up for the Solaris plat-
form and the Linux platform. Although the speed-up is similar, the execution flow may not be the
same. To illustrate that issue Figure 3 shows the same execution segment of the Barnes bench-
mark. Each horizontal line in the figure represent an executing thread over time. Different sym-
bols indicate different events, e.g., an arrow facing downwards represents a locking operation.
Different colours (appear as different gray shades in black and white printing) are used for
mutexes, semaphores, etc. Though the execution flow is quite different in Figure 3 the source
code is the same. This shows that the execution flow is different when using different operating
system, and thus the performance bottlenecks may also differ between the operating systems.

Table 4: Normalized CPU time required to execute the OCEAN benchmark with different data sets on Solaris
and Linux.

Data set
Operating
System

1 Thread 2 Threads 4 Threads 8 Threads

258
Solaris 1.00 0.99 1.03 1.12

Linux 1.00 0.96 0.97 0.97

514
Solaris 1.00 1.02 1.04 1.05

Linux 1.00 1.00 1.01 1.00

1026
Solaris 1.00 1.00 1.00 1.01

Linux 1.00 1.01 1.00 1.00

Table 5: Ocean on Linux with different data sets. A compensated values are given in square brackets.

Data set 2 Processor 4 Processor 8 Processor

258

Real Speed-up 1.99 3.75 5.77

Pred. Speed-up 1.90 [1.96] 3.35 [3.56] 4.35 [5.02]

Error 4.5% [1.5%] 10.7% [5.1%] 24.6% [13.0%]

514

Real Speed-up 1.84 3.67 5.27

Pred. Speed-up 1.94 [1.98] 3.71 [3.82] 4.51 [4.74]

Error 5.4% [7.6%] 1.1% [4.1%] 14.4% [10.1%]

1026

Real Speed-up 1.96 3.83 6.93

Pred. Speed-up 1.90 [1.88] 3.74 [3.74] 6.66 [6.73]

Error 3.1% [4.1%] 2.3% [2.3%] 3.9% [2.9%]

- 9 -

6. Discussion and Related Work

6.1. Comments on the validation
Validation of the cross-simulation was done on a Sun Enterprise 4000 with 8 CPUs by executing 9
benchmarks from the SPLASH-2 benchmark suite. Only three applications had larger than ten
percent error in the predicted speed-up. A further study of the application with the largest error
(Ocean) shows that the error is reduced when the data set grows.

As the data set increases the overhead for executing Ocean on Solaris decreases. Since this
overhead is included in the monitored data used for the cross-simulation the simulation results for
small data sets may not be very accurate. By compensating the predictions with the measured
overheads, the error of the predictions was reduced with up to nearly a factor of two.

The reason for the increased usage of CPU time on Solaris, when increasing the number of
threads in the Ocean application has not been found. A further study of the reason for this behav-
iour on Solaris is considered to be future work. Understanding why the error for the benchmarks
FFT and Radiosity is almost twice as large as the largest error on Solaris could also be interesting
future work.

Currently the VPPB system implements all the POSIX thread primitives that are common
between Solaris and Linux except the thread cancelling primitives. The semaphore primitives are
supported, although semaphores are not a part of the POSIX threads, but originate from
POSIX.1b.

6.2. Other tools
There are a number of tools, shown in Table 6, which make it possible to visualize the (predicted)
behaviour of a parallel application using any number of processors. However, these tools are
either developed for message passing systems or for non-standard programming environments.

Only a few tools, PARAVER and SIEVE, can do some kind of cross-simulation. The PAR-
AVER tool uses the DIMEMAS simulator [4]. DIMEMAS is a simulator for distributed memory
multiprocessors, and the ability to re-configure in order to mimic different operating systems is
limited. In [10] there is no validation of the predictions at all. In SIEVE all simulation is per-
formed by scrips working like macros on a spread-sheet, where the spread-sheet is the trace file.
By supplying different scripts different operating system can be simulated. The SIEVE system
does not address the issue of data monitoring. In [13] there is no validation of the predictions at
all.

Figure 3: Execution flows for Barnes. Solaris is the upper graph, Linux is the lower. The five ovals in the
Solaris graph indicates the same events as the five ovals in the Linux graph.

S
ol

ar
is

Li
nu

x

- 10 -

7. Conclusion

POSIX threads are used to make multithreaded applications portable. However, the implementa-
tion of POSIX threads differs for different operating systems. Thus, an application will not always
have the same performance and behaviour on different operating systems. Tuning multithreaded
applications for a multiprocessor is hard. Tuning applications for good performance on several
operating systems is even harder. Most tools use a real execution of the multithreaded application
on a given operating system in order to give the developer support in the performance tuning, e.g.,
[5, 7, 9, 18]. It is often impractical and expensive to have several multiprocessors in order to run
different operating systems.

In this paper we have presented a tool, called VPPB, that based on an execution of a multi-
threaded application on an ordinary single processor Solaris workstation can predict the behav-
iour of application on a multiprocessor with arbitrary number of processors, running Solaris or
Linux 2.2. The predictions are accurate, with an mean error of 5.8% for the predicted speed-ups
for Linux, and even better for Solaris. The validation was made by using 9 of the benchmarks
from the SPLASH-2 benchmark suite on a Sun Enterprise 4000 with eight processors.

During a detailed study of the Ocean benchmark we have shown that it is possible to find an
indicator that shows how reliable the predictions are. The indicator is based on the CPU time
required to execute an application with a different number of threads. This indicator works on a
single processor workstation with Solaris.

The Ocean benchmark also shown that the indicator can be successfully used to compensate
the predictions in order to get more accurate predictions. With Ocean the error in the predictions
was reduced with up to almost a factor of two.

Thus, we have shown that it is possible to use the described tool to predict the behaviour of an
multithreaded application on a multiprocessor with either Solaris or Linux, with the means of a
single processor workstation running Solaris.

8. Acknowledgments

We would like to thank Henrik Persson for rewriting the simulator for the Solaris threads in order
to achieve a much faster simulator. This simulator was used as the base when adding ability for
POSIX threads as well as support for the Linux platform.

Table 6: Comparison of some visualization tools similar to VPPB.

Name Platform Language
Cross-

simulation
Comment

Ref-
erence

CHIP3S Mathematica CHIP3S Yes Pseudo language [10]

PARAVER Any PVM3 platform Any with PVM3 Yes Message passing [11]

PERFSIM TMC CM-5 CM-Fortran No Limited visualization [16]

PIE
VAX 11/780, VAX
11/784, MicroVAX

MP with Pascal No Pseudo language [14]

SIEVE BBN GP1000 pC++ Yes Hard to use the scripts [13]

- 11 -

References

[1] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction Tool
for Multithreaded Solaris Programs”, inProceedings of the 12th International Parallel Processing
Symposium, Orlando, USA, pp. 770-776, 1998.

[2] M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Multi-
threaded Solaris Programs by Tracing Kernel Threads”, inProceedings of the 13th International
Parallel Processing Symposium, San Juan, Puerto Rico, pp. 407-413, 1999.

[3] D. Butenhof, “Programming with POSIX Threads”, Addison-Wesley, 1997, ISBN 0-20-163392-2.

[4] S. Girona, T. Cortes, J. Labarta, V. Pillet, A. Peres, and E. Lopez, “Deriverable OPS4A of the project
Basic research APPARC, Effect of short term scheduling on message passing multiprogrammed sys-
tems”, http://www.wi.leidenuniv.nl/CS/HPC/apparc-deliverables/OpS4a.html, 1994.

[5] M. Heath and J. Etheridge, “Visualizing the Performance of Parallel Programs,”IEEE Software 8(9),
pp. 29-39, 1991.

[6] S. Khanna, M. Sebrée, and J. Zolnowsky, “Realtime Scheduling in SunOS 5.0,” inProceedings of
the Winter ‘92 USENIX, June 1992.

[7] S. Kleiman, D. Shah, and B. Smaalders, “Programming with threads,” Prentice Hall, 1996, ISBN 0-
13-172389-8.

[8] S. Maxwell, “Linux Core Kernel Commentary,” Coriolis Open Press, 1999, ISBN 1-57610-469-9.

[9] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchithapadam,
and T. Newhall, “The Paradyn Parallel Performance Measuring Tools,”IEEE Computer 28, vol 28,
no. 11, pp. 37-46, 1995.

[10] E. Papaefstathiou, D. J. Kerbyson, G. R. Nudd, and T. J. Atherton, “An Overview of the CHIP3S Per-
formance Prediction Toolset for Parallel Systems,” inProceedings of 8th ISCA International Confer-
ence on Parallel and Distributed Computing Systems, Florida, USA, pp. 527-533, 1995.

[11] V. Pillet, J. Laboarta, T. Cortes, and S. Girona, “PARAVER: A Tool to visualize and Analyse Parallel
Code,” University of Politencia, Catalonia, CEPBA/UPC Report No. RR-95/03, February 1995.

[12] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks, “SunOS 5.0 Multi-
threaded Architecture,” Sun Soft, Sun Microsystems Inc., September 1991.

[13] S. R. Sarukkai and D. Gannon, “SIEVE: A Performance Debugging Environment for Parallel Pro-
grams,”Journal of Parallel and Distributed Computing, Vol. 18, pp. 147-168, 1993.

[14] Z. Segall and L. Rudolph, “PIE: A Programming and Instrumentation Environment for Parallel
Processing,”IEEE Software, 2(6):22-37, November 1985.

[15] SunSoft, “Solaris Multithreaded Programming Guide,” Prentice Hall, 1995, ISBN 0-13-160896-7.

[16] S. Toledo, “PERFSIM: A Tool for Automatic Performance Analysis of Data-Parallel Fortran Pro-
grams,” inProceedings of the 5th Symposium on the Frontiers of Massively Parallel Computation,
McLean, Virginia, IEEE Computer Society Press, February 1995.

[17] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs: Characterization
and Methodological Considerations,” inProceedings of the 22nd Annual International Symposium
on Computer Architecture, pp. 24-36, June 22-24, 1995.

[18] Q. Zhao and J. Stasko, “Visualizing the Execution of Thread-based Parallel Programs,”Graphics,
Visualization, and Usability Centre, Georgia Institute of Technology, Technical Report GIT-GVU-95-
01, 1995.

Empty page.

Supporting Timing Analysis by Automatic Bounding

of Loop Iterationsy

Christopher Healy
Computer Science Department, Florida State University, FL, USA

Mikael Sj�odin
Department of Computer Systems, Uppsala University, Sweden

Viresh Rustagi
Silicon Spice, Mountain View, CA, USA

David Whalley and Robert van Engelen
Computer Science Department, Florida State University, FL, USA

September 23, 1999

Abstract.
Static timing analyzers, which are used to analyze real-time systems, need to

know the minimum and maximum number of iterations associated with each loop
in a real-time program so accurate timing predictions can be obtained. This paper
describes three complementary methods to support timing analysis by bounding
the number of loop iterations. First, an algorithm is presented that determines the
minimum and maximum number of iterations of loops with multiple exits. Even
when the number of iterations cannot be exactly determined, it is desirable to know
the lower and upper iteration bounds. Second, when the number of iterations is de-
pendent on unknown values of variables, the user is asked to provide bounds for these
variables. These bounds are used to determine the minimum and maximum number
of iterations. Specifying the values of variables is less error prone than specifying the
number of loop iterations directly. Finally, a method is given to tightly predict the
execution time of inner loops whose number of iterations is dependent on counter
variables of outer level loops. This is accomplished by formulating the total number
of iterations of a loop in terms of summations and solving the resulting equation.
These three methods have been successfully integrated in an existing timing analyzer
that predicts the performance for optimized code on a machine that exploits caching
and pipelining. The result is tighter timing analysis predictions and less work for
the user.

Keywords: Hard Real-Time Systems, Worst-Case Execution Time, Static Analysis

1. Introduction

To be able to predict the Best-Case Execution Times (BCETs) and
Worst-Case Execution Times (WCETs) of a program, one must know

y Part of this work has be previously published in the Proceedings of IEEE Real-
Time Technology and Applications Symposium, June 1998, under the title \Bounding
Loop Iterations for Timing Analysis".

c
 1999 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 23/09/1999; 15:55; p.1

2 Healy, Sj�odin, Rustagi, Whalley and van Engelen

the number of iterations that can be performed by the loops in the
program. Under certain conditions, such as a loop with a single exit,
many compilers statically determine the exact number of loop iterations
(Benitez and Davidson, 1988). Applications for determining this num-
ber include loop unrolling (Hennessy and Patterson, 1996), software
pipelining (Lam, 1988), and exploiting parallelism across loop iterations
(Stone, 1990). When the number of iterations cannot be exactly deter-
mined, it is desirable in a real-time system to know lower and upper
bounds on the number of iterations. These bounds can be used by a
timing analysis tool to more accurately predict BCETs and WCETs.

Many existing timing analyzers require that a user specify the num-
ber of iterations of each loop in the program. This speci�cation may be
requested interactively (Park and Shaw, 1991; Li et al., 1995). Thus,
each time the timing analyzer is invoked for a program, the bounds
for every loop in the program must be speci�ed, which is error prone
and tedious for the user. Alternatively, one could specify this infor-
mation as assertions in the source code to prevent repeated speci�ca-
tions of the same information (Burns et al., 1996; Puschner and Koza,
1989; Kligerman and Stoyenko, 1986).

However, there are still several disadvantages. First, the user is still
required to write the assertions. Second, there is no guarantee that
the user will specify the correct minimum and maximum number of
iterations. This problem may easily occur when a user changes the
loop, but forgets to update the corresponding assertion. Also, code
generation strategies, such as whether to place instructions for the loop
exit condition code at the beginning or end of the loop, may cause the
number of loop iterations of the transformed loop to vary by one itera-
tion from the loop in the source code. Finally, compiler optimizations,
such as loop unrolling or software pipelining, may a�ect the number
of times a loop iterates. Inhibiting di�erent code generation strategies
or compiler optimizations to more easily estimate loop bounds would
sacri�ce performance, which is quite undesirable.

It would be more appropriate to have the compiler automatically
and eÆciently determine the bounds for each loop in a program when
possible. This paper describes three methods that support timing anal-
ysis by bounding the number of loop iterations. First, an algorithm
is presented that determines bounds on the number of iterations for
loops with multiple exits. Second, support is provided for loops whose
number of iterations is dependent on loop-invariant variables. Finally, a
method is given to accurately predict the number of iterations for inner
loops, whose number of iterations varies depending upon the values of
counter variables of enclosing outer loops. All three of these methods
are eÆciently implemented and result in less work for a user. The

paper.tex; 23/09/1999; 15:55; p.2

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 3

last method also results in tighter timing analysis predictions. These
methods were implemented by modifying the vpo compiler (Benitez and
Davidson, 1988) to analyze loops and the information about number of
loop iterations is passed to a timing analyzer (Arnold et al., 1994; Healy
et al., 1995; White et al., 1997; Healy and Whalley, 1999a) to predict
performance. Note that these methods applied in vpo could be used in
other compilers or on assembly or machine code �les as well.

2. Related Work

Previous work to bound the number of loop iterations has used ab-
stract interpretation (Ermedahl and Gustafsson, 1997) and symbolic
execution (Lundqvist and Stenstr�om, 1998; Liu and Gomez, 1998) to
automatically derive the number of loop iterations. These approaches
are quite powerful, but e�ectively requires simulating all paths of a
loop for every loop iteration. Thus, they require signi�cant analysis
overhead, which would be undesirable when analyzing long running
programs.

Our work on bounding iterations for nested loops was inspired by
the work of Sakellariou (Sakellariou, 1997; Sakellariou, 1996). He cal-
culated the total number of iterations for loops that are dependent
on counter variables of outer loops in order to obtain better load bal-
ance by assigning approximately the same number of loop iterations
to each processor. The approach used was to formulate summations
representing the number of loop iterations by hand and to interface to
a mathematical package o�-line to solve the equations. In this paper,
we describe a method to automatically calculate the average number of
times that a loop will iterate and how to use this information to obtain
tighter timing predictions.

3. Bounding Iterations for Loops with Multiple Exits

In this section we present a method to determine a bounded number of
iterations for natural loops with multiple exits. The method includes
the following steps. (1) First, the conditional branches within the loop
that can a�ect the number of loop iterations are identi�ed. (2) Next,
we calculate when each of the identi�ed branches can change its result
based on the number of loop iterations performed. (3) Afterwards, the
range of loop iterations when each of these branches can be reached
is determined. (4) Finally, the minimum and maximum number of
iterations for the loop is calculated. These steps are described in the
following subsections.

paper.tex; 23/09/1999; 15:55; p.3

4 Healy, Sj�odin, Rustagi, Whalley and van Engelen

3.1. Identifying the Branches That Can Affect the

Number of Loop Iterations

In this subsection some terms are de�ned to facilitate the presentation
of the methods in this paper. A more complete description of these
terms can be found elsewhere (Aho et al., 1986). We de�ne the number
of loop iterations as the number of times the header is executed once
the loop is entered (Arnold et al., 1994). A basic block is a sequence
of instructions with a single entry point at the beginning and a single
exit point at the end. A natural loop is a loop with a single entry point.
The header of a natural loop is the single basic block where the loop is
entered. Transitions from within the loop to the header are called back

edges. Block A dominates block B if every path from the initial node
of the control
ow graph to B has to �rst go through A. For instance,
the header of a natural loop dominates all blocks in the loop. Similarly,
block B postdominates block A if all control paths from block A to the
exit node of the graph contains block B. A block always dominates and
postdominates itself.

An iteration branch in a loop is a conditional transfer of control,
where the choice between the two outgoing transitions can directly or
indirectly a�ect the number of loop iterations. The iteration branches
in the loop that can directly a�ect this number are branches that have
(1) a transition to a basic block outside the loop or (2) a transition to
the header block of the loop or to a block that is postdominated by the
header. Iteration branches that can indirectly a�ect the number of loop
iterations are those branches whose two successors are postdominated
by di�erent iteration branches. Figure 1 shows an algorithm to calculate
the set of iteration branches I for a loop. The worst-case complexity of
the algorithm is O(B2I2), where B is the number of basic blocks in the
loop and I is the number of iteration branches. However, we believe
that the average complexity would be closer to O(B) since iteration
branches that indirectly a�ect the number of loop iterations are not
common, particularly in numerical applications.

Figure 2(a) contains the code for a toy example C function that
will be used to illustrate the algorithm for calculating loop iteration
bounds for loops with multiple exits. Figure 2(b) depicts the RTLs,
representing SPARC assembly instructions, that the vpo compiler has
generated for this function. Note that the relational operator in the
conditional branches are sometimes reversed from the relational ex-
pressions in the source code. (No delay slots have been �lled in order
to simplify the example.) Figure 2(c) explains the RTL notation used.
The loop consists of basic blocks 2, 3, 5, 6, 7, and 8. The header of
the loop is block 7. The algorithm shown in Figure 1 identi�es block 5

paper.tex; 23/09/1999; 15:55; p.4

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 5

//Find the iteration branches that can directly a�ect the number of iterations
I = fg
FOR each block B in the loop L DO

IF (B has two successors S1 and S2) THEN
IF (S1 62 L) OR (S2 62 L) OR

(S1 2 PostDom(Header(L))) OR (S2 2 PostDom(Header(L))) THEN
I = I [B

END IF

END IF

END FOR

//Find the iteration branches that can indirectly a�ect the number of iterations
DO

FOR each block in B in the loop L DO

IF (B has two successors S1 and S2) AND (B 62 I) THEN
IF (there exists J;K 2 I AND J 6= K AND

S1 2 PostDom(J) AND S2 2 PostDom(K)) THEN
I = I [B

END IF

END IF

END FOR

WHILE (any change to I)

Figure 1. Finding the Set of Iterations Branches for a Loop

as containing an iteration branch since it has a transition to block 6,
which is postdominated by the loop header. Blocks 3, 5, and 7 are
identi�ed as having iteration branches since they have a transition to
block 4, which is not in the loop. Block 2 is added to the set of blocks
containing iteration branches since it can indirectly a�ect the number
of iterations by transferring control to either block 3 or block 5, which
both have been identi�ed as containing iteration branches.

Once the blocks containing iteration branches for the loop have
been identi�ed, a precedence is established that represents the order
that these blocks can be executed on any given iteration of the loop.
This precedence relationship can be represented as a Directed Acyclic
Graph (DAG). The nodes in the DAG represent the blocks contain-
ing the iteration branches and two additional nodes, continue and
break. Figure 3 shows the DAG depicting the precedence relationship
between the blocks containing exit conditions from Figure 2. The con-
struction of the DAG can conceptually be accomplished by starting
with the graph representing the loop, replacing all back edges with

paper.tex; 23/09/1999; 15:55; p.5

6 Healy, Sj�odin, Rustagi, Whalley and van Engelen

r[10]=0; 1
r[9]=1;
r[11]=HI[_somecond];
PC=L18;

2IC=r[9]?75;L19
PC=IC<=0,L21;

3r[8]=R[r[11]+LO[_somecond]];

L21 5

IC=r[8]?0;
PC=IC==0,L21;

4PC=RT;

IC=r[9]?300;
PC=IC>0,L17;

L17

r[10]=r[10]+1;

L18

6
r[9]=r[9]+3;

IC=r[10]?100; 7
PC=IC>=0,L17;

8PC=L19;

(a) Source Code

 for (i = 0, j = 1; i < 100; i++, j += 3)
 if (j > 75 && somecond || j > 300)
 break;
}

main()
{
 int i, j;
 extern int somecond;

(b) Corresponding RTL Instructions

r[9]
: register allocated to variable ir[10]
: high portion of addressHI[<address>]
: low portion of addressLO[<address>]
: integer memory referenceR[<address>]
: comparisonIC=<item>?<item>;
: conditional branchPC=IC<relop>0,<label>;
: returnPC=RT;
: unconditional jumpPC=<label>;

(c) Explanation of RTL Notation

: register allocated to variable j

Figure 2. Example Loop with Multiple Exits

transitions to continue, replacing each transition out of the loop with
a transition to break, and collapsing all nodes that do not represent
iteration branches. The actual implementation of the DAG construc-
tion started with only nodes representing continue, break, and blocks
containing iteration branches and used domination and postdomination
information to establish the edges between the nodes. This algorithm

paper.tex; 23/09/1999; 15:55; p.6

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 7

7

2 break

break 5

3

continue break
Figure 3. Precedence Relationship between Iteration Branches from Figure 2

is essentially a sort and requires O(I log I) complexity, where I is the
number of iteration branches in the loop.

3.2. Determining When Each Iteration Branch Changes

Direction

In this subsection a technique is presented that calculates when each
iteration branch can change its result based on the number of loop
iterations performed. This technique is similar to those used by other
compilers that can calculate the number of iterations of a loop with a
single exit (Benitez and Davidson, 1988). For each iteration branch we
derive the information shown in Table I. When all of the requirements
listed in Table I are satis�ed, the iteration branch is classi�ed as known.
Otherwise, the iteration branch is classi�ed as unknown. Note that
detection of unknown iteration branches in a loop does not mean that
the number of iterations of a loop cannot be bounded. Using the derived
values, we apply Equation 1 to straightforwardly calculate on which
iteration, Ni, that a known iteration branch i will change direction.
Table II shows the values derived for the example in Figure 2. The
iteration branch in block 3 is classi�ed as unknown since the variable

somecond is not a basic induction variable. The complexity of this
algorithm is O(I), where I is the number of iteration branches, since
each iteration branch need only be examined once.

Ni =

�
limit i � (initial i + before i) + adjust i

beforei + after i

�
+ 2 (1)

In addition, we have to select a value for adjust and checks have to
be made in case the iteration branch will always or never be satis�ed.
Table III shows under what conditions we can use Equation 1 to de-
termine when an iteration branch changes direction. The column \Test

paper.tex; 23/09/1999; 15:55; p.7

8 Healy, Sj�odin, Rustagi, Whalley and van Engelen

Table I. Information Calculated for Each Iteration Branch

Term Explanation Requirement

variable The control variable on which
the branch depends, i.e., the
variable being compared in the
block containing the iteration
branch.

The control variable must be a basic induc-
tion variable, that is a variable v whose only
assignments within the loop are of the form
v := v � c where c is a constant. In addi-
tion, we require that the variable change by
a constant integer amount on every loop iter-
ation. We ensure this by checking that each
basic block containing an assignment to a ba-
sic induction variable dominates all of the
blocks containing the tails of the back edge
transitions.

limit The value being compared to
the variable in the block con-
taining the branch.

The limit must be an integer constant. We will
describe how this requirement can be relaxed
in Section 4.

relop The relational operator used to
compare the variable and the
limit. I.e., the iteration condi-
tion is: \variable relop limit".

Our initial description requires that the rela-
tional operator be an inequality operator (i.e.
<, <=, >=, and >). We will describe how to
relax this requirement in Section 3.5 to more
accurately handle the equality operators (i.e.
== and !=).

initial The value of the variable when
the loop is entered.1

The initial value must be an integer constant.
We will describe how this requirement can be
relaxed in Section 4.

before The amount by which the vari-
able is changed before reaching
the iteration branch in each
iteration.

The amount by which the control variable is
incremented or decremented must be an inte-
ger constant and these changes must occur on
each complete iteration of the loop.2

after The amount by which the vari-
able is changed after reaching
the iteration branch in each
iteration.

The amount by which the control variable is
incremented or decremented must be an inte-
ger constant and these changes must occur on
each complete iteration of the loop.

adjust An adjustment value of -1,
0, or 1, which compensates
for the di�erence between re-
lational operators (e.g. < and
<=).

1This value is found by searching backwards in the control
ow for assignments to
variable. The search starts with the preheader, which is the block outside the loop
preceding the loop header.
2In other words, the basic blocks containing these changes must dominate every
predecessor block of the header that is in the loop.

paper.tex; 23/09/1999; 15:55; p.8

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 9

Table II. Derived Information for Each Iteration Branch in Figure 2

branch variable register limit relop initial before after adjust class N

block 2 j r[9] 75 <= 1 0 3 0 known 26

block 3 somecond r[8] 0 == N/A 0 0 N/A unknown N/A

block 5 j r[9] 300 > 1 0 3 0 known 101

block 7 i r[10] 100 >= 0 0 1 -1 known 101

Table III. How to Determine When a Branch with an Inequality Test Changes Direction

Operator Condition Test Result adjust

<= �rst � limit & incr > 0 is false on the Nth iteration 0
<= �rst � limit & incr � 0 always true
<= �rst > limit & incr � 0 always false
<= �rst > limit & incr < 0 is true on the Nth iteration 1

< �rst < limit & incr > 0 is false on the Nth iteration � 1
< �rst < limit & incr � 0 always true
< �rst � limit & incr � 0 always false
< �rst � limit & incr < 0 is true on the Nth iteration 0

> �rst � limit & incr > 0 is true on the Nth iteration 0
> �rst � limit & incr � 0 always false
> �rst > limit & incr � 0 always true
> �rst > limit & incr < 0 is false on the Nth iteration 1

>= �rst < limit & incr > 0 is true on the Nth iteration �1
>= �rst < limit & incr � 0 always false
>= �rst � limit & incr � 0 always true
>= �rst � limit & incr < 0 is false on the Nth iteration 0

Where �rst = initial + before , incr = before + after ,
N is de�ned in Equation 1, and adjust is used in Equation 1.

Result" shows under what conditions we can conclude that the iteration
condition will always/never be true and when we should use Equation 1
to determine at which iteration the branch changes direction, as well as,
what value to use for adjust in Equation 1. Note that when before+after

= 0 we need not use Equation 1 and thus we do not cause a divide by
zero exception.

