
1

Component Based Design of Safety-
Critical Automotive Systems

Hans Hansson, Mälardalen University

• Issues and approaches in a nat’l project
• Questions,
• ... answers will be provided later

SAVE – Program overview
• The title says it all:

Component Based Design of
Safety-Critical Vehicular Systems

• Nat’l Swedish project (2 M€/3yrs) starting September 2002 (Now!)

• 5 partners from 4 universities:
• CSL/MdH (Ivica Crnkovic)
• DAMEK/KTH (Martin Törngren)
• RTSLAB/LiTH (Simin Nadjm-Tehrani/Jörgen Hansson)
• SDL/MdH (Hans Hansson/Christer Norström/Henrik Thane)
• UppAal/UU (Wang Yi/Paul Pettersson)

• Industrial participation from ABB, Bombardier,
CRT, Mecel, Saab, Scania and Volvo (and a few others)

2

SAVE – Time and Size
• 3 years
• ~ 10 graduate students funded
• At least 10 additional students with

separate funding (from participating industries
and other) will contribute

• 2002—2005 (2008; hoping for an extension;-)

A Distributed Real-time System

Volvo
S80

• Networks instead of cables
• Nothing must go wrong ⇒

Robust Design with
Predictable Delays

• Changing Requirements
– Design Methods
– Production Process
– Competence

• Software (not just nuts and bolts)

3

Integrator
(Car company)

Suppliers

Sub-suppliers

Requirements

Now: Integration of physical
components (ECUs)

- Soon hundreds of ECUs

Future: Software from several suppliers integrated
into a single ECU

Level of criticality and number of safety-critical
functions are increasing (e.g. x-by-wire)

Reuse of architecture and components to reduce
time to market and reduce costs

We’ve done it before
(and will do it even better this time;-)

4

Application
characteristics

• Vehicle control system
with high demands on
safety, reliability, and
timeliness

• Two nodes connected
via redundant buses

• 80 tasks
• 150 I/O channels
• Execution times:

10 µs to 1 ms
• Period times:

10 ms to 1 s

Design language
• Simple design language

– a few powerful and clearly defined constructs
• Communication and synchronization

separated from programming code
• Key elements

– Application
– Modes and mode transitions
– Transactions
– Interaction graphs and

precedence relationships
– Tasks

ReleaseTime
Deadline
MAXT
Entry function

Inport Outport

Function

State

”Component”

5

WCET=25ms

Example: A controller
• Two sampling tasks, one controller task

and one actuating task.

S1

S2

C A

Period: 1ms
ReleaseTime:0 ms
Deadline: 0,2 ms

Period: 1ms
ReleaseTime:0 ms
Deadline: 0,2

Period: 5 ms
ReleaseTime:0
Deadline: 5ms

Period: 5 ms
ReleaseTime:4 ms
Deadline: 5ms

C precedes A

Timing requirements

Execution time estimates/budgets

WCET=0.08ms

WCET=0.07ms

WCET=0.1ms

Feasibility check
• Specification translated to a schedule.

– Including preemptions
– Considering clock-ticks and interrupts

Latest completion time of S2=200μs since
the interrupt overhead is accounted for

S1 S2 S1 S2 S1 S2

C

A

0 1000 2000 4000 5000

C

6

Mapping of the design
Configuration
Specification

Architecture
Specification

Schedule

Configuration Compiler

Communication handling
Pre-run-tme scheduler

Rubus RTOS

HW
Platform

The implementation
• Tasks can be independently implemented
• Timing requirements fulfilled if execution

times less than estimates.
• If not, a redesign is needed.

– Renegotiation of time budgets.

7

Requirements engineering

Requirements analysis

High level system decomposition

Functional decomposition and structuring

Mapping temporal constraints to
attributes of the task model

Definition of execution time budgets

Feasibility check and automatic
implementation

Implementation and module testing

System integration and verification

R
T

T
 design m

ethod

Function decomposition
and structuring

IV

High level system
decomposition

III

Mapping temporal
constraints to attributes of

the task modelV

Definition of
execution time budgets

VI

Feasibility check and
automatic implementation

VII

Implementation and
module testing

VIII

System integration and
verification

IX

Requirements analysis

II

Requirements engineering

I

Design

Positive results

• Precise design
– Concurrent engineering:

• Reduced Time for implementation and testing

• Early detection of design errors.
– Execution time estimates very useful.

