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Abstract. During the past few years, a number of veri�cation tools have been developed for
real-time systems in the framework of timed automata. One of the major problems in applying
these tools to industrial-sized systems is the huge memory-usage for the exploration of the state-
space of a network (or product) of timed automata, as the model-checkers must keep information
about not only the control structure of the automata but also the clock values speci�ed by clock
constraints.
In this paper, we present a compact data structure for representing clock constraints. The data

structure is based on an O(n3) algorithm which, given a constraint system over real-valued vari-
ables consisting of bounds on di�erences, constructs an equivalent system with a minimal number
of constraints. In addition, we have developed an on-the-y reduction technique to minimize the
space-usage. Based on static analysis of the control structure of a network of timed automata, we
are able to compute a set of symbolic states that cover all the dynamic loops of the network in an
on-the-y searching algorithm, and thus ensure termination in reachability analysis.
The two techniques and their combination have been implemented in the tool Uppaal. Our

experimental results demonstrate that the techniques result in truly signi�cant space-reductions:
for six examples from the literature, the space saving is between 75% and 94%, and in (nearly)
all examples time-performance is improved. Noteworthy is also the observation that the two
techniques are completely orthogonal.

Keywords: Real-Time Systems, Model Checking, Design Tool, Formal Speci�cation and Veri-
�cation, Timed Automata

1. Introduction

Reachability analysis has been one of the most successful methods for automated
analysis of concurrent systems. Many veri�cation problems e.g. invariant checking
can be solved by means of reachability analysis. It can in many cases also be used for
checking whether a system described as an automaton satis�es a requirement speci-
�cation formulated e.g. in linear temporal logic, by converting the requirement to an
automaton and thereafter checking whether the parallel composition of the system
and requirement automata can reach certain annotated states [32, 21, 2]. However,
the major problem in applying reachability analysis is the potential combinatorial
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Passed:= fg
Waiting:= f(l0; D0)g
repeat

begin

get (l; D) from Waiting

if (l; D) j= ' then return \YES"
else if D 6� D0 for all (l; D0) 2 Passed then

begin

add (l; D) to Passed
Succ:=f(ls; Ds) j (l; D); (ls; Ds) and Ds 6= ;g
for all (ls; Ds) in Succ do

put (ls; Ds) to Waiting

end

end
until Waiting=fg
return \NO"

Figure 1. An Algorithm for Symbolic Reachability Analysis.

explosion of state spaces. To attack this problem, various symbolic and reduction
techniques have been put forward over the last decade to eÆciently represent state
space and to avoid exhaustive state space exploration (e.g. [11, 17, 31, 12, 13, 16, 5]);
such techniques have played a crucial role for the successful development of veri�-
cation tools for �nite-state systems.

In the last few years, new veri�cation tools have been developed, for the class of
in�nite-state systems known as timed systems [19, 14, 9]. Notably the veri�cation
engines of most tools in this category are based on reachability analysis of timed
automata following the pioneering work of Alur and Dill [4]. A timed automaton
is an extension of a �nite automaton with a �nite set of real-valued clock-variables.
The foundation for decidability of reachability problems for timed automata is Alur
and Dill's region technique, by which the in�nite state space of a timed automaton
due to the density of time, may e�ectively be partitioned into �nitely many equiv-
alence classes i.e. regions in such a way that states within each class will always
evolve to states within the same classes. However, reachability analysis based on
the region technique is practically infeasible due to the potential state explosions
arising from not only the control-structure (as for �nite-state systems) but also the
region space [23].

EÆcient data structures and algorithms have been sought to represent and manip-
ulate timing constraints over clock variables (e.g. by Di�erence Bounded Matrices
[7, 15], or Binary Decision Diagrams [11, 6]) and to avoid exhaustive state space
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exploration (e.g. by application of partial order reductions [17, 31, 26] or compo-
sitional methods [5, 23]). One of the main achievements in these studies is the
symbolic technique [15, 33, 20, 34, 23], that converts the reachability problem to
that of solving simple constraints. The technique can be simply formulated in an
abstract reachability algorithm1 as shown in Figure 1. The algorithm is to check
whether a timed automaton may reach a state satisfying a given state formula '.
It explores the state space of the automaton in terms of symbolic states in the form
(l; D) where l is a control-node and D is a constraint over clocks variables.

We observe that several operations of the algorithm are critical for eÆcient im-
plementations. Firstly, the algorithm depends heavily on the test operations for
checking the inclusion D � D0 (i.e. the inclusion between the solution sets of D;D0)
and the emptiness of Ds in constructing the successor set Succ of (l; D). Clearly,
it is important to design eÆcient data structures and algorithms for the representa-
tion and manipulation of clock constraints. One such well-known data structure is
that of dbm (Di�erence Bounded Matrix), which o�ers a canonical representation
for constraint systems. It has been successfully used in several real-time veri�cation
tools, e.g. Uppaal [9] and Kronos [14]. A dbm representation is in fact a weighted
directed graph where the vertices correspond to clocks (including a zero-clock) and
the weights on the edges stand for the bounds on the di�erences between pairs of
clocks [7, 15, 33]. As it gives an explicit bound for the di�erence between each pair
of clocks, its space-usage is in the order of O(n2) where n is the number of clocks.
However, in practice it often turns out that most of these bounds are redundant.