Figure 4 shows two loops where Equation 1 cannot be applied. Our
implementation detects that the loop in Figure 4(a) exits after a single
iteration. Recall that the number of iterations is the number of times
that the loop header block (i.e. testing i > 100 in the example) is exe-

paper.tex; 23/09/1999; 15:55; p.9

10 Healy, Sj�odin, Rustagi, Whalley and van Engelen

cuted once the loop is entered (see Section 3.1). The loop in Figure 4(b)
is classi�ed as unbounded since the loop may never exit depending on
how over
ow of negative integer values is handled.

for(i = 0; i > 100; i++) for(i = 0; i < 100; i--)

A; A;

(a) Loop That Exits Immediately (b) Loop That May Never Exit

Figure 4. Two Loops Which are Handled Without Equation 1

3.3. Determining the Iterations When Each Iteration

Branch Can Be Reached

The next step is to determine the iterations on which it is possible to
execute each node of the DAG. Calculating these ranges requires O(I)
complexity, where I is the number of iteration branches. We record this
information as a range of iterations and attach a range to each node
and edge. The DAG is processed top-down.

The head of the DAG is assigned the range [1..1]. All other nodes
are assigned a range that is the union of the ranges of all incoming
edges. The outgoing edges of a node i are assigned ranges using one of
the following two rules:

1. If iteration branch i is known, then relopi and the direction of
the increment (i.e. the sign of beforei+after i) is used to determine
which edge is taken on the �rst Ni � 1 iterations. That edge is
assigned the range that is the intersection of [1..Ni � 1] and the
range of node i. The other outgoing edge is assigned the range that
is the intersection of [Ni..1] and the range of node i. If a range
assigned to an outgoing edge is empty, then this edge corresponds
to an infeasible transition and is deleted from the DAG.

2. If iteration branch i is unknown, then both outgoing edges are
assigned the same range as node i.

Figure 5 shows the DAG of iteration branches in Figure 3 on page 7
with the range of possible iterations for each node and edge also de-
picted. Nodes with known iteration branches are marked with a K and
unknown iteration branches are marked with a U. Iteration branch 7
will take the transition to branch 2 on the �rst 100 iterations. Note this
iteration range of [1..100] corresponds to the variable i's value range
of [0..99]. At this point, all values of variables have been abstracted as

paper.tex; 23/09/1999; 15:55; p.10

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 11

ranges of loop iterations. Node 5's transition to a break is deleted since
the range associated with that transition is empty (i.e. the transition
is not possible).

[101..]

7

[1..]

K

2

[1..100]

K break

3

[26..100]

U

break

[26..100]

5

[1..100]

K

[1..100]

continue

[26..100]

[26..100]

[1..100]

[1..25]

Figure 5. DAG of Branches with Ranges of Iterations

3.4. Determining the Minimum and Maximum Loop

Iterations

The ranges of iterations associated with each node and edge of the DAG
can be used to calculate the minimum and maximum number of itera-
tions for the loop. To determine the minimum and maximum iteration
value for each iteration branch, the DAG is processed in bottom-up
order. The algorithm requires O(I) complexity, where I is the number
of iteration branches. The minimum and maximum iteration values
for the root node of the DAG will be the minimum and maximum
iteration values for the entire loop. Figure 6 de�nes the notation used
in this subsection. Note that the range has been calculated using the
technique presented in Section 3.3.

The following rules are used to assign minimum and maximum
iteration values to edges.

1. If an edge is pointing to a break, then both the edge exit min and
edge exit max are assigned the value of edge range min. (If there
is a transition to a break, then the loop can only make that tran-
sition once.) This is the only point where a bounded value can be
introduced since these are the only points where the loop can exit.

2. If an edge is pointing to a continue, then the edge exit min and
edge exit max values for that edge are marked as unbounded, which

paper.tex; 23/09/1999; 15:55; p.11

12 Healy, Sj�odin, Rustagi, Whalley and van Engelen

[edge_range_min..edge_range_max]

<edge_exit_min, edge_exit_max>

<node_exit_min, node_exit_max>

highest loop iteration when this edge can be reached

lowest loop iteration when this edge can be reached

first iteration when this edge may lead to a break

first iteration when this node may lead to a break

first iteration when this edge must lead to a break

first iteration when this node must lead to a break

(on subsequent iterations it must also lead to a break)

(on subsequent iterations it must also lead to a break)
node_exit_max:

node_exit_min:

edge_exit_max:

edge_exit_min:

edge_range_max:

edge_range_min:

Figure 6. Notation Used in Rules for Assigning Iteration Values

we will represent with ` '. (These transitions do not supply any
information about when the loop exits.)

3. If the iteration branch associated with a node is classi�ed as known,
then the node exit max for the node is set to the smallest of the
bounded edge exit max values on the outgoing edges or is denoted
as unbounded if both outgoing edges have unbounded edge exit max

values. (The loop has to exit when it will encounter a break.)

4. If the iteration branch associated with a node is classi�ed as un-

known, then the node exit max for the node is set to the largest
of the edge exit max values on the outgoing edges of the node or
is denoted as unbounded if either outgoing edge has an unbounded

edge exit max value. (Use the largest value when it is not guaran-
teed that the node will actually reach the exit associated with a
lower value.)

5. The node exit min for a node is set to the smallest of the bounded

edge exit min values on the outgoing edges of the node or is denoted
as unbounded if both outgoing edges have unbounded edge exit min

values. (The smallest value represents the �rst possibility to exit
the loop.)

6. An edge not leading to a break or continue is an edge leading to
a node representing an iteration branch. The edge exit min and
edge exit max values assigned to the edge depend upon one of
three possible relations between the range of the edge and the
iteration values of the node. These relations and the corresponding

paper.tex; 23/09/1999; 15:55; p.12

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 13

edge assignments are depicted in Table IV. For example, the edge
assignment when node exit min satis�es case 1 and node exit max

satis�es case 2 would be hedge range min, node exit max i. Case 1
depicts that the edge exit is set to edge range min since this is the
�rst iteration the edge can be traversed when the edge may lead
to a break. Case 2 shows that the edge exit is set to the node exit

when it is within the range of iterations that the edge is executed.
Case 3 illustrates that the edge exit is set to unbounded when there
is no iteration on which the edge will be traversed after the edge
can lead to a break.

Table IV. Rules for Assigning Iteration Values to an Incoming Edge

Case Condition Test Edge Exit

1 � node exit < edge range min edge range min

2 �
edge range min � node exit &
node exit � edge range max

node exit

3 � edge range max < node exit

Legend: = [edge range min .. edge range max]

� = node exit (i.e. node exit min or node exit max)

7 K

<26,101>
<26,_> <101,101>

break2 K

<26,_>

3 U

<26,_>

break 5 K

<_,_>

continue

<_,_><26,26>

<_,_>

<26,_>

<_,_>

Figure 7. DAG of Iteration Branches with Minimum and Maximum Iteration Values

Figure 7 shows the same DAG as in Figure 5 on page 11, but with
minimum and maximum iteration values assigned to edges and nodes.
Node 5 and its incoming edges are assigned unbounded values since

paper.tex; 23/09/1999; 15:55; p.13

14 Healy, Sj�odin, Rustagi, Whalley and van Engelen

(c) Unbounded Loop

(a) Bounded Loop (b) Potentially Unbounded Loop

for (i = 0; ; i++) {
 if (i < 100 && somecond)
 continue;
 if (i == 50)
 break;
 }

for (i = 0; i != 100; i += 3)
 A;

for (i = 0; i != 100; i++)
 A;

Figure 8. Examples of Loops with Iteration Branches Using Equality Operators

there is no transition to a break for the range of loop iterations in
which they are executed. Node 3 is assigned a minimum iteration value
of 26 since that is the �rst possible iteration at which the node can take
a transition to a break. Node 3's maximum iteration value is unbounded
since node 3's iteration branch is classi�ed as unknown and there is
no guarantee that the transition to the break from node 3 will ever be
taken. The minimum and maximum iterations for the entire loop is 26
and 101, respectively, since these are the iteration values in node 7,
which is the root exit condition.

3.5. Supporting Iteration Branches Using Equality

Operators

As stated in Table I on page 8, an iteration branch using an equality
operator (i.e. == or !=) was earlier described as always being treated as
an unknown branch. This may result in looser, but safe iteration bounds
for loops containing equality operators. One reason for not addressing
iteration branches that use the equality operators is that they may
cause loop iteration ranges to become noncontiguous and would compli-
cate the algorithms for bounding the number of iterations. However, in
many cases iteration branches with equality operators can be handled
using only contiguous ranges of iterations. For instance, Figure 8(a)
contains a loop with an equality operator that our implementation
was able to successfully bound. Our implementation classi�es iteration
branches with equality operators as known when the following three
additional requirements to those speci�ed in Table I are satis�ed:

1. First, every path ending in a back edge in the loop must include
the iteration branch with the equality operator. Figure 8(b) shows

paper.tex; 23/09/1999; 15:55; p.14

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 15

Table V. How to Determine When an Equality Test Changes Direction

Operator Condition Test Result adjust

== �rst < limit & incr > 0 is true on the Nth iteration �1
== �rst > limit & incr < 0 is true on the Nth iteration 1
== �rst = limit & incr = 0 always true
== �rst = limit & incr 6= 0 is false on the 2nd iteration
== otherwise always false

!= �rst < limit & incr > 0 is false on the Nth iteration � 1
!= �rst > limit & incr < 0 is false on the Nth iteration 1
!= �rst = limit & incr = 0 always false
!= �rst = limit & incr 6= 0 is true on the 2nd iteration
!= otherwise always true

Where �rst = initial + before , incr = before + after ,
N is de�ned in Equation 1, and adjust is used in Equation 1.

an example of a loop that may not execute the test for equality on
the iteration in which the loop could exit.

2. Next, one of the outgoing transitions of the iteration branch with
an equality operator must be to a break.

3. Finally, the following expression, which is part of Equation 1, must
result in an integral value.

limit i � (initial i + before i)

before i + after i

In other words, the variable must equal the limit of the iteration
branch on some iteration. Figure 8(c) depicts a situation where the
variable i will be assigned values (0, 3, : : : 99, 102, : : :) that will
skip over the limit (100).

When the above requirements are ful�lled we have to check the
initial value and increments to the variable, similar to Table III on
page 9, and also choose a value for adjust. Table V shows when we can
use Equation 1 on page 7 to determine on which iteration an equality
test will change direction. Note that when before+after = 0 we need
not use Equation 1 and thus we do not cause a divide by zero exception.

paper.tex; 23/09/1999; 15:55; p.15

16 Healy, Sj�odin, Rustagi, Whalley and van Engelen

4. Supporting a Non-constant Loop-Invariant Number of

Iterations

Sometimes a bounded number of iterations for a loop cannot be de-
termined since the loop exit conditions involve the values of variables.
Traditionally, timing analyzers have resolved this problem by requiring
a user to specify the maximum number of iterations for a loop inter-
actively (Park and Shaw, 1991; Li et al., 1995) or as an assertion in
the source code. (Burns et al., 1996; Puschner and Koza, 1989) Unfor-
tunately, there is no guarantee that the user will specify the correct
number of iterations. Compilers may employ di�erent code generation
strategies or compiler optimizations that can a�ect the number of loop
iterations. Thus, even an astute user may specify the number of loop
iterations incorrectly.

Frequently the variables on which the number of loop iterations
depend are loop invariant. In this case, a loop-invariant expression is
calculated to represent the number of loop iterations. Essentially, we
will still use Equation 1 on page 7, but relax the requirement that
the limit and initial values have to be constants. Figure 9 shows an
example function and it's corresponding SPARC RTLs. (Some compiler
optimizations, such as loop strength reduction, have not yet been per-
formed to simplify the example.) In this example, the control variable
for the loop is r[13] and the limit is r[12], which is loop invariant.
The block preceding the loop is examined to determine the expression
associated with the limit, which is expanded in the following steps:

1. r[12] # from instruction 12

2. r[9]+r[10] # from instruction 5

3. r[9]+R[r[10]+LO[n]] # from instruction 4

4. r[9]+R[HI[n]+LO[n]] # from instruction 3

5. m+n

The register r[9] has been allocated to the argument m, whose value
was also passed to the function in the same register. The compiler
remembers the register and the blocks where each live range of a local
variable or argument is allocated to a register. Thus, the compiler was
able to associate the register r[9] with the argument m and that the
memory reference is to the global variable n. We use Equation 1 to
generate a symbolic expression (containing the local variable m and
global variable n) to represent the number of iterations, as shown in
Figure 10.

When the compiler can determine that the number of iterations is
non-constant and loop invariant, the loop-invariant expression is passed

paper.tex; 23/09/1999; 15:55; p.16

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 17

: address of array a

: argument m

: variable sum

: variable i

r[8]

r[9]

r[11]

r[13]

int sumarray(a, m)
int a[], m;
{
 int i, sum;
 extern int n;

 sum = 0;

 for (i = 1; i < m+n; i++)
 sum += a[i];
 return sum;
}

(a) Source Code

1r[11]=0; # instruction 1
instruction 2r[13]=1;

r[10]=HI[_n];
r[10]=R[r[10]+LO[_n]];
r[12]=r[9]+r[10];
IC=0?r[12];
PC=IC>=0,L25;

instruction 3
instruction 4
instruction 5
instruction 6
instruction 7

L18 2r[10]=r[13]<<2; # instruction 8
r[10]=R[r[8]+r[10]];
r[11]=r[11]+r[10];
r[13]=r[13]+1;
IC=r[13]?r[12];
PC=IC<0,L18;

instruction 9
instruction 10
instruction 11
instruction 12
instruction 13

L25 3PC=RT; # instruction 14

 valuebnd m[10:100] n[20:80]

Variable Mapping
(b) Register to

(c) SPARC RTLs

Figure 9. Loop with a Non-constant Loop-Invariant Number of Iterations

to the timing analyzer. The user is prompted by the timing analyzer
for the minimum and maximum values for each variable in this expres-
sion. To simplify identi�cation of these variables, the timing analyzer
also informs the user of the function and line number associated with
the loop. After receiving the minimum and maximum values for these
variables, the timing analyzer automatically calculates the minimum
and maximum number of loop iterations.3

3 Note that the timing analyzer will not permit the number of iterations to be
fewer than 1. In the above example, a user may indicate that the minimum values of
m and n are both 0. Simply substituting these values in the expression would result
in the number of loop iterations being �1. But if the loop is entered, then it has to

paper.tex; 23/09/1999; 15:55; p.17

18 Healy, Sj�odin, Rustagi, Whalley and van Engelen

N =

�
limit � (initial + before) + adjust

before + after

�
+ 2

=

�
m+ n� (1 + 1) +�1

1 + 0

�
+ 2

= m+ n� 1

Figure 10. Finding a Symbolic Bound for Example in Figure 9

The authors also modi�ed the compiler to allow the user to specify
assertions about the minimum and maximum values of variables asso-
ciated with loops. The boldface line in Figure 9(a) contains assertions
for the minimum and maximum values of the variables m and n. The
compiler uses the loop-invariant expression and replaces the variables
with the minimum and maximum speci�ed values. The minimum num-
ber of iterations of 29 and the maximum number of iterations of 179 is
automatically passed to the timing analyzer and no user intervention
is required. Of course, the analysis will only be as accurate as the
assertions themselves.

When a loop-invariant expression cannot be calculated, the timing
analyzer will prompt the user for the minimum and maximum number
of iterations instead of values of variables. However, we have found
that a constant or loop-invariant number of iterations can be typically
calculated for most loops in the numerical benchmarks and applications
we have examined.

5. Bounding Iterations for Non-Rectangular Loop Nests

The previous sections described approaches to determine the minimum
and maximum number of iterations for a loop, given that the number of
iterations depends only upon either constant or loop-invariant values.
Unfortunately, many nested loops do not ful�ll this requirement.

In this section we will describe a novel method to determine the
number of iterations for a nested loop whose iteration bound depends
upon the loop index of an outer loop. Such a loop nest is called non-

rectangular. A typical example of a non-rectangular loop nest is the
loop nest of the bubble sort program in Figure 11.

execute at least one iteration since the number of iterations is de�ned as the number
of times the loop header block is executed.

paper.tex; 23/09/1999; 15:55; p.18

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 19

for(i = 0; i < 99; i++)

for(j = i+1; j < 100; j++)

if(a[i] > a[j]) swap(a,i,j);

Figure 11. A Typical Non-Rectangular Loop Nest

Non-rectangular loop nests have long presented a problem for timing
analyzers since the resulting timing predictions are typically quite loose
(Healy et al., 1995; Hur et al., 1995; Li et al., 1995). In fact, these overly
pessimistic predictions may indicate that a program does not meet its
timing constraints, when it actually does.

This section describes a general and eÆcient method for obtaining
tight timing predictions for non-rectangular loop nests usually encoun-
tered in programs. This is accomplished by formulating the number
of loop iterations in terms of summations, where each summation rep-
resents the number of iterations to be executed by a loop. Such an
equation can be eÆciently solved given that certain restrictions are
met.

5.1. Formulating the Number of Iterations

In this subsection we describe how a loop nest may be formulated in
terms of summations. The framework we present was based on work
by Sakellariou (Sakellariou, 1997; Sakellariou, 1996). The number of
iterations of a single loop, where the loop variable is incremented by
one (so called unit stride), can be represented by a summation when
the lower bound (a) is less than or equal to the upper bound (b), as
shown in Equation 2.

N =

bX
i=a

1 =

(
b� a+ 1 if a � b

0 otherwise
(2)

Figure 12 shows how two di�erent loop nests can be formulated in
terms of summations. The total number of iterations to be executed
by the innermost loop in each loop nest are calculated by solving the
corresponding equation. The Bernoulli formula shown in Equation 3,
where p � 1 and n � 1 and Bk is the Bernoulli number of order k, can
be used to evaluate terms in a summation.

nX
i=1

ip =
1

p+ 1

pX
k=0

�
p+ 1

k

�
Bk(n+ 1)p�k+1 (3)

paper.tex; 23/09/1999; 15:55; p.19

20 Healy, Sj�odin, Rustagi, Whalley and van Engelen

for (i=1; i<99; i++)

for (j=i+1; j<100; j++)

A;

N =

98X
i=1

99X
j=i+1

1

=

98X
i=1

0
@ 99X

j=1

1�

iX
j=1

1

1
A

=

98X
i=1

(99� i)

=

98X
i=1

99�

99X
i=1

i

= 4851

(a) Loop Nest from
Sort Program

for (j=1; j<=100; j++)

for (i=j; i<=100; i++)

for (k=1; k<j; k++)

A;

N =

100X
j=1

100X
i=j

j�1X
k=1

1

=

100X
j=1

100X
i=j

(j � 1)

=

100X
j=1

100X
i=1

(j � 1)�

j�1X
i=1

(j � 1)

!

=

100X
j=1

100X
i=1

j �

100X
i=1

1

j�1X
i=1

j +

j�1X
i=1

1

!

=

100X
j=1

�
102j � j2 � 101

�

= 102

100X
j=1

j �

100X
j=1

j2 � 101

100X
j=1

1

= 166650

(b) Loop Nest from LU Decom-
position Program

Figure 12. Deriving the Total Number of Iterations for Two Loop Nests

The constraint on the bounds in Equation 2 results from the fact that
the value of the sum must equal 0 if the lower bound a is greater than
the upper bound b. The explicit constraint is necessary to accurately
count the number of iterations of so-called zero-trip loops. Zero-trip
loops do not execute the loop body when the lower bound exceeds the
upper bound, given that the stride is positive.

We can represent summations with non-unit strides, where the stride s
is speci�ed along with the lower bound a and upper bound b. Equation 4
shows how a non-unit stride can be used in a conventional summation,
where E is an expression and E[i si+ a] denotes the substitution of
all free occurrences of i by si+a. This is e�ectively a change in variables
and does not change the value of the summation. The change allows
summations with strides to be represented by normalized summations

paper.tex; 23/09/1999; 15:55; p.20

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 21

(summations with stride 1).

I =

b;sX
i=a

E =

b(b�a)=scX
i=0

E[i si+ a] (4)

Summations with non-unit strides are more diÆcult to evaluate since
one has to deal with summations of
oors. Equation 5 shows how a
oor
can be converted to an expression involving a modulo operation (%). A
modulo operation can often be simpli�ed using Equation 6 (Sakellariou,
1996).

j n
m

k
=

n� n%m

m
, if m > 0 & n > 0 (5)

nX
i=0

(i%d)p =

8>>>><
>>>>:

nX
i=0

ip if n < d

bn=dc�1X
j=0

d�1X
i=0

+ip
n%dX
i=0

ip if n � d

(6)

However, summations involving modulo operations are more diÆ-
cult to simplify when two or more loops have non-unit strides and the
bounds are symbolic. Fortunately, this situation rarely occurs. Equa-
tions 2{6 can be used to correctly determine that the total iterations
for the loop nest in Figure 13 is 1717. Unfortunately, sometimes an
expression in a summation may contain a product of two or more
terms containing modulo operations. In this case, an approximation
of the iteration count is used, which is shown in Equation 7.

b;sX
i=a

E �

bb=scX
i=a

E=s (7)

for (i=0; i<100; i++)

for (j=i; j<100; j+=3)

A;

Figure 13. A Loop Nest Containing a Non-unit Stride

As suggested by Sakellariou (Sakellariou, 1996; Sakellariou, 1997), a
computer algebra system can be exploited o� line to solve the equations

paper.tex; 23/09/1999; 15:55; p.21

22 Healy, Sj�odin, Rustagi, Whalley and van Engelen

of summations. However, computer algebra systems, such as Maple

(Char et al., 1988), give inaccurate results when the bounds restriction
on the summation is violated in Equation 2. In general, every loop
iteration count problem that is cast as a summation should evaluate
to zero if the lower bound is greater than the upper bound. However,
it is not always possible to evaluate the test when the bounds are
symbolic. For example, consider the loop nest in Figure 14. The inner
loop is a zero-trip loop for values of i greater than 2. We de�ne a
partially zero-trip loop to be a loop that is zero-trip depending on
values of index variables of outer loop(s). By applying Equation 2, the
iteration count of the partially zero-trip loop can be de�ned as shown
in Figure 14. Clearly, the result is N = 3. However, a naive evaluation
without the bounds test results in N = �7. This means that when a
computer algebra system is to be used o� line, the summations should
be guarded with bounds tests. Unfortunately, computer algebra systems
cannot e�ectively deal with the simpli�cation of nested summations
with additional tests on the bounds of inner summations. The reason
is that the test may be symbolic, as shown in Figure 14. The solution is
to isolate possible conditions on the iteration variable from the test and
to simplify summations as shown in Equation 8 for any expression e.
Note that c may not necessarily lie within the range [a..b] and relations
besides < may be used.

bX
i=a

(
E if i < c

0 otherwise
=

(Pmin(b;c)
i=a E if a < c

0 otherwise
(8)

for (i=1; i<8; i++)

for (j=i; j<3; j++)

A;

N =

7X
i=1

(
3� i if i < 3

0 otherwise

Figure 14. A Partially Zero-Trip Loop

paper.tex; 23/09/1999; 15:55; p.22

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 23

5.2. Implementation

The implementation for evaluating the summations described in the
previous section was accomplished by using the algebraic simpli�er por-
tion of the Ctadel system (van Engelen et al., 1996; van Engelen et al.,
1997). The authors' timing analyzer (Healy et al., 1999) and Ctadel
were compiled separately, but Ctadel is directly integrated into the
timing analyzer by linking the object �les. This avoids unnecessary
overhead that would result from passing expressions between the tim-
ing analyzer and Ctadel by operating systems calls. The summations
are formulated in the timing analyzer and Ctadel is invoked as a C
function with the summation parameters as arguments.4

Another complication when dealing with zero-trip loops in the tim-
ing analyzer is due to the way the timing analyzer counts iterations. As
mentioned in Section 3.1, the number of loop iterations is the number
of times the loop header is executed, as opposed to the number of
times the loop body is encountered. Thus, when a loop is entered, it
is guaranteed to iterate at least once. The zero-trip case in Equation 8
can be modi�ed to indicate a single iteration, as shown in Equation 9.

bX
i=a

(
E if i < c

1 otherwise
=

(Pmin(b;c�1)
i=a E if a < c

0 otherwise
+

(Pb
i=max(a;c) 1 if c � b

0 otherwise
(9)

Figure 15 shows how the loop nest in Figure 14 can be formulated as
a summation and solved to produce an accurate number of iterations.
Note that the test in Figure 15 has iteration variable i isolated to the
left of the relation. An isolation algorithm is used byCtadel to analyze
the test and isolate the variable.

It is known that the detection of zero-trip loops in the general case
is NP-complete, because it amounts to solving a integer linear pro-
gramming problem. Similarly, adjusting the bounds of loops to avoid
partially zero-trip loops is NP-complete. This normalization process
can be performed with the Fourier-Motzkin (FM) elimination method
(Wolfe, 1996). However, one can argue that real-world algorithms rarely
exhibit (partially) zero-trip loops, because algorithms with partially
zero-trip loops are deemed to be ineÆcient.

The timing analyzer veri�es that there are no zero-trip loops for an
inner loop by expanding its initial value and limit. Likewise, the timing

4 The authors have created a Web page demonstrating the functionality of the
Ctadel. It can calculate the number of loop iterations for a loop nest speci�ed by
the user. The URL is http://www.cs.fsu.edu/~engelen/iternum.cgi.

paper.tex; 23/09/1999; 15:55; p.23

24 Healy, Sj�odin, Rustagi, Whalley and van Engelen

N =

7X
i=1

(
3� i if i < 3

1 otherwise

=

2X
i=1

(3� i) +

7X
i=3

1

= 3 + 5

= 8

Figure 15. Deriving the Number of Iterations for the Loop Nest in Figure 14

analyzer is able to verify that there are no partially zero-trip loops in
the loop nest. However, if the veri�cation is inconclusive, the loop nest
may or may not contain (partial) zero-trip loops. For instance, consider
the loop nest in Figure 16. The expansion of the innermost loop initial
value and limit is depicted in Figure 17. The timing analyzer is able to
guarantee that the inner loop is not zero-trip since the initial value is
never greater than the limit.

for (i=0; i<10; i++)

for (j=i; j<11; j++)

for (k=i-3; k<j+8; k++)

A;

Figure 16. Innermost Loop Detected Zero-Trip Free by the Timing Analyzer

Initial Value Limit

i� 3 j + 8

[0::9] � 3 [i::10] + 8

[�3::6] [[0::9]::10] + 8

[0::10] + 8

[8::18]

Figure 17. Expanding Initial and Limit Values of Innermost Loop in Figure 16

paper.tex; 23/09/1999; 15:55; p.24

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 25

Now consider the loop in Equation 18 and the corresponding expan-
sion of the initial value and limit in Figure 19. The test is inconclusive.
However, the loop nest is not zero-trip due to the j < i condition in
the middle loop. Since the range analysis can be used to safely verify if
a loop is partially zero-trip, it is possible to use the results in deciding
which summation solver to use. For example, the loop in Figure 16
can be safely cast into a summation without a bounds tests, while
the summations for the loop in Figure 18 requires a bounds test (see
Figure 15 for an example bounds test). The disadvantage of having a
bounds test is that a loop with a stride poses problems for solving the
summation because the summation bounds test may contain modulo
operations on the iteration variable, which prohibits the application of
Equation 9.

for (i=1; i<10; i++)

for (j=0; j<i; j++)

for (k=j; k<i; k++)

A;

Figure 18. Innermost Loop Nest Detected Zero-Trip Free by Ctadel

Initial Value Limit

j i� 1

[0::i] [1::9] � 1

[0::[1::9]] [0::8]

[0::9]

Figure 19. Expanding Initial and Limit Values of Innermost Loop in Equation 18

The timing analyzer decides among three possible solution methods
to evaluate the summation representing a loop nest:

� Ctadel evaluates the summation while testing the bounds of the
index variables.

