
Abstract

An information model supporting core systems engineering
design data is presented. The model provides, in
conjunction with STEP (ISO 10303) framework services, an
infrastructure that facilitates data exchange between design
tools used in the systems engineering process. The model
has been developed within the SEDRES project (ESPRIT
20496) and will serve as a seed for the standardisation of a
furture systems engineering application protocol within the
STEP framework.

1. Introduction
In the aerospace industry, as well as in other industry

sectors, embedded computer systems are increasingly used
to enhance and extend the functionality of previously purely
mechanical or electrical systems. This development has led
to more versatile, but also more complex systems, and sys-
tem complexity increase with each new developed product
generation. To cope with complexity and stringent require-
ments on availability, reliability and real-time response
more emphasis is placed on the early stages of system
development — i.e., systems engineering. Computer based
specification, design and analysis tools have been intro-
duced to assist systems engineers in this process.

This has introduced new problems. Computer based
tools typically cover specific aspects of the systems engi-
neering process. Moving information between tools, in
cases where there is an overlap in information coverage, is
difficult due to the absence of accepted tool independent
data formats. The resulting situation has been characterised
as one of “islands of automation” [2]. Furthermore, in co-
operation projects it is often the case that partner organisa-
tions uses different tools for accomplishing the same task.
Also in this case automated information exchange is
obstructed by the lack of tool support for data exchange. As
a result, specifications sent for further refinement or analy-
sis in foreign tools often have to be re-entered manually into
the receiving organisation’s tool-set, a tedious and error

prone process. The lack of exchange mechanisms also com-
plicate upgrades from legacy tools to modern ones. Infor-
mation entered or maintained in the legacy tool will not be
accessible from the modern tool unless tool interfaces are
developed.

Tool integration and especially data integration meth-
ods [17], [13] have been proposed for enabling data
exchanges between tools and a lot of effort have been
placed into the development of tool neutral repositories
such as PCTE [10] and infrastructure that facilitates for tool
integration. But these effort have neither been widely
accepted nor led to any significant increase in data exchange
capabilities for systems engineering tools [16]. In a critical
article, Brown and McDermid [3] attributes the lack of suc-
cess for these methods to the misconception that open tools
automatically leads to integrated tools. The view expressed
is that open frameworks at best helps integration. Unless
significant effort is placed on the development of common
information models agreed by tool users and vendors the
vision of an open environment will stay a vision.

The approach towards data integration for systems
engineering tools presented in this paper focuses on identi-
fication and modelling of information relevant to systems
engineering for computer intensive systems in the aero-
space sector. However, we believe the model to be general
enough to cover applications beyond the primary focus. A
formal language, EXPRESS , has been used to formalise the
information model. The model is intended to be used, in
combination with the extensive implementation support
offered by the STEP (ISO 10303) framework, to facilitate
information exchange between systems engineering tools.

The rest of this paper is outlined as follows. Section 2
presents an overview of and the benefits of the STEP frame-
work. Section 3 outlines the scope on the information
model, as well as the process used for developing the model.
Section 4 presents the model structure and the modelling
principles used when developing the model. A few exam-
ples in section 5 illustrates how the model supports key con-
cepts in the selected systems engineering process. Related
work is presented in section 6 and the paper is concluded
with a summary and an outline of future work in section 7.
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2. STEP
This section outlines the STEP standard framework

and the benefits in using STEP components for information
modelling and for achieving data exchange capabilities
between tools. The overview is necessarily brief — in-depth
information on STEP and its components are available in
[12] and [14]. The objective of STEP is to provide the
framework for the unambiguous representation and
exchange of computer-interpretable product data through-
out the life of a product. The framework is independent of
any particular computer system. STEP is a modular stan-
dard, there is large number of parts in different levels of
standardisation. The parts can be divided into six classes
(see Figure 1). A brief description of each class is presented
below.

An Application Protocol (AP) is a definition of an
information and process model for an engineering domain,
i.e., Configuration controlled design (AP203). The structure
of an AP information model is defined in terms of a
Description method. The standard description method used
within STEP is the language EXPRESS [14]. It is based on
an extended entity relationship formalism supporting object
orientation concepts and specification of constraints on data
and relationships.Integrated resources provide a set of
generic definition that are shared among application
protocols to facilitate interoperability. Data exchange is
facilitated viaImplementation methods. There are standard
implementation methods defined for file based transfers and
for specification of repository interfaces.Conformance
testing methodology and framework define the validation
process for STEP implementations andAbstract test suites
provides a comprehensive set of test cases for an AP

The service offered by STEP allow for realisation of
domain specific data exchange structures as well as domain
specific repositories with uniform interfaces. As EXPRESS
is a formal language, it is possible to transform EXPRESS
models to representations in languages such as C or SQL,
which in turn may be used to define the structure of
repositories for model data.