In this paper, we present a compact data structure for dbm, which provides
minimal and canonical representations of clock constraints and also allows for ef-
�cient inclusion checks. We have developed an O(n3) algorithm that given a dbm
constructs a minimal number of constraints equivalent to the original constraints
represented by the dbm (i.e. with the same solution set). The algorithm is essen-
tially a minimization algorithm for weighted directed graphs, and hence solves a
problem of independent interest. Note that the main global data structure of the
algorithm in Figure 1 is the passed list (i.e. Passed) holding the explored states.
In many cases, it will store all the reachable symbolic states of the automaton.
Thus, it is desirable that when saving a (symbolic) state in the passed list, we save
the (often substantially smaller) minimal constraint system. The minimal repre-
sentation also makes the inclusion-checking of the algorithm more eÆcient. Our
experimental results demonstrate truly signi�cant space-savings as well as better
time-performance (see statistics in section 5).

In addition to the local reduction technique above, which is to minimize the space-
usage of each individual symbolic state, as the second contribution of this paper,
we have developed a global reduction technique to reduce the total number of states
to save in the global data structure, i.e. the passed list. It is completely orthogonal
to the local technique. In the abstract algorithm of Figure 1, we notice the step
of saving the new encountered state (l; D) in the passed list when the inclusion-
checking for D � D0 fails (i.e. D 6� D0). Its purpose is �rst of all to guarantee
termination but also to avoid repeated exploration of states that have several pre-
decessors. However, this is not necessary if all the predecessors of (l; D) are already
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Figure 2. A Timed Automaton.

present in the passed list. In fact, to ensure termination, it suÆces to save only
one state for each dynamic loop. An improved on-the-y reachability algorithm ac-
cording to the global reduction strategy has been implemented in Uppaal [9] based
on static analysis of the control structure of timed automata. Our experimental
results demonstrate signi�cant space-savings and also better time-performance (see
statistics in section 5).

The outline of this paper is as follows: In the next section we review the semantics
of timed automata and the notion of Di�erence Bounded Matrix (dbm) for clock
constraints. Section 3 presents the compact data structure for dbm and the local
reduction technique (i.e. the minimization algorithm for weighted directed graphs).
Section 4 is devoted to develop the global reduction technique based on control
structure analysis. Section 5 presents our experimental results for both techniques
and their combination. Section 6 concludes the paper.

2. Preliminaries

2.1. Timed Automata

The model of timed automata was �rst introduced in [4] and has since then estab-
lished itself as a standard model for real-time systems. For the reader not familiar
with the notion of timed automata we give a short informal description.

Consider the timed automaton of Figure 2. It has two control nodes l0 and l1
and two real-valued clocks x and y. A state of the automaton is of the form (l; s; t),
where l is a control node, and s and t are non-negative reals giving the value of the
two clocks x and y. A control node is labelled with a condition (the invariant) on
the clock values that must be satis�ed for states involving this node. Assuming that
the automaton starts to operate in the state (l0; 0; 0), it may stay in node l0 as long
as the invariant x � 4 of l0 is satis�ed. During this time the values of the clocks
increase synchronously. Thus from the initial state, all states of the form (l0; t; t),
where t � 4, are reachable. The edges of a timed automaton may be decorated
with a condition (guard) on the clock values that must be satis�ed in order to be
enabled. Thus, only for the states (l0; t; t), where 1 � t � 4, is the edge from l0 to
l1 enabled. Additionally, edges may be labelled with simple assignments reseting
clocks. For example, when following the edge from l0 to l1 the clock y is reset to 0
leading to states of the form (l1; t; 0), where 1 � t � 4.
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In general, a timed automaton is a standard �nite-state automaton extended
with a �nite collection C of real-valued clocks ranged over by x; y etc. We use B(C)
ranged over by g (and latter D), to stand for the set of formulas that can be an
atomic constraint of the form: x � n or x� y � n for x; y 2 C, �2f�;�g2 and n
being a natural number, or a conjunction of such formulas. Elements of B(C) are
called clock constraints or constraint systems over C.

De�nition 1. [Timed Automata] A timed automaton A over clocks C is a tuple
hN; l0;�!; Ii where N is a �nite set of nodes (control-nodes), l0 is the initial node,
�!� N �B(C)�2C�N corresponds to the set of edges, and �nally, I : N 7! B(C)

assigns invariants to nodes. In the case, hl; g; r; l0i 2�!, we write l
g;r
�! l0.

Formally, we represent the values of clocks as functions (called clock assignments)
from C to the non-negative reals IR+. We denote by IRC+ the set of clock assignments
for C. A semantical state of an automaton A is now a pair (l; u), where l is a
node of A and u is a clock assignment for C, and the semantics of A is given by
a transition system with the following two types of transitions (corresponding to
delay-transitions and edge-transitions):

� (l; u)�!(l; u� d) if I(l)(u) and I(l)(u� d)

� (l; u)�!(l0; u0) if there exist g and r such that l
g;r
�! l0, g(u) and u0 = r[u]

where for d 2 IR+, u�d denotes the time assignment which maps each clock x in C
to the value u(x) + d, and for r � C, r[u] denotes the assignment for C which maps
each clock in r to the value 0 and agrees with u over Cnr.
Clearly, the semantics of a timed automaton yields an in�nite transition system,

and is thus not an appropriate basis for decision algorithms. However, eÆcient
algorithms may be obtained using a �nite-state symbolic semantics based on sym-

bolic states of the form (l; D), where D 2B(C) [20, 34]. We shall consider a clock
constraint as a set of clock assignments and use u 2 D to stand for u satis�ed D.