� Ctadel evaluates the summation without testing for bounds.

� The timing analyzer derives conservative lower and upper bounds
on the sum, based on constant bounds given in outer level loops.

paper.tex; 23/09/1999; 15:55; p.25

26 Healy, Sj�odin, Rustagi, Whalley and van Engelen

The algorithm for selecting the appropriate method is described in
Figure 20. The exact solutions are computed using safe assumptions in
the possible presence of partially zero-trip loops, using either method
(1) or (2). This algorithm will resort to method (3) only in the presence
of multiple loops with non-unit strides.

The timing analyzer veri�es that the loop nest is not (partially) zero-trip.
IF the check is successful THEN

The loop nest is formulated into summation without bounds tests and
presented to Ctadel.
IF Ctadel is able to solve the summation THEN

RETURN the integer count.
ELSE

Ctadel could not solve the summation in the presence of two or more
loops with non-unit strides.
RETURN conservative lower and upper bounds on the sum.

END IF

ELSE

The check is inconclusive and the loop nest is cast into a summation with
bounds tests.
The rewritten summation is presented to Ctadel.
IF Ctadel is able to solve the summation THEN

RETURN the integer count.
ELSE

Ctadel could not solve the summation in the presence of two or more
loops with non-unit strides.
RETURN conservative lower and upper bounds on the sum.

END IF

END IF

Figure 20. Algorithm for Selecting a Solution Method for Summations

The following approach is used in the timing analyzer to obtain
tight predictions of non-rectangular loop nests whose total iterations
in a loop nest are known. The timing analyzer calculates WCET and
BCET predictions based on the maximum and minimum number of
iterations, respectively, for the loop whose number of iterations varies.
These predictions are made in case a user requests the WCET or BCET
predictions for the loop. In addition to these absolute predictions, the
timing analyzer also calculates average WCET and BCET predictions
for each loop. To calculate the average number of iterations for a loop,
we divide the total iterations by the total number of times the loop is
entered. For instance, in the previous subsection we found that the total
number of iterations for the innermost loop from the sort program in

paper.tex; 23/09/1999; 15:55; p.26

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 27

Figure 12 on page 20 was 4851. We also calculate the number of times
the current loop is entered by calculating the total number of iterations
for the loop that encloses the current loop. In this example, the inner-
most loop is entered 98 times. Thus, the average number of iterations
for the loop is 49.5 (4851/98). The average number of iterations is
used to calculate the average WCET and BCET predictions. When a
non-integer is calculated, we round up for the WCET prediction and
truncate for the BCET prediction since our loop analysis algorithm is
designed to work on an integral number of iterations.

5.3. Results

Table VI shows programs that were evaluated using the approach of
calculating an average number of iterations for loops. These programs
bene�t from using this approach since they each contain one or more
non-rectangular loop nests. Note that the Sort program has been used
in the past as one of the test programs to evaluate our timing analyzer
(Arnold et al., 1994; Healy et al., 1995; White et al., 1997). The size
of a program is measured as number of assembly instructions in the
compiled and optimized program.

Table VI. Test Programs Containing Non-Rectangular Loop Nests

Name Description or Emphasis Size

Hes Reduces a 100x100 matrix to Hessenberg Form 221

Integ Evaluates a Double Integral over a Trapezoidal Region 45

Interp Polynomial Interpolation of 500 Points 178

LU LU Decomposition of a 100x100 Matrix 278

Sort Bubble sort of 500 Integers 130

Sym Tests If a 500x500 Matrix Is Symmetric 50

Table VII shows the best and worst-case cycles required for exe-
cuting with instruction caching and pipelining for the MicroSPARC I
(Texas Instruments, 1993). The previous ratio and current ratio columns
show that when the timing analyzer used the average inner loop predic-
tions, the predicted execution times were signi�cantly tighter. Interp
showed a signi�cant improvement in best case since the best case num-
ber of iterations for the inner loop of a non-rectangular loop nest was
1, which was signi�cantly lower than the average number of iterations.
If the timing analyzer did not use an average number of inner loop
iterations in worst case, then the number of loop iterations for the
triangular loops in Interp, Sort, and Sym would have been approxi-

paper.tex; 23/09/1999; 15:55; p.27

28 Healy, Sj�odin, Rustagi, Whalley and van Engelen

mately double. The WCET of these programs are nearly exact using
the average number of iterations. The Integ program had a higher best-
case previous ratio and a lower worst-case previous ratio since there
were other loops in this program that contributed more signi�cantly to
the total execution time. The Sort and Sym programs did not have a
signi�cant underestimation (i.e. previous ratio) in best case. In the best
case for Sort the values were initially sorted and the sort function exited
once the array has been detected to be in ascending order. Likewise,
the Sym program terminates when it �nds the �rst pair of values that
are not equal. Hes and LU are unlike the other programs in that they
contain some triply nested loops. In some loop nests the loop variables
of the innermost and middle loops depend on the outermost index
variable. In other loop nests the innermost loop variable depends on
the loop variable of the middle loop, which in turn depends on the
loop variable of the outer loop. Ctadel correctly determines the exact
number of loop iterations in all of these cases and the results are more
accurate WCET predictions compared to its previous ratios. However,
the improvement in BCET for LU was less substantial.5

Table VIII shows the response time of the timing analyzer for each of
the test programs. To obtain these measurements, the timing analyzer
was invoked for each test program ten times on a Sun HPC 3000
processor. The �gures in the table represent the averages of the ten
trials. Note that the times reported here include the analysis of both
best and worst case predictions, which occurred in the same invocation
of the analyzer. We found that the number of conditional constructs
(e.g. if statements) rather than the number of loops and functions,
tends to have the biggest impact on the analysis time since it a�ects
the number of paths that must be analyzed.

6. Coding Conventions to Make Loop Bounds Predictable

We have found that a programmer can write code where the timing
analyzer can accurately determine the number of iterations when the
following conventions are used. We do realize that these conventions

5 The timing predictions for the Hes and LU programs are still fairly loose. This
is primarily due to the fact that several loops were preceded by guards resulting from
if statements and loop code generation strategies. Each of these guards tests the
value of a loop control variable. The authors have recently done work in detecting
this type of constraint (Healy and Whalley, 1999b) when dealing with rectangular
loop nests. We anticipate to extend this analysis to non-rectangular loop nests for
the �nal version of this paper. This ability to detect constraints on loop control
variables should substantially tighten both the WCET and BCET predictions for
the Hes and LU programs.

paper.tex; 23/09/1999; 15:55; p.28

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 29

Table VII. Timing Analysis Results

Best-Case Results

Observed Previous Previous Current Current

Name Cycles Estimated Ratio Estimated Ratio

Cycles Cycles

Hes 306,341 13,614 0.044 256,516 0.837

Integ 19,160,842 12,785,618 0.667 19,135,118 0.999

Interp 6,485,878 143,064 0.022 6,479,865 0.999

LU 13,792,698 278,683 0.020 637,383 0.046

Sort 19,966 19,950 0.999 19,950 0.999

Sym 160 160 1.000 160 1.000

Worst-Case Results

Observed Previous Previous Current Current

Name Cycles Estimated Ratio Estimated Ratio

Cycles Cycles

Hes 55,747,317 130,932,770 2.281 57,389,258 1.029

Integ 22,538,082 30,023,163 1.332 22,553,163 1.001

Interp 25,469,403 50,702,358 1.991 25,479,405 1.000

LU 22,436,763 141,900,455 6.324 26,410,255 1.177

Sort 7,672,281 15,251,603 1.988 7,672,292 1.000

Sym 2,747,654 5,481,220 1.995 2,747,698 1.000

cannot always be used for some programs, such as non-numerical ap-
plications. However, we believe these conventions can be followed for
most numerical applications.

1. When possible, make loop exit conditions only dependent on loop
counter variables.

2. Use local integer variables for loop counter variables.

3. Try not to increment or decrement loop counter variables in condi-
tionally executed code.

4. When possible, use integer constants for the initial value, limit,
and increments of loop counter variables. Otherwise, try to use
loop invariant values.

5. Try to avoid non-unit strides in non-rectangular loop nests.

paper.tex; 23/09/1999; 15:55; p.29

30 Healy, Sj�odin, Rustagi, Whalley and van Engelen

Table VIII. Analysis Response Times in Seconds

Name Analysis Time

Hes 0.73

Integ 0.14

Interp 0.36

LU 1.10

Sort 0.25

Sym 0.22

Average 0.47

6. Try to avoid conditionally executed loops in non-rectangular loop
nests.

7. Conclusions

In this paper we have presented three di�erent methods for bounding
the number of iterations of a loop. First, a method was described that
determines the minimum and maximum number of iterations of loops
with multiple exits and also detects infeasible paths. For instance, loops
of the form in Figure 21(a) that can exit prematurely when some
condition becomes true are quite common and the bounded number
of iterations of such loops can be detected by the general algorithm
presented in the paper.

Second, a method to derive a symbolic expression representing the
number of iterations is presented. The symbolic expression is used to
bound the number of iterations of loops which have a non-constant
number of iterations. Figure 21(b) shows an example of this common
type of loop. The user can specify the minimum and maximum values
of the variables in the symbolic expression by placing assertions in
the source code or by interactively responding to prompts from the
timing analyzer. These assertions are more reliable than specifying the
minimum and maximum number of loop iterations directly since the
user does not have to be aware of the code generation strategies or
optimizations performed by the compiler. Also, if value range analysis
of variables is deployed the bounds of the variables can be automatically
provided by the compiler.

paper.tex; 23/09/1999; 15:55; p.30

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 31

 ...
for (i = 0; i < n; i++) {

 }

(b) Loop with a Nonconstant
Number of Iterations

 ...

 if (somecond)

 ...

 }

for (i = 0; i < 100; i++) {

 break;

(a) Loop with Multiple Exits

 ...

 }

for (i = 0; i < 99; i++)
 for (j = i+1; j < 100; j++) {

(c) Inner Loop Whose Number of Iterations
Depends on an Outer Loop Counter Variable

Figure 21. Common Forms of Loops

Finally, timing analysis support is given to tightly predict the exe-
cution time of a non-rectangular loop nest, i.e. a loop nest where the
number of iterations of an inner loop is dependent on counter variables
of outer level loops. These loop nests, such as the one shown in Fig-
ure 21(c), appear frequently in programs and can result in signi�cant
overestimations in worst-case predictions (as well as underestimations
in best-case predictions). Our approach more tightly predicts the num-
ber of iterations when the initial value or limit of the control variable
in an inner loop depends on a control variable of an enclosing outer
loop.

IF A loop variable has a non-constant loop-invariant initial value, limit, or stride
that is not dependent on an outer loop variable AND

There are no other loop variables to bound the number of loop iterations THEN
Use information provided by the user (assertions or responses to queries) as
described in Section 4 to obtain bounds on these variables.

END IF

Calculate the minimum and maximum iterations as described in Section 3.
IF The value of the loop variable is dependent on an outer loop variable THEN

Calculate an average number of iterations for the loop,
using the techniques described in Section 5.

END IF

Figure 22. Algorithm for Selecting a Solution Method for Bounding Loop Iterations

Figure 22 shows the algorithm used to decide which of the techniques
presented in this paper use for a particular loop.

paper.tex; 23/09/1999; 15:55; p.31

32 Healy, Sj�odin, Rustagi, Whalley and van Engelen

These methods have been successfully integrated in an existing com-
piler and an associated timing analyzer that predicts the performance
for optimized code on a machine that exploits caching and pipelining.
The result is tighter and more reliable timing analysis predictions and
less work for the user.

Acknowledgements

The authors thank Jack Davidson for allowing vpo to be used for this
research. Manuel Benitez implemented the original algorithm in vpo to
calculate the number of iterations of a loop with a single exit condition.
Frank Mueller provided several helpful suggestions on an earlier draft
of this paper. Rizos Sakellariou provided several suggestions on a later
draft. The conversations with Rizos Sakellariou about his work on
calculating the total number of loop iterations for a non-rectangular
loop nest proved to be invaluable. The authors also appreciate the
suggestions from the anonymous reviewers, which measurably improved
the quality of the paper. This work was supported in part by NSF grant
EIA-9806525.

References

Aho, A. V., R. Sethi, and J. D. Ullman: 1986, Compilers Principles, Techniques,
and Tools. Addison-Wesley.

Arnold, R., F. Mueller, D. Whalley, and M. Harmon: 1994, `Bounding Worst-Case
Instruction Cache Performance'. In: Proceedings of the Fifteenth IEEE Real-Time
Systems Symposium. pp. 172{181.

Benitez, M. E. and J. W. Davidson: 1988, `A Portable Global Optimizer and Linker'.
In: Proceedings of the SIGPLAN '88 Symposium on Programming Language
Design and Implementation. pp. 329{338.

Burns, A., R. Chapman, and A. Wellings: 1996, `Combining Static Worst-Case
Timing Analysis and Program Proof'. Real-Time Systems Journal 11, 145{171.

Char, B., K. Geddes, G. Gonnet, M. Monagan, and S. Watt: 1988, `MAPLE
Reference Manual'.

Ermedahl, A. and J. Gustafsson: 1997, `Deriving Annotations for Tight Calcula-
tion of Execution Time'. In: Proceedings of European Conference on Parallel
Processing. pp. 1298{1307.

Healy, C., R. Arnold, F. Mueller, D. Whalley, and M. Harmon: 1999, `Bounding
Pipeline and Instruction Cache Performance'. IEEE Transactions on Computers
48(1), 53{70.

Healy, C. A. and D. B. Whalley: 1999a, `Tighter Timing Predictions by Automatic
Detection and Exploitation of Value-Dependent Constraints'. In: Proceedings of
the IEEE Real-Time Technology and Applications Symposium. pp. 79{88.

paper.tex; 23/09/1999; 15:55; p.32

Supporting Timing Analysis by Automatic Bounding of Loop Iterations 33

Healy, C. A. and D. B. Whalley: 1999b, `Tighter Timing Predictions by Automatic
Detection and Exploitation of Value-Dependent Constraints'. In: Proceedings of
the IEEE Real-Time Technology and Applications Symposium.

Healy, C. A., D. B. Whalley, and M. G. Harmon: 1995, `Integrating the Timing
Analysis of Pipelining and Instruction Caching'. In: Proceedings of the Sixteenth
IEEE Real-Time Systems Symposium. pp. 288{297.

Hennessy, J. and D. Patterson: 1996, Computer Architecture: A Quantitative
Approach, Second Edition. Morgan Kaufmann.

Hur, Y., Y. Bae, S. Lim, S. Kim, B. Rhee, S. Min, C. Park, M. Lee, H. Shin, and
C. Kim: 1995, `Worst Case Timing Analysis of RISC Processors: R3000/R3010
Case Study'. In: Proceedings of the IEEE Real-Time Systems Symposium.

Kligerman, E. and A. Stoyenko: 1986, `Real-Time Euclid: A Language for Reliable
Real-Time Systems'. IEEE Transactions on Software Engineering 12(9), 941{
949.

Lam, M.: 1988, `Software Pipelining: An E�ective Scheduling Technique for VLIW
Machines'. In: Proceedings of the SIGPLAN '88 Symposium on Programming
Language Design and Implementation. pp. 318{328.

Li, Y. S., S. Malik, and A. Wolfe: 1995, `EÆcient Microarchitecture Modeling and
Path Analysis for Real-Time Software'. In: Proceedings of the Sixteenth IEEE
Real-Time Systems Symposium. pp. 298{307.

Liu, Y. and G. Gomez: 1998, `Automatic Accurate Time-Bound Analysis for High-
Level Languages'. In: ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Embedded Systems. pp. 31{40.

Lundqvist, T. and P. Stenstr�om: 1998, `Integrating Path and Timing Analysis using
Instruction-Level Simulation Techniques'. In: ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems. pp. 1{15.

Park, C. Y. and A. C. Shaw: 1991, `Experiments with a Program Timing Tool Based
on a Source-Level Timing Schema'. Computer 24(5), 48{57.

Puschner, P. and C. Koza: 1989, `Calculating the Maximum Execution Time of
Real-Time Programs'. Real-Time Systems 1(2), 159{176.

Sakellariou, R.: 1996, `On the Quest for Perfect Load Balance in Loop-Based Parallel
Computations'. Ph.D. thesis, Department of Computer Science, University of
Manchester.

Sakellariou, R.: 1997, `Symbolic Evaluation of Sums for Parallelising Compilers'.
In: Proceedings of the 15th IMACS World Congress on Scienti�c Computation,
Modelling and Applied Mathematics. pp. 685{690.

Stone, H. S.: 1990, High-Performance Computer Architecture, Second Edition.
Addison Wesley.

Texas Instruments, I.: 1993, `Product Preview of the TMS390S10 Integrated SPARC
Processor'.

van Engelen, R., L. Wolters, and G. Cats: 1996, `Ctadel: A Generator of Multi-
Platform High Performance Codes for PDE-based Scienti�c Applications'. In:
Proceedings of the 10th ACM International Conference on Supercomputing. pp.
86{93.

van Engelen, R., L. Wolters, and G. Cats: 1997, `Tomorrow's Weather Forecast:
Automatic Code Generation for Atmospheric Modeling'. IEEE Journal of
Computational Science and Engineering 4(3), 22{31.

White, R. T., F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon: 1997,
`Timing Analysis for Data Caches and Set-Associative Caches'. In: Proceedings
of the IEEE Real-Time Technology and Applications Symposium. pp. 192{202.

paper.tex; 23/09/1999; 15:55; p.33

34 Healy, Sj�odin, Rustagi, Whalley and van Engelen

Wolfe, M. J.: 1996, High Performance Compilers for Parallel Computers. Addison-
Wesley.

paper.tex; 23/09/1999; 15:55; p.34

Bounding The Execution Time of Method Calls
Combining Static Analysis and Dynamic Class Loading

Patrik Persson

Department of Computer Science, Lund University

Patrik.Persson@cs.lth.se

Extended Abstract, February 2000

Background

Object-oriented languages are becoming more and more used in real-time
software development, but simpler languages such as C or assembly code are
more common. One reason is that the timing properties of object-oriented
programs are relatively complex to predict. Nevertheless, as increasingly
complex embedded systems become ubiquitous in our society, modern lan-
guages will be needed to develop their software. Object-orientation is indeed
already popular for analysis and design of embedded real-time systems [1];
now we need the language support for it.

More speci�cally, we address worst-case execution time (WCET) analysis
for object-oriented languages. Such analyses are necessary for safe schedul-
ing in real-time systems. We base our approach on the Java language,
which has received much attention in the community of embedded real-time
systems. Java is compiled to bytecode, a stack-based code model for a Java
virtual machine (JVM). The JVM is almost always a piece of software which
can be implemented on more or less any hardware platform.

Java's bytecode approach was originally taken to support code mobility
over the Internet (applets), but has some interesting applications for embed-
ded systems. Java is designed to support dynamic class loading, that is, to
load code while the system is running. Such dynamic loading is desirable in
some embedded systems, such as industrial robots and telephone exchanges,
which often cannot be taken o�-line without signi�cant economic penalties.

We want to use Java for embedded real-time systems. While we want
to perform static analysis to ensure predictable scheduling, we also want
to retain the dynamic class loading. As we will show, these demands at
�rst appear contradictory, but can be combined in a manner consistent with
software engineering practice.

1

Timing Issues in Object-Oriented Languages

Although object-oriented languages (such as Java) share much of their se-
mantics with procedure-oriented languages such as C or Pascal, a few key
properties of these languages are of special importance in WCET analysis:

Garbage collection. A traditional garbage collector imposes unpredictable
delays in the garbage-collected process, which is clearly intolerable in a
hard real-time system. A number of real-time garbage collection tech-
niques have been developed to remedy this problem. These techniques
require information about the memory usage of the real-time process
in question, something we have treated in our previous work [3].

Virtual method calls. Unlike ordinary function or procedure calls, the
code to execute upon a virtual method call is not statically known:
it is determined at run-time. Static WCET prediction of such a call
requires special techniques.

We will now elaborate on WCET prediction of virtual method calls.

WCET Analysis of Method Calls

An automatic WCET analysis of method calls is actually possible in some
cases. If information about all possibly called implementations of a partic-
ular methods are available for analysis, one safe WCET estimation is the
longest WCET of these implementations.

This approach assumes that any of the existing implementations may be
called from a given call site. Such an approximation may be improved by
using existing type analysis techniques (e.g., [4]) developed for optimizing
compilers. A similar approach is taken in [2].

However, a global analysis is not always possible. In particular, Java
supports dynamic class loading, which means that new implementations of
a given virtual method may be introduced at run-time. To handle such an
environment, another approach is required.

Timing Constraints as Method Signature Information

We will now present an approach to handling timing requirements on virtual
methods in the context of dynamic class loading. We base this approach on
two observations:

� The WCET of a method call should be known to the programmer im-

plementing that call, even if the implementation is not yet available. If
it is not, the programmer has no way of ful�lling these requirements.

2

� When a new class is loaded, it must not break the timing assumptions

of the existing system. A new implementation of a virtual method
should not cause any code calling that method to miss its deadline.

These requirements are analogous to those for the type system in any
statically-typed programming language. For example, assume that the func-
tion f accepts a single integer argument. This information is used both for
semantic analysis of calls to f (to ensure that a call passes an integer argu-
ment) and of f itself (to ensure that it accepts an integer argument).

Timing constraints, such as bounds on WCETs of virtual methods,
should be treated in a manner similar to such type information. We thus
argue that timing constraints on virtual methods should be expressed in the

method's signature, along with the types of the parameters and the return
value.

We express this information as annotations in the form of \tagged com-
ments". Such comments can be parsed and understood by a WCET analysis
tool, yet ignored by a traditional compiler.

Example: An Embedded Controller

To give concrete form to the discussion above, we outline a small example
of an embedded controller. The framework allows a method display in the
operator interface to be called (to display, e.g., the control parameters) upon
each execution of the controller. The controller should be possible to use
with a variety of operator interfaces, but we want to bound the WCET of
display to maintain predictability of the controller.

Figure 1 is an outline of how such a design can be expressed in our
signature-based approach.

Conclusion

We have presented an approach to managing bounds on WCETs of virtual
method calls in the context of dynamic class loading, something that must be
handled if object-oriented languages are to be used properly for hard real-
time systems. The approach gains from using a specialized class loading
mechanism which can check and handle these timing requirements. Such
mechanisms are well catered for in the current Java platform (in the form
of specialized class loaders).

Our speci�cation-oriented approach is consistent with established soft-
ware engineering principles, considering the similarity to static typing in
programming languages.

3

class PIDController extends RealTimeThread {

private double uc, y, u, v;

private GUI myGUI = null;

...

public synchronized void setGUI(GUI g) { myGUI = g; }

public synchronized GUI getGUI() { return myGUI; }

public void run() {

long t = currentTime();

for(;;) {

y = IO.getY();

uc = IO.getUc();

calc_output();

IO.setU(u);

update_states();

GUI g = getGUI();

if (g != none) g.display(uc, y, u); // (A)

t += 100;

waitUntil(t);

}

}

}

class GUI {

...

abstract public void display(double uc,

double y,

double u)

/*$ time-bound 25ms */; // (B)

}

class SomeGUI extends GUI {

public void display(double uc,

double y,

double u) {

// Real-time stuff goes here. (C)

}

}

Figure 1: Expressing WCET bounds for the operator interface in an embed-
ded controller. The call at (A) has a bounded WCET, since the top-level
declaration of the called method at (B) has a WCET bound associated with
it. The implementation at (C) must adhere to this bound.

4

References

[1] B. P. Douglass. Doing Hard Time: Developing Real-Time Systems With

UML, Objects, Frameworks, and Patterns. Addison-Wesley, 1999.

[2] C. Eriksson, J. M�aki-Turja, K. Post, M. Gustafsson, J. Gustafsson, K.
Sandstr�om, and E. Brorsson. An Overview of RealTimeTalk: A Design
Framework for Real-Time Systems. Journal of Parallel and Distributed

Computing, Vol. 36, 1996.

[3] P. Persson. Live Memory Analysis for Garbage Collection in Embed-
ded Systems. In Proceedings of the ACM SIGPLAN 1999 Workshop on

Languages, Compilers, and Tools for Embedded Systems (LCTES'99),
Atlanta, GA, May 1999. ACM SIGPLAN Notices 34(7), pages 45-54.

[4] V. Sundaresan, C. Raza�mahefa, R. Vall�ee-Rai, and L. Hendren. Prac-
tical Virtual Method Call Resolution for Java. Sable Technical Report
No. 1998-7, McGill University, Canada, 1998.

5

Empty page.

Obtaining execution time
for small program fragments

by testing

Markus Lindgren
MRTC, Mälardalens Högskola

markus.lindgren@mdh.se
http://www.idt.mdh.se/personal/mle

Abstract

A novel idea on how execution time of smaller parts of programs can be measured will be
presented (work in progress). The advantage of the approach is that it is applicable to
many types of processors, without requiring any changes to the method.

The measured time will later be used in high-level analysis to compute the ``WCET'' of the
entire program.

Empty page.

tisdag 7 mars 2000

http://www.docs.uu.se/artes/events/gsconf00/
dean.shtml

Page: 1

Automating Hardware to
Software Migration for

Real-Time Embedded Systems

Alexander Dean
Carnegie Mellon University

Hardware to software migration helps embedded system designers
meet design goals by moving real-time functionality from dedicated
hardware to software running on a general purpose CPU. Cutting
hardware improves cost, size, weight, component availability,
reliability and power consumption. Using software increases flexibility
and can cut time to market. The central problem is sharing the CPU
efficiently among the multiple threads while ensuring that all
real-time operations execute on time.

Currently context-switching and busy-waiting are used to switch
threads and schedule operations; these methods slow down the
developer and use the processor inefficiently. Tight timing constraints
force programming in assembly code, greatly complicating system
development. Context switches and busy-wait nops increase program
run-time. Despite these drawbacks, design pressures often force
developers to manually migrate functions, as evidenced by software
implementations of modems, communication controllers, and even video
controllers.

This talk describes Software Thread Integration, a compiler-based
technique for automatically interleaving multiple real-time software
threads into one at the assembly language level, resulting in low-cost
or free concurrency. The fine-grain concurrency of integrated threads
is ideal for implementing real-time functions which replace dedicated
hardware. The compiler follows timing directives to automatically
integrate assembly language threads while maintaining semantic and
timing correctness. This frees the user to program in a high-level
language yet keep the timing accuracy of assembly language. This talk
will describe the integration process and results for various systems,
including a high-temperature industrial prototype which was built and
tested.

Biographical Information:

Alex Dean is finishing his Ph.D. on Software Thread Integration at
Carnegie Mellon University's ECE Department. As an engineer in an
industrial R&D lab he developed architectures and networks for
embedded systems which control automobiles, jet aircraft engines,
elevators and HVAC systems.

Updated Thursday, 10-Feb-2000 17:00 by Roland Grönroos
e-mail: artes@docs.uu.se
Location: http://www.docs.uu.se/artes/events/gsconf00/dean.shtml

Empty page.

