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1. Introduction 

Industrial applications require multiple paradigms for the design of real-time systems. In these systems several ac​tivities of different criticality and requirements on re​sponse times and granularity must co-exist. In this paper, we address issues of efficient analysis of overheads im​posed by interrupts on tasks. While being similar in prop​erties to tasks, interrupts cannot be handled at the same level: Interrupt routines typically have execution times significantly less than the granularity of the online dis​patcher. Handling them on task level would result in only a small portion of a CPU scheduling slot being used, thus reducing utilisation severely.

Similar reasoning prohibits the use of polling for inter​rupt events on the task level: Short interarrival times require either a high frequency for the online dispatcher, resulting in increased scheduling overhead, or prevent timely re​sponse.

A naive approach to account for interrupt overhead is to include the execution time of interrupt routines in the execution time of tasks. Since interrupt interarrival times are smaller than tasks’ execution time, a number of “hits” has to be included in the analysis incurring an unaccept​able analytical overhead.

Many of the algorithms presented in literature, e.g., [1], suffer from the above mentioned shortcomings. Our ap​proach is a modification of exact response time analysis [2], including interrupts as high priority tasks [6]. In​stead of assuming all tasks to start at the same time, we use the information about release times and deadlines to see which tasks can possibly interfere with each other. A similar approach has been made in [5] and [7] for FPS, our approach however, utilises fixed release times and deadlines of tasks. The only requirement about task pri​orities we assume here is that they are known at analysis time. Different instances of tasks can have different pri​orities, but priorities may not change at run-time.

2. Task model and assumptions

The task model we assume is based on fixed (known a priori) release times (rt) and deadlines (dl). A task that has its release time fulfilled, can only be delayed by higher priority tasks or interrupts. Periodic tasks are transformed into individual jobs, and treated separately. This means that we have to consider the all instances of the tasks up to least common multiple (LCM) of the pe​riod times. Since we consider each task instance sepa​rately we can have dynamic priorities for tasks, i.e., dif​ferent instances can have different priorities, e.g., earli​est deadline first (EDF) [3]. Priorities may however not change at run-time.

Interrupts are modelled as high priority tasks, in the analy​sis, with a minimum inter-arrival time (Tint) and a maxi​mum execution time (Cint).  However interrupts hits the system at run-time anywhere and does not have to wait for next clock tick to execute. Consequently, a task that got interrupted does not have to wait for next clock tick to resume its execution. The OS overhead for the interrupt is considered to be accounted for in Cint. Com​munication between interrupt routines and application tasks is asyn-chronous via memory only, i.e., tasks and interrupts are temporally independent. Minimum interar​rival times and execution times of handling routines for interrupts are known but exact invocation times are un​known. 

For the schedule to be feasible, every task must have enough execution resources in its execution window [rt, dl], even if it experiences the worst case interrupt inter​fer​ence and interference from higher priority tasks. 

3. Analysis

The analysis is based on the response time analysis [2]. The worst case, criti​cal instant, for task i occurs when it is released at the same time as all tasks with higher pri​ority. If we have fixed execution windows we know tasks may not be re​leased at the same time. Our method re​duces analysis overhead by exploiting this information. The algorithm is based on the assumption that the worst case finishing time for task i occurs in only one of the follow​ing cases:

1) If task i can start its execution directly when its prede​cessors finishes. We define a predecessor to i as a task with higher priority than i and a shorter release time than i. 

2) If task i is able to start its execution at its own release time and then with no interference from its predeces​sors. 

This is the essence of the analysis approach. In 1) we treat the task as if it had the same release time as its predeces​sors. In 2) we have a critical instant at the re​lease time of the task and ignore any interference from higher priority tasks that precede the task at hand. The two cases are depicted in figure 3.1.
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Figure 3.1 Worst case finishing time for task i

Terminology:

rti 
= 
release time of task i
dli 
= 
deadline of task i
Ci 
= 
WCET(i)

prio(i) 
= 
priority of task  i (lower number means higher priority)
ft(i) 
= 
worst case finishing time of task i
ftj(i) 
= 
finishing time of i as if it was released at the re​lease time of task j (rtj)

Rj(i) 
= 
response time for task i as if it was released at the release time of task j (rtj)