• Easy to add functionality
• Easy to introduce new personnel

8

Limitations
• Restricted model (with RT focus)
• Safety and reliability not handled
• No modelling/analysis of functional

correctness
• Proprietary (essentially)
• ...

• The ultimate solution must be
standardized!

SAVE
• Time to market rules!
• Faster; Better; Cheaper; (Safer?)
• Conflicting requirements! (safety vs. cost ...)
• Reuse is the key!
• Many aspects and several stake holders
• ”Lego-paradigm”

– ”Horisontally” (functions and aspects)
– ”Vertically” (requirements, models, impl., platforms)

Next step......

9

”The goal of SAVE is to
establish an engineering
discipline for systematic

development of component-
based software for safety-

critical embedded systems”

contribute towards

What is a component?
• Definition (Szyperski)

– A unit of composition with contractually
specified interfaces and explicit context
dependencies only.

– Can be deployed independently and is
subject to composition by third party.

10

The Development Process

• System req. Capture (including real-time, safety and reliability)

• Architecture Design
• Decomposition of system req. into component req.
• Component modeling and design (specification, selection,

adaptation and composition)

• System configuration and verification
• System configuration
• Component composition/decomposition
• System verification

System Requirements

Architecture Deploy/Compose

Replace/Add

Component Requirements Find Component Select Component Adapt Component

Component verification

System verification

Framework

Component Repository

Composition environment

Run-time environment

SAVE has a focus on
model-based design

11

SAVE application
characteristics

• Hard real-time static configuration
• Additional, less critical, less static tasks

– But SAVE focus is not on these
• Resource constrained (per unit cost-critical)

• Reuse of architectures and ”components”
• Integrator – supplier relation

Research question?

"COTS"
"In-house"

?
”Criticality”

”Cost of development
and integration”

12

Research challenge!

"COTS"
"In-house"

?
”Criticality”

”Cost of development
and integration”

1. Engineering methods
2. Standards
3. Theory

Component-based approach
for embedded systems?

• Can we use the established component
models and technologies for
– Real-time systems?
– Embedded systems?

• Can component-based models be directly
applied on RT and embedded systems?
If not which parts can be taken, which are missing?

13

Run-time vs. design time
composition

• Run-time composition
– Component model,
– Run-time environment,
– Dynamic communication,

• Design-time composition
– Capable of generating

monolithic firmware from
component-based design,

– Optimization

More feasible for embedded More feasible for embedded
systemssystems

Component technologyComponent technology

”Static configuration”

Component transparency
• Black-box reuse

– From component’s user point of view,
• White-box reuse

– From composition environment
point of view

• Gray-box reuse (composition environment)
– If clear conventions for knowledge about

implementation are introduced More feasible for

More feasible for
embedded systems

embedded systems

Component technologyComponent technology

Models of implementations

14

Portability, Platform
independence

• Binary independence

• Source level portability suffices,
– Design-time composition,
– Run-time environment restrictions

More feasible for More feasible for
embedded systemsembedded systems

Component technologyComponent technology

SAVE – The Challenge
• Conflicting requirements

• E.g. Safety vs. Cost and time-to-market

• Combination of architectural and
component-based design with analysis
and verification

• ”Model-based design”
• Safety and Real-Time

15

SAVE – The solution
• Development of a holistic framework:

– Methodology and process
– Component specification and composition
– Techniques for analysis and verification
– Run-time and configuration support

SAVEComp

Component
Technology

Component
Development

System
Configuration

Run-time
Environment

Comp.
Specification

SAVEComp

Operational
Interface

Analytical
Interface

System
Architecture

Verification Technology
Verification

Verification
Technology

Development
Process

Configuration
Interface

16

What will we actually do?
• Investigate the feasability of CBD for

safety-critical RTS by demonstrating
solutions to critical problems

• Starting out by
– Identifying issues and concepts
– Close co-operation with industry
→”minimal” set of aspects to consider

Design process
System Requirements

Architecture Deploy/Compose

Replace/Add

Component Requirements Find Component Select Component Adapt Component

Component verification

System verification

Players and their roles:
•Integrators
•Suppliers
•Component providers
•Certifiers and verifiers
•...