Fixed-Priority Preemptive Multiprocessor Scheduling:
To Partition or not to Partition

Björn Andersson and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology

SE–412 96 G¨oteborg, Sweden
fba,janjog@ce.chalmers.se

Abstract
Traditional multiprocessor real-time scheduling parti-

tions a task set and applies uniprocessor scheduling on each
processor. For architectures where the penalty of migra-
tion is low, such as uniform-memory access shared-memory
multiprocessors, the non-partitioned method becomes a vi-
able alternative. By allowing a task to resume on another
processor than the task was preempted on, some task sets
can be scheduled where the partitioned method fails.

We address fixed-priority scheduling of periodically ar-
riving tasks onm equally powerful processors having a
non-partitioned ready queue. We propose a new priority-
assignment scheme for the non-partitioned method. Using
an extensive simulation study, we show that the priority-
assignment scheme has equivalent performance to the best
existing partitioning algorithms, and outperforms existing
fixed-priority assignment schemes for the non-partitioned
method. We also propose a dispatcher for the non-
partitioned method which reduces the number of preemp-
tions to levels below the best partitioning schemes.

1 Introduction
Shared-memory multiprocessor systems have recently

made the transition from being resources dedicated
for computing-intensive calculations to common-place
general-purpose computing facilities. The main reason for
this is the increasing commercial availability of such sys-
tems. The significant advances in design methods for par-
allel architectures have resulted in very competitive cost–
performance ratios for off-the-shelf multiprocessor sys-
tems. Another important factor that has increased the avail-
ability of these systems is that they have become relatively
easy to program.

Based on current trends [1] one can foresee an increas-
ing demand for computing power in modern real-time ap-
plications such as multimedia and virtual-reality servers.
Shared-memory multiprocessors constitute a viable remedy

for meeting this demand, and their availability thus paves
the way for cost-effective, high-performance real-time sys-
tems. Naturally, this new application domain introduces a
new intriguing research problem of how to take advantage
of the available processing power in a multiprocessor sys-
tem while at the same time account for the real-time con-
straints of the application.

This paper contributes to solving this problem by ad-
dressing the issue of how to utilize processors to execute
a set of application tasks in a dynamic operating environ-
ment with frequent mode changes. By mode changes we
mean that the characteristics of the entire task set changes
at certain points in time, for example, because new tasks
enter or leave the system (dynamically arriving events), or
because the existing tasks need to be re-scheduled with new
real-time constraints (QoS negotiation). In particular, this
paper elaborates on the problem to decide whether apar-
titioned (all instances of a task should be executed on the
same processor) ornon-partitioned(execution of a task is
allowed to be preempted and resume on another processor)
method should be used to schedule tasks to processors at
run-time. The relevance of this problem is motivated by the
fact that many multiprocessor versions of modern operat-
ing systems (for example, Solaris or Windows NT) today
offer run-time support for both the partitioned and the non-
partitioned method.

We study the addressed problem in the context ofpre-
emptive, fixed-priority scheduling. The reasons for this are
the following. First, the fixed-priority scheduling policy is
considered to be the most mature (in terms of theoretical
framework) of all priority-based scheduling disciplines. As
a consequence thereof, most (if not all) existing task par-
titioning schemes for multiprocessor real-time systems are
based on a fixed-priority scheme. Second, most modern op-
erating systems provide support for fixed-priority schedul-
ing as part of their standard configuration, which makes
it possible to implement real-time scheduling policies on

these systems.

It has long been claimed by real-time researchers [2, 3, 4,
5, 6] that tasks should be partitioned. The intuition behind
this recommendation has been that a partitioning method (i)
allows for the use of well-established uniprocessor schedul-
ing techniques and (ii) prevents task sets to be unschedu-
lable with a low utilization. In this paper, we show that
the decision of whether to partition or not cannot solely be
based on such intuition. In fact, we demonstrate in this pa-
per that the partitioned method isnot the best approach to
use in a dynamic operating environment. To this end, we
make two main research contributions.

C1. We propose a new fixed-priority scheme for the
non-partitioned method which circumvents many of
the problems identified with traditional fixed-priority
schemes. We evaluate this new priority-assignment
scheme together with the rate-monotonic scheme for
the non-partitioned method and compare their per-
formance with that of a set of existing bin-packing-
based partitioning algorithms. The evaluation indi-
cates that the new scheme clearly outperforms the non-
partitioned rate-monotonic scheme and provides per-
formance at least as good as the best bin-packing-
based partitioning algorithms.

C2. We propose a dispatcher for the non-partitioned
method which reduces the number of preemptions.
The dispatcher combined with our proposed priority-
assignment scheme causes the number of preemptions
to be less than the number of preemptions generated
by the best partitioning schemes.

We evaluate the performance of the scheduling algo-
rithms for multiprocessor real-time systems in the context
of resource-limitedsystems where the number of proces-
sors is fixed, and use as our performance metrics the success
ratio and least system utilization when scheduling a popu-
lation of randomly-generated task sets. Since existing par-
titioning algorithms have been proposed to be applied in a
slightly different context — minimizing the number of used
processors in a system with an unlimited amount of proces-
sors — their actual performance on a real multiprocessor
system has not been clear.

The rest of this paper is organized as follows. In Sec-
tion 2, we define our task model and review related work in
fixed-priority multiprocessor scheduling. We then present
the new priority-assignment scheme in Section 3, and eval-
uate its performance in Section 4. In Section 5, we propose
and evaluate the new context-switch-aware dispatcher. We
conclude the paper with a discussion in Section 6 and sum-
marize our contributions in Section 7.

2 Background
We consider a task set� = f�1; �2; : : : ; �ng of n inde-

pendent, periodically-arriving real-time tasks. The charac-
teristics of each task�i 2 � is described by the pair(Ti; Ci).
A task arrives periodically with a period ofTi and with a
constant execution time ofCi. Each task has a prescribed
deadline, which is the time of the next arrival of the task.

Theutilizationui of a task�i is ui = Ci=Ti, that is, the
ratio of the task’s execution time to its period. The utiliza-
tionU of a task set is the sum of the utilizations of the tasks
belonging to that task set, that is,U =

P
i
Ci=Ti. Since we

consider scheduling on a multiprocessor system, the utiliza-
tion is not always indicative on the load of the system. This
is because the original definition of utilization is a property
of the task set only, and does not consider the number of
processors. To also reflect the amount of processing capa-
bility available, we introduce the concept ofsystem utiliza-
tion,Us, for a task set onm processors, which is the average
utilization of each processor, that is,Us = U=m.

We consider a multiprocessor system withm equally
powerful processors. The system uses a run-time mecha-
nism where each task is assigned a unique and fixed prior-
ity. There is a ready queue which stores tasks that currently
do not execute but are permitted to execute. As soon as a
processor becomes idle or a task arrives, a dispatcher selects
the next task (the task with the highest priority) in the ready
queue and schedules it on a suitable processor.

Recall that the focus of this paper is on preemptive
scheduling on a multiprocessor architecture. Multiproces-
sor real-time scheduling differs from uniprocessor real-time
scheduling in that we need to determine not only whena
task should execute, but also on whichprocessor to exe-
cute. In preemptive uniprocessor scheduling, a task can be
preempted by another task, and resume its execution later at
a different time on the same processor. In preemptive multi-
processor real-time scheduling, a task that is preempted by
another task still needs to resume its execution later at a dif-
ferent time, but the task may resume its execution on a dif-
ferent processor. Based on how the system wants to resume
a task’s execution, two fundamentally different methods can
be used to implement preemptive multiprocessor schedul-
ing, namely, the partitioned method and the non-partitioned
method1.

With the partitioned method, the tasks in the task set are
divided in such a way that a task can only execute on one
processor. In this case, each processor has its own ready
queue and tasks are not allowed to migrate between proces-
sors. With the non-partitioned method, all tasks reside in a
global ready queue and can be dispatched to any processor.
After being preempted, the task can resume its execution on
any processor. The principle for the partitioned method and

1Some authors refer to the non-partitioned method as “dynamic bind-
ing” or “global scheduling”.

P2P1 P3 P1 P2 P3

Partitioned method Non-partitioned method

Figure 1: With the partitioned method a task can only execute on one processor. With the non-partitioned method a task can
execute on any processor.

the non-partitioned method is illustrated in Figure 1.
For fixed-priority scheduling of periodically-arriving

tasks on a multiprocessor system, both the partitioned
method and the non-partitioned method have been ad-
dressed in previous research. Important properties of
the real-time multiprocessor scheduling problem were pre-
sented in a seminal paper by Leung and Whitehead [7].
For example, they showed that the problem of deciding
if a task set is schedulable (that is, all tasks will meet
their deadlines at run-time) is NP-hard for both the parti-
tioned method and the non-partitioned method. They also
observed that the two methods are not comparable in ef-
fectiveness in the sense that there are task sets which are
schedulable with an optimal priority assignment with the
non-partitioned method, but cannot be scheduled with an
optimal partitioning algorithm and conversely.

When comparing the partitioned method and the non-
partitioned method, other researchers have listed the fol-
lowing disadvantages for the non-partitioned method. First,
a task set may not be schedulable on multiple processors
even though it has a system utilization that approaches zero
[2, 3, 4, 5]. Second, the plethora of well-known techniques
for uniprocessor scheduling algorithms (such as shared re-
source protocols), cannot be used [8]. Third, the run-time
overhead is greater because the assignment of a processor to
a task needs to be done each time the task arrives or resumes
its execution after being preempted [9].

Among the two methods, the partitioned method has re-
ceived the most attention in the research literature. The
main reason for this is probably that the partitioned method
can easily be used to guarantee run-time performance (in
terms of schedulability). By using a uniprocessor schedu-
lability test as the admission condition when adding a new
task to a processor, all tasks will meet their deadlines at run-
time. Now, recall that the partitioned method requires that
the task set has been divided into several partitions, each

having its own dedicated processor. Since an optimal so-
lution to the problem of partitioning the tasks is compu-
tationally intractable, many heuristics for partitioning have
been proposed, a majority of which are versions of the bin-
packing algorithm2 [2, 3, 4, 5, 8, 10, 11, 6, 9]. All of these
bin-packing-based partitioning algorithms provide perfor-
mance guarantees, they all exhibit fairly good average-case
performance, and they can all be applied in polynomial time
(using sufficient schedulability tests).

The non-partitioned method has received considerably
less attention, mainly because of the disadvantages listed
above, but also because of the following two reasons. First,
no effective optimal priority-assignment scheme has been
found for the non-partitioned method. It is a well-known
fact that the rate-monotonic priority assignment scheme
proposed by Liu and Layland [12] is an optimal priority
assignment for the uniprocessor case. Unfortunately, it
has been shown that the rate-monotonic priority-assignment
scheme is no longer optimal for the non-partitioned method
[3, 7]. Second, no effective schedulability tests exist for
the non-partitioned method. Recall that, for the partitioned
method, existing uniprocessor schedulability tests can be
used. The only known exact (necessary and sufficient)
schedulability test for the non-partitioned method has an
exponential time-complexity [13]. Liu has proposed a suf-
ficient schedulability test for the rate-monotonic priority-
assignment scheme [14], which, unfortunately, becomes
very pessimistic when the number of tasks increases. Re-
cently, another sufficient schedulability test for the rate-
monotonic priority-assignment scheme was proposed inde-

2The bin-packing algorithm works as follows: (1) sort the tasks accord-
ing to some criterion; (2) select the first task and an arbitrary processor; (3)
attempt to assign the selected task to the selected processor by applying a
schedulability test for the processor; (4) if the schedulability test fails, se-
lect the next available processor; if it succeeds, select the next task; (5)
goto step 3.

pendently by three research groups [15, 16, 17]. Unfortu-
nately, this schedulability test has the disadvantage of be-
coming pessimistic for task sets running on a large num-
ber of processors [15, 16]. These schedulability tests all
have a polynomial (for [17], a pseudo-polynomial) time-
complexity. These research groups also found that the con-
dition for a critical instant in uniprocessor scheduling can-
not be applied in multiprocessor scheduling. This is an im-
portant observation since it indicates that completely new
approaches must be used to devise a schedulability test for
the non-partitioned method.

Since there currently exist no efficient3 schedulability
tests for non-partitioned method, it is tempting to believe
that the non-partitioned method is inappropriate for real-
time systems. However, our study of the non-partitioned
method for real-time systems is motivated by the follow-
ing two reasons. First, many real-time systems do not rely
on a schedulability test, for example, those which employ
feedback control scheduling [18, 19, 20] or QoS negotia-
tion techniques [21]. Second, even if a real-time system
does rely on a schedulability test, we believe that in devel-
oping better priority-assignment schemes, we may pave the
way for effective schedulability tests in the future.

To focus on the core problem, we make the following
assumptions in the remainder of this paper:

A1. Tasks require no other resources than the processors.
This implies that tasks do not contend for an intercon-
nect, such as a bus, or critical sections.

A2. Tasks are synchronous in the sense that their initial ar-
rivals occur at the same instant of time and then the
tasks arrive periodically.

A3. A task can always be preempted. In practice, though,
one has to be aware of the fact that operating systems
typically use tick-driven scheduling where the ready
queue can only be inspected at a maximum rate.

A4. The cost of preemption is zero. We will use this as-
sumption even if a task is resumed on another proces-
sor than the task was originally preempted on. In a real
system, though, the cost of context switch is typically
in the order of100 �s [22].

3 Priority assignment
One of our major contributions in this paper is a new

priority-assignment scheme for the non-partitioned method.
In this section, we begin by recapitulate some known results
concerning priority-assignment schemes for multiprocessor

3By “efficient” we mean that the schedulability test can be done in
polynomial time (as a function of tasks, not task invocations) and that the
schedulability test always deems task sets as schedulable if the task set has
a utilization which is less than a fixed ratio of the number of processors.

scheduling. We then proceed to motivate our new priority-
assignment scheme and discuss how it can be optimized for
the non-partitioned method.

While the partitioned method relies on well-known opti-
mal uniprocessor priority-assignment schemes, such as the
rate-monotonic scheme, it is not clear as to what priority-
assignment scheme should be used for the non-partitioned
method. To that end, Leung [13], and later S´aezet al.
[9], evaluated dynamic-priority schemes and showed that
the least-laxity-first strategy performs the best for the non-
partitioned case. In the case of fixed-priority schedul-
ing, adopting the idea used by Audsley [23] and Baruah
[24] (testing for lowest priority viability) is unsuitable be-
cause existing schedulability tests for non-partitioned fixed-
priority scheduling are too pessimistic. The only known
results report that the rate-monotonic priority assignment
scheme does not work well for the non-partitioned method.
This is because, for rate-monotonic scheduling on a unipro-
cessor, a sufficient (but not necessary) condition for schedu-
lability of a task set is that the utilization of the task set
is less than or equal toln 2. For non-partitioned multi-
processor scheduling using the rate-monotonic priority as-
signment, no such property exists. Originally presented by
Dhall [2, 3] (and later repeated in, for example, [4, 5, 7]),
the basic argument is as follows. Assume that the task
set (T1 = 1; C1 = 2�); (T2 = 1; C2 = 2�); : : : ; (Tm =
1; Cm = 2�); (Tm+1 = 1+ �; Cm+1 = 1) should be sched-
uled using the rate-monotonic priority assignment scheme
onm processors. The situation form = 3 is shown in Fig-
ure 2. In this case,�m+1 will have the lowest priority and
will only be scheduled after all other tasks have executed in
parallel. The task set is unschedulable and as� ! 0, the
utilization becomesU = 1 no matter how many processors
are used. Another way of formulating this is that the sys-
tem utilizationUs = U=m will decrease towards zero asm
increases. We will refer to this observation asDhall’s effect.

Now, we observe that if�m+1 could somehow be as-
signed a higher priority, the given task set would be schedu-
lable. To see this, simply assign task priorities according to
the difference between period and execution time of each
task. Then,�m+1 would be assigned the highest priority,
and the task set would still be schedulable even if the exe-
cution time of any single task would increase slightly.

The fundamental problem demonstrated with the exam-
ple above can be summarized as follows. In fixed-priority
scheduling using the rate-monotonic scheme, many tasks
with short period, but with relatively (with respect to pe-
riod) short execution time, can block the available comput-
ing resources so that tasks with longer period, but with rel-
atively long execution time, will miss their deadlines. This
indicates that a more appropriate strategy to assign priori-
ties for the non-partitioned method would be to reflect both
time criticality and resource demands of each task.

P1

P2

P3

1
�1
�2
�3
�4

2� 1 + �

�4 needs to compute
2� more time units.

0

�1

�2

�3

�1

�2

�3�4

Figure 2: If the rate-monotonic priority assignment for the non-partitioned method is used, there are unschedulable task sets
with a low utilization.

An example of such a strategy would be one that priori-
tizes tasks according to the difference between the period of
a task and its execution time4. Based on this, we now pro-
pose a new priority assignment scheme, calledTkC, where
the priority of task�i is assigned according to the weighted
difference between its period and its execution time, that
is, Ti � k � Ci, wherek is a globalslack factor. Note
that, by using this model, we can represent two traditionally
used priority assignment schemes, namely the rate mono-
tonic (whenk = 0) and the slack monotonic (whenk = 1)
schemes. Below, we will reason about whatk should be
selected to contribute to the best performance for the non-
partitioned method.

3.1 Reasoning about k
It is clear from the discussion above that, in order to es-

cape from Dhall’s effect, we should selectk > 05. The
remaining question is then what values ofk yield the best
performance. Even for all0 < k � 1, something sim-
ilar to Dhall’s effect can occur. Assume that the task set
(T1 = 1; C1 = 1

L
); (T2 = 1; C2 = 1

L
); : : : ; (Tm =

1; Cm = 1

L
); (Tm+1 = L2+ 1

L
; Cm+1 = L2� 1

2
�L) should

be scheduled using the TkC priority-assignment scheme
with 0 < k � 1 onm processors. The situation form = 3
is shown in Figure 3. Now, asL ! 1, the task set is un-
schedulable with a utilizationU = 1. On the other hand,
selecting too large ak is a bad idea since task priorities will
then be selected such that the tasks with the longest exe-
cution time obtains the highest priority. Assume that the
task set(T1 = 1; C1 = �); (T2 = 1; C2 = �); : : : ; (Tm =
1; Cm = �); (Tm+1 = �; Cm+1 = �2) should be scheduled

4This is what is typically referred to as theslackof the task.
5Selectingk < 0 can also cause Dhall’s effect.

using the TkC priority-assignment scheme withk !1 on
m processors. The situation form = 3 is illustrated in Fig-
ure 4. Now, as� ! 0, this task set is unschedulable with a
utilizationU = 0 no matter how many processors are used.
Of course, the system utilizationUs = U=m will also de-
crease toward0 asm increases. Consequently, this effect is
even worse than Dhall’s effect.

In conclusion, we observe thatk should be greater than
1, but not too large. Lauzacet al. [16] evaluated the per-
formance of the non-partitioned fixed-priority scheduling.
Unfortunately, they only consideredk = 0 (that is, the
rate-monotonic scheme), which clearly is not the bestk.
In Section 4.2, we simulate scheduling with different val-
ues of k to determine whichk is best. In Section 4.3,
we show that the non-partitioned method using the TkC
priority-assignment scheme outperforms all existing fixed-
priority schemes for the non-partitioned method and per-
forms at least as good as the best practical online partition-
ing schemes.

4 Performance evaluation

In this section, we will conduct a performance evaluation
of the non-partitioned and partitioned method. Our evalua-
tion methodology is based on simulation experiments using
randomly-generated task sets. The reasons for this are that
(i) simulation using synthetic task sets more easily reveal
the average-case performance and robustness of a schedul-
ing algorithm than can be achieved by scheduling a single
application benchmark, and (ii) with the use of simulation
we can compare the bestk from simulation with the derived
interval ofk from our reasoning in Section 3.1.

P1

P2

P3

�1
�2
�3
�4

1=L0 1 + 1=L L2 + 1=LL21

�2

�3

�1

�2

�1 �1

�2

�3�4 �3

Figure 3: If the TkC priority assignment (0 < k � 1) for the non-partitioned method is used, there are unschedulable task
sets with a low utilization.

4.1 Experimental setup
Below, we describe our performance evaluation. Unless

otherwise stated, we conduct the performance evaluation
using the following experimental setup.

Task sets are randomly generated and their scheduling
is simulated with the respective method on four processors.
The number of tasks,n, follows a uniform distribution with
an expected value ofE[n] = 8 and a standard deviation of
0:5E[n]. The period,Ti, of a task�i is taken from a set
f100; 200; 300; : : : ; 1600g, each number having an equal
probability of being selected. The utilization,ui, of a task
�i follows a normal distribution with an expected value of
E[ui] = 0:5 and a standard deviation ofstddev [ui] = 0:4.
If ui < 0 or ui > 1 then a newui is generated. The exe-
cution time,Ci, of a task�i is computed from the generated
utilization of the task, and rounded down to the next lower
integer. If the execution time becomes zero, then the task is
generated again.

The priorities of tasks are assigned with the respective
priority-assignment scheme, and, if applicable, tasks are
partitioned and assigned to processors. All tasks arrive at
time0 and scheduling is simulated duringlcm(T1; : : : ; Tn).
The reason for selecting small values ofm andE[n] is that
lcm(T1; : : : ; Tn) grows rapidly asn is increased, causing
simulations to take too long time.

Two performance metrics are used for evaluating the
simulation experiments, namelysuccess ratioandleast sys-
tem utilization. The success ratio is the fraction of all gen-
erated task sets that are schedulable with respect to an al-
gorithm6 . The success ratio is a recognized performance

6Since the number of task sets for each point differs between plots (5
000 000 in Figure 5 and 2 000 000 in Figures 6 and 7, we obtain different
estimates of the error. With 95% confidence, we obtain errors that are less

metric in the real-time community and measures the proba-
bility that an arbitrary task set is schedulable with respect to
a certain algorithm. The least system utilization is defined
as the minimum of the system utilization of all the task sets
that we simulated and found to be unschedulable. The least
system utilization is primarily used to see if an algorithm is
likely to suffer from Dhall’s effect and similar effects, that
is, if a task set will be unschedulable even for a low uti-
lization. The plots showing the least system utilization will
be less smooth than those from the simulations of success
ratio. This is because the least system utilization reflects a
minimum of numbers rather than an average.

Two non-partitioned priority-assignment schemes are
evaluated, namelyRMwhich is the rate-monotonic priority-
assignment scheme, andTk1.1Cwhich is the TkC priority-
assignment scheme withk = 1:1 (in Section 4.2, we will
show that this is indeed the bestk). Four bin-packing-based
partitioning schemes are studied, namely RRM-BF [10],
RM-FFDU [11], RMGT [8], and R-BOUND-MP [6]7. The
reason for selecting these algorithms is that we have found
that they are the partitioning algorithms which provide the
best performance in our experimental environment. Since
partitioning schemes use a schedulability test as a part of the
partitioning, the success ratio is here also a guarantee ratio.
Note that this property does not apply for scheduling algo-
rithms using the non-partitioned method. We have also eval-
uated a hybrid partitioned/non-partitioned algorithm, which
we will call RM-FFDU+Tk1.1C. The reason for consider-
ing a hybrid solution is that we may be able to increase

than 0.0006 for Figure 5 and 0.0014 for Figures 6 and 7.
7To ensure correct operation of our simulator, we repeated previous

experiments [10, pages 235–236] and [8, pages 1440–1441] with identical
results, and [11, pages 36–37] with similar results.

P1

P2

P3

�4

�1
�2
�3

�4 needs to
execute�2 time units.

�0

�3

�2

�1

Figure 4: If the TkC priority assignment (k ! 1) for the non-partitioned method is used, there are unschedulable task sets
with a low utilization.

processor utilization with the use of non-partitioned tasks,
without jeopardizing the guarantees given to partitioned
tasks. The RM-FFDU+Tk1.1C scheme operates in the fol-
lowing manner. First, as many tasks as possible are parti-
tioned with RM-FFDU on the given number of processors.
Then, the remaining tasks (if any) are assigned priorities ac-
cording to the Tk1.1C priority-assignment scheme. In order
not to jeopardize the partitioned tasks, the priorities of the
non-partitioned tasks are set to be lower than the priority of
any partitioned task.

Below, we make two major experiments. First, we will
vary k to find the bestk and compare the results with our
reasoning in Section 3.1. Second, we will compare the per-
formance of the Tk1.1C method with that of the partitioning
algorithms.

4.2 Finding the best k
Figure 5 shows the success ratio and the least system uti-

lization as a function of the slack factork. From the plot we
make two important observations. First, the least system
utilization and the success ratio are correlated. This implies
that selecting an appropriatek to maximize the least sys-
tem utilization will provide a good (though not necessary
optimal)k for the success ratio. Second, choosingk = 1:1
provides the best success ratio. This corroborates that our
reasoning in Section 3.1 was accurate.

4.3 Performance comparison
In Figures 6 and 7, we show the performance as a func-

tion of the number of processors. The success ratio associ-
ated with the Tk1.1C priority-assignment scheme is higher
than that of any other scheduling algorithm. This clearly

indicates that our new parametrized priority-assignment
scheme works as predicted. In particular, we notice that
the traditional RM scheme is outperformed by more than
10 percentage units. The least system utilization associated
with Tk1.1C is equivalent to that of the best existing par-
titioning algorithms. Note how the least system utilization
of RM decreases considerably as the number of processors
increases, simply because of Dhall’s effect. Also observe
that Tk1.1C does not appear to suffer from Dhall’s effect.

In a complementary study [25], we have also investi-
gated the robustness of the scheduling algorithms by vary-
ing the other parameters (E[n], E[ui] andstddev [ui]) that
determine the task set. Here, we observed that the rela-
tive ranking of the algorithms does not change; the Tk1.1C
priority-assignment scheme still offers the highest success
ratio. Furthermore, Tk1.1C continues to provide a least uti-
lization which is equivalent to that of the best existing par-
titioning algorithms. This further supports our hypothesis
that Dhall’s effect does not occur for Tk1.1C.

From the plots in Figures 6 and 7, we can also
make the following two observations. First, the hybrid
partitioning/non-partitioning scheme consistently outper-
forms the corresponding partitioning schemes. This indi-
cates that such a hybrid scheme is a viable alternative to use
in multiprocessor systems that mixes real-time tasks of dif-
ferent criticality. Second, the success ratio of RM is not as
bad as suggested by previous studies [2, 3, 4, 5, 7]. The rea-
son for this is of course that Dhall’s effect, although it exists,
does not occur frequently. This observation corroborates a
recent study [16].

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0 0.5 1 1.5 2 2.5 3
0.3

0.35

0.4

0.45

0.5

0.55

0.6

su
cc

es
s

ra
tio

sy
st

em
 u

til
iz

at
io

n

k

[m=4,E[n]=8,E[u]=0.5,stddev[u]=0.4]

success ratio (TkC)
system utilization (TkC)

Figure 5: Success ratio and least system utilization as a function of the slack factork.

For all partitioning algorithms, sufficient schedulabil-
ity tests were originally proposed to be used. Now, if we
instead use a schedulability test based on response-time
analysis for the partitioning schemes, the success ratio can
be expected to increase, albeit at the expense of a signif-
icant increase in computational complexity. Recall that
response-time analysis has pseudo-polynomial time com-
plexity, while sufficient schedulability tests typically have
polynomial time-complexity. We have simulated the par-
titioning algorithms using response-time analysis [25] and
made the following observation. The FFDU algorithm now
occasionally provides a slightly higher success ratio than
Tk1.1C, while other partitioning algorithms did not improve
their performance that much, and still had a lower success
ratio than the Tk1.1C. Note that this means that, even if the
best partitioning algorithm (R-BOUND-MP) were to use
response-time analysis, it would still perform worse than
Tk1.1C. This should not come as a surprise since, for R-
BOUND-MP, the performance bottleneck is the partitioning
and not the schedulability test [6].