Analysing task i: all tasks with a index less than i are those that precede i, i.e., rti-k < rti and prio (i-k) < prio (i) (that is, i-k has higher priority). All tasks with the same release time and higher priority than i are regarded as a single task with an execution time equal to the sum of all indi​vidual task. This also applies to i, i.e., if there are several tasks with the same release time as i, those with same or higher priority than i are treated as one task. This means that every release time has a unique index. Tasks are or​dered in release time order.
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In words, analyse the finishing time (ft) for a task i by considering every release time of preceding tasks (its own rt is included). For each such case, say task k, task i is considered to be released at  rtk.  Interference from prede​cessors to k is ignored. The response time formula states that own execution time, interference from interrupts, predecessors and possible pre-empting tasks is taken into consideration. Pre-empting tasks are those task that have a higher priority than i, a later finishing time than the  starting point of the analysis (rtj), and whose release time is less than the finishing time (Rj(i) + rtj) of i.

Consider the simplest case where we have only two tasks and some interrupts, as depicted in figure 3.2. prio(1) < prio(2), rt1 < rt2. ft(1) can only be calculated in one way since there are only interference from interrupts (grey areas in the figure), i.e., it has no predecessors. But ft(2) is calculated by max (ft1(2), ft2(2)), i.e., task 2 is treated as if it had same release time as task t1 or treating rt2 as its release but then with no interference from t1. A sketch of the proof is included in the Appendix.
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Figure 3.2 Interrupt interference in the two tasks case

If the priority order were reversed neither of the task would have any predecessors. Task t2 would then possibly be a pre-empting task in the analysis of t1. If the response time of t1 goes beyond the release time of t2, the execu​tion time of t2 has to be taken into account since it will then pre-empt t1. The proof still holds since t2 is taken into account by the pre-empting term instead of the pre​ceding term and the two terms are equal.  

3.1. Efficient solving technique

In general, the formula is computationally intractable for very large task sets. In practice, however, one may dis​card many of the cases, i.e. when calculating ft(i), many ftj(i) (j<i) can be ignored. Furthermore, one does not have to perform the response time analysis from scratch for every ftj(i), but building on Rj(i-1) that has already been calcu​lated. Rj(i) is only an extension of Rj(i-1) with Ci as seen in the formulas below.
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This means that one can start with Rj(i-j) + Ci in the first iteration of Rj(i). [7] showed that one can start the itera​tion with a higher value without jeopardising conver​gence.

Which cases can be ignored when calculating ft(i)? Since we add Ci to Rj(i-1) for every j, we can beforehand pre​dict which cases (ftj(i)) cannot be the maximum in the formula for ft(i). These rules state which cases can be ignored:

(1) If  ftj(i-1) ( rti for every j, we only have to con​sider fti(i).

(2) Assume that ftj(i-1) is the maximum for i-1 for some j. We only have to consider those ftk(i) for which 
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 ftk(i) can in the worst case only experience interference from one more instance of every interrupt than ftj(i), the rate of the interrupts is the same in both cases, only the phasing is different. ftk(i) can thus not be a candi​date for the maximum of ft(i). A detailed proof and discussion can be found in [8].

Method of calculating finishing time for tasks:

1. Calculate the finishing time for all tasks that have no predecessors. We only have to consider the task itself and interrupt interference.

2. Calculate the finishing time for a task for which all predecessors have already been analyzed. Use the re​sponse time (Rj(i-1)) previously calculated in the first iteration, i.e., just add Ci to Rj(i-1). Note that the rules (1) and (2) are used at this stage.
3. If all tasks have been considered and all have a finish​ing time ( deadline, we are done and the schedule is feasible. If a finishing time is later than a deadline we stop and report an infeasible schedule. If there still are tasks to be considered go to 2.
4. Example

Consider the example depicted in 5.1. Execution win​dows are depicted below the table. Task TC has a period of 100 so it has two instances in the LCM, which is 200.
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Figure 4.1 Execution windows of all task instances