The symbolic counterpart to the standard semantics is given by the following two
(fairly obvious) types of symbolic transitions:

� (l; D);

�
l; (D ^ I(l))" ^ I(l)

�

� (l; D);

�
l0; r(g ^D)

�
if l

g;r
�! l0

where D" = fu� d j u 2 D ^ d 2 IR+g and r(D) = fr[u] j u 2 Dg. It may be shown
that B(C) (the set of clock constraints) is closed under these two operations (and
^) [15]. Moreover, the symbolic semantics characterize the standard semantics in
the sense that, whenever u 2 D and (l; D) ; (l0; D0) then (l; u) �! (l0; u0) for
u0 2 D0.
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Finally, we introduce the notion of networks of timed automata [34, 23]. A net-
work is the parallel composition of a �nite set of automata for a given synchroniza-
tion function. To illustrate the on-the-y veri�cation technique, we only need to
study the case dealing with interleaving, that is, the network of automata A1 : : : An,
is the Cartesian product of Ai's. Assume a vector l of control nodes. We shall use
l[i] to stand for the ith element of l and l[l0i=li] for the vector where the ith element
li of l is replaced by l0i. A control node (i.e. control vector) l of a network A1 : : : An

is a vector where l[i] is a node of Ai and the invariant I(l) of l is the conjunction of
I(l[1]) : : : I(l[n]). The symbolic semantics of networks is given in terms of control
vectors by the following two types of symbolic transitions:

� (l; D);

�
l; (D ^ I(l))" ^ I(l)

�

� (l; D);

�
l[l0i=li]; r(g ^D)

�
if li

g;r
�! l0i

In the later case, we shall say that the symbolic transition is derived by the edge

li
g;r
�! l0i.

2.2. Di�erence Bounded Matrices & Shortest-Path Closure

To utilize the symbolic semantics of (networks of) timed automata algorithmically,
as for example in the reachability algorithm of Figure 1, it is important to design
eÆcient data structures and algorithms for the representation and manipulation of
clock constraints.
One such well-known data structure is that of di�erence bounded matrices (dbm,

see [7, 15]), which o�ers a canonical representation for constraint systems. A dbm

representation of a constraint system D is simply a weighted, directed graph, where
the vertices correspond to the clocks of C and an additional zero-vertex 0. The
graph has an edge from x to y with weightm provided y�x � m is a constraint ofD.
Similarly, there is an edge from 0 to x with weightm, whenever x � m is a constraint
of D 3. As an example, consider the constraint system E over fx0; x1; x2; x3g being
a conjunction of the atomic constraints x0 � x1 � 3, x3 � x0 � 5, x3 � x1 � 2,
x2 � x3 � 2, x2 � x1 � 10, and x1 � x2 � �4. The graph representing E is given
in Figure 3 (a).
In general, the same set of clock assignments may be described by several con-

straint systems (and hence graphs). To test for inclusion between constraint sys-
tems D and D0 4, which we recall is essential for the termination of the reachability
algorithm of Figure 1, it is advantageous if D is closed under entailment in the
sense that no constraint of D can be strengthened without reducing the solution
set. In particular, for D a closed constraint system, D � D0 holds if and only if
for any constraint in D0 there is a constraint in D at least as tight; i.e. whenever
(x � y � m0) 2 D0 then (x � y � m) 2 D for some m � m0. Thus, closedness
provides a canonical representation, as two closed constraint systems describe the
same solution set precisely when they are identical. To close a constraint system D
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Figure 3. Graph for E (a), its shortest-path closure (b), and shortest-path reduction (c).

amounts to derive the shortest-path closure for its graph and can thus be computed
in time O(n3), where n is the number of clocks of D. The graph representation
of the closure of the constraint system E from Figure 3 (a) is given in Figure 3
(b). The emptiness-check of a constraint system D simply amounts to checking for
negative-weight cycles in its graph representation. Finally, given a closed constraint
system D the operations D" and r(D) may be performed in time O(n).

3. Minimal Constraint Systems & Shortest Path Reductions

For the reasons stated above a matrix representation of constraint systems in closed
form is an attractive data structure, which has been successfully employed by a
number of real-time veri�cation tools, e.g. Uppaal [9] andKronos [14]. As it gives
an explicit (tightest) bound for the di�erence between each pair of clocks (and each
individual clock), its space-usage is of the order O(n2). However, in practice it often
turns out that most of these bounds are redundant, and the reachability algorithm
of Figure 1 is consequently hampered in two ways by this representation. Firstly,
the main data structure Passed, will in many cases store all the reachable symbolic
states of the automaton. Thus, it is desirable, that when saving a symbolic state
in the Passed-list, we save a representation of the constraint system with as few
constraints as possible. Secondly, a constraint system D added to the Passed-list
is subsequently only used in checking inclusions of the form D0 � D. Recalling
the method for inclusion-check from the previous section, we note that (given D0

is closed) the time-complexity of the inclusion-check is linear in the number of
constraints of D. Thus, again it is advantageous for D to have as few constraints
as possible.

