COMET: Component-based Embedded Real-Time Databases

Jörgen Hansson
Aleksandra Tesanovic
Real-Time Systems Laboratory
Department of Computer Science
Linköping University
Sweden

Christer Norström
Dag Nyström
Mälardalen Real-Time Research Centre
Mälardalen University
Sweden

Outline

• Introduction to why using databases in embedded systems
• Case study at Volvo some minor points
• A tailorable database: COMET
 COMponent-based Embedded real-Time database system
• Conclusion
Project Outline

• What? DATABASE
 – embedded
 – real-time
 – customizable to fit different application types

• Industrial partners?
 – Volvo Construction Equipment Components AB
 – Upright Database Technology AB

Data characteristics in embedded system

• Amount of data in embedded systems is increasing
• Data is normally scattered around the system in various structures
• Data has temporal validity
• Uniform access from applications and from tools outside the system is desired
Data characteristics in embedded system

- Different types of data (Volvo CE)
 - Sensor/actuator raw data
 - Sensor/actuator parameter data
 - Sensor/actuator engineering data
 - Logging data
 - Configuration parameter data

A tailorable embedded real-time database

- Functionality vs size trade-offs
- Effects of the temporal requirements on the functionality
- Integration of diverse data stores
- Support for non-standard data types
- Extensibility "plug-and-play capability"
- Cost of the development time.
- One DBMS product for various application areas
How?

USING COMPONENT BASED SOFTWARE DEVELOPMENT!!

- components for limited resource environment
- real-time components
- customization by composition

SotA: Commercial Embedded Databases

Relational Client/Server
- Progress
- Ardent Software
- InterSystems
- Velocis (Centura)
- IBM DB2 Everywhere
- MSDE (Microsoft)
- Oracle8i Lite
- Sybase SQL Anywhere
- Pervasive.SQL 2000
- Empress RDBMS
- TimesTen
- Solid Embedded
- Ptime
- Mnesia
- TelOrb
- Upright Embedded DB

O-O Client/Server
- Objectivity/DB
- PowerTier
- POET Object

Embedded Libraries
- RDM, db.linux
- C-tree Plus
- Gdbm
- C-ISAM
- Berkely DB
SotA: RTDBs Research Platforms

- BeeHive
 - University of Virginia, Charlottesville, USA
- DeeDS
 - University of Skövde, Sweden
- Rodain
 - University of Helsinki, Finland
- RT-Genesis
- Starbase
 - University of Virginia, Charlottesville, USA
- STRIP
 - Stanford University, USA
- Berkely DB
 - Berkeley, USA

COMET Project Goals

- Development Tools
 - Configuration Tools
 - support when tailoring a system
 - support when choosing components from the library
 - Analysis Tools
 - real-time analysis
 - reliability analysis
 - resource demands analysis

- Component Library
 - Database Systems
 - concurrency control
 - scheduling
 - main-memory techniques
 - ...
Component vs. Monolithic DBMS

- **monolithic DBMS**
 - good reliability
 - extensions and modifications are not easily possible
 - increasing functionality → increasing complexity
 - performance and cost penalty for unneeded functionality
 - complex system evolution

- **component DBMS**
 - easy modification or extension
 - reduced system complexity
 - simplified system evolution
 - reduced unnecessary functionality
 - performance
 - component development process is more complex

COMET Unified Component Model

- **Application oriented**
- **Platform dependent**

<table>
<thead>
<tr>
<th>Temporal constraints</th>
<th>WCET-01</th>
<th>WCET-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource demand</td>
<td>Memory - O1</td>
<td>Memory - O2</td>
</tr>
<tr>
<td>Portability</td>
<td>OS type</td>
<td>Hardware type</td>
</tr>
</tbody>
</table>

- **Plug-in Components**
- **Database Middleware**
- **DBMS Service**
- **Configurable DBMS**
COMET Database Architecture

Components

Transaction
Real-Time

Weaving at "Join points"

COMET: Type of Aspects

Embedded Real-Time Database Aspects

Composition
- Compatibility
- Versioning
- Flexibility

Application
- Security
- Transaction
- Memory Management
- Real-Time
Research Challenges

- Real-time component models
- Weaving of cross-cutting aspects
 - Aspect specification using languages
- Composition of white boxes and COTS (grey & black boxes)
- Integration to run-time system, maintaining real-time properties

Results and Status

- Project started January 2001
- 2 ARTES PhD students
- State of the art survey
 - Industrial and research platforms
- Case study
- Initial design of COMET
Summary

• Tailorable device-embedded databases needed
• COMET approach
 – Composition using components
 – Aspect weaving of inter-component dependencies
 • real-time, memory management…
 – Focus on design tools and configuration tools

Contact:
Jörgen Hansson
jorha@ida.liu.se
Christer Norström
cen@mdh.se