5 Context switches

It is tempting to believe that the non-partitioned method
causes a larger amount of (and more costly) context
switches than the partitioned method. In this section, we
will propose a dispatcher for the non-partitioned method
that reduces the number of context switches by analyzing
the current state of the scheduler. We will also compare
the number of context switches generated by the best non-
partitioned method using our dispatcher with that of the best
partitioning scheme.

5.1 Dispatcher
The non-partitioned method using fixed-priority

scheduling does only require that, at each instant, them
tasks with the highest priorities are executed; it does not
require a task to run on a specific processor. Hence, as long
as the cost for a context switch is zero, the task-to-processor
assignment at each instant does not affect schedulability.
However, on real computers the time required for a context
switch is non-negligible. If the task-to-processor assign-
ment is selected arbitrarily, it could happen (in theory) that
all m highest-priority tasks execute on another processor
than they did the last time they were dispatched, even if
thesem tasks were the ones that executed last. Hence, to
reduce the risk of unnecessary context switches, we need
a dispatcher that not only selects them highest-priority
tasks, but also selects a task-to-processor assignment such
that the number of context switches is minimized.

We now propose a heuristic for the task-to-processor as-
signment that will reduce the number of context switches
for the non-partitioned method. The heuristic is intended
to be used as a subroutine in the dispatcher in an operating
system. The basic idea of the task-to-processor assignment
algorithm is to determine which of the tasks that must ex-
ecute now (that is, have the highest priority) have recently
executed, and then try to execute those tasks on the same
processor as their previous execution. The algorithm for
this is described in Algorithm 1.

5.2 Comparison of the number of context
switches

Two terms contribute to the time for context switches: (i)
operating system overhead, including register save and re-
store and time to acquire a lock for the ready queue, and (ii)

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

su
cc

es
s

ra
tio

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

RM (=Tk0C)
Tk1.1C

RRM-BF
RM-FFDU

RM-FFDU+Tk1.1C
RMGT

R-BOUND-MP

Figure 6: Success ratio as a function of the number of processors.

Algorithm 1 Task-to-processor assignment algorithm for
the non-partitioned method.

Input : Let �before be the set of tasks that just executed on the
m processors. On each processorpi, a (possibly non-existing)
task�ij;before executed. Let�highest be the set of tasks that are
in the ready queue and has the highest priority.
Output : On each processorpi, a (possibly non-existing) task
�ij;after should execute.

1: E = fpi : (�ij;before 6= non� existing) ^ (�ij;before 2
�highest)g

2: for each pi 2 E
3: remove �ij;before from �highest
4: �ij;after �ij;before
5: for each pi =2 E
6: if �highest 6= ;
7: select an arbitrary �j from �highest
8: remove �j from �highest
9: �ij;after �j

10: else
11: �ij;after non� existing

an increase in execuction time due to cache reloading. We
assume that the penalty for cache reloading when a task is
preempted, and resumes on another processor, is the same
as if the task would resume on the same processor after be-
ing preempted. If the preempting task (that is, the new task)
has a large working set, this should be a reasonable assump-
tion. We also assume that the operating system overhead
to resume a preempted task on the same processor is the
same as when the task resumes on another processor. Under
these assumptions, the cost of a context switch is the same
for the partitioned method and the non-partitioned method.
Hence, we can count the number of preemptions during an

interval of lcm(T1; T2; : : : ; Tn) and use that as a measure
of the impact of context switches on the performance of the
partitioned method and the non-partitioned method. Note,
however, that this does not measure the impact of context
switches on schedulability, but gives an indication on the
amount of overhead introduced.

To reveal which of the two methods (partitioned or non-
partitioned) that suffers the highest penalty due to context
switches, we have simulated the scheduling of randomly-
generated task sets and counted the number of preemptions.
We simulate scheduling using Tk1.1C and R-BOUND-MP
because they are the best (as demonstrated in Section 4.3)
schemes for the non-partitioned method and the partitioned
method, respectively. We use the same experimental setup
as described in Section 4.1. We varied the number of
tasks and counted the number of preemptions only for
those task sets for which both Tk1.1C and R-BOUND-
MP were schedulable. Since different task sets have dif-
ferent lcm(T1; : : : ; Tn), the impact of task sets with large
lcm(T1; : : : ; Tn) will be too large. To make each task set
equally important, we select to usepreemption densityas a
measure of the context-switch overhead. Preemption den-
sity of a task set is defined as the number of preemptions
during alcm(T1; : : : ; Tn) divided by thelcm(T1; : : : ; Tn)
itself. We then take the average of the preemption density
over a set of 100 000 simulated task sets8.

The results from the simulations are shown in Figure 8.
We observe that, on average, the preemption density for
the best non-partitioned method (Tk1.1C) is lower than
the preemption density for the best partitioned method (R-
BOUND-MP). The reason for this is that, for the partitioned

8Hence we obtain an error of 0.0004 with 95% confidence.

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

sy
st

em
 u

til
iz

at
io

n

m

[E[n]=8,E[u]=0.5,stddev[u]=0.4]

RM (=Tk0C)
Tk1.1C

RRM-BF
RM-FFDU

RM-FFDU+Tk1.1C
RMGT

R-BOUND-MP

Figure 7: Least system utilization as a function of the number of processors.

method, an arriving higher-priority task must preempt a
lower-priority task. With the non-partitioned method, a
higher priority task can sometimes execute on another idle
processor, thereby avoiding a preemption. Figure 9 illus-
trates a situation where the non-partitioned method with a
context-switch-aware dispatcher causes the number of pre-
emptions to be less than the number of context switches for
a partitioned method.

The reasoning and evaluations in this section indicate
that the cost of context switches for the non-partitioned
method can be made significantly less than for the parti-
tioned method. This means that it is should be possible
to demonstrate even more significant performance gain in
terms of schedulability for the non-partitioned method rela-
tive to the partitioned method on a real multiprocessor sys-
tem.

6 Discussion
The simulation results reported in Section 4.3 indicate

that the non-partitioned method in fact performs better
than its reputation. Besides the advantages demonstrated
through our experimental studies, there are also other bene-
fits in using the non-partitioned method. Below, we discuss
some of those benefits.

The non-partitioned method is the best way of maximiz-
ing the resource utilization when a task’s actual execution
time is much lower than its stated worst-case execution time
[16]. This situation can occur when the execution time of
a task depends highly on user input or sensor values. Since
the partitioned method is guided by the worst-case excution
time during the partitioning decisions, there is a risk that
the actual resource usage will be lower than anticipated, and
thus wasted if no dynamic exploitation of the spare capacity

is made. Our suggested hybrid approach offers one solution
to exploiting system resources effectively, while at the same
time providing guarantees for those tasks that require so.
The hybrid solution proposed in this paper applies the parti-
tioned method to the task set until all processors have been
filled. The remaining tasks are then scheduled using the
non-partitioned approach. An alternativ approach would be
to partition only the tasks that have strict (that is, hard) real-
time constraints, and then let the tasks with less strict con-
straints be scheduled by the non-partitioned method. Since
it is likely that shared-memory multiprocessors will be used
to schedule mostly tasks of the latter type, we expect even
better performance (in terms of success ratio) for the hybrid
solution.

The non-partitioned method can perform mode changes
faster than the partitioned method since tasks are not as-
signed to dedicated processors. For the partitioned method
it may be necessary to repartition the task set during the
mode change, something which significantly decreases the
number of instants in time that a mode change can take
place at. In a complementary study, we have observed pairs
of task sets between which a mode change can only be al-
lowed to take place at a few instants in time, otherwise dead-
lines will be missed. The lack of capability to perform fast
mode changes limits the degree of flexibility in the system,
which is a serious drawback when working with dynamic
application environments.

As shown in this paper, the non-partitioned method can
be extended to account for processor affinity with the aid of
our proposed context-switch-aware dispatcher. The net re-
sult of this extension is that the non-partitioned method in-
curs fewer context switches at run-time than the partitioned
method on the average. However, it is important to real-

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

4 5 6 7 8 9 10 11 12 13 14

pr
ee

m
pt

io
n

de
ns

ity

E[n]

[m=4,E[u]=0.5,stddev[u]=0.4]

Tk1.1C
R-BOUND-MP

Figure 8: Preemption density as a function of the number of tasks in the system.

ize that this new dispatcher requires more synchronization
between processors. The overall effect of this extra syn-
chronization remains to be seen and is consequently a sub-
ject for future research. Also, it will be necessary to assess
the real costs for context switches and cache reloading and
its impact on schedulability. However, this warrants eval-
uation of real applications on real multiprocessor architec-
tures, which introduces several new system parameters to
consider.

Finally, it should be mentioned that the results obtained
for the TkC priority-assignment scheme constitute a strong
conjecture regarding the existence of a fixed-priority assign-
ment scheme for the non-partitioned method that does not
suffer from Dhall’s effect. The results also indicate that
there is a need to configure TkC for each application and
system size. However, in order to use TkC in a system
with exclusively strict real-time constraints, it is also im-
portant to find an effective schedulability test. In our future
research we will therefore focus on (i) proving that TkC
does in fact not suffer from Dhall’s effect, (ii) constructing
a (most likely, sufficient) schedulability test for TkC, and
(iii) devising a method to derive the best slack factork for
any given task set and multiprocessor system.

7 Conclusions
In this paper, we have addressed the problem of schedul-

ing tasks on a multiprocessor system with changing work-
loads. To that end, we have made two major contribu-
tions. First, we proposed a new fixed-priority assign-
ment scheme that gives the non-partitioned method equal
or better performance than the best partitioning schemes.
Since the partitioned method can guarantee that deadlines
will be met at run-time for the tasks that are partitioned,

we have also evaluated a hybrid solution that combined
the resource-effective characteristics of the non-partitioned
method with the guarantee-based characteristics of the par-
titioned method. The performance of the hybrid solution
was found to be at least as good as any partitioned method.
Second, we proposed a context-switch-aware dispatcher for
the non-partitioned method that contributes to significantly
reducing the number of context switches taken at run-time.
In fact, we show that the number of context switches taken
is less than that of the partitioned method for similar task
sets.

References
[1] K. Diefendorff and P. K. Dubey. How multimedia

workloads will change processor design.IEEE Com-
puter, 30(9):43–45, September 1997.

[2] S. Dhall. Scheduling Periodic-Time-Critical Jobs on
Single Processor and Multiprocessor Computing Sys-
tems. PhD thesis, Department of Computer Science,
University of Illinois at Urbana-Champain, 1977.

[3] S. K. Dhall and C. L. Liu. On a real-time scheduling
problem. Operations Research, 26(1):127–140, Jan-
uary/February 1978.

[4] S. Davari and S.K. Dhall. On a real-time task alloca-
tion problem. In19th Annual Hawaii International
Conference on System Sciences, pages 8–10, Hon-
olulu, Hawaii, 1985.

[5] S. Davari and S.K. Dhall. An on-line algorithm for
real-time task allocation. InProc. of the IEEE Real-
Time Systems Symposium, volume 7, pages 194–200,
New Orleans, LA, December 1986.

[6] S. Lauzac, R. Melhem, and D. Moss´e. An efficient
RMS admission control and its application to multi-
processor scheduling. InProc. of the IEEE Int’l Par-
allel Processing Symposium, pages 511–518, Orlando,
Florida, March 1998.

[7] J. Y.-T. Leung and J. Whitehead. On the complex-
ity of fixed-priority scheduling of periodic, real-time
tasks. Performance Evaluation, 2(4):237–250, De-
cember 1982.

[8] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New
strategies for assigning real-time tasks to multipro-
cessor systems.IEEE Transactions on Computers,
44(12):1429–1442, December 1995.

[9] S. Sáez, J. Vila, and A. Crespo. Using exact feasibility
tests for allocating real-time tasks in multiprocessor
systems. In10th Euromicro Workshop on Real Time
Systems, pages 53–60, Berlin, Germany, June 17–19,
1998.

[10] Y. Oh and S. H. Son. Allocating fixed-priority periodic
tasks on multiprocessor systems.Real-Time Systems,
9(3):207–239, November 1995.

[11] Y. Oh and S. H. Son. Fixed-priority scheduling
of periodic tasks on multiprocessor systems. Tech-
nical Report 95-16, Department of Computer Sci-
ence, University of Virginia, March 1995. Avail-
able at ftp://ftp.cs.virginia.edu/pub/techreports/CS-
95-16.ps.Z.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the Association for Computing Ma-
chinery, 20(1):46–61, January 1973.

[13] J. Y.-T. Leung. A new algorithm for scheduling pe-
riodic, real-time tasks.Algorithmica, 4(2):209–219,
1989.

[14] C. L. Liu. Scheduling algorithms for multiprocessors
in a hard real-time environment. InJPL Space Pro-
grams Summary 37-60, volume II, pages 28–31. 1969.

[15] B. Andersson. Adaption of time-sensitive tasks
on shared memory multiprocessors: A frame-
work suggestion. Master’s thesis, Department
of Computer Engineering, Chalmers Univer-
sity of Technology, January 1999. Available at
http://www.ce.chalmers.se/staff/ba/masterthesis/ps/thesis.ps
and http://www.docs.uu.se/snart/prizes.shtml#1999.

[16] S. Lauzac, R. Melhem, and D. Moss´e. Comparison
of global and partitioning schemes for scheduling rate

monotonic tasks on a multiprocessor. In10th Euromi-
cro Workshop on Real Time Systems, pages 188–195,
Berlin, Germany, June 17–19, 1998.

[17] L. Lundberg. Multiprocessor scheduling of age con-
traint processes. In5th International Conference on
Real-Time Computing Systems and Applications, Hi-
roshima, Japan, October 27–29, 1998.

[18] J. A. Stankovic, C. Lu, and S. H. Son. The case
for feedback control real-time scheduling. Tech-
nical Report 98-35, Dept. of Computer Science,
University of Virginia, November 1998. Avail-
able at ftp://ftp.cs.virginia.edu/pub/techreports/CS-
98-35.ps.Z.

[19] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case
for feedback control real-time scheduling. InProc.
of the EuroMicro Conference on Real-Time Systems,
volume 11, pages 11–20, York, England, June 9–11,
1999.

[20] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design
and evaluation of a feedback control EDF scheduling
algorithm. InProc. of the IEEE Real-Time Systems
Symposium, Phoenix, Arizona, December 1–3, 1995.

[21] S. Brandt and G. Nutt. A dynamic quality of service
middleware agent for mediating application resource
usage. InProc. of the IEEE Real-Time Systems Sym-
posium, volume 19, pages 307–317, Madrid, Spain,
1998.

[22] J. C. Mogul and A. Borg. Effect of context switches
on cache performance. InInternational Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 75–84, Santa Clara, CA
USA, April 8–11, 1991.

[23] N. C. Audsley. Optimal priority assignment and feasi-
bility of static priority tasks with arbitrary start times.
Technical Report YCS 164, Dept. of Computer Sci-
ence, University of York, York, England Y01 5DD,
December 1991.

[24] S. K. Baruah. Static-priority scheduling of re-
curring real-time tasks. Technical report, De-
partment of Computer Science, The University of
North Carolina at Chapel Hill, 1999. Available at
http://www.cs.unc.edu/˜baruah/Papers/staticdag.ps.

[25] B. Andersson and J. Jonsson. Fixed-priority preemp-
tive scheduling: To partition or not to partition. Tech-
nical Report No. 00-1, Dept. of Computer Engineer-
ing, Chalmers University of Technology, S–412 96
Göteborg, Sweden, January 2000. Available at
http://www.ce.chalmers.se/staff/ba/TR/TR-00-1.ps.

P1

P2

non-partitioning with Tk1.1C, using a dispatcher aware of context switches

preemptions

P2

P1

preemption

non-partitioning with Tk1.1C, using a dispatcher unaware of context switches

preemptionspartitioning with R-BOUND-MP

P1

P2

�1
�2
�3

�3

�1

�1
�2

�2
�3

�3 �3 �3

�1�3

�2 �1

�1

�3 �1

�2�2�2

�1

�1

�2

�1 �1�1 �3�1 �3

�2 �3 �2 �2�3

�1

�2

�1

Figure 9: Preemptions for non-partitioned method and partitioned method.

Empty page.

Dynamic Replication Decisions in Fault-Tolerant
Multiprocessor-Based Real-Time Systems

Monika Andersson Wiklund and Jan Jonsson

Department of Computer Engineering
Chalmers University of Technology

S–412 96 G̈oteborg, Sweden
monikaw,janjo@ce.chalmers.se

Abstract
Fault-tolerance is an important property for many

critical real-time applications such as telecommunication
servers or space-borne signal-processing computers, both
for static and dynamically arriving tasks. In this paper,
we describe two method for supporting fault-tolerance for
dynamically arriving tasks by replicating the tasks and
scheduling the copies of each critical task. The methods are
varieties of the Primary/Backup method for providing fault-
tolerance and the idea is to dynamically decide whether the
replication should be temporal or spatial given the execu-
tion time and deadline of the task and the load in the sys-
tem. This offers a flexibility that improves the schedulability
of the dynamically arriving tasks.

1 Introduction
Multiprocessor systems available today are used for new

high-performance real-time applications, such as telecom-
munication servers or space-borne signal-processing com-
puters. These systems work in hostile environments where
it is not only important that data is processed correctly be-
fore a deadline, but also necessary to maximize the success-
ful completion of tasks even in the presence of faults. One
way of doing this is to replicate the tasks so that a copy of
the task can be completed even if the original task fails. De-
pending on how the failure of a task is detected, there have
to be a different number of copies of each original task.

The most commonly-used method to provide fault-
tolerance is the Primary/Backup method where there are
two copies of each task, one primary and one backup copy.
In most cases, it is assumed that there is a function which
detects any failures of a copy when the execution is com-
pleted. Since the function tells us when a copy fails and
which copy it is that fails, it is possible to deallocate the
resources used by the backup copy if the primary copy exe-
cutes successfully.

However, in many systems it is not always possible to
implement such a function, which means that the fault de-
tection must be made in some other way. One method for

detecting faults is then to execute multiple copies and com-
pare the results generated by the copies; unfortunately, it is
impossible to know which copy failed unless an odd num-
ber of copies are used. In some systems it is also some-
times possible to detect a fault before the task is completed
because of special hardware mechanisms, for example sig-
nature checking. In this case it is possible to remove the
copy and start a new execution immediately when the fault
is detected.

In all of the above methods, replication is used to achieve
fault-tolerance. The difference between the methods is only
the number of replicas and how the faults are detected in
each method. In both cases the replication can be temporal,
spatial, or a combination of both. Which replication method
is the best depends on the fault model, the purpose of the
replication, and the properties of the system. If both tran-
sient, intermittent and permanent faults must be handled,
the replication have to be spatial, or both temporal and spa-
tial; but, if only transient faults are handled it is sufficient
to use temporal replication. In this work we only consider
transient or intermittent faults and thus we use both tempo-
ral and spatial replication.

To accept as many dynamically-arriving tasks as possi-
ble, it is necessary to execute as few copies as possible. This
can be achieved by deallocating the backup copy if the orig-
inal copy completes its execution successfully. The deallo-
cation releases resources that will not be needed for the suc-
cessful task and makes it possible to use these resources for
any dynamically arriving task that enters the system. How-
ever, this deallocation and reuse of resources is only possi-
ble when the replication is either temporal or both temporal
and spatial, which implicates that it is desirable to use tem-
poral replication whenever it is possible.

In order to achieve fault tolerance for dynamically arriv-
ing tasks and to be able to guarantee as many new tasks as
possible in the schedule we need to decide which is the best
possible method for replicating each new task. One way to
do this is to examine the deadline and execution time of the
task and, if the deadline is long enough, use temporal repli-
cation, otherwise, spatial replication is used. However, the

load in the system and the fault model must also be consid-
ered while making such decisions.

In this paper, we propose two methods for dynamic repli-
cation of dynamically arriving tasks on a multiprocessor
system. In the first method a function is used for fault de-
tection and all faults are detected at the end of the execu-
tion, while in the second method multiple copies are used
for fault detection and faults can be detected at any time
during the execution. Both methods assume that we have
a known baseload containing periodic tasks with real-time
guarantees, and the tasks that are handled by the method are
aperiodic (e.g., telecommunication packets for GSM) and
there is no information available for these tasks until they
arrive in the system.

To verify and test the methods we use extensive simu-
lation studies. The results from a preliminary study are
promising, and verifies the functionality of the proposed
methods.

The remainder of this paper is organized as follows:
In Section 2 we discuss related work in the area of fault-
tolerant real-time systems and replication. Section 3 de-
scribes the fault models while Section 4 present the pro-
posed replication methods. The implementation and simu-
lation of the methods are discussed in Section 5. Finally,
in Section 6 we summarize our results and discuss future
work.

2 Related work
Hou and Shin [1] present a technique where a replica-

tion decision is made dynamically off-line by determining
whether or not the task module should be replicated in a
system with limited resources. Since the resources are lim-
ited, only those modules which have deadlines too tight for
time redundancy should be replicated in space. The backup
copy and the original copy of the task may not run on the
same processor and the modules are allocated with an off-
line Branch&Bound algorithm. The main objective of this
method is to replicate only those modules that have to be
replicated, not to find the best possible replication method.

Gonźalez et al [2] offer a method that uses alternative
lists for choosing which method of fault-tolerance should be
used. Each arriving task has a list that contains up to three
methods, TMR, Primary/Backup, and Primary/Exception.
The methods are considered in the order they appear in the
list and the scheduler tries to schedule the tasks with the dif-
ferent methods until a feasible schedule is found or the list
is empty. With this approach the choice of fault-tolerance
is made off-line since the lists must be prepared in advance.
This means that the system load and load distribution have
no influence over the replication decision.

Mosśe, Melhem, and Ghosh [3, 4] present the Pri-
mary/Backup principle of replication for independent, dy-
namically arriving tasks. Backup overloading and resource
deallocation is used to achieve high schedulability and the
primary copy of a task is always scheduled as early as pos-
sible while the backup is scheduled as late as possible but

with as much overloading1 as possible. There are no dy-
namic decisions in this method since all backups are sched-
uled after the primary and on another processor than the
primary.

The Distance Myopic algorithm [5, 6] also uses the Pri-
mary/Backup method. By computing the relative distance
in position between the primary and backup copies in the
dispatch queue, a flexible level of backup overloading gives
a trade-off between number of faults that can be handled,
and system performance. All dynamic tasks arrive centrally
and are distributed to a processor via the dispatch queues
and each processor then executes the tasks in its dispatch
queue. When a task is executed successfully, the processor
invokes a resource reclaiming algorithm which allows un-
used resources to be rescheduled and the backup copy to be
deallocated (unless it has to execute as well).

Fohler [7] presents a method to achieve adaptive fault-
tolerance for distributed systems by first providing a basic
reliability level and then divide the schedule into disjoint
execution intervals and define the spare capacities for each
interval. An on-line scheduler is invoked at the end of each
interval and takes care of aperiodic tasks that arrived dur-
ing the interval by using the spare capacities. After this the
spare capacities are updated and the scheduling decision is
executed in the next interval using EDF. It is assumed that
only one task at a time can be affected by faults and the
number of replicas can be increased during runtime if there
are enough spare capacities.

Ahn, Kim, and Hong [8] use a variety of the Pri-
mary/Backup method where the primary copy of a task
may overlap the backup copy of another task. To prevent
the domino effect, i.e., that the activation of a backup task
causes a primary task to miss its deadline the scheduling
is made by forming checkpoint cycles. There must be at
least two processors in the cycle that can finish the task cur-
rently executing and the newly activated task within their
deadlines if a domino effect ahould be avoided. Each task
is scheduled on the processor that gives the longest possible
checkpoint chain until a cycle is formed, then the processor
that satisfies the condition above and who gives the longest
checkpoint cycle is chosen.

Srinivasan and Shoja [9] present a method in which pe-
riodic tasks with two versions, primary and alternate, are
scheduled dynamically to maximize the number of sched-
uled primaries. The tasks are first scheduled statically and
during the execution of the tasks the dynamic scheduler is
run to enhance the number of primaries that can be exe-
cuted. If a primary executes without failure, the alternate
for this task is redundant and a, so far, unscheduled pri-
mary might be scheduled instead. To find a schedulable
primary as quickly as possible, all nodes needs to contain
information about the unscheduled primaries in the other
nodes. Each node thus has two lists, the schedule to follow

1Overloading means that several backup copies are scheduled in the
same time slot. This can only be done if the primary copies of all the
backups are scheduled on different processors.

and a shortest job list that contains all the unscheduled pri-
maries across the system. When a message from the short-
est job list is executed, a message is sent to all nodes and
each shortest jobs list is updated.

These methods differ from that of ours in the following
ways. Several of the methods use information about tasks
that have not yet entered the system, which is not always
possible. Also, none of the methods decides dynamically
how the replication of the dynamically arriving tasks should
be done, which means that some task might be ruled un-
schedulable even though they might be schedulable if an-
other replication method is used.

3 Fault Models
As in most techniques for fault-tolerant systems, the

work in this paper assumes that thesingle-fault assumption
is valid, that is, only one faulty result may be produced per
replica set.

The faults may appear either in the hardware or in the
software and they can be classified as being permanent, in-
termittent or transient.

Permanent faults in a hardware circuit are caused by, for
example, electromigration2, gate-oxide breakdown, and ra-
diation, and can be detected in self-tests or by repeated ex-
ecution. When a node can be suspected to contain a per-
manent fault it has to be stopped and tested, and, if it is
faulty, exchanged or repaired. A malicious class of perma-
nent faults that can not usually be detected or prevented by
redundancy are design errors.

Transient faults are mostly caused by environmental ef-
fects such as radiation or cross-talk (electromagnetic inter-
ference) and these faults will not cause any remaining dam-
age on the node. The faults can be detected either by hard-
ware mechanisms, such as checksums or parity coding, or
they can be detected by software mechanisms such as voting
or integrity checks on the results from the computation.

Intermittent faults might be caused by electromagnetic
interference that is caused by, for example radiation, a cel-
lular phone, or a radar antenna which are periodically send-
ing electromagnetic signals. Another possible cause for in-
termittent faults are undetected permanent faults that only
become active from time to time. This means that inter-
mittent faults really are special cases of either permanent or
transient faults and can be detected in the same way.

In our methods, permanent faults can only be handled if
the replication method operates in a way such that no repli-
cas of the same task are scheduled on the same processing
node, or that a cold spare takes over for the stopped node
when a permanent fault is detected.

4 Our Dynamic Replication Methods
The replication methods used in our approach are based

on the Primary/Backup method, that is, each dynamic task

2Movement of metal due to momentum exchange with electrons caus-
ing preferred direction of diffusion. [10]

copy 1P0 copy 2
t

copy 1

P0

P1

copy 2
t

t

copy 1

P0

P1

copy 2

t

t

temporal replication

spatial replication

temporal and spatial replication

Figure 1: Replication varieties for two copies.

is replicated and have one primary copy which always exe-
cutes and one or two backup copies that only execute if the
primary copy was unable to finish its execution or if a fault
is detected. In this work it is assumed that only transient
or intermittent faults can occur; however, it is possible to
adjust the method to allow for permanent failures as well.

Our first method for dynamic replication assumes that
there exists a function which detects whether the task is suc-
cessful or not when the execution is completed. Thus only
one copy of each task is needed, the original and a backup.
Our second method assumes that no such function exists,
and we therefore use two copies of each task for voting;
however, it is possible to find some faults before the exe-
cution is completed if the faults are detected by hardware
mechanisms.