In the following subsections we shall present an O(n3) algorithm, which given a
constraint system constructs an equivalent reduced system with the minimal num-
ber of constraints. The reduced constraint system is canonical in the sense that
two constrain systems with the same solution set give rise to identical reduced sys-
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tems. The algorithm is essentially a minimization algorithm for weighted directed
graphs. Given a weighted, directed graph with n vertices, it constructs in time
O(n3) a reduced graph with the minimal number of edges having the same shortest
path closure as the original graph. Figure 3 (c) shows the minimal graph of the
graphs in Figure 3 (a) and (b), which is computed by the algorithm.

3.1. Reduction of Zero-Cycle Free Graphs

A weighted, directed graph G is a structure (V;EG), where V is a �nite set of
vertices and EG; is a partial function from V � V to Z (the integers). The domain
of EG constitutes the edges of G, and when de�ned, EG(x; y) gives the weight of
the edge between x and y. We assume that EG(x; x) = 0 for all vertices x, and
that G has no cycles with negative weight5.
Given a graph G, we denote by GC the shortest-path closure of G, i.e. EGC (x; y)

is the length of the shortest path from x to y in G. A shortest-path reduction of a

graph G is a graph GR with the minimal number of edges such that (GR)
C
= GC .

The key to reduce a graph is obviously to remove redundant edges, where an edge
(x; y) is redundant if there exist an alternative path from x to y whose (accumu-
lated) weight does not exceed the weight of the edge itself. For example, in the
graph of Figure 3 (a), the edge (x1; x2) is clearly redundant as the accumulated
weight of path (x1; x0); (x0; x3); (x3; x2) has a weight (10) not exceeding the weight
of the edge itself (also 10). The path (x1; x3); (x3; x2) makes also the edge (x1; x2)
redundant. Being redundant, the edge (x1; x2) may be removed without changing
the shortest-path closure. We shall use G n(x1; x2) to denote the result of removing
the edge (x1; x2) from the graph G.
Now, consider the edge (x1; x2) in the graph of Figure 3 (b). Clearly, the edge

is redundant as the path (x1; x3); (x3; x2) has equal weight. Similarly, the edge
(x3; x2) is redundant as the path (x3; x1); (x1; x2) has equal weight. However,
though redundant, we cannot just remove the two edges (x1; x2) and (x3; x2) as
removal of one clearly requires the presence of the other. In fact, all edges be-
tween the vertices x1; x2 and x3 are redundant, but obviously we cannot remove
them all simultaneously. The key explanation of this complicating phenomena is
that x1; x2; x3 constitutes a cycle with length zero (a zero-cycle). However, for
zero-cycle free graphs the situation is the simplest possible:

Lemma 1 Let G1 and G2 be zero-cycle free graphs such that G1
C = G2

C . If there

is an edge (x; y) 2 G1 such that (x; y) 62 G2, then (G1 n f(x; y)g)
C
= G1

C = G2
C .

Proof: Let � denote the edge (x; y) and let m be the weight of � in G1. We will
show that there is an alternative path in G1 not using � with weight no more than
m. From this fact the Lemma obviously follows.
As G1

C = G2
C , the shortest path from x to y in G2 has weight no more than

m. As � 62 G2, this path must visit some vertex z di�erent from x and y. Now let
m1 be the shortest path-weight from x to z and let m2 be the shortest path-weight
from z to y; note that G1 and G2 agrees on m1 and m2, as they have the same
shortest-path closure. Then clearly, m � m1 +m2.



9

Now assume that the shortest path in G1 from x to z uses � = (x; y). Then, as
a sub-path, G1 will be a path from y to z. Since G1 also has a path from z to y, it
follows that G1 will have a cycle from y via z back to y. The weight of this cycle
can be argued to be no more than (m1 � m) + m2. However, as m � m1 + m2

and there are no negative cycles, this cycle must have weight 0 contradicting the
assumption that G1 is zero-cycle free.

Similarly, a contradiction with the zero-cycle free assumption of G1 is obtained,
if the shortest path in G1 from z to y uses �. thus we can conclude that there is
an path from x to y not using � with length no greater than m.

From the above Lemma it follows immediately that all redundant edges of a zero-
cycle free graph may be removed without a�ecting the closure. On the other hand,
removal of an edge which is not redundant will of course change the closure of the
graph, and must be present in any graph with the same closure. Thus the following
theorem follows:

Theorem 1 Let G be a zero-cycle free graph, and let f�1; : : : ; �2g be the set of

redundant edges of G. Then GR = GC n f�1; : : : ; �kg.

Proof: Follows from Lemma 1.

From an algorithmic point of view, redundancy of edges is easily determined given
the closure GC of a graph G as only path of length 2 needs to be considered:
An edge (x; y) is redundant precisely when there is a vertex z ( 6= x; y) such that
EGC (x; y) � EGC (x; z)+EGC (z; y). Thus for zero-cycle free graphs computing GR

is O(n3).