We start, point 1 in the method, with tasks that have no predecessors: TA, TB, and TC. TC is treated as a single task since it has highest priority. TA, TB are analysed together with TC, treating them as a single task with execution time CA + CB + CC.
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The TA, TB and TC chain starting at t = 0 will experience interference from interrupts and be pre-empted by TD.
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Point 2. In the method, the only candidate for analysis is now TD, the only task with all predecessors analysed. We have to consider both ftC(D) and ftD(D) since ftC(C) – rtD < 8 (Sum of all Cint).
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Now all remaining tasks (jobs), TC’ (’ denotes 2nd in​stance of TC) and TE, have all predecessors analysed. The pre​ceding tasks, TA ,TB, TC ,and TD, finishing time is well beyond rtC’, which means we only have to consider ftA(C’). Note that CC appears twice in the analysis, i.e., both instances.
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The same thing applies to TE, with an addition that it will be pre-empted by the 2nd instance of TC.
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5. Conclusion

In this paper, we presented methods for efficient analysis of interrupts affecting tasks with fixed release times and deadliness. For analysis purposes, we considered inter​rupts as high priority tasks and included them in re​sponse time analysis. Our analysis reduces analytical overhead by utilising knowledge about release times and deadlines of task to reduce the number of interferences accounted for in the analysis.

We are currently working on improving the efficiency of the analysis further and assess its benefits quantitatively in a concrete industrial application. In particular we plan to find methods to include dynamic arrivals as well.
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7. Appendix

Proof sketch of the two tasks case:
Let K1 be the maximum possible interrupt interference in [rt1, ft1(2)], and K2 the maximum possible interrupt inter​ference in [rt2, ft2(2)]. 

By the property of response time analysis the following holds:


K1 + C1 + C2 = ft1(2) - rt1

(1)


K2 + C2 = ft2(2) - rt2

(2)


In other words, task 1 and 2 exactly fit within [rt1, ft1(2)] and task 2 exactly fits within [rt2, ft2(2)] if the intervals experiences their worst case hit of interrupts.

We have to prove that task 2 can not finish later than max (ft1(2), ft2(2)). We divide the proof into 2 cases:

1. ft1(2) ( ft2(2)

2. ft1(2) < ft2(2)
Case 1 ft1(2) ( ft2(2):

How could t2 finish later than ft1(2)? A task with the exe​cution time C1 + C2 and release time at rt1 would always finish before ft1(2), i.e., if  t1 and t2 can be considered to have the same release time. But t2 has an additional con​straint: it can not start its execution before rt2. 

So if the interrupts would hit [rt1, rt2] so that t1 is fin​ished before rt2, t2 would not be able to start its execution when t1 finishes. Could then the interrupts hit [rt2, ft1(2)] so that C2 does not fit? That is, can:


C2 + K > ft1(2) – rt2
be fulfilled for some K? K denotes the possible interrupt interference in [rt2, ft1(2)]. By combining the above equa​tion with (2), we get


C2 + K > ft1(2) – (ft2(2) - K2 - C2)
Which rewritten looks like


 K – K2 > ft1(2) – ft2(2) 
K2 and K represent the maximum interrupt interference in [rt2, ft2(2)] and [rt2, ft1(2)] respectively. And thus K - K2 represent the interrupt interference in the interval [ft2(2), ft1(2)]. The above equation can not possibly hold since there cannot be more interrupt interference in an interval than the length of that interval. Thus there are no worse finishing time for task 2 than ft1(2).
Case 2 ft1(2) < ft2(2):

How could t2 finish later than ft2(2)? We did not consider any interference from t1. 

Can the possible interference from t1 prolong the finish​ing time for t2? That is, can


K + C1 + C2  > ft2(2) – rt1
be fulfilled for some K? K denotes the possible interrupt interference in [rt1, ft2(2)]. By combining the above equa​tion with (1), we get


K + C1 + C2  > ft2(2) – (ft1(2) – K1 – C1 – C2)

Which rewritten looks like


 K – K1 > ft2(2) – ft1(2) 
K1 and K represent the maximum interrupt interference in [rt1, ft1(2)] and [rt1, ft2(2)] respectively. And thus K – K1 represent the interrupt interference in the interval [ft1(2), ft2(2)]. The above equation can not possibly hold since there cannot be more interrupt interference in an interval than the length of that interval. Thus there are no worse finishing time for task 2 than ft2(2).

(
A detailed discussion and the general proof can be found in [8].
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