Compared with the traditional method for data
exchange, i.e., manually written interface software for read-
ing/writing tool specific data formats, an information model
driven approach have the following advantages:
• 2n interfaces are required to integraten tools if a

common information model is used compared with
n(n-1) interfaces if no standard model is employed.

• The existence of formally defined exchange formats
allows for automation of large parts of the interface
development process (see Figure 2). Those parts not
easily automated, i.e., the mapping from entities in the
information model to the corresponding entities in a
tool’s meta-model are supported by a formal
description — in this case the EXPRESS model. This
shall be compared with the manual process of mapping
between two proprietary formats that has to be used if
no common model is defined.

• An information model based approach allow users to
express their view on important domain information. In
this sense the approach not only facilitates information
exchange across tool boundaries — it also allow users
to express requirements on future tools.

3. Scope
The systems engineering information model presented

in this paper is the Capability 2 model that has been devel-
oped within the SEDRES project (ESPRIT 20496). The
model has been developed in co-operation with systems
engineers from major European aerospace companies (Aer-
ospatiale, Alenia, BAe, DASA and SAAB). The aim of the
project has been to create an information model that can
serve as a first draft in the development of a standardised
application protocol for systems engineering within the
STEP (ISO 10303) framework. The first steps towards this
goal have been taken with the acceptance of a systems engi-
neering as working group within ISO. The model presented
here also serve as the initial draft for the standardisation
work.
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The main purpose of the information model is to
facilitate exchange of systems engineering information
between tools, not to define ‘another’ development method.
The focus is on supporting a harmonised set of features of
tools and methods used in systems engineering today.

Systems engineering and the information relevant to
the engineering process can take several shapes depending
on application domain and the position of a practitioner. In
this work we focus on information related to the process of
design and validation of systems as described in IEEE 1220
[7](see Figure 3). The primary model scope is further
restricted to design related information.

3.1 Model development
Three information models will be developed within the

project. Each model is an extension of the previous. The
partitioning is illustrated in Figure 5. Currently (July 1998)
tool interfaces, based on the Capability 2 model, are being
implemented for a number of COTS tools. The interfaces
will be used in information exchanges to validate the model.
These will be executed during the fall of 1998, and the
results will influence the final information model that will
be delivered to the project partners and the ISO working
group by March 1999.

In the SEDRES project the task of Linköping
University has been to communicate with systems
engineering experts at the industrial partners to elicit
detailed requirements on the information model, to analyse
the requirements and, based on the analysis, create an
information model fulfilling the requirements. Since each
industrial partner has a specific view on systems
engineering, influenced by development process and
specification tools used, the task has been iterative in nature
and has included a substantial degree of harmonisation. The
objective has also been to identify and include concepts
envisaged for future specification tools in the information
model.

4. The SEDRES Information model
This section introduces the SEDRES Capability 2

information model [6] and presents how key requirements
are met by constructs in the model. Although it is only sup-
porting a subset of the domain it is quite a large model with
over 130 entities. Due to the size of the model only excerpts
are presented in this paper.

4.1 Model overview
A systems engineering information model calls for

support for a wide set of information. To make the model
more manageable it has been divided into a number of units
of functionality (UoF). The intention is that an interface
developer can find information related to a particular tool
capability in one UoF. For the Capability 2 model the fol-
lowing six UoFs were identified.
• Configuration management — contains entities that

define the model framework as well as entities
supporting version management, object grouping and
administrative information.

• Requirements, entities for representing, e.g.,
requirements, requirement analysis and systems related
information.
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• Functional design, entities for representing, e.g.,
functions, function hierarchies and data types.

• Behaviour, entities for representing, e.g., finite state
machines and their interaction with functions.

• Physical architecture, entities for abstract specification
of physical objects.

• Graphics, basic entities for representing basic shapes
and object positions on design diagrams, such as data
flow and state transition diagrams.
Coupling between, and within, the UoFs is intention-

ally kept weak to improve flexibility. This allows for trans-
parent representations of partial as well as complete system
specifications. Instantiation combinations that are not
meaningful are prohibited by EXPRESS rules.

Reuse.The structure of the information model is tailored
for reuse of design elements. Two entity types are used for
representing elements such as requirements and functions.
A ‘definition’ entity provides the static definition of an
object, while an ‘instance’ entity provide information on
how a definition is used in a particular system and how it
relates to other objects in the system. Version management
is supported for all ‘definition’ type objects.

The structure is motivated by the desire to be able to
reuse validated elements of existing specifications and on
management of multiple objects with identical definitions
— only the shared definition needs to be modified to update
all instances. In contemporary file based tools the benefit of
this construct is limited to elements in the same design.
Future design repositories and tools are expected to increase
the benefits of the construct.