3.2. Reduction of Negative-Cycle Free Graphs

For general graphs (without negative cycles) our reduction construct relies on a
partitioning of the vertices according to zero-cycles. We say that two vertices x and
y are equivalent or zero-equivalent, if there is a zero-cycle containing them both. We
write x � y in this case. Given the closure GC of a graph G, it is extremely easy
to check for zero-equivalence: x � y holds precisely when EGC (x; y) = �EGC (y; x).
Thus, in the graphs of Figure 3 (a) and (b), � partitions the vertices into the two
classes fx0g and fx1; x2; x3g.
To obtain a canonical reduction, we assume that the vertices of G are ordered by

assigning them indices as x1; x2; : : : ; xn. The equivalence � now induces a natural
transformation G� on the graph G:

De�nition 2. Given a graph G, the vertices of the graph G� are �-equivalence
classes, denoted Ek, of G. There is an edge between the classes Ei and Ej (i 6= j)
if for some x 2 Ei and y 2 Ej there is an edge in G between x and y. The weight
of this edge is EGC (E

min
i ; Emin

j ), where Emin is the vertex in E with the smallest
index. 2
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Thus, the distance between Ei and Ej in G� is the weight of the shortest path
in G between the elements of Ei and Ej with smallest index. It is obvious that G�
is a zero-cycle free graph. It is also easy to see that G1� = G2� if G1

C = G2
C .

Let H be the graph of Figure 3 (a). Then H� will have vertices E0 = fx0g and
E1 = fx1; x2; x3g. The two vertices are connected by two edges both having weight
3.
The following provides a dual to the operator of De�nition 2:

De�nition 3. Let F be a graph with vertices being �-equivalence classes with
respect to a graph G = (V;EG). Then the expansion of F is a graph F+ with
vertices V and with weight satisfying:

� For any multi-member equivalence class6 fz1 < z2 < � � � < zkg of F , F+

contains a single cycle z1; z2; : : : ; zk; z1, with the weight of the edge (zi; zi+1)
being the weight of the shortest path from zi to zi+1 in G.

� Whenever (Ei; Ej) is an edge in F with weight m, then F+ will have an edge
from Emin

i to Emin
j with weight m. 2

We are now ready to state the main Theorem giving the shortest-path reduction
construct for arbitrary negative-cycle free graphs:

Theorem 2 Let G be negative-cycle free graph. Then the shortest-path reduction

GR of G is given by the graph (G�
R)

+
, i.e. GR = (G�

R)
+
.

Proof: We show: (1) that (G�
R)

+
is a candidate for a shortest-path reduction of

G in the sense that (G�
R)

+
= GC , and (2) that (G�

R)
+
is minimal.

1. We �rst prove that (G�
R)

+
= GC . As all edges (x; y) of (G�

R)
+
have weight

of the form EGC (x; y), it follows that for any path in (G�
R)

+
there is a path

in G with same weight.

Now consider an edge (x; y) of G. We will demonstrate that there is a path in

(G�
R)

+
with no greater weight.

� If x = Emin
i and y = Emin

j for two �-classes Ei and Ej , it follows that
EG�(Ei; Ej) � EG(x; y). Furthermore, due to the property of reduction

construction, there is a path in G�
R between Ei and Ej with weight no

greater than EG�(Ei; Ej). The same path, but now between the nodes with

the minimal indices of the �-classes, can be found in (G�
R)

+
. Thus, there

is a path in (G�
R)

+
with weight no greater than EG(x; y).

� If x; y 2 Ei for some �-class Ei, an easy argument gives that E(G�R)
+ (x;

y) = EGC (x; y) � EG(x; y).

� Consider the case when x 2 Ei and y 2 Ej for two di�erent �-classes, and
assume that EG(x; y) = m.
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Let m1 = E(G�R)
+(x;Emin

i ), m2 = E(G�R)
+(Emin

i ; Emin
j ), and m3 =

E(G�R)
+(Emin

j ; y). Note that by the reduction construction m2 � EGC

(Emin
i ; Emin

j ). Then there is a path in (G�
R)

+
from x to y via Emin

i and

Emin
j with weight m1 +m2 +m3. Now, if m < m1 +m2 +m3, there is a

path in G from Emin
i to Emin

j of weight m�m1 �m3 < m2 contradicting

that m2 is the weight of the shortest path in G between Emin
i and Emin

j .

Thus the path x, Emin
i , Emin

j , y in (G�
R)

+
has weight no greater than the

edge (x; y) in G.

2. Next we prove that (G�
R)

+
has minimal number of edges by showing that

whenever HC = GC then H has at least as many edges as (G�
R)

+
.

As HC = GC , H and G induces the same �-equivalence relation on the same
zero-length cycles. Obviously the fewest edges that will identify k (> 1) vertices,

with respect to � is k. Hence, (G�
R)

+
uses a minimal number of edges between

vertices in the same �-equivalence class.

Now let (Emin
i ; Emin

j ) be an edge in (G�
R)

+
with weight m. We claim that H

must have at least one edge from Ei to Ej .

Assume that this is not the case. Then, as HC = GC , there must be a path in
H from Emin

i to Emin
j as shown in Figure 4 such that m =

Pk+2
i=0 vi+

Pk+1
i=0 wi.