The way in which the scheduling is done means that
sometimes the replication can be both temporal and spatial
at the same time. That is, if the replication is temporal, but a
backup copy cannot be scheduled on the same processor as
the primary copy, then the replication will be both temporal
and spatial. It is important to note that a backup copy al-
ways must execute after the primary copy if the replication
is temporal, and that it may be partially or completely over-
lapped with the primary copy if the replication is spatial.

Also, by using a distributed scheduling algorithm [11]
for scheduling, the replication strategy will depend on the
load in the system. Unless we have to handle permanent
failures, it is preferred that the primary and the backup copy
should be scheduled on the same processor; however, if this
is not possible due to high system load, we can allow the
copies to be scheduled on different processors.

4.1 Method 1: Two copies of each task
The dynamic replication strategy using two copies is

very simple. When a dynamic task arrives in the system,
the deadline and execution time of the task is examined. If
the difference between the deadline (Di) and the execution
time (Ci) multiplied with a certain replication breakpoint,s,
is larger than the task execution time of a potential backup
task, then the task is replicated in time; otherwise it is repli-
cated in space. Depending on the load in the system, the
replication can also be a combination of both (see Figure 1).

tP0
copy 1 copy 2 copy 3

P0 t

P1

copy 2 copy 3

copy 1
t

P2

copy 2

copy 1

P1

copy 3
P0 t

t

t

temporal and spatial replication

spatial replication

temporal replication

Figure 2: Replication varieties for three copies.

The reason for having the replication breakpoint parameter
is that there might be extra cost involved in the execution,
for example, a communication cost may be involved if the
primary and backup copies are situated on different proces-
sors.

Di � Ci � s � Ci ! replicate in time

When the task has been replicated, the two copies of the
task are scheduled using a distributed scheduling technique
such as the Random scheduling algorithm or the Flexible
algorithm [11]. First, the primary copy is scheduled on the
processor it arrived to, or if it is not possible to schedule
it on this processor, it is sent to one of the other proces-
sors. Which other processor is chosen to send the copy to
depends on which scheduling technique is used; a processor
can either be chosen randomly or on the basis of the load in
the system.

If the replication is temporal, the method attempts to
schedule a backup copy on the same processor as the pri-
mary copy. If this is not possible, a processor is chosen
accordingly to the scheduling technique and the method at-
tempts to schedule the copy on this processor. For spatial
replication, on the other hand, the backup copy may not
be scheduled on the same processor as the primary, that is,
another processor must be chosen before the scheduling at-
tempt. Both the primary and the backup copies must be
scheduled for the task to be accepted; if either copy cannot
be scheduled the task is rejected.

The method can be altered to handle permanent failures
by scheduling all copies on different processors whenever
possible.
4.2 Method 2: Three copies of each task

In this method we need at least two, but sometimes three,
copies of each task since we assume that there is no function
for detecting faults, that is, there is no integrity check for the
result of the computation. We assume that at most one copy

40

50

60

70

80

90

100

35 40 45 50 55 60 65 70 75 80 85

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Utilization (%)

[k = 0.3, s = 1.0]

R = 0.6
R = 0.7
R = 0.8
R = 0.9
R = 1.0

Figure 3: The influence of deadline ratio, R.

of each task can be faulty, and thus three copies of each task
is enough for fault detection. At first, two copies are exe-
cuted and their results are compared; if the results match,
the task is successful and the third copy is unnecessary. If
the results do not match, the third copy must be executed
and compared with the first results so that the correct result
can be identified.

Since the third copy of each task only is needed when
a fault has been detected, it is desirable that this copy is
scheduled after the other copies so that it can be deallocated
in case it will not be needed. There are three possible com-
binations for replicating the task: (i) all copies are temporal
replicas, (ii) two copies are spatial replicas and one is tem-
poral, or (iii) all copies are spatial replicas (see Figure 2).
Which combination is used depends on the deadline of the
task in the following way. If the deadline is long enough to
allow all copies to execute after each other within the dead-
line, only temporal replication is used. If the deadline is too
short for two copies to execute after each other, only spatial
replication is used; otherwise, one spatial and one temporal
replication is used.

To avoid that certain types of faults affect more than one
copy in the same way, it is possible to place all copies on
different processors and make sure that they do not start at
exactly the same time. This means that we will mix the
temporal and spatial properties of the replicated copies so
that all copies will differ in both time and space.

5 Implementation and Simulation
We have implemented our methods in GAST [12]

(Generic Allocation and Scheduling Tool), a software pack-
age developed at Chalmers University of Technology. The
implementation of the proposed methods has been per-
formed in steps. Initially, a simple version of the first
method without resource deallocation was implemented and
later resource deallocation was added. The next step was to
implement a simple version of the second method; this im-
plementation has just been finished.

When the simple method of the first version was imple-
mented, we ran a small simulation study to verify that it be-
haved as expected. Later, we will add the results of newer
simulation studies on the full implementation.

40

50

60

70

80

90

100

35 40 45 50 55 60 65 70 75 80 85

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Utilization (%)

[R = 0.9, s = 3.0]

k = 0.1
k = 0.3
k = 0.5
k = 0.7
k = 0.9

Figure 4: The influence fault intensity, k.

40

50

60

70

80

90

100

35 40 45 50 55 60 65 70 75 80 85

S
u
c
c
e
s
s

r
a
t
i
o

(
%
)

Utilization (%)

[R = 0.9, k = 0.3]

s = 1.0
s = 2.0
s = 2.5
s = 3.0
s = 3.5
s = 4.0

Figure 5: The influence of replication breakpoint, s.

For the small simulation study, we used a system with
four nodes, a baseload of periodic tasks with periods of 100
time units and dynamically arriving tasks with a minimal
inter-arrival time of 75 time units. Each task had an exe-
cution time that was randomly chosen from a normal dis-
tribution with a mean execution time of 15 time units and
a variance of 1. The influence of three different parame-
ters was examined by running 128 simulations for each set-
ting. The parameters were; the deadline/period ratio (R),
the fault intensity (k), and the replication breakpoint (s).
The mean execution time was increased in steps of 5 from
a start value of 5 to a final value of 45 for each combination
of the parameters. We use a non-preemptive, time-driven
execution model and we use success ratio as a measure of
performance in our simulations. We define the success ra-
tio as the fraction of tasks that can be scheduled with our
method out of all dynamically arriving tasks.

The effect of the deadline/period ratio is shown in Fig-
ure 3. It is clear from the plots that if the deadline is short-
ened (that is, the ratioR is decreased) the success ratio is
also decreased.

In Figure 4, the effect of the fault intensity is shown.
As can be seen there is no effect on the success ratio when
the fault intensity is increased. This is due the fact that we
do not use resource deallocation in this simulation study.
Because of this, backup copies that are not needed cannot

be removed from the schedule and, thus, it does not matter
to the success ratio how large the fault intensity is. If we use
resource deallocation, however, there should be a difference
in success ratio if the the fault intensityk is varied.

The effect of the replication breakpoints is shown in Fig-
ure 5. Recall that, when the replication breakpoint is low,
only spatial replication is used and when it is high only tem-
poral replication is used. The figure shows that the success
ratio decreases when the replication breakpoint is increased.
The reason for this is that, for shorter deadlines, it is harder
to find room for temporal copies than for spatial copies be-
cause the amount of free time between the baseload tasks is
too small.

6 Summary and Future Work
We have presented two methods for dynamic replication

of dynamically arriving tasks in a real-time multiprocessor
system. The methods are varieties of the Primary/Backup
method but have been extended to use the most suitable
replication mode for each arriving task based on task char-
acteristics and system load. The two methods are very sim-
ilar except for how the fault detection is made.

The implementation of the first method is finished and
verified by a small simulation study, and a simple imple-
mentation of the second method have just been finished.
We will perform a more extensive simulation study to find
which parameters are most influential on the success ratio
for the methods. We will also investigate how much it helps
to use resource deallocation. Finally, we will make a full
implementation of the second method and perform further
simulation studies to see if there are any differences be-
tween the full implementation and our simpler version.

References
[1] C.-J. Hou and K. G. Shin, “Replication and Allocation of

Task Modules in Distributed Real-Time Systems,”Proc. of
the IEEE 24th International Symposium on Fault- Tolerant
Computing, Austin, TX, June 15–17, 1994, pp. 26–35.

[2] O. Gonzlez, H. Shrikumar, J. A. Stankovic, and K. Ramam-
ritham, “Adaptive Fault Tolerance and Graceful Degradation
Under Dynamic Hard Real-time Scheduling,”Proc. of the
18th IEEE Real-Time Systems Symposium, San Francisco,
CA, Dec. 2–5, 1997, pp. 79–89.

[3] D. Moss, R. Melhem, and S. Ghosh, “Analysis of a Fault-
Tolerant Multiprocessor Scheduling Algorithm,”Proc. of
the IEEE 24th International Symposium on Fault- Tolerant
Computing, Austin, TX, June 15–17, 1994, pp. 16–25.

[4] S. Ghosh, R. Melhem, and D. Moss, “Fault-Tolerant schedul-
ing on a Hard Real-Time Multiprocessor System,”Proc. of
8th International Parallel Processing Symposium, Cancun,
Mexico, Apr. 26–29, 1994, pp. 775–782.

[5] G. Manimaran and S. R. Murthy, “A Fault Tolerant Dy-
namic Scheduling Algorithm for Multiprocessor Real-Time
Systems and Its Analysis,”IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 9, no. 11, pp. 1137–1152, Nov. 1998.

[6] G. Manimaran and S. R. Murthy, “A new Study for Fault-
Tolerant Real-Time Dynamic Scheduling Algorithms,”Jour-
nal of Systems Architecture, vol. 45, no. 1, pp. 1–13, Oct.
1998.

[7] G. Fohler, “Adaptive Fault-Tolerance with Statically Sched-
uled Real-Time Systems,”Proc. of the Ninth Euromicro
Workshop on Real Time Systems, Toledo, Spain, June 11–13,
1997, pp. 161–167.

[8] K. Ahn, J. Kim, and S. Hong, “Fault-Tolerant Real-Time
Scheduling using Passive Replicas,”Proc. on the Pacific Rim
International Symposium on Fault-Tolerant Systems, Taipei,
Taiwan, Dec. 15–16, 1997, pp. 98–103.

[9] A. Srinivasan and G. C. Shoja, “A Fault-Tolerant Dynamic
Scheduler for Distributed Hard-Real-Time Systems,”Proc.
on the Pacific Rim Conference on Communications Comput-
ers and Signal Processing, Victoria, BC, Canada, May 19–
21, 1993, pp. 268–271.

[10] C. Hawkins, “Field Returns: Reliability Failure Mechanisms
and Defect Electronic Test Properties,”Tutorial B, IEEE Eu-
ropean Test Workshop, Sitges, Spain, May 26, 1998, pp. XX–
XX.

[11] K. Ramamritham and J. A. Stankovic, “Distributed Schedul-
ing of Tasks with Deadlines and Resource Requirements,”
IEEE Trans. on Computers, vol. 38, no. 8, pp. 1110–1123,
Aug. 1989.

[12] J. Jonsson, “GAST: A Flexible and Extensible Tool for Eval-
uating Multiprocessor Assignment and Scheduling Tech-
niques,” Proc. on the Int’l Conf. on Parallel Processing,
Minneapolis, Minnseota, Aug. 10–14, 1998, pp. 441–450.

Using Massive Time Redundancy to Achieve
Node-level Transient Fault Tolerance

J. Aidemark, J. Karlsson
Laboratory for Dependable Computing

Chalmers University of Technology
S-412 96 Göteborg, Sweden

{aidemark, johan}@ce.chalmers.se

1. Introduction

Distributed real-time systems are increasingly being
used to control critical functions in automotive and
aerospace applications, such as fly-by-wire, break-by-
wire, and steer-by-wire systems. These systems must be
fault-tolerant to be safe and reliable.

For a cost-effective implementation of a fault-tolerant
distributed real-time system, it is necessary to design the
computer nodes in the system in such way that they
exhibit well-behaved failure semantics. This is achieved
by including error detection and fault-tolerance
mechanisms at the node-level. Nodes that exhibit only1

fail-stop/(crash) failures or omission failures [1] can be
considered to have well-behaved failure semantics.

Fail-stop semantics implies that the node produces either
correct results (at the right time) or produces no results
at all, i.e. it stops producing results when affected by a
fault. An omission failure occurs if the node fails to
produce a particular result, but continues to produce
correct (and timely) results after the omission failure
occurred. These failures can be handled effectively by
fairly simple distributed redundancy management
protocols, see e.g. the MARS system [2].

Previous research has shown that transient faults are
common in digital systems [3]. Transient faults can be
caused by particle radiation, e.g. in aircraft at high
altitude by high-energy neutrons, or in spacecraft by
heavy-ions. Power fluctuations and electromagnetic
interference are other causes of transient faults in
computer systems.

1 That is, the probability for other types of failures is assumed to be
negligible.

In this paper we describe an implementation of a small
real-time kernel that achieves transient fault tolerance at
the node-level. The objective is to tolerate transient
faults at the node-level whenever possible. For
permanent faults and transient faults that cannot be
handled at the node-level, the node should fulfil fail-stop
or omission failure semantics. These properties are
achieved by combining hardware and software error
detection mechanisms (EDMs) with massive time
redundancy. The kernel uses fixed-priority pre-emptive
scheduling [4].

We consider real-time systems with hard deadlines
where fault-tolerance is achieved by executing each
critical task on two nodes with fail-stop and omission
failure semantics. When such a system is used in an
environment where transients are common, such as a car
or a satellite, the time it takes to recover from a transient
fault has a significant impact on the overall system
reliability. The longer it takes to recover from a transient
fault, the higher the probability that the system crashes
because another transient fault affects the remaining
non-faulty node.

Many existing systems, e.g. MARS [2], do not provide
node-level transient fault tolerance, which means that
the recovery of all transient faults are handled via the
distributed redundancy management protocol. In this
case, the recovery time is in the order of seconds or
minutes. The advantage of handling transient faults at
the node-level is that the average recovery time for
transients can be reduced by several orders of
magnitude, which improves the overall reliability.

Node level transient fault tolerance also improves the
system resiliency to correlated node failures, which
occur when a single disturbance causes transient faults
in several nodes simultaneously.

2. Related work

Error detection by comparing the result from two
replicated executions of critical tasks was used in the
MARS system [2].

Recovery from transients faults can be achieved by
using a checkpointing scheme [5]. Checkpointing is
done by saving the state of the processor to stable
storage in regular intervals or when certain data is
updated. When a fault occur, the system is restored to
the last checkpoint and the execution can proceed.

Fault-tolerant scheduling of real-time tasks in a
uniprocessor environment is studied in [6]. This work is
based on the assumption that transient faults are always
detected, and that recovery can be achieved by a retry/
re-execution of the affected task. The aim is to allocate
adequate time for the recovery action (i.e. the retry/ re-
execution). In [6] time is reserved prior to execution
using a technique called overloading. Overloading
reserve less time than needed to re-execute all tasks
based on the condition that at most one fault can occur
during a specific time interval. An approach for
dynamically allocating time for re-execution upon a
recovery request is presented in [7].

Techniques such as robust data structures, assertions,
plausibility tests and checking execution time of system
routines were used in [2] to detect transient faults during
execution of operating system code.

3. Basic ideas

In massive time redundancy, a task is executed at least
three times to produce three or more copies of a result.
A majority vote is performed on the copies to mask any
faults (cf. massive redundancy in hardware, e.g. a TMR
system).

In our real-time kernel, each critical task is always
executed twice during normal operation. We use the
term task replica, or just replica, to denote a particular
instance of the task execution. The results of the two
replicas are compared to detect errors. If the two results
do not match, a third replica of the task is executed. The
results of the three replicas are then checked by a
majority vote. If none of the results match, no result is
delivered, which leads to a omission failure. If two
results match, they are accepted as a valid result of the
task.

Errors can also be detected by hardware and software
EDMs such as illegal op-code detection or variable
constraint checks. In this case, the affected replica is
immediately terminated, and a new replica is started.

We assume that there is enough slack (unused cpu time)
available to allow at least one task to execute three
replicas, without causing any other task to miss a
deadline. However, if two or more task are affected by
near-coincident transient faults, it may not be enough
slack available to allow all of them to execute three
replicas, without causing other tasks to miss their
deadlines.

After an error is detected, the kernel checks the deadline
of the task to determine if it is possible to execute an
additional task replica before the deadline. If not, no
result is delivered and an omission failure occurs. If time
is available, a new replica is started. The task result is
delivered only when two matching results have been
produced before the deadline.

We assume a simple task model where the input is read
in the beginning of the task and the result is delivered at
the end of the task. We also assume that the input to a
task is not updated until the task result is delivered.

Comparison

Voting

Comparison

Error detected
by EDM

Error

T12T11 T13

T12T11 T13iii

ii

Error Error detected
by comparision

T12T11 slack

slack

i

Figure 1: Critical task with replicated executions
and fault handling.

Three time diagrams of the execution of task replicas is
shown in Figure 1. The time for the execution of the
kernel code is not included in the diagrams. The figure
shows three different scenarios: (i) Fault free operation,
where two replicas T11 and T12 of task T1 is executed
and their results are compared to detect errors. The

results match and can be delivered directly, not using
any of the available slack. (ii) The error is detected by
an EDM during execution of the second replica T12. The
affected replica T12 is terminated and a new replica T13

is immediately started. T13 will use time reclaimed from
the removed replica T12 as well as time from the
available slack After two replicas have been executed, a
comparison is made to confirm that the results match
before the task result is delivered. (iii) The error is
detected by the comparison. Thus, the results from the
two replicas T11 and T12 are dissimilar. It is not possible
to decide which of the two replicas that produced the
correct result so a third replica of the task is started,
called T13, using the available slack. The results of the
three executions are check by a majority vote. As
previously described, no result is delivered if none of the
results match. If two results match, they are accepted as
a valid task result.

4. Implementation and Validation

We are implementing a small real-time kernel that
achieves transient fault tolerance by using the ideas
described above. The kernel will be implemented for the
Thor microprocessor developed by Saab Ericsson Space
AB.

Fault injection will be performed to estimate the
probability of violating the fail-stop or omission failure
semantics. We will use two fault injection tools,
FIMBUL [8] and MEFISTO-C [9]. FIMBUL inject
faults in the physical unit of Thor using the scan-chains.
Faults can be injected in the registers and in the cache.
MEFISTO-C inject faults in the VHDL model of the
Thor processor. Here, faults can be injected in any state
element (i.e. a flip-flop, latch or register) of the
processor.

5. Summary and Discussion

This paper describes an implementation of a real-time
kernel that achieves transient fault tolerance by using
massive time redundancy. The real-time kernel is being
implemented for the Thor microprocessor, and will be
validated by using fault injection to estimate the
probability of violating the fail-stop or omission failure
semantics. Although the estimated coverage results will
be specific for the chosen microprocessor, the
experiments will give valuable insight into the
usefulness of the proposed technique. In the current
version, the kernel only handles transient faults that
occur during execution of application tasks.

Future work include the development of techniques that
ensure fail-stop semantics when transient faults occur
during the execution of the kernel code. We will also
investigate different policies for handling near-
coincident transient faults that affect more than one task.
Another interesting issue is to study error containment
between tasks and between tasks and the kernel.

6. References

[1] F. Cristian, "Understanding Fault-Tolerant Distributed
Systems", Communications of ACM, Vol.34, No.2, 1991, pp.
56-78.

[2] H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and J.
Reisinger, "Tolerating transient faults in MARS" 20th Int.
Symp. on Fault-Tolerant Computing (FTCS-20), IEEE,
Newcastle Upon Tyne, U.K., June 1990. pp. 466-473.

[3] R.K. Iyer, D.J. Rossetti and M.C. Hsueh, "Measurement
and Modeling of Computer Reliability as Affected by System
Activity", ACM Trans. on Computer Systems, Aug 1986, pp.
214-237.

[4] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and
A. J. Wellings, "Fixed Priority Pre-emptive Scheduling: An
Historical Perspective", Real-Time Systems, vol. 8, no. 2/3,
1995, pp. 129-154.

[5] D. K. Pradhan, Fault-Tolerant Computer System Design,
Prentice Hall, USA, 1996, pp. 160-192.

[6] S. Ghosh, "Guaranteeing Fault Tolerance through
Scheduling in Real-Time Systems", Ph.D. Thesis, Dept.
Computer Science. University of Pittsburgh, USA, 1996.

[7] P. Mejia-Alvarez, and D. Mossé, "A responsiveness
approach for scheduling fault recovery in real-time systems"
Real-Time Technology and Applications Symposium, IEEE,
Vancouver, Canada, June 1999. pp. 4-13.

[8] P. Folkesson, S. Svensson, and J. Karlsson, "A comparison
of simulation based and scan chain implemented fault
injection", 28th Int. Symp. on Fault-Tolerant Computing
(FTCS-28), IEEE, Munich, Germany, June, 1998. pp. 284-
293.

[9] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson,
"Fault injection into VHDL models: the MEFISTO tool", 24th
Int. Symp. on Fault-Tolerant Computing (FTCS-24), IEEE,
Austin, TX, USA, June 1994. pp. 66-75.

Empty page.

AIDA II
Automatic control in distributed applications

���������
	����
��������	���������������� �!��"#�$�&%('�)+*�,-�&)�./�0��)
1 *�2+��34��56�$�0%(78�9):%��-;<"=�$>?�<'
):�@	���A�'�./)B�
"C�9>D�E�$%(�-��)B'�>FAG�H�$I
�!J�K�K�L�LNMO%0�9>D�
������7

P �9���RQTSU��	VQW7C�$� %�'�)EXTYZ7C	G[�
%��E[\A��

1 Introduction

Machine industry faces a shift where more and more functionality is implemented in software
on distributed computer systems. Many difficult problems then face designers including sys-
tem modelling, analysis and management of multi disciplinary design teams. There is a need to
transfer theoretical results to industrial practice, necessitating the integration of existing work
from separate disciplines. Industrial practice, on the other hand, needs to be shifted towards
model building, analysis and prediction in order to avoid clashes in system integration.

Several useful modelling approaches and computer aided tools exist for the design of control,
software and mechanical systems. These support tools however fall short when the applica-
tions are implemented in embedded and distributed real-time computer systems. A number of
additional design issues then face designers including

• Structuring, partitioning and allocation, i.e. how to establish structures and the mappings
between them (e.g. functions/threads/processors).

• Execution and communication policies. The definition of policies and mechanisms for
triggering, scheduling, synchronisation and communication.

• Performance requirements. The definition of timing requirements and related trade-offs.

• Error detection and handling policies. In particular additional failure modes of distributed
real-time systems must be identified and handled.

The provision of a modelling framework that enables interdisciplinary work is a prerequisite in
order to support these design issues.

2 Approach and status

The objective in the AIDA research project is to develop a modelling framework and methods
for analysis of real-time behaviour in order to support the development of distributed, hetero-
geneous control systems.

The AIDA project has been running since 1996. In the first phase of the project (1996-1998)
the work was focused on the design of a modelling framework to support the design and speci-
fication of embedded distributed real-time control systems. This work has been carried out in
co-operation with a industrial reference group including Scania, SAAB Military Aircraft, Atlas
Copco Controls and ABB Robotics. The modelling framework has been used in a case study to
describe possible implementations of a control system for a four legged vehicle [5].

The continuation of AIDA, the AIDA II project, is carried out in cooperation with SAAB
Combitech Software. The project includes continued theoretical work on the modelling frame-
work, the development of a prototype tool-set and an accompanying design method, more case
studies and strengthened industrial cooperation.

2.1 Modelling real-time requirements for control systems

The AIDA modelling framework provides a number of models (and views) related to domains;
functions, software, hardware and mechanical interfaces, and provides structural and timing
behaviour models for each domain.

The basic idea of the modelling framework is that the models should include all information
needed to completely specify the system’s implemented behaviour and requirements. This in-
cludes execution times, functional decomposition, partitioning, allocation, scheduling policies,
communication media etc. With such a modelling framework as a base for a CAE (Computer
Aided Engineering) tool-set it should be possible to develop functionality that can assist sys-
tem designers to test, analyse and compare different implementations regarding real-time
measures important for control implementations (such as response times and system induced
jitter).

2.2 Timing analysis of control implementations

Automatic control systems are by design highly dependant of (and sensitive to changes in) the
final timing in the target system. Generally, control activities are periodic and put hard require-
ments on jitter in both sampling and actuation. With these facts in mind, it is amazing how lit-
tle support there is for off-line pre-implementation timing analysis of control implementations.
Today’s implementation of control systems is obviously based on a combination of expert
knowledge, conservative assumptions and trial and error.

Within the area of fixed priority, single processor scheduling, some important results have
been developed during the last decade [8]. However, for distributed systems with various
scheduling policies on many different processors and communication links (not always fixed
priority) few similar results exist. The AIDA tool-set will include a tool that helps in analysis
of timing properties of control systems implementations, specifically implementations on dis-
tributed heterogeneous hardware. Hence further research has to be done in this area and when
enough results have been achieved, the tool is to be developed.

Current work is partly focused on co-simulation of control applications with communication
resources and processor scheduling policies.

3 Results

The most recent publication gives an overview of the modelling framework and compares the
AIDA framework with representative models with a basis in object-oriented analysis and de-
sign (UML real-time extensions), structured analysis and design (DARTS/DA), and real-time
scheduling research, [3]. The modelling framework is described in full in [4]. The modelling
framework has been used in a case study to describe possible implementations of a control sys-
tem for a four legged vehicle [5]. A survey of scheduling and allocation methods for distribut-
ed real-times systems is presented in [6]. The licentiate thesis, [7], contains papers [2,4-6], a
description of the tool-set and an overview of related work.

4 References

[1] Törngren Martin and Wikander Jan. A decentralization methodology for real-time control
applications. J. of Control Engineering Practice, Vol. 4 No. 2, Feb. 1996, Pergamon.

[2] Törngren Martin and Redell Ola. A Mechatronics Test-Bed for Embedded Distributed
Control Systems. Proc. of Algorithms and Architectures for Real-Time Control, AARTC'97,
Vilamoura, April 1997.

[3] Törngren Martin and Redell Ola. A Modelling Framework to support the design and analy-
sis of distributed real-time control systems. Invited Paper. To appear in the Journal of Micro-
processors and Microsystems, Elsevier, special issue based on selected papers from the
Mechatronics 98 proceedings

[4] Redell Ola and Törngren Martin. Preliminary design of models for the AIDA tool-set,
Technical report, Dept. of Machine design, KTH, 9805.

[5] Redell Ola. Modelling and Implementation Analysis of the Distributed Real-Time Control
System for a Four Legged Vehicle. Technical report Dept. of Machine design, KTH, 9805.

[6] Redell Ola. Global Scheduling in Distributed Real-Time Computer Systems, An Automatic
Control Perspective. Technical report Dept. of Machine design, KTH, 9805.

[7] Redell Ola. Modelling of Distributed Real-Time Control Systems - An Approach for De-
sign and Early Analysis, Licentiate Thesis, 9805.

[8] Burns, A. Preemptive Priority-Based Scheduling: An Appropriate Engineering Approach,
Ch. 10 in Advances in Real-Time Systems, ISBN 0-13-083348-7, Prentice-Hall, 1995

Empty page.

