
A Method for Model Based Automotive Software Development

Martin Rohdin, Lars Ljungberg and Ulrik Eklund
Department of Electrical Engineering – Systems Integration

Volvo Car Corporation
SE - 405 31 Gothenburg, Sweden

vcc2.mrohdin@memo.volvo.se

Abstract

The distributed electrical system in the latest Volvo
models, S80 and New V70, put new demands on
software development methods. Increased demands for
higher flexibility in the physical system requires higher
flexibility in distributing functionality and more
complex functionality requires higher quality of
requirement specifications.

In the MESC method for model based automotive
software development, function development is
separated from the system development, which helps
parallel work and improves reusability.

An object oriented function model provides means
to analyse and describe functionality in a structured
way and serves as an input to the development of a
design model which can be validated against
functional requirements.

In the system design phase, logical objects from the
model are allocated on the physical system
architecture.

1 Background

Developing the electrical system for the new Volvo
platform, used in the S80 and the New V70 models,
was the starting-point of a new technical era at Volvo
Car Corporation. Earlier the electrical systems were
based on one unique control unit per function and a
very limited amount of shared information. The new
system introduced is based on a set of electronic
control units (ECUs) interconnected via a multiplexing
CAN network where virtually all vehicle information
can be shared between functions [1] [2].

The new system provides not only the means for
new and more complex functions but also an increase
in flexibility where functionality may be moved from
one ECU to another. The number of ECUs may be
changed even in late development phases. This leads to

new demands on development methodology in both the
function analysis and design phases.

The project organisation used when developing
earlier systems was based on one organisational unit
per sub-system (ECU plus peripheral components).
Introducing the new technology and the new
methodology has led to the need for an organisation
based on the functions of the car rather than physical
components.

2 Driving forces for a new development
methodology

The main reasons for changing the development
methodology from the previous one, adapted to “one
function per ECU” technology to one adapted to the
new possibilities introduced by the new technology
are:

It is believed that the functionality of a premium car
will play a greater role in a customer’s choice of brand.
It will become more important that functionality is
brand-unique which will increase the need for in-house
development and knowledge of functionality.

Customers will associate brand with functionality,
which demands that functionality is inherited from
model to model regardless of system solution. This
requires that functional requirement specifications are
reused, i.e. the functionality is expressed in a non-
system specific manner.

More complex functionality requires greater skills
in communicating, expressing and handling functional
requirements.

A large amount of sharing of resources and
information in the system requires that the system and
its functionality are handled from a complete system
point of view where all functional dependencies are
visible and all functional responsibilities are visualised.

Increased demands on shortened development lead
times requires more parallel development activities and
reusability of already developed functionality.



A more flexible system solution requires the
functionality to be easily redistributed.

An increasing amount of functionality, even safety-
critical, will be implemented in software, which
requires higher quality of software requirement
specifications.

3 MESC – Model based Electrical
System Concept

To meet these drivers an automotive software
development methodology called MESC (Model based
Electrical System Concept) is being developed at
Volvo Car Corporation

The parallel development challenge is met by
separating the activity of developing the system
solution from the activity of developing the
functionality. These activities are performed in parallel
by different teams. This separation means also that the
functionality to a great extent can be expressed without
the notion of a system solution leading to functional
descriptions that are reusable for different system
solutions and in different car projects.

In the MESC method the complete vehicle
functionality is expressed using an object model based
on a subset of the Unified Modelling Language UML
[3]. The object model divides functional responsibility
on associated logical objects which provides the means
to overview the complete functionality and functional
relations, to distribute the responsibilities on different
system solutions and to divide and organise
development responsibilities.

Using UML standard diagrams such as use case
diagrams, class diagrams and sequence diagrams it
becomes easier to express and communicate functional
requirements on all organisational levels from product
planning via system development to implementation
and testing. Better understanding of requirements on all
levels immediately results in higher software quality
and both fewer and ”smaller” iterations.

MESC also aims to model functionality on a
detailed design level using tools, which provides
virtual analysis (simulation) capabilities. The design
effort it self helps increasing the understanding of the
functional requirements and the simulation helps
visualising the functionality for both product planners
and software suppliers.

This far MESC is aimed to cover the analysis and
design phases but work is being made to extend MESC
also to cover the implementation phase where a
software platform including a set of platform
components, e.g. a “virtual engine” for executing
statecharts, has been developed. Some work has also
been made to cover the system test phase in which one

approach is to replace the system ECUs by PCs in the
early development phases and execute the distributed
applications on those, using a statechart simulator.

4 Functional modelling

4.1 Function areas

The functional requirements on the complete car is
captured in one functional model which, for easier
handling, is divided in a set of interacting Function
Areas (FA), seen in Figure 1, each describing a subset
of the complete functionality; e.g. Central Locking,
Exterior Lighting and Alarm.

Figure 1: Function areas are separated and
interact to fulfil the functionality of the
complete car.

4.2 Defining use cases

Traditionally functional behaviour and requirements
are described on a high abstraction level and divided
into different sub-systems. This approach has been
further developed in the MESC method in which we,
for each function area, identify use cases and actors
from the customer requirements. Use cases highlight
what functionality we want from a function area on a
high abstraction level. Actors, representing persons,
physical environment etc, show which users are
customers of the use cases. One use case diagram,
which shows relations between actors and use cases, is
drawn per function area, see Figure 2. This use case
analysis has shown to be beneficial especially for new
and unfamiliar functionality.