Now letm0 = E(G�R)
+(Emin

i ; Emin
0 ),m1 = E(G�R)

+(Emin
0 ; Emin

1 ), . . . ,mk+1 =

E(G�R)
+(Emin

k ; Emin
i ) (illustrated with dashed lines in Figure 4). Then m0 �

v0 + w0 + v01, m1 � v001 + w1 + v02, . . . , mk+1 � v00k+1 + wk+1 + vk+2, where
v1 = v01 + v001 , v2 = v02 + v002 , . . . , vk+1 = v0k+1 + v00k+1.

It follows that
Pk+1

i=0 mi � m. Hence (Ei; Ej) is redundant in (G�
R)

+
and can

be removed, contradicting Lemma 1.

First, note that the above construction of (G�
R)

+
is well-de�ned as G� is a zero-

cycle free graph and the reduction construction of Theorem 1 thus applies. Given
the closure GC of G the constructions of De�nitions 2 and 3 can be computed in

O(n2). Since GR is computed from G in O(n3), it follows that also (G�
R)

+
can

be constructed in O(n3). Now applying the above construction to the graph H
of Figure 3 (a), we �rst note that H�

R = H� as H� has no redundant edges.
Expanding H� with respect to the vertex ordering x0 < x1 < x2 < x3 gives the
graph of Figure 3 (c), which according to Theorem 2 above is the shortest-path
reduction of H .

Experimental results show that the use of minimal constrain systems (obtained
by the above shortest-path reduction algorithm) as a compact data structure leads
to truly signi�cant space-savings in practical reachability analysis of timed systems:
the space-savings are in the range 68{85%. We refer to Section 5 for more details.
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v0
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m0
v1

m1 w1

Ekmk

m

mk+1 Emin
k

vk+1

Ej

vk+2

Emin
i

Emin
0

Emin
i

wk+1

Figure 4. A path in the graph H.

4. Global Reductions and Control Structure Analysis

The preceding section is about local reductions in reachability analysis in the sense
that the technique developed is for each individual symbolic state. In this section,
we shall develop a global reduction technique to reduce the total number of symbolic
states to save in the global data structure i.e. the passed list.

4.1. Potential Space-Reductions

We recall the standard reachability analysis algorithm for �nite graphs (see e.g.
[27]). It is similar to the one in Figure 1, but simpler as no constraints but only
control nodes are involved. The algorithm repeats three main operations: examin-

ing every new encountered node (to see if it is in the passed list), exploring the new
encountered nodes (computing all their successors for further analysis), and saving

the explored nodes in the passed list until all reachable nodes are present in the list
(i.e. all new encountered nodes are already in the passed list).
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l2l3

l0 l1 l4

Figure 5. Illustration of Space-Reduction.

Note that the saving of an explored node is to ensure termination and also to
avoid repeated exploration of nodes with more than one incoming edge. However
it is not necessary to save all reachable nodes. Consider for example, the simple
graph in Figure 5 with initial node l0. Clearly, there is no need to save node l2; l3
or l4 as they will be visited only once if l1 is present in the passed list.

In fact, to guarantee termination on a �nite graph, it is suÆcient to save only
one node for each cycle in the graph. For example, as l1 covers the two cycles
of the graph in Figure 5, in addition to l2; l3; and l4, it is not necessary to save
l0 either. In general, for a �nite graph, there is a minimal number of nodes to
save in the passed list in order to guarantee termination. However the trade-o� of
the space-saving strategy may be increased time-consumption. Consider the same
graph of Figure 5. If node l0 is not present in the passed list, it will be explored
again whenever l3 is explored. This can be avoided by saving l0 when it is �rst
visited. But the di�erence from saving l1 is that saving l0 is for eÆciency and l1
for termination.

Now we again recall the abstract reachability algorithm in Figure 1 for timed sys-
tems. To ensure termination and also to avoid repeated exploration of states (that
have more than one predecessors), it saves every new encountered state (l; D) in the
passed list when the inclusion-checking for D � D0 fails (i.e. D 6� D0). Obviously
this is not necessary if all the predecessors of (l; D) already exist in the Passed-list.
Similar to the case for �nite graphs, for termination, we need to save only one state
for every dynamic loop of a timed automaton.

De�nition 4. [Dynamic Loops] Assume a timed automaton with an initial state
(l0; D0). The set of symbolic states Ld = f(l1; D1) : : : (ln; Dn)g is a dynamic
loop of the timed automaton if (l1; D1) ; (l2; D2) : : : (ln�1; Dn�1) ; (ln; Dn)
and (ln; Dn) ; (l1; D

0
1) with D0

1 � D1, and (l0; D0) is reachable in the sense that
(l0; D0) ; : : : ; (l1; D1). A symbolic state is said to cover a dynamic loop if it is
a member of the loop.
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We claim that to ensure termination, it is suÆcient (but not necessary) to save a
set of symbolic states that cover all the dynamic loops. Now, the problem is how
to compute eÆciently such a set.

4.2. Control Structure Analysis and Application

We shall utilize the statical structure of an automaton to identify potential candi-
dates of states to cover dynamic loops.

De�nition 5. [Statical Loops and Entry Nodes] A set of nodes L = fl1; : : : ;
lng of a timed automaton is a statical loop if there is a sequence of edges l1 �!

l2 � � � ln�1 �! ln and ln �! l1 where li �! lj denotes that li
g;r
�! lj for some g; r

is an edge of the automaton. A node li 2 L is an entry node of the statical loop
L if it is an initial node of the automaton or there exists a node l 62 L (outside
of the loop) and an edge l �! li. Further, we say that a vector of nodes (i.e. a
node of a network) is an entry node if any of its components are entry nodes.