Feedback Scheduling of Control Tasks

Anton Cervin Johan Eker

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund
Sweden

{anton,johane}@control.lth.se

Abstract
The paper presents a feedback scheduling mecha-
nism in the context of co-design of the scheduler
and the control tasks. We are particularly interested
in controllers where the execution time may change
abruptly between different modes, such as in hy-
brid controllers. The proposed solution attempts to
keep the CPU utilization at a high level, avoid over-
load, and distribute the computing resources evenly
among the tasks. The feedback scheduler is im-
plemented as a periodic or sporadic task that as-
signs sampling periods to the controllers based on
execution-time measurements. The controllers may
also communicate feedforward mode-change infor-
mation to the scheduler. As an example, we con-
sider hybrid control of a set of double-tank processes.
The system is evaluated, from both scheduling and
control performance perspectives, by co-simulation of
controllers, scheduler, and tanks.

1. Introduction
There is currently a trend towards more flexible real-
time control systems. By combining scheduling the-
ory and control theory, it is possible to achieve higher
resource utilization and better control performance.
To achieve the best results, co-design of the sched-
uler and the controllers is necessary. This research
area is only beginning to emerge, and there is still
a lot of theoretical and practical work to be done,
both in the control community and in the real-time
community.

Control tasks are generally viewed by the schedul-
ing community as hard real-time tasks with fixed
sampling periods and known WCETs. Upon closer
inspection, neither of these assumptions need neces-
sarily be true. For instance, many control algorithms
are quite robust against variations in sampling pe-
riod and response time. Controllers can be designed
to switch between different modes with different exe-
cution times and perhaps also different sampling in-

tervals. It is also possible to consider control systems
that are able to do a trade-off between the available
computation time and the control loop performance.

As an example throughout this paper, we study the
problem of scheduling a set of hybrid-control tasks.
Such tasks are good examples of tasks that do not
really meet the assumptions commonly made in the
scheduling theory. A hybrid controller switches be-
tween different modes, which may have very dif-
ferent execution-time characteristics. Utilizing only
worst-case execution-time (WCET) estimates in the
scheduling design can result in very low resource
utilization, slow sampling, and low control perfor-
mance. On the other hand, if instead, for instance,
average-case execution-time estimates are used in
the scheduling design, the CPU may experience tran-
sient overloads during run-time. This, again, can re-
sult in low control performance, and even temporary
shut-down of the controllers.

In this work, we present a feedback scheduler for
control tasks that attempts to keep the CPU utiliza-
tion at a high level, avoid overload, and distribute
the computing resources evenly among the tasks.
While we want to keep the number of missed dead-
lines as low as possible, control performance is our
primary objective. Thus, control tasks, in our view,
fall in a category somewhere between hard and soft
real-time tasks. The known-WCET assumption is re-
laxed by the use of feedback from execution-time
measurements. We also introduce feedforward to fur-
ther improve the regulation of the utilization.

The structure of the feedback scheduler is shown in
Figure 1. A set of control tasks generate jobs that
are fed to the run-time dispatcher. The scheduler
gets feedback information about the actual execution
time, ci, of the jobs (it is assumed that this infor-
mation can be provided by real-time operating sys-
tem). It also gets feedforward information from con-
trol tasks that are about to switch mode. This way,
the scheduler can proact rather than react to sudden
changes in the workload. The scheduler tries to keep

1

Usp {Ti}

mode changes

jobs ci, U
Scheduler Tasks Dispatcher

Figure 1 The feedback scheduling structure.

utilization, U , as close as possible to the utilization
setpoint, Usp. This is done by manipulating the sam-
pling periods, {Ti}. The choice of utilization setpoint
depends on the scheduling policy of the dispatcher,
and on the sensitivity of the controllers to missed
deadlines. Notice that the well-known, guaranteed
utilization bounds of 100% for earliest-deadline-first
(EDF) scheduling and 69% for fixed-priority schedul-
ing are not valid in this context, since the assump-
tions about known, fixed WCETs and fixed periods
are violated.

The calculated task periods should reflect the rela-
tive importance of the different control tasks. One
possibility is to assign nominal sampling periods to
the controllers off-line. The feedback scheduler can
then do linear rescaling of the task periods to achieve
the desired utilization. The controllers are informed
of the new sampling periods and may adjust their
parameters if necessary. Other possibilities could in-
clude on-line optimization of a control performance
criterion over the task periods, subject to the uti-
lization constraint. The feedback scheduler is in the
end also implemented as a periodic or sporadic task
that consumes computing resources. There is a fun-
damental trade-off between the time that should be
spent doing scheduling, and the time left over for
control computations.

1.1 Related Work
The related work falls into three categories. The first
one is the field of integrated control system and real-
time system design. In [Seto et al., 1996], sampling
period selection for a set of control tasks is consid-
ered. The performance of a task is given as function
of its sampling frequency, and an optimization prob-
lem is solved to find a set of optimal task periods.
Co-design of real-time control systems is also con-
sidered in [Ryu et al., 1997], where the performance
parameters are expressed as functions of the sam-
pling periods and the input-output latencies. [Shin
and Meissner, 1999] deals with on-line rescaling and
relocation of control tasks in a multi-processor sys-
tem. A simulator for co-design is introduced in [Eker
and Cervin, 1999]. It facilitates co-simulation of con-
trol task execution, scheduling, and continuous plant
dynamics.

The second area of related work is on quality-of-
service (QoS) aware real-time software, where a
system’s resource allocation is adjusted on-line in
order to maximize the performance in some respect.
In [Li and Nahrstedt, 1998] a general framework
is proposed for controlling the application requests
for system resources using the amount of allocated
resources for feedback. It is shown that a PID
controller can be used to bound the resource usage
in a stable and fair way. A resource allocation
scheme called Q-RAM is presented in [Rajkumar
et al., 1997]. Several tasks are competing for finite
resources, and each task is associated with a utility
value, which is a function of the assigned resources.
The system distributes the resources between the
tasks to maximize the total utility of the system. In
[Abdelzaher et al., 1997] a QoS renegotiation scheme
is proposed as a way to allow graceful degradation
in cases of overload, failures or violation of pre-run-
time assumptions. The mechanism permits clients
to express, in their service requests, a range of QoS
levels they can accept from the provider, and the
perceived utility of receiving service at each of these
levels.

The third area relates to the wealth of flexible
scheduling algorithms available. An interesting al-
ternative to linear task rescaling is given in [But-
tazzo et al., 1998], where an elastic task model for
periodic tasks is presented. The relative sensitivity
of tasks to rescaling are expressed in terms of elastic-
ity coefficients. Schedulability analysis of the system
under EDF scheduling is given. Closely related to our
work, [Stankovic et al., 1999] presents a scheduling
algorithm that explicitly uses feedback. A PID con-
troller regulates the deadline miss-ratio for a set of
soft real-time tasks with varying execution times, by
adjusting their requested CPU utilization. It is as-
sumed that tasks can change their CPU consump-
tion by executing different versions of the same al-
gorithm. An admission controller is used to accom-
modate larger changes in the workload.

1.2 Outline
The rest of the paper is outlined as follows. Section
2 describes a hybrid controller for a double-tank pro-
cess. Section 3 applies the feedback scheduling prin-
ciple to a system with three hybrid controllers. The
design and implementation are discussed and simu-
lation results are given. Finally, Section 4 contains
the conclusions.

2. A Hybrid Controller
A hybrid controller for the double-tank process, see
Figure 2, is described. The controller was designed
and implemented in [Eker and Malmborg, 1999]. The
goal is to control the level of the lower tank to a

2

Pump

Figure 2 The double-tank process.

desired setpoint. The measurement signals are the
levels of both tanks, and the control signal is the
inflow to the upper tank. Choosing state variables
x1(t) for the upper tank level and x2(t) for the
lower tank level, we get the nonlinear state-space
description

dx
dt
=
[−α

√
x1(t) + βu(t)

α
√

x1(t) −α
√

x2(t)

]
(1)

The process constants α and β depend on the cross-
sections of the tanks, the outlet areas, and the
capacity of the pump. The control signal u(t) is
limited to the interval [0,1].
Traditionally there is a trade-off in design objectives
when choosing controller parameters. It is usually
hard to achieve the desired step-change response
and at the same time get the wanted steady-state
behavior. An example of contradictory design crite-
ria is tuning a PID controller to achieve both fast
response to setpoint changes, fast disturbance rejec-
tion, and no or little overshoot. In process control it
is common practice to use PI control for steady state
regulation and to use manual control for large set-
point changes. One solution to this problem is to use
a hybrid controller consisting of two sub-controllers,
one PID controller and one time-optimal controller,
together with a switching scheme. The time-optimal
controller is used when the states are far away from
the reference point. Coming close, the PID controller
will automatically be switched in to replace the time
optimal controller.

The sub-controller designs are based on a lineariza-
tion of Equation (1).

dx
dt
=
[−a 0

a −a

]
x(t) +

[
b

0

]
u(t) (2)

The new process parameters a and b are functions
of α , β and the current linearization level.

2.1 PID Controller
The PID parameters (K , Ti, Td) are calculated to give
the closed-loop characteristic polynomial

(s+ω0)(s2 + 2ζ ω0s+ω2
0) (3)

where (ω0,ζ) = (6, 0.7) are chosen to give good rejec-
tion of load disturbances. The following discrete-time
implementation, which includes low-pass filtering of
the derivative part (N = 10), is used:

P(t) = K (ysp(t) − y(t))
I(t) = I(t−h) + K h

Ti
(ysp(t) − y(t))

D(t) = Td
Nh+Td

D(t−h) + N K Td
Nh+Td

(y(t−h) − y(t))
u(t) = P(t) + I(t) + D(t)

2.2 Time-Optimal Controller

The time-optimal control signal is of bang-bang type.
For the linearized process it is possible to derive the
switching curve

x2(x1) = 1
a
((ax1 − bu)(1+ ln(axR

1 − bu
ax1 − bu

)) + bu)

where u takes values in {0, 1}, and xR
1 is the target

state for x1. The control signal is u = 0 above
the switching curve and u = 1 below. A closeness
criterion on the form

Vclose =
[

xR
1 − x1

xR
2 − x2

]T

P(θ ,γ)
[

xR
1 − x1

xR
2 − x2

]
where P(θ ,γ) is positive definite matrix, is evaluated
at each sample, to determine whether the controller
should switch to PID mode.

2.3 Implementation
The controller implementation is outlined below.

y = analogIn(yChan);
ysp = analogIn(yspChan);
if (getMode() == PID) {
if (ysp != ysp_old) {

setMode(OPT);
signal(FBS_sem); /* feedforward, see Sec 3.3 */
u = calculateOPT();

} else {
u = calculatePID();

}
} else { /* OPT */
Vclose = computeVclose();
if (Vclose < Vregion) {

setMode(PID);
u = calculatePID();

} else {
u = calculateOPT();

}
}
analogOut(uChan,u);

2.4 Real-Time Properties
The execution-time properties of the hybrid con-
troller were investigated in [Persson et al., 2000].

3

0

0.5

1
Control signal

0.1

0.15

Lower tank level

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 3 The single-controller case.

It was found that the optimal-control mode had con-
siderable longer execution time than the PID mode.
In each mode, the execution time was close to the
best case most of the time, but it also exhibited ran-
dom bursts. For purposes of illustration, assume that
the execution-time characteristics in the different
modes can be described by CPID = 1.8+0.2ε 2

i ms and
COpt = 9.5 + 0.5ε 2

i ms, where {ε i} is unit-variance
Gaussian white noise.

The nominal sampling interval is chosen to be one
tenth of the rise time, Tr, of the closed-loop system.
Our first example process has Tr1 = 210 ms which
gives hnom1 = 21 ms. A simulation of the computer-
control system is found in Figure 3. The controller
displays very good set-point response and steady-
state regulation. It is seen that the requested CPU
utilization is very low in PID mode, on average U =
CPID/hnom1 = 9%. In Opt mode, it is significantly
higher, on average U = COpt/hnom1 = 45%.

3. Feedback Scheduling Example
Now assume that two additional hybrid double-tank
controllers should execute on the same CPU as the
first one. The tanks have slightly different process
parameters. Based on the rise-times, (Tr2, Tr3) =
(180, 150) ms, they are assigned the nominal sam-
pling intervals (hnom2, hnom3) = (18, 15) ms. To con-
sider scheduling, some assumptions about the real-
time operating system must be made. Throughout
this example, we assume a fixed-priority real-time
kernel with the possibility to measure task execution
time. The tasks are assigned rate-monotonic priori-
ties, i.e., the task with the shortest period gets the
highest priority.

First, open-loop scheduling is attempted. Then, a
feedback scheduler is added to the system. Finally,
feedforward is introduced in the scheduler. The sys-

0

0.5

1
Control signal

0.1

0.15

Lower tank level

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 4 Open-loop scheduling.

0.4 0.5 0.6 0.7 0.8 0.9

Task 1

Task 2

Task 3

 FBS

Time [s]

Schedule (high=running, medium=preempted, low=sleeping)

Figure 5 Close-up of the schedule under open-loop
scheduling.

tems are evaluated by co-simulation of the real-time
kernel and the plant dynamics [Eker and Cervin,
1999]. A 4-second simulation cycle of is constructed
as follows. At time t = 0, all controllers start in the
PID mode. At time t = 0.5 s, the worst-case case sce-
nario appears: all controllers receive new setpoints
and should switch to Opt mode. Following this, the
controllers get new setpoints pairwise, and then one
by one. For each simulation, the behavior of Con-
troller 1, now being the lowest-priority controller, is
plotted. Also plotted is the total requested utiliza-
tion,

∑
i ci/hi, where ci is the current actual execu-

tion time of task i, and hi is the current period of
task i. Notice that this signal cannot be directly mea-
sured and used for feedback, but must be estimated.

3.1 Open-loop scheduling
We first consider open-loop scheduling, where the
controllers are implemented as tasks with fixed
periods equal to their nominal sampling intervals.

4

0

0.5

1
Control signal

0.1

0.15

Lower tank level

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 6 Feedback scheduling.

0.4 0.5 0.6 0.7 0.8 0.9

Task 1

Task 2

Task 3

 FBS

Time [s]

Schedule (high=running, medium=preempted, low=sleeping)

Figure 7 Close-up of the schedule under feedback
scheduling.

The simulation results are shown in Figures 4 and 5.
The system easily becomes overloaded, since in the
worst case, U =∑i COpt/hnomi = 170%. Controller 1
is for instance temporarily turned off in the intervals
t = [0.5, 0.8] s and t = [1.5, 1.8] s because of
preemption. The result is low control performance.

3.2 Feedback scheduling

Next, a feedback scheduler is introduced. In its first
version, it is implemented as a high-priority task
with a period TFBS = 100 ms. The utilization setpoint
is set to Usp = 80%. At each invocation, the feedback
scheduler estimates the current total requested
utilization of the tasks by computing Û =∑i Ĉi/hi.
The estimate Ĉi is obtained from filtered execution-
time measurements,

Ĉi(k) = λ Ĉi(k− 1) + (1− λ)ci

where λ is a forgetting factor. Setting λ close to
1 results in a smooth, but slow estimate. In this

0

0.5

1
Control signal

0.1

0.15

Lower tank level

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Total requested utilization

Time [s]

Figure 8 Feedback + feedforward scheduling.

0.4 0.5 0.6 0.7 0.8 0.9

Task 1

Task 2

Task 3

 FBS

Time [s]

Schedule (high=running, medium=preempted, low=sleeping)

Figure 9 Close-up of the schedule under feedback +
feedforward scheduling.

case, λ = 0, which gives fast detection of overloads,
was preferred. Finally, new task periods are assigned
according to the linear rescaling

hi = hnomiÛ/Usp

The execution time of the feedback scheduler is
assumed to be 2 ms. The simulation results are
shown in Figures 6 and 7. The scheduler tries to
keep the workload close to 80%. However, there is
a delay from a change in the requested utilization
until it is detected by the feedback scheduler. This
results in overload peaks at some of the mode change
instants. For instance, Controller 1 is preempted in
the interval t = [0.5, 0.6] s. The result is slightly
degraded control performance.

3.3 Feedback + feedforward scheduling
A feedforward mechanism is added to the sched-
uler. The basic period of the scheduler is kept at
TFBS = 100 ms. However, when a task in PID mode

5

detects a new setpoint, it notifies the feedback sched-
uler, which is released immediately. The task periods
are adjusted before the notifying task can continue to
execute in the Opt mode. The execution-time estima-
tion can also benefit from the mode-change informa-
tion, by running separate estimators in the different
modes. A forgetting factor of λ = 0.9 was chosen to
give smooth estimates in both modes. The result is
a more responsive and accurate feedback scheduler.
The simulation results are shown in Figures 8 and
9. It is seen that the delay for Controller 1 at time
t = 0.5 s has been reduced, and that the control per-
formance is slightly better.

3.4 Performance Evaluation

The performance of the controllers under different
scheduling policies are evaluated using the criterion

Vi(t) =
∫ t

0
(ynomi(τ) − yactuali(τ))2dτ

where ynomi is the process output when the controller
is running unpreempted at its nominal sampling
interval, and yactuali is the actual process output
when the controller is running in the multi-task real-
time system. V is referred to as the additional loss
due to scheduling. 25 cycles (100 s) are simulated
and the final loss for the different controllers are
summarized below:

Scheduling V1(100) V2(100) V3(100)
Open-loop 4.2 ⋅10−2 2.0 ⋅10−3 5.1 ⋅ 10−4

Feedback 5.0 ⋅10−3 3.2 ⋅10−3 1.0 ⋅ 10−3

Feedback+
feedforward

1.5 ⋅10−3 1.1 ⋅10−3 1.0 ⋅ 10−3

The evolution of the additional loss for Controller 1
is shown in Figure 10. There is a big improvement
when introducing feedback, and feedforward gives
even further improvement.

4. Conclusions
The feedback scheduler presented increases the con-
trol performance and relaxes the requirements of
known executions times for multi-task control sys-
tems. The controllers are allowed to miss an occa-
sional deadline, and are hence not treated as hard
real-time tasks. In case of overload, the scheduler
calculates new sampling periods for all control tasks.
The estimate of the current workload is based on
execution-time measurements. The new sampling
periods are given by simple linear rescaling of the
nominal sampling periods, i.e., the relative impor-
tance order of the controllers is preserved. A more
elaborate rescaling procedure would most likely give
better control performance but also require more

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

Time [s]

Accumulated loss due to scheduling

Open−loop

Feedback

Feedback + feedforward

Figure 10 The accumulated additional loss due to
scheduling for Controller 1, V1(t).

computational power. The feedback scheduler itself
is implemented as a task, and its period is an impor-
tant design parameter.

5. References
Abdelzaher, T., E. Atkins, and K. Shin (1997): “QoS negotiation

in real-time systems, and its application to flight control.” In
Proceedings of the IEEE Real-Time Systems Symposium.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task model
for adaptive rate control.” In Proceedings of the IEEE Real-
Time Systems Symposium.

Eker, J. and A. Cervin (1999): “A Matlab toolbox for real-time
and control systems co-design.” In Proceedings of the 6th
International Conference on Real-Time Computing Systems
and Applications, pp. 320–327. Hong Kong, P.R. China.

Eker, J. and J. Malmborg (1999): “Design and implementation of
a hybrid control strategy.” IEEE Control Systems Magazine,
19:4.

Li, B. and K. Nahrstedt (1998): “A control theoretic model
for quality of service adaptations.” In Proceedings of Sixth
International Workshop on Quality of Service.

Persson, P., A. Cervin, and J. Eker (2000): “Execution time prop-
erties of a hybrid controller.” Technical Report. Department of
Computer Science, Lund Institute of Technology, Lund, Swe-
den.

Rajkumar, R., C. Lee, J. Lehoczky, and D. Siewiorek (1997): “A
resources allocation model for QoS management.” In Proceed-
ings of the IEEE Real-Time Technology and Applications Sym-
posium.

Ryu, M., S. Hong, and M. Saksena (1997): “Streamlining real-time
controller design: From performance specifications to end-to-
end timing constraints.” In Proceedings of the IEEE Real-
Time Technology and Applications Symposium.

Seto, D., J. P. Lehoczky, L. Sha, and K. G. Shin (1996): “On task
schedulability in real-time control systems.” In Proceedings of
the 17th IEEE Real-Time Systems Symposium, pp. 13–21.

Shin, K. and C. Meissner (1999): “Adaptation of control system
performance by task reallocation and period modification.” In
Proceedings of the 11th Euromicro Conference on Real-Time
Systems, pp. 29–36.

Stankovic, J. A., C. Lu, S. H. Son, and G. Tao (1999): “The case for
feedback control real-time scheduling.” In Proceedings of the
11th Euromicro Conference on Real-Time Systems, pp. 11–20.

6

1

Schedulability Analysis for Systems with Data and Control Dependencies

Paul Pop, Petru Eles, and Zebo Peng
Dept. of Computer and Information Science,

Linköping University, Sweden
{paupo, petel, zebpe}@ida.liu.se

Abstract

In this paper we present an approach to schedulability
analysis for hard real-time systems with control and data
dependencies. We consider distributed architectures
consisting of multiple programmable processors, and the
scheduling policy is based on a static priority preemptive
strategy. Our model of the system captures both data and
control dependencies, and the schedulability approach is
able to reduce the pessimism of the analysis by using the
knowledge about control and data dependencies.
Extensive experiments as well as a real life example
demonstrate the efficiency of our approach.

1. Introduction
Depending on the particular application, a real-time
system has certain requirements on performance, cost,
dependability, size, etc. For hard real-time applications the
timing requirements are extremely important.Thus, in
order to function correctly, a real-time system implementing
such an application has to meet its deadlines.

In this paper we present an approach to schedulability
analysis for hard real-time systems that have both data and
control dependencies. We consider systems that are imple-
mented on distributed architectures consisting of multiple
programmable processors and, in our approach, the sys-
tem is modeled through a so calledconditional process
graph (CPG) [3]. Such a graph captures both the flow of
data and that of control. Process scheduling is based on a
static priority preemptive approach.

Process scheduling for performance estimation and
synthesis of real-time systems has been intensively re-
searched in the last years. The existing approaches differ in
the scheduling strategy adopted, system architectures con-
sidered, handling of the communication, and process inter-
action aspects.

Static non-preemptive scheduling of a set of processes
on a multiprocessor system has been discussed in [3, 5, 7,
12]. Preemptive scheduling of independent processes with
static priorities running on single processor architectures
has its roots in [9]. The approach has been later extended
to accommodate more general system models and has
been also applied to distributed systems [15]. The reader
is referred to [1] for a survey on this topic.

In many of the previous scheduling approaches re-
searchers have assumed that processes are scheduled inde-
pendently. However, this is not the case in reality, where
process sets can exhibit both data and control dependen-

cies. Moreover, knowledge about these dependencies can
be used in order to improve the accuracy of schedulability
analyses and the quality of produced schedules.

Static cyclic scheduling of processes with both data and
control dependencies has been addressed by us in [2, 3].
We have discussed the particular aspects concerning com-
munication in such distributed systems in [11, 12].

One way of dealing with data dependencies between
processes with static priority based scheduling has been
indirectly addressed by the extensions proposed for the
schedulability analysis of distributed systems through the
use of therelease jitter[15]. Release jitter is the worst case
delay between the arrival of a process and its release (when
it is placed in the run-queue for the processor) and can in-
clude thecommunication delay due to the transmission of
a message on the communication channel.

[14] and [16] usetime offsetrelationships andphases,
respectively, in order to model data dependencies. Offset
and phase are similar concepts that express the existence
of a fixed interval in time between the arrivals of sets of
processes. The authors show that by introducing such con-
cepts into the computational model, the pessimism of the
analysis is significantly reduced when bounding the time
behaviour of the system.

When control dependencies exist then, depending on
conditions, only a subset of the set of processes is execut-
ed during an invocation of the system.Modeshave been
used to model a certain class of control dependencies [4].
Such a model basically assumes that at the starting of an
execution cycle, a particular functionality is known in ad-
vance and is fixed for one or several cycles until another
mode change is performed. However, modes cannot han-
dle fine grained control dependencies, or certain combina-
tions of data and control dependencies. Careful modeling
using theperiodsof processes (lower bound between sub-
sequent re-arrivals of a process) can also be a solution for
some cases of control dependencies [6]. If, for example,
we know that a certain set of processes will only execute
every second cycle of the system, we can set their periods
to the double of the period of the rest of the processes in
the system. However, using the worst case assumption on
periods leads very often to unnecessarily pessimistic
schedulability evaluations. A more refined process model
can produce much better schedulability results, as will be
shown later.

We propose in the next section a system model based
on a conditional process graph that is able to capture both

2

data and control dependencies. Then, we introduce a less
pessimistic schedulability analysis technique in order to
bound the response time of a hard real-time system mod-
eled in such a way. In this paper we insist on various as-
pects concerning dependencies between processes. Other
issues like communication protocol, bus arbitration, pack-
aging of messages, clock synchronization, as discussed by
us in [11], can easily be included in the analysis.

This paper is divided into 7 sections. The next section
presents our graph-based abstract system representation.
Section 3 formulates the problem and sections 4 and 5
present the schedulability analyses proposed. The tech-
niques are evaluated in section 6, and section 7 presents
our conclusions.

2. Conditional Process Graph
As an abstract model for system representation we use a

directed, acyclic, polar graphΓ(V, ES, EC). Each nodePi∈V
represents one process. Such a process can be an “ordi-
nary” process specified by the designer or a so called
communication processwhich captures the message pass-
ing activity. ES and EC are the sets of simple and
conditional edges respectively.ES∩ EC = andES∪ EC
= E, whereE is the set of all edges. An edgeeij∈E from Pi
to Pj indicates that the output ofPi is the input ofPj. The
graph is polar, which means that there are two nodes,
calledsourceandsink, that conventionally represent the
first and last process. These nodes are introduced as dum-
my processes so that all other nodes in the graph are
successors of the source and predecessors of the sink
respectively.

We consider a distributed architecture consisting of
severalprocessorsconnected throughbusses. These bus-
ses can be shared by several communication channels
connecting processes assigned to different processors.

We assume that each process is assigned to a processor
and each communication channel which connects process-
es assigned to different processors is assigned to a bus.

The mapping of processes to processors and busses is
given by a functionM: V→PE, wherePE={pe1, pe2, ..,
peNpe} is the set of processing elements (processors and
busses). For any processPi, M(Pi) is the processing element
to whichPi is assigned for execution.

Each processPi, assigned to processor or busM(Pi), is
characterized by a worst case execution timeCi. In the pro-
cess graph depicted in Figure 1,P0 andP32 are the source
and sink nodes respectively. Nodes denotedP1, P2, ..,P17,
are “ordinary” processes specified by the designer. Figure
1 also shows the mapping of processes to three different
processors. The communication processes are represented
in Figure 1 as solid circles and are introduced for each con-
nection which links processes mapped to different
processors. Inthis paper we do not consider the message
passing aspects which we have analyzed in [11, 12].

An edgeeij∈EC is a conditional edge(thick lines in
Figure 1) and it has anassociated condition. Transmission
on such an edge takes place only if the associated condi-
tion is satisfied. We call a node with conditional edges at
its output adisjunction node(and the corresponding pro-
cess adisjunction process). Alternative paths starting from
a disjunction node, which correspond to a certain condi-
tion, are disjoint and they meet in a so calledconjunction
node(with the corresponding process calledconjunction
process). Conditions are dynamically computed by dis-
junction processes and their value is unpredictable at the
start of an execution cycle of the conditional process
graph. In Figure 1 circles representing conjunction and
disjunction nodes are depicted with thick borders. We
assume that conditions are independent.