Functionality of the Complete Car

FA Central
Locking

FA Exterior
Lighting

FA Alarm



CentralLockCtrl

RemKeyReq

Acknowledge
LatchCmd

Exterior Lighting
RemKeyReq

Acknowledge

LatchActuator

LatchCmd

RemoteKey

Figure 2: Use case diagram for FA Central
Locking.

4.3 Logical objects and associations

Within the function areas the functional behaviour
are divided on classes, that all have a defined
responsibility. When identifying classes and dividing
behaviour on them the aim should be that those classes
(instanciated as logical objects) should be possible to
distribute on different system architectures. This
activity is based on incoming requirements, experience
and system policies.

Classes have associations to other classes both
internal and external to the function area. Such
associations are shown by using the simple UML
association line (bidirectional navigatable association)
between classes. In this way a class diagram is drawn
per function area. Figure 3 shows a part of the class
diagram for FA Central Locking.

Traditionally hardware diagrams representing
components and signals have been used at Volvo. Thus
we try to interpret classes as “functional components”
and associations between classes as message flows or
signals between objects. To make this work we use
class operations as input messages and attributes as
output messages. Further we use only a subset of the
UML syntax for class diagrams and we do not use
aggregation and generalisation. This is because
implementation in most cases is done in C (not C++)
and that our software platform does not support these
constructs.

This way we introduce “object influenced”
semantics and we prepare the organisation for fully
using object orientation and UML in the future.

Figure 3: Part of class diagram for FA Central
Locking. Grey classes are internal classes and
transparent classes are external to FA Central
Locking.

4.4 Capturing behavioural requirements

The class diagram and classes provide the function
area structure and responsibility respectively, and use
cases provide the overall functionality. Details in the
use cases are described using scenarios based on
message flows between instances (objects) of classes.
Such message sequence diagrams (MSCs) describe not
only interactions between internal objects but also
between internal and external objects participating in
providing the function area functionality. In Figure 4 a
MSC for the “Locking from Outside” use case is
shown.

Functional timing requirements can be described in
the MSCs, e.g. a message must be sent within some
time limit or a message is sent periodically with a
defined period. The timing aspects that are best
described in the MSCs are however the complete
reaction time from an actors input stimuli to the last
message in the sequence is received.

Often some prerequisites must be fulfilled in a MSC
for a message to be sent from one object to another.
This is described in the MSC by using UML notes
anchored to the message.

For some function areas we will apply formal
verification techniques, e.g. for safety critical
functions. I.e., if the MSCs are formally written with a
complete set of prerequisites it will be possible to
formally verify that the MSCs. are e.g. non-conflicting.

Locking from
outside

Authorised user Unauthorised user

Opening
from outside



Central
LockCtrl

Exterior
Lighting

Remote
Key

Latch
Actuator

Auth. user

Lock button pressed

RemKeyReq(Lock)

LatchCmd(Lock)

Acknowledge(Lock)

Prerequisite:
Door closed & ignition key
is not in ignition key lock.

Time from
Lock button pressed to
LatchCmd(Lock): < 300ms
Lock button pressed to
Acknowledge(Lock): <400ms

Figure 4: MSC for scenario: “Locking from
outside”.

5 Design and validation

Some complex functions may need a deeper
understanding than what the function modelling can
provide. For such functions we make executable design
models where the function model structure and
behaviour forms the basis. Logical behaviour is
modelled using statecharts in any tool providing
simulation capabilities through animated GUIs. This
helps us in validating the behaviour captured in the
function model and product planners may actually see
the results from their functional requirements before
they are implemented on hardware. The executable
design also helps the suppliers in understanding the
design specifications. This approach drastically
shortens feedback loops.

6 Function distribution – System design

In the system design phase the function model is
allocated on the physical system architecture i.e. all
instances of the function area classes are allocated on
the sub-system ECUs which implies that some function
area messages become network signals and others
become ECU-internal signals.

The timing requirements from the functional MSCs
are broken down to system timing diagrams describing
requirements of evaluation time in ECUs, propagation
times on networks etc, see Figure 5. The VOLCANO
CAN protocol [2] assures that the network signal
requirements are met by deadline monotonic analysis,
but the timing allocation activity still requires a good
knowledge of real time system design.

Figure 5: MSC for the system timing.

7 Future work

So far the MESC method is in use in the analysis
and design phases but work is being made to further
develop the implementation model (software platform)
and the test phase. We expect tools for automatic code
generation to mature further and rely on some kind of
detailed design, why we already try to adopt design
rules that would result in efficient and lean auto-
generated code.

8 Acknowledgements

We would like to thank the consulting engineers at
Combitech Systems AB, Gothenburg office, for
valuable support and ideas on both object oriented
techniques and methodology.

References

[1] Kent Melin, Volvo S80: Electrical system of the
future, Volvo Technology Report, 1, 1998

[2] L. Casparsson, A. Rajnak, K. Tindell and P.
Malmberg, Volcano a revolution in on-board
communications, Volvo Technology Report, 1,
1998

[3] Grady Booch, Ivar Jacobson and James
Rumbaugh, The Unified Modeling Language
User Guide, Addison Wesley Publishing
Company, 1998

Central
ECU

Central
ECU

Roof
ECU

Door
ECU

Auth. user

Lock button pressed

CAN:RemKeyReq(Lock)

CAN:LatchCmd(Lock)

Internal:Acknowledge(Lock)

Network signal timing:
80ms

Network signal timing:
90ms