For example, nodes l0; l1; l2 and l3 in Figure 5 constitute a statical loop with
entry nodes l0 and l1; another statical loop is nodes l1 and l4 with entry node l1. In
general, since the sets of control nodes and edges of a timed automaton are �nite,
the number of statical loops is �nite and so is the set of entry nodes of all statical
loops. In fact the set of entry nodes of a timed automaton can be easily computed
by statical analysis using a stack or a slightly modi�ed loop detecting algorithm
(see e.g. [29]).
Now note that according to De�nition 4, a dynamic loop (a set of symbolic states)

must contain a subset of symbolic states whose control nodes constitute a statical
loop. As a statical loop always contains an entry node, we have the following fact.

Proposition 1 Every dynamic loop of a timed automaton contains at least one

symbolic state (l; D) where l is an entry node.

Proof: Standard proof by contradiction.

Following Proposition 1, to cover all the dynamic loops, we may simply save all the
states whose control-nodes are an entry node, and ignore the others. Obviously,
this will not give much reduction when dynamic loops include mostly entry nodes,
which is the case when a network of automata contains a component whose nodes
are mostly entry nodes e.g. a testing automaton. For networks of automata, we
adopt the strategy of saving the �rst derived states whose control nodes are an
entry node, known as covering states in the following sense.

De�nition 6. [Covering States] Assume a network of timed automata with
an initial state (l0; D0) and a given symbolic state (l; D). We say that (l; D) is
a covering state of the network if it is reachable in the sense that there exists
a sequence of symbolic transitions (l0; D0) ; (l1; D1) : : : (ln; Dn) ; (l; D) and
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an i (standing for the ith component of the network) such that l[i] is an entry

node and (ln; Dn) ; (l; D) is derived by an edge ln[i]
g;r
�! l[i] for some g and r.

From the above de�nition, it should be obvious that we can easily decide whether
a reachable symbolic state is a covering state by an on-the-y algorithm when the
entry nodes of all the component automata are known through statical analysis as
discussed earlier.

Finally, we claim that the set of covering states of a network covers all its dy-
namic loops and therefore it suÆces to keep them in the passed list for the sake of
termination in reachability analysis7.

Theorem 3 Every dynamic loop of a network of timed automata contains at least

one covering state.

Proof: Assume a dynamic loop Ld = (l1; D1) ; : : : ; (lk; Dk) with no covering
states. However according to Proposition 1, Ld contains at least one entry node.
Further, assume (without loss of generality) that the symbolic state (l; D) 2 Ld is
an entry node and the components l[1]; : : : ; l[m] of l are all in an entry node, and
all the other components of l, i.e. l[m+ 1]; : : : ; l[n], are not.

Now, we claim that if Ld contains no covering states, the set of components
li[1]; : : : ; li[m] will remain in an entry node in all symbolic states (li; Di) 2 Ld.
Otherwise, if the set of local entry nodes changes, either grows or reduces, it will
introduce a covering state. The case of growing is obvious due to the de�nition for
covering states. The argument for the case of reducing is the same as the control
nodes of all the components will reach l1 again by the end of Ld, meaning that the
set will sooner or later grows again.

In fact, the assumption that Ld contains no covering states, implies an even
stronger property, that is, all symbolic transitions in Ld are derived by components
in li[m+ 1]; : : : ; li[n]. A transition is derived by a local transition of a component
in l[1]; : : : ; l[m], means that the set of local entry nodes will either grow or reduce
(discussed above) or the local transition leaves the current entry node and enters
an another entry node. The later case implies that the new entry node is a covering
state.

Now we construct L0d by removing li[1]; : : : ; li[m] from all symbolic states (li; Di) 2
Ld, that is, L

0
d contains only the components that are not in an entry nodes. Obvi-

ously, all the symbolic transitions of Ld are also in L0d; thus L
0
d must be a loop by

de�nition. However, L0d contains no components that are in an entry node. This
contradicts Proposition 1.

An improved reachability algorithm according to the saving strategy induced from
Theorem 3 (i.e. saving only the covering sates in the passed list) has been im-
plemented in Uppaal. Our experimental results show that the space-reduction is
between 13{72% (see Table 1 and 2 in Section 5).
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5. Experimental Results

The techniques developed in preceding sections have been implemented and added
to the tool Uppaal8[9]. In this section we present the results of an experiment
where both the original version of Uppaal and its extension were applied to verify
the following six well-studied examples from the literature:

Philips Audio Protocol (Audio) The protocol was developed and implemented
by Philips to exchange control information between components in audio equip-
ment using Manchester encoding. The correctness of the encoding relies on
timing delays between signals. It is �rst studied and manually veri�ed in [10].

We have veri�ed that the main correctness property holds of the protocol, i.e.
all bit streams sent by the sender are correctly decoded by the receiver [24], if
the timing error is �5%.

Philips Audio Protocol with Bus Collision (Audio w. Collision) This is an
extended variant of Philips audio control protocol with bus collision detec-
tion [8]. It is signi�cantly larger than the version above since several new
components (and variables) are introduced, and existing components are mod-
i�ed to deal with bus collisions.