Graphics. The definition of object semantics is separated
from object presentation information (graphics). Layout
information is considered optional in the information
model, but is supported so that tools receiving data can rec-
reate an approximate layout of an original design diagram.
No implementation should rely on the existence of graphi-
cal information in exchanged data.

Behaviour. Capturing behaviour related information
proved to be the most challenging part of the modelling
effort. The problem is due to the multitude of formalisms
for representing the dynamic aspects of a specification. Four
main formalisms, apart from pure textual specifications,
where identified (each with a wide variety of extensions).
• Finite state machines, flat and hierarchical,
• Petri nets,
• Synchronous specifications,
• Causal chains

Provided that behaviour specifications are detailed and
expressed in a formal language it is possible to perform
automatic transformations between specifications in differ-
ent formalisms. However, information may be lost in the
transformation. For the Capability 2 model the inclusion of
a detailed, unified model was considered. However, the size
of the task, in combination with the limited amount of
resources available for implementing tool interfaces for
Capability 2, were factors which excluded the option.

Instead a pragmatic approach was selected. Three of
the four behaviour formalisms listed above are supported in
Capability 2 — finite state machines, synchronous specifi-
cations and causal chains. Semantic checks on the model
are only supported to a limited degree. This approach
should only be viewed as a temporary solution. Subsequent
model versions are expected to support a uniform formal
specifications of system behaviour.

The system and traceability.The main building blocks in
the model are those for representing the system under
specification, requirements, functional and physical aspects
of the system. A complete system specification consists of
the set of requirements posed on the system, the functional
architecture, complete with behavioural specifications, that
satisfies the functional requirements and the physical
architecture describing the components selected for
realising the system. This concept is illustrated in Figure 6.
The relationships for representing allocation of objects (for
instance, allocation of functional requirements to a
function) and traceability aspects are important components
for realising this structure.

5. Examples
A set of small examples are used to illustrate some

information model constructs. The examples are all related
to a fictitious system – an ‘academic’ aircraft. The structure
of the example and the information provided is purely for
demonstrating model constructs. The graphical notations
presented in Figure 7 are used in the examples. The inten-
tion with the examples is to show the structure of the model.
To preserve clarity only excerpts are shown of the model.
For the same reason the full list of entity attributes have in
some cases been suppressed.
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5.1 System views
In the information model the abstract entity

system_viewdefines a view on a system under develop-
ment. Two sub-types ofsystem_view, applicationand
operational_scenario, are provided for analysis of the sys-
tem under specification. The entityapplication is used for
representing the complete system. It is a collector of all
information that relates to a particular system under design.
As such theapplication entity can be used for representing
system baselines.

For analysis purposes it may be of benefit to partition a
system into the modes the system can operate in. In the
information model the entityoperational_scenariodefines
a mode of a system. Any number ofoperational_scenarios
may be defined for anapplication object.

The model also allows for representation of dynamic
relationships between working modes, e.g., under which
conditions a system may change operational mode. This
information is captured by the entity
scenario_relationship. The relation between two
operational_scenario objects defined by a
scenario_relationship object is uni-directional, from the
relating to the related operational_scenario object. If there
exists a bi-directional relation between two
operational_scenario objects, it shall be modelled using
two objects of typescenario_relationship.

It shall be noted that the instantiation of none of these
objects are forced by the model. Tools without a systems
view may use the model without penalty.

Example 1: Operational scenarios

The example is shown in Figure 8. Two operational
modes related to the landing phase of the academic air-
craft have been identified – ‘landing’ and ‘on ground’.
The transition condition from mode ‘landing’ to mode
‘on ground’ have been identified to be ‘weight on wheels
= TRUE’. To preserve clarity in the example some
descriptive attributes of the entities are not shown.

5.2 Requirements on a system
The information model supports the four classes of

requirements identified in IEEE 1220 – functional, physi-
cal, operational requirements and constraints. For the Capa-
bility 2 model all requirements are assumed to be textual.

Requirements may have complex definitions and a
requirement may be shared by many systems/sub-systems.
For this reason the definition and the use of requirements is
separated in the model. Eachrequirement_instance object
has a requirement_definition object that provides the
definition of the requirement. The existence of separate
objects for representing the requirement use and definition
also allows for context dependent operations on
requirement_instance objects without having to change
the reference to the definition of the requirement. For
instance, if a requirement_instance relevant for a
particular system is used to derive new requirements for the
system it does not have any effect on the potentially shared
definition of the requirement.