According to our model, we assume that a process,
which is not a conjunction process, can be activated only
after all its inputs have arrived. A conjunction process can
be activated after messages coming on one of the alterna-
tive paths have arrived. All processes issue their outputs
when they terminate. If we consider the activation time of
the source process as a reference, the finishing time of the
sink process is the delay of the system at a certain execu-
tion.

3. Problem Formulation
An application is modeled as a setψ of n conditional

process graphsΓi, i = 1..n. Every processPi in such a
graph is mapped to a certain processor, has a known worst-
case execution timeCi, a deadlineDi, and a uniquely as-
signed priority. All processes belonging to the same CPG
Γi have the same periodTΓi which is the period of the re-
spective conditional process graph. Each CPG in the ap-
plication has its own independent period. Typically, global
deadlinesδΓi on the delay of each CPG are imposed and
not individual deadlines on processes.

We consider a priority based preemptive execution en-
vironment, which means that higher priority processes
will interrupt the execution of lower priority processes. A
lower priority process can block a higher priority process
(e.g., it is in its critical section), and the blocking time is

Figure 1. Conditional Process Graph

P0

P7
P17

P10

P13

P11

P8 P9

P32

P16P15P14

P12P3

P1

P2

P6P5P4

CC

D D

K
K

C

Process mapping
Processorpe1: P1, P2, P4, P6, P9, P10, P13
Processorpe2: P3, P5, P7, P11, P14, P15, P17
Processorpe3: P8, P12, P16
Communications are mapped to a unique bus

∅

3

computed according to the priority ceiling protocol [13].
We are interested to develop a schedulability analysis

for a system modeled as a set of conditional process
graphs. For the rest of the paper we will consider that glo-
bal deadlines are imposed on each CPG. The approach can
be easily extended if individual deadlines are imposed on
processes.

To show the relevance of our problem, let us consider
the example depicted in Figure 2, where we have a system
modeled as two conditional process graphsΓ1 andΓ2 with
a total of 9 processes (processesP0, P8, P9 andP12 are
dummy processes and are not counted), and one condition.
The processes are mapped on three different processors as
indicated by the shading in Figure 2, and the worst case
execution time in milliseconds for each process on its re-
spective processor is depicted to the left of each node.Γ1
has a period of 200 ms,Γ2 has a period of 150 ms. The
deadlines are 100 ms onΓ1 and 90 ms onΓ2.

Table 1 presents the estimated worst case delay on the
two graphs. In the column labeled “no conditions” we have
the results for the case when the analysis is applied to the
set of processes, ignoring control dependencies. This re-
sults in a worst case delay of 120 ms forΓ1 and 82 ms for
Γ2. Thus, the system is considered to be not schedulable.

However, this analysis assumes as a worst case scenar-
io the possible activation of all nine processes for each ex-
ecution of the system. This is the solution which will be
obtained using a dataflow graph representation of the sys-
tem. However, considering the CPGΓ1 in Figure 2, it is
easy to observe that process P3 on the one side and pro-
cessesP2 andP4 on the other side will not be activated
during the same period ofΓ1.

Making use of this information for the analysis we ob-
tain a worst case delay of 100 ms, forΓ1, as shown in Ta-
ble 1 in the column headed “conditions”, which indicates
that the system is schedulable.

4. Schedulability Analysis for Task Graphs
with Data Dependencies

Methods for schedulability analysis of data dependent
processes with static priority preemptive scheduling have
been proposed in [14] and [16].

They use the concept ofoffsetor phase, respectively, in
order to handle data dependencies. [14] shows that the
pessimism of the analysis is reduced through the introduc-
tion of offsets. The offsets have to be determined by the
designer.

[16] provides a framework that iteratively finds the
phases (offsets) for all processes, and then feeds them
back into the schedulability analysis which in turn is used
again to derive better phases. Thus, the pessimism of the
analysis is iteratively reduced.

We have used the framework provided by [16] as a
starting point for our analysis. The response time of a pro-
cessPi is:

 (1)

where hp(Pi) is the set of processes that have higher
priority thanPi, andOij is the phase ofPj relative toPi.

As a first step we have extended this analysis to real-
time systems that use the time-triggered protocol as the
underlying communication infrastructure [12]. However,
for the sake of simplicity, we do not consider the commu-
nication of messages in this paper.

In [16] a system is modeled as a setSof n task graphs
Gi, i = 1..n. The system model assumed and the definition
of a task graph are similar to our CPG , but without con-
sidering any conditions. The aim of the schedulability
analysis in [16] is to derive an as tight as possible worst

CPG
Worst Case Delays

no conditions conditions

Γ1 120 100

Γ2 82 82

 Table 1: Worst Case Delays for the System in Fig. 2

C C

P4

P5

P11P10

P6

P8

P1

P3

P2

P7

P0

P9

P12

Γ1
Γ2

27

30
25

24

19

30

22

25 32

Figure 2. System with Control and Data Dependencies

Figure 3. Delay Estimation and Schedulability
Analysis for Task Graphs

DelayEstimate(task graph G, system S)
-- derives the worst case delay of a task graph G considering
-- the influence from all other task graphs in the system S

for each pair (Pi, Pj) in G
maxsep[Pi, Pj] = ∞

end for
step = 0
repeat

LatestTimes(G)
EarliestTimes(G)
for each Pi ∈ G

MaxSeparations(Pi)
end for

until maxsep is not changed or step < limit
return the worst case delay δG of the graph G

end DelayEstimate

SchedulabilityTest(system S)
-- derives the worst case delay for each task graph in the system
-- and verifies if the deadlines are met

for each task graph Gi ∈ S
DelayEstimate(Gi, S)

end for
if all task graphs meet their deadline system S is schedulable

end SchedulabilityTest

r i Ci Cj
r i Oij–

T j

j∀ hp Pi()∈
∑+=

4

case delay on the execution time of each of the task graphs
in the system. This delay estimation is done using the al-
gorithmDelayEstimate described in Figure 3.

At the core of this algorithm is a worst case response
time calculation based on offsets, similar to the analysis in
[14]. Thus, in theLatestTimes function worst case re-
sponse times and upper bounds for the offsets are calculat-
ed, while theEarliestTimes function calculates the lower
bounds of the offsets.

TheLatestTimes function is a modified critical-path al-
gorithm that calculates for each node of the graph the
longest path to the sink node. Thus, during the topological
traversal of the graphG within LatestTimes, for each pro-
cessPi, the worst case response timeri is calculated ac-
cording to the equation (1). This value is based on the
values of the offsets known so far. Once anri is calculated,
it can be used to determine and update offsets for other
successor processes. Accordingly, theEarliestTimes func-
tion determines the lower bounds on the offsets. The influ-
ence on graph G from other graphs in the system is
considered in both of the functions mentioned earlier.

These calculations can be improved by realizing that
for a processPi, there might exist a processPj mapped on
the same processor, with priority(Pi) < priority(Pj), such
that their execution windows never overlap. In this case,
the term in the equation (1) that expresses the influence of
Pj on the execution ofPi can be dropped, resulting in a
tighter worst case response time calculation. This situation
is expressed through the so calledmaxseptable, computed
by theMaxSeparations function, whose valuemaxsep[Pi,
Pj] is less than or equal to 0 if the two processes never
overlap during their execution.maxsepstands formaxi-
mum separation, an analysis modified from [10] that
builds themaxseptable based on the worst case execution
times and offsets determined inEarliestTimes andLatest-
Times.

Having a better view on the maximum separation be-
tween each pair of processes, tighter worst case execution
times and offsets can be derived, which in turn contribute
to the update of themaxseptable. This iterative tightening
process is repeated until there is no modification to the

maxseptable, or a certain imposedlimit on the number of
iterations is reached.

Finally, theDelayEstimate function returns the worst-
case delayδG estimated for a task graphG, as the latest
time when the sink node ofG can finish its execution.
Based on the delays produced byDelayEstimate, the func-
tion SchedulabilityTest in Figure 3 concludes on the sched-
ulability of the system.

5. Schedulability Analysis for CPGs
Before introducing our approach to schedulability

analysis of conditional process graphs, two concepts have
to be introduced: theunconditional subgraphsand the
process guards.

Depending on the values calculated for the conditions,
different alternative paths through a conditional process
graph are activated for a given activation of the system. To
model this, a boolean expressionXPi, calledguard, can be
associated to each nodePi in the graph. It represents the
necessary condition for the respective process to be acti-
vated. In Figure 4, for example,XP4=C∧D, XP5=C,
XP9=true, XP11=true,andXP12=K.

We call an alternative path through a conditional
process graph, resulting from a combination of conditions,
an unconditional subgraph, denoted byg. For example,
the CPGΓ1 in Figure 4 has three unconditional subgraphs,
corresponding to the following three combinations of
conditions: C∧D, C∧D, and C. The unconditional
subgraph corresponding to the combinationC∧D in the
CPGΓ1 consists of processesP1, P2, P4, P6, P7, P9 and
P10.

The guards of each process, as well as the
unconditional subgraphs resulting from a conditional
process graphΓ can be determined through a simple
recursive topological traversal ofΓ.

5.1 Ignoring Conditions (IC)
A straightforward approach to the schedulability analysis
of systems represented as CPGs is to ignore control
dependencies and to apply the schedulability analysis as
described in section 4 (the algorithmSchedulabilityTest in
Figure 3).

This means that conditional edges in the CPGs are con-
sidered like simple edges and the conditions in the model
are dropped. What results is a systemSconsisting of sim-
ple task graphsGi, each one resulted from a CPGΓi of the
given systemψ. The systemScan then be analyzed using
the algorithm in Figure 5. It is obvious that if the systemS
is schedulable, the systemψ is also schedulable.

Figure 4. Example of two CPGs

C

C

P7

P10

P13P12

P1

P5
P11

P14

Γ1 Γ2

P4P3

P2

P6
P8

D D

KK

P9

Figure 5. Schedulability Analysis Ignoring Conditions

SA/IC(system ψ)
-- verifies the schedulability of a system consisting of a set of
-- conditional process graphs

transform each Γi ∈ ψ into the corresponding Gi ∈ S
SchedulabilityTest(S)
if S is schedulable, system ψ is schedulable

end SA/IC

5

This approach, which we call IC, is, of course, very
pessimistic. However, this is the current practice when
worst case arrival periods are considered and classical data
flow graphs are used for modeling and scheduling.

5.2 Brute Force Solution (BF)
The pessimism of the previous approach can be reduced
by using a conditional process graph model. A simple,
brute force solution is to apply the schedulability analysis
presented in section 4, after the CPGs have been
decomposed into their constituent unconditional
subgraphs.

Consider a systemψ which consists ofn CPGsΓi, i =
1..n. Each CPGΓi can be decomposed intoni uncondition-
al subgraphsgj

i , j = 1..ni. In Figure 4, for example, we
have 3 unconditional subgraphsg1

1, g2
1, g3

1 derived from
Γ1 and two,g1

2, g2
2 derived fromΓ2.

At the same time, each CPGΓi can be transformed (as
shown in subsection 5.1) into a simple task graphGi, by
transforming conditional edges into ordinary ones and
dropping the conditions. When deriving the worst case de-
lay onΓi we apply the analysis from section 4 (algorithm
DelayEstimate in Figure 3) separately to each uncondi-
tional subgraphgj

i in combination with the graphs (G1,
G2, ...Gi-1, Gi+1, Gn). This means that we consider each al-
ternative path fromΓi in the context of the system, instead
of the whole subgraphGi as in the previous approach. This
is described by the algorithmDE/CPG in Figure 6 a). The
schedulability analysis is then based on the delay estima-
tion for each CPG as shown in the algorithmSA/BF in Fi-
gure 6 b).

Such an approach, we call it BF, while producing tight
bounds on the delays, can be expensive from the runtime

point of view, because it is applied for each unconditional
subgraph. In general, the number of unconditional sub-
graphs can grow exponentially. However, for many of the
practical systems this is not the case, and the brute force
method can be used. Alternatively, less expensive meth-
ods, like those presented below, should be applied.

5.3 Condition Separation (CS)
In some situations, the explosion of unconditional
subgraphs makes the brute force method inapplicable.
Thus, we need to find an analysis that is situated
somewhere between the two alternatives discussed in 5.1
and 5.2, which means its should be not too pessimistic and
should run in acceptable time.

A first idea is to go back to theDelayEstimate algorithm
in Figure 3, and use the knowledge about conditions in or-
der to update themaxseptable. Thus, if two processesPi
andPj never overlap their execution because they execute
under alternative values of conditions, then we can update
maxsep[Pi, Pj] to 0, and thus improve the quality of the
delay estimation. Two processesPi andPj never overlap
their execution if there exists at least one condition C, so
thatC ⊂ XPi (XPi is the guard of processPi) andC ⊂ XPj.

In this approach, called CS, we practically use the same
algorithm as for ordinary task graphs and try to exploit the
information captured by conditional dependencies in or-
der to exclude certain influences during the analysis. In Fi-
gure 7 we show the algorithmSA/CS which performs the
schedulability analysis based on this heuristic.

Figure 6. Brute Force Schedulability Analysis

DE/CPG(CPG Γ, system S)
-- derives the worst case delay of a CPGΓ considering
-- the influence from all other task graphs in the system S

extract all unconditional subgraphs gj from Γ
for each gj

DelayEstimate(gj, S)
end for
return the largest of the delays, which is

the worst case delay δΓ of CPG Γ
end DE/CPG

a) DE/CPG -- Delay Estimate for Conditional Process Graphs

SA/BF(system ψ)
-- verifies the schedulability of a system consisting of a setψ of
-- conditional process graphs

transform each Γi ∈ψ into the corresponding Gi ∈S
for each Γi ∈ψ

DE/CPG(Γi, {G1, G2, ...Gi-1, Gi+1, Gn})
end for
if all CPGs meet their deadline the system ψ is schedulable

end SA/BF

b) SA/BF -- S chedulability Analysis: the Brute Force approach

Figure 7. Schedulability Analysis using Condition
Separation

SA/CS(system ψ)
-- verifies the schedulability of a system consisting of a setψ of
-- conditional process graphs

transform each Γi ∈ ψ into the corresponding Gi ∈ S
and keep guard XPi for each Pi

for each Gi ∈ S
-- derives the worst case delay of a task graph Gi considering
-- the influence from all other task graphs in the system S
for each pair (Pi , Pj) in Gi

maxsep[Pi, Pj] = ∞
end for
step = 0
repeat

LatestTimes(Gi)
EarliestTimes(Gi)
for each Pi ∈ Gi

MaxSeparations(Pi)
end for
for each pair (Pi , Pj) in Gi

if ∃C, C ⊂ XPi ∧ C ⊂ XPj then
maxsep[Pi, Pj] = 0

end if
end for

until maxsep is not changed or step < limit
δΓi is the worst case delay for Γi

end for

if all CPGs meet their deadline, the system ψ is schedulable
end SA/CS

6

5.4 Relaxed Tightness Analysis (RT)
The two approaches discussed here are similar to the brute
force algorithm (Figure 6) presented in section 5.2.
However, they try to improve on the execution time of the
analyses by reducing the complexity of theDelayEstimate
algorithm (Figure 3) which is called from theDE/CPG
function (Figure 6 a). This will reduce the execution time
of the analysis, not by reducing the number of subgraphs
which have to be visited (like in section 5.3), but by
reducing the time needed to analyze each subgraph. As
our experimental results show (section 6) this approach
can be very effective in practice. Of course, by the
simplifications applied toDelayEstimate the quality of the
analysis is reduced in comparison to the brute force
method.

We have considered two alternatives of which the first
one is more drastic while the second one is trying a more
refined trade-off between execution time and quality of the
analyses.

With both these approaches, the idea is not to run the
iterative tightening loop inDelayEstimate that repeats
until no changes are made tomaxsepor until the limit is
reached. While this tightening loop iteratively reduces the
pessimism when calculating the worst case response
times, the actual calculation of the worst case response
times is done inLatestTimes, and the rest of the algorithm
in Figure 3 just tries to improve on these values. For the
first approach, calledRT1 the functionDelayEstimate has
been transformed like in Figure 8 a).

However, it might be worth using at least the
MaxSeparations in order to obtain tighter values for the
worst case response times. For the alternativeRT2 in
Figure 8 b),DelayEstimateRT2 first callsLatestTimes and
EarliestTimes, thenMaxSeparations in order to build the
maxseptable, and againLatestTimes to tighten the worst
case response times.

6. Experimental Results
We have performed several experiments in order to
evaluate the different approaches proposed. The two main
aspects we were interested in are the quality of the
schedulability analysis and the scalability of the
algorithms for large examples. A first set of massive
experiments were performed on conditional process
graphs generated for experimental purpose.

We considered architectures consisting of 2, 4, 6, 8 and
10 processors. 40 processes were assigned to each node,
resulting in graphs of 80, 160, 240, 320 and 400 processes,
having 2, 4, 6, 8 and 10 conditions, respectively. The num-
ber of unconditional subgraphs varied for each graph di-
mension depending on the number of conditions and the
randomly generated structure of the CPGs. For example,
for CPGs with 400 processes, the maximum number of
unconditional subgraphs is 64.

30 graphs were generated for each graph dimension,
thus a total of 150 graphs were used for experimental eval-
uation. Worst case execution times were assigned random-
ly using both uniform and exponential distribution. All
experiments were run on a Sun Ultra 10 workstation.

In order to compare the quality of the schedulability ap-
proaches, we need a cost function that captures, for a cer-
tain system, the difference in quality between the
schedulability approaches proposed. Our cost function is
the difference between the deadline and the estimated
worst case delay of a CPG, summed for all the CPGs in the
system:

wheren is the number of CPGs in the system,δΓi is the
estimated worst case delay of the CPGΓi, andDΓi is the
deadline onΓi. A higher value for this cost function, for a
given system, means that the corresponding approach
produces better results (schedulability analysis is less
pessimistic).

For each of the 150 generated example systems and
each of the five approaches to schedulability analysis we
have calculated the cost function mentioned previously,
based on results produced with the algorithms described in
section 5. These values, for a given system, differ from
one analysis to another, with the BF being the least
pessimistic approach and therefore having the largest
value for the cost function.

We are interested to compare the five analyses, based on
the values obtained for the cost function. Thus, Figure 9 a)
presents the average percentage deviations of the cost
function obtained in each of the five approaches,
compared to the value of the cost function obtained with
the BF approach. A smaller value for the percentage
deviation means a larger cost function, thus a better result.
The percentage deviation is calculated according to the
formula:

Figure 8. Delay Estimation for the RT Approaches

DelayEstimateRT1 (task graph G, system S)
LatestTimes(G)

end DelayEstimateRT1

a) Delay Estimation for RT1

DelayEstimateRT2 (task graph G, system S)
for each pair (Pi , Pj) in Gi

maxsep[Pi, Pj] = ∞
end for
LatestTimes(G)
EarliestTimes(G)
for each Pi ∈ G

MaxSeparations(Pi)
end for
LatestTimes(G)

end DelayEstimateRT2

a) Delay Estimation for RT2

cost function DΓi
δΓi

–()
i 1=

n

∑=

deviation
costBF costapproach–

costBF
-- 100⋅=

7

Figure 9 b) presents the average runtime of the
algorithms, in seconds.

The brute force approach, BF, performs best in terms of
quality and obtains the largest values for the cost function
of the systems at the expense of a large execution time.
The execution time can be up to 7 minutes for large graphs
of 400 processes, 10 conditions, and 64 unconditional
subgraphs. At the other end, the straightforward approach
IC that ignores the conditions, performs worst and
becomes more and more pessimistic as the system size
increases. As can be seen from Figure 9 a), IC has even for
smaller systems of 160 processes (3 conditions, maximum
8 unconditional subgraphs) a 50% worse quality than the
brute force approach, with almost 80% loss in quality, in
average, for large systems of 400 processes. It is
interesting to mention that the low quality IC approach has
also an average execution time which is equal or
comparable to the much better quality heuristics (except
the BF, of course). This is because it tries to improve on
the worst case delays through the iterative loop presented
in DelayEstimate, Figure 3.

Let us turn our attention to the three approaches CS,
RT1, and RT2 that, like the BF, consider conditions during
the analysis but also try to perform a trade-off between
quality and execution time. Figure 9 shows that the pessi-
mism of the analysis is dramatically reduced by consider-
ing the conditions during the analysis. The RT1 and RT2
approaches, that visit each unconditional subgraph, per-
form in average better than the CS approach that considers
condition separation for the whole graph. However, CS is
comparable in quality with RT1, and even performs better
for graphs of size smaller than 240 processes (4 condi-
tions, maximum 16 subgraphs).

The RT2 analysis that tries to improve the worst case
response times using theMaxSeparations, as opposed to
RT1, performs best among the non-brute-force ap-
proaches. As can be seen from Figure 9, RT2 has less than
20% average deviation from the solutions obtained with
the brute force approach. However, if faster runtimes are

needed, RT1 can be used instead, as it is twice faster in ex-
ecution time than RT2.

We were also interested to compare the five approaches
with respect to the number of unconditional subgraphs in
a system. For the results depicted in Figure 10 we have as-
sumed CPGs consisting of 2, 4, 8, 16, and 32 uncondition-
al subgraphs of maximum 50 processes each, allocated to
8 processors. Figure 10 shows that as the number of sub-
graphs increases, the differences between the approaches
grow while the ranking among them remains the same, as
resulted from Figure 9. The CS approach performs better
than RT1 with a smaller number of subgraphs, but RT1 be-
comes better as the number of subgraphs in the CPGs in-
creases.

Finally, we considered a real-life example implement-
ing a vehicle cruise controller modeled using a conditional
process graph. The graph has 32 processes, two conditions
(4 subgraphs), and it was mapped on an architecture con-
sisting of 4 nodes (processors), namely: Anti Blocking
System, Transmission Control Module, Engine Control
Module and Electronic Throttle Module. The period of the
CPG was 200 ms, and the deadline was set to 110 ms.
Without considering the conditions, IC obtained a worst
case delay of 138 ms, thus the system resulted as being

0

20

40

60

80

100

0 5 10 15 20 25 30

CS

IC

RT2
BF

RT1

Figure 10. Average Percentage Deviations
Number of Unconditional Sugraphs

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

CS

IC

0

20

40

60

80

100

50 100 150 200 250 300 350 400

RT2
BF

RT1

0

50

100

150

200

250

300

350

400

450

50 100 150 200 250 300 350 400

CS

IC

RT2
BF

RT1

Number of Processes Number of Processes

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

[s
]

Figure 9. a) Average Percentage Deviation (left) and b) Average Execution Time (right) for each of the five analyses

8

unschedulable. The same result was obtained with the CS
approach, and this is because the alternative paths were
mapped on different processors, thus not influencing each
other. However, the brute force approach BF produced a
worst case delay of 104 ms which proves that the system
implementing the vehicle cruise controller is, in fact,
schedulable. Both RT1 and RT2 produced the same worst
case delay of 104 ms as the BF.

7. Conclusions
In this paper we proposed solutions to the schedulability
analysis of hard real-time systems with control and data
dependencies.

The systems are modeled through a set of conditional
process graphs that are able to capture both the flow of
data and that of control. We consider distributed architec-
tures, and the scheduling policy is based on a static prior-
ity preemptive strategy.

Five approaches to the schedulability analysis of such
systems are proposed. Extensive experiments and a real-
life example show that by considering the conditions dur-
ing the analysis, the pessimism of the analysis can be dras-
tically reduced.

While the brute force approach BF performed best at
the expense of execution time, the RT2 approach is able to
obtain results with less than 20% average loss in quality,
in a very short time.

References
[1] N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, A. J.
Wellings, “Fixed Priority Pre-emptive Scheduling: An
Historical Perspective”,Real-Time Systems, 8(2/3), 173-
198, 1995.

[2] A. Doboli, P. Eles, “Scheduling under Control
Dependencies for Heterogeneous Architectures”,
International Conference on Computer Design, 602-608,
1998

[3] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, P. Pop,
“Scheduling of Conditional Process Graphs for the
Synthesis of Embedded Systems”, Proceedings of Design
Automation & Test in Europe, 23-26, 1998.

[4] G. Fohler, “Realizing Changes of Operational Modes
with Pre Run-time Scheduled Hard Real-Time Systems”,
Responsive Computer Systems,H. Kopetz and Y. Kakuda,
editors, 287-300, Springer Verlag, 1993.

[5] G. Fohler, “Joint Scheduling of Distributed Complex
Periodic and Hard Aperiodic Tasks in Statically
Scheduled Systems”, Proceedings of the 16th IEEE Real-
Time Systems Symposium, 1995.

[6] R. Gerber, D. Kang, S. Hong, M. Saksena, “End-to-
End Design of Real-Time Systems”,Formal Methods in
Real-Time Computing, D. Mandrioli and C. Heitmeyer,
editors, John Wiley & Sons, 1996.

[7] H. Kopetz,Real-Time Systems-Design Principles for
Distributed Embedded Applications, Kluwer Academic

Publishers, 1997.

[8] H. Kopetz, G. Grünsteidl, “TTP-A Protocol for Fault-
Tolerant Real-Time Systems”,IEEE Computer, 27(1), 14-
23, 1994.

[9] C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”,
Journal of the ACM, 20(1), 46-61, 1973.

[10] K. McMillan and D. Dill, “Algorithms for interface
timing verification”, Proceedings of IEEE International
Conference on Computer Design, 48-51, 1992.

[11] P. Pop, P., Eles, Z., Peng, “Schedulability-Driven
Communication Synthesis for Time-Triggered Embedded
Systems”, Proceedings of the 6th International
Conference on Real-Time Computing Systems and
Applications, 1999.

[12] P. Pop, P., Eles, Z., Peng, “Scheduling with
Optimized Communication for Time-Triggered
Embedded Systems”, Proceedings of the International
Workshop on Hardware-Software Co-design, 78-82,
1999.

[13] L. Sha, R. Rajkumar, J. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization”, IEEE Transactions on Computers,
39(9), 1175-1185, 1990.

[14] K. Tindell, “Adding Time-Offsets to Schedulability
Analysis”, Department of Computer Science, University of
York, Report Number YCS-94-221, 1994.

[15] K. Tindell, J. Clark, “Holistic Schedulability
Analysis for Distributed Hard Real-Time Systems”,
Microprocessing and Microprogramming, 40, 117-134,
1994.

[16] T. Yen, W. Wolf, “Performance estimation for real-
time distributed embedded systems”,IEEE Transactions
on Parallel and Distributed Systems, Volume: 9(11), 1125
-1136, Nov. 1998

	Frontpage
	Preface
	About ARTES 2000
	Programme
	Participants
	Tutorial Abstract Jack Stankovic
	Tutorial OH pictures
	Tutorial paper Lu, Stankovic, Tao and Son
	L. Albertsson
	R. Jigorea, S. Manolache, P. Eles, Z. Peng
	C. Ekelin and J. Jonsson
	T. Amnell, A. David, W. Yi
	E. Uhlemann and P.-A. Wiberg
	U. Bilstrup P.-A. Wiberg
	C. Bergenhem
	De-jiu Chen
	H. Thane and A. Wall
	M. Broberg
	C. Healy, M. Sjödin, V. Rustagi, D. Whalley and R. van Engelen
	P. Persson
	M. Lindgren
	A. Dean
	B. Andersson and J. Jonsson
	M. Andersson Wiklund and J. Jonsson
	J. Aidemark and J. Karlsson
	O. Redell, J. El-khoury and M.Törngren
	A. Cervin and J. Eker
	P. Pop, P. Eles, and Z. Peng