Activities and their relations:
•Requirements
•Architecture design
•Modeling and implementation
•Composition and configuration
•Verification and validation
•...

17

• Composition
• Method for component

selection
– Matching reqs with props

Component specification
and composition

• Identify relevant reqs/aspects
– Including timing and safety

Component
Repository

Composition
environment

Evaluation/selection

• Select/define appropriate notation for reqs
and properties of components and systems

Abstract models of concrete components

Model-based component selection
and architecture evaluation

Techniques for analysis and
verification

1. Integration of reliability and functional
analyses (FTA, FMEA) (Analysis of compondents in
presence of failures)

2. Automatic testing for checking safety and
real-time (generation of test cases with high coverage)

3. Timing/reliability trade-off analysis
(schedulability, reliability and sensitivity analyses)

4. Model based systems analysis (complete
system simulation to analyze robustness and failures)

18

Run-time and
configuration support
• Extracting parameters/props from comp.

– Those needed by our analysis
• Monitoring and policing

– Safety kernels and Monitors

Model

Implementation

Platform
OS etc.

M
id

dl
ew

ar
e

Application
Comp.Composition Weaving

Param/prop

• A method for weaving

Safety kernel

SAVE Workshop August, 2002

AOSD in a nutshell
DebuggingDebugging

Real-timeReal-time
AlgorithmAlgorithm

Debugging
Real-time

Real-time
Debugging

weaverweaver

Debugging

WEAVING at
"Join points"

Method m (){
print(„enter m“)

abc..
cde..
print(„exit m“)

return;
}

Debugging aspect

Join point

19

SAVE Workshop August, 2002

LOCK MANAGER

Application aspects

SecuritySecurity

Real-time
policy

Real-time
policy

User interfaceUser interface

weaverweaver

TransactionTransaction

Memory
optimization

Memory
optimization

Locking MgrLocking Mgr

Scheduling MgrScheduling Mgr

Index MgrIndex Mgr

Recovery MgrRecovery Mgr

Memory MgrMemory Mgr

MANGER

USER INTERFACE

SCHEDULING MANAGER

RECOVERY INDEX MANAGER
LOCK MANAGER

MEMORY MANAGER

MANAGER

C
om

po
ne

nt
s

TRANSACTION MANAGER

Transaction MgrTransaction Mgr

RTDB example

SAVE Workshop August, 2002

Real-time scheduling aspect
aspect RTscheduling{

pointcut applyPolicy(transaction * trans)=
call("void putInQueue(trans)")&&args(trans);

pointcut setPriority(DbTransaction * DbTrans)=
call("void registerTrans(DbTrans)")&&args(DbTrans);

advice applyPolicy(trans):
void around(transaction * trans){
/*module that performs real-time scheduling

according to the policy chosen*/
}

advice setPriority(DbTransaction * DbTrans):
void after(DbTransaction * DbTrans){
/* set priority of the transaction */

}
}

20

Demonstrator(s)
• In co-operation with

our industrial
partners

Reuse from previous projects and presentations;-)

More on SAVE...
• See

www.artes.uu.se/++/SAVE/

• ARTIST/Comp is an important forum for
SAVE

21

(RT-)CBD issues

• (RT-)CBD-process
• Design of components
• Design of CB Systems
• Sys/SW Architecture
• Supporting infrastructure

– Platforms
– Middleware

• Selecting components
• Adapting components
• Static/Dynamic (re-)config.

• Component spec./modelling
– Formalisms

• Functional aspects
• Extra-functional aspects

– Time
– Reliability (QoS)
– Safety, Modifiability,

Maintainablity etc.
– Composition (req./spec./impl)
– System/Env. Modeling

• Verification/Validation
– Individual components
– System of components

• Requirements/contracts

System Requirements

Architecture Deploy/Compose

Replace/Add

Component Requirements Find Component Select Component Adapt Component

Component verification

System verification