Requirement_instanceobjects may be assigned to the
operational_scenario and/or application objects they
apply to. They may also be allocated to individual
function_instance or physical_instance objects to
represent how a specific requirement influences the system
architecture. A requirement with a complex definition may
be broken down into basic requirements. The requirement
analysis process is non trivial so the system specification is
likely to go through several revisions before a final baseline
can be formed.
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Example 2: Requirement assignment

In this example (Figure 9) a single requirement is
assigned to a system. Any number of
requirement_instance objects can be assigned to an
application, and arequirement_definition object can
serve as a definition for severalrequirement_instance
objects

5.3 System functional architecture
The information model supports the formulation of the

system functional architecture. The main elements of the
functional architecture are the
function_context_definition providing a functional
description of the environment the system shall operate in,
and the entities for representing functions, data stores, data
item, external entities etc.

Typically, a functional description of a system is rea-
lised as a hierarchy of increasingly specialised functions
under the function context description. Leaf functions may
have a formal mathematical definition or be described using
a natural language.

A functional hierarchy may be associated with
application andoperational_scenario objects to define the
functional architecture for a system via a
context_system_view_relationshipobject. The physical
architecture may be associated with the system under
specification in a similar fashion. Furthermore, elements of
the function hierarchy may be assigned to the physical
elements that shall realise the specified functionality.

Example 3: Function context

In Figure 10 the assignment of a simple function context
definition to a system is illustrated. In the example the
functional context is defined for the operational scenario
object ‘landing’ as defined in Example 1.

In the example there is a single external entity supplying
input to the system, and there is a flow of information
from the external entity to the system. The model is
incomplete in the sense that the type of information flow
is not specified and there is nofunction_definition
object providing a definition for the system function. Yet
the example illustrates how a functional architecture is
associated with the system and how information flows
between functions is realised in the model.

definition

name

Application

Operational_
requirement

Requirement_
system_view
relationship

Requirement_
instance

definition

academic aircraft

The system shall
be compliant with
FAA regulations

requirement

system_view

requirement_
instance

system_view

requirement_
definition

requirement

system_view

functional_
requirement

operational_
requirement

physical_
requirement

constraint

requirement_
system_view_
relationship

description

description

Figure 9. Assignment of requirements to a system,
EXPRESS_G (top) and instantiated example
(bottom).

associated_context

flow_
component

associated_
context

name

Flow

Actual_
flow_port

context_
system_view_
relationship

function_context_
definition

flow_
component

landing

system_view

function_
context_
definition

system_view

system_
function_

association

function_
context

system_view

external_
entity

function_
instance

flow

context_
system_view_
relationship

port_of

flow_in
composition_
relationship

external_entity_
context_

relationship

flow_
context

system_
function

associated_context
external

Operational
scenario

function_
context

namelanding mode
context

context_
system_view_
relationship

function_
instance

system_
function

associated_
context

external_entity_
context_

relationship

external_
entity

external

name

Landing
mode sensors

name

Landing
mode

flow_in
composition_
relationship

flow_
context

name

sensor signals

Actual_
flow_port

port_of

direction

output

direction

inputproducer consumer

Figure 10. Functional context description for
landing mode for the academic aircraft.



6. Related work
In this paper we have presented key aspects of the sys-

tems engineering information model developed within the
SEDRES project. The intention with the model is that it
shall serve as a medium for information exchange between
design tools used in systems engineering without specifying
the actual mechanisms for the exchange. There are many
similar projects within the STEP framework, but mainly for
different aspects of mechanical engineering, e.g., AP203
[1]. Information models related to the one presented herein
have been published by Jackson [8] and Oliver [11]. The
structure of the SEDRES model is in many areas similar to
these models, but the SEDRES model is more detailed since
it is explicitly intended for information exchange. In its cur-
rent shape the SEDRES model is also less extensive than
[11], but the intended final scope is similar.

Data models for software CASE data interchange have
been published by CDIF [4]. CDIF have released a model
for functional design [5] that is similar in scope to the Func-
tional analysis UoF of the SEDRES model. It is our impres-
sion that the focus of CDIF is to facilitate for data exchange
between similar tools rather than to support a specific engi-
neering process.

Preliminary studies on opportunities for integrating
requirement management tools has been performed within
INCOSE’s tool integration interest group [9], along with a
study where information exchange scenarios and require-
ments are identified [15]. We are not aware of any work
beyond this step in INCOSE.

7. Summary and Future Work
An information model supporting core systems engi-

neering information has been presented. The information
model has been provided as input for the standardisation
process of STEP AP 233, a systems engineering application
protocol. The information model is approaching some
degree of maturity but there are several areas that need to be
improved, in particular the models describing system
behaviour and configuration management. The process
towards a standard is long and the finalised standard is at
least a few years ahead in time. It is our intention to con-
tinue extending and improving the model in the standardis-
ation process. To increase the prospects for a successful
standard we would like to encourage comments, proposals
and other contributions to the work present herein.
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