In the experiment we checked that correct bit sequences are received by the
receiver (i.e. Property 1 of [8]), using the error tolerances set by Philips.

Bang & Olufsen Audio/Video Protocol (Bang & Olufsen) This is an audio
control protocol highly dependent on real-time. The protocol is developed by
Bang & Olufsen, to transmit messages between audio/video components over a
single bus, and further studied in [18].

In the experiment we have veri�ed the correctness criteria of the protocol. We
refer the reader to Section 5.1 of [18] for more details.

Box Sorter (Box Sorter) The example of [25] is a model of a sorter unit that sorts
red and blue boxes. When the boxes moves down a lane they pass a censor and
a piston. The sorter reads the information from the censor and sorts out the red
boxes by controlling the position of the piston. We have shown, using Uppaal,
that only blue boxes arrive at the end of the lane.

Manufacturing Plant (Manufact. Plant) The example is a model of the manu-
facturing plant of [28, 14]. It is a production cell with: a 50 feet belt moving
from left to right, two boxes, two robots and a service station. Robot A moves
boxes o� the rightmost extreme of the belt to the service station. Robot B
moves boxes from the service station to the left-most extreme of the belt.

Assuming an initial distance between the boxes on the belt we veri�ed that no
box will fall o� the belt.

Mutual Exclusion Protocol (Mutex 2{Mutex 5) It is the so-called Fischer's
protocol that has been studied previously in many experiments, e.g. [1, 30].
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Current Local Global Local+Global

# # % # % # %

Audio 828 219 26 774 93 206 25

Audio w. Collision 646 092 198 178 31 370 800 57 111 632 17

Bang & Olufsen 778 288 249 175 32 642 752 83 204 795 26

Box Sorter 625 139 22 175 28 36 6

Manufact. Plant 92 592 27 042 29 50 904 55 14 933 16

Mutex 2 225 44 20 99 44 18 8

Mutex 3 3 376 621 18 1 360 40 240 7

Mutex 4 56 825 9 352 16 22 125 39 3 532 6

Mutex 5 1 082 916 158 875 15 416 556 38 59 720 6

Train Crossing 464 130 28 384 83 114 25

Table 1. Space performance statistics: number of constraints (#) and percentage of Current (%).

The protocol is to ensure mutual exclusion among several processes competing
for a critical section using timing constraints and a shared variable. In the ex-
periment we use the version of the protocol where a process may recover from
failed attempts to enter the critical section, and also eventually leave the critical
section [22].

The protocol is shown to enjoy the invariant property: There is never more
than one process existing in the critical section. The results for 2 to 5 processes
are shown in Table 1 and 2.

Train Crossing Controller (Train Crossing) It is a variant of the train gate
controller [19]. An approaching train signals to the controller which reacts by
closing the gate. When the train have passed the controller opens the crossing.
We have veri�ed that the gate is closed whenever a train is close to the crossing.

In Table 1 and 2 we present the space (in number of timing constraints stored on
the Passed-bu�er) and in the time requirements (in seconds) of the examples on
a Sun SPARCstation4 equipped with 64 MB of primary memory. Each example
was veri�ed using the current algorithm of Uppaal (Current), and using modi�ed
algorithms for: Compact Data Structure for Constraints (Local), Control Structure
Reduction (Global), and their combination (Local+Global).

As shown in Table 1 and 2 both techniques give truly signi�cant space savings:
Compact Data Structure for Constraints saves 68{85% of the original consumed
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Current Local Global Local+Global

sec sec % sec % sec %

Audio 0:44 0:43 98 0:44 100 0:47 107

Audio w. Collision 3 465:22 2 067:37 60 1 515:88 44 929:22 27

Bang & Olufsen 13 240:49 6 967:38 53 9 348:48 71 4 966:79 38

Box Sorter 0:20 0:18 90 0:41 205 0:41 205

Manufact. Plant 155:61 39:85 26 56:61 36 24:22 16

Mutex 2 0:13 0:14 108 0:15 115 0:14 108

Mutex 3 1:40 0:67 48 0:65 46 0:51 36

Mutex 4 102:49 24:48 24 25:97 25 12:14 12

Mutex 5 14 790:56 3 299:96 22 3 111:21 21 1 138:32 8

Train Crossing 0:19 0:18 95 0:20 105 0:18 95

Table 2. Time performance statistics: seconds (sec) and percentage of Current (%).

space while Control Structure Reduction demonstrates more variation saving 13{
72%. Both methods result in better time-performance on the examples consuming
more than half a second, whereas the time-perfomance is worse on the smaller
examples. Most signi�cant is that the two techniques are completely orthogonal,
witnessed by the numbers for the combined technique which shows a space-saving
between 75% and 94%.

6. Conclusion

In this paper, we have two contributions to the development of eÆcient data struc-
tures and algorithms for memory-usage reduction in the automated analysis of
timed systems.

Firstly, we have presented a compact data structure, for representing the subsets
of Euclidean space that arise during veri�cation of timed automata, which provides
minimal and canonical representations for clock constraints, and also allows for
eÆcient inclusion checks between constraint systems. The data structure is based
on an O(n3) algorithm which, given a constraint systems over real-valued variables
consisting of bounds on di�erences, constructs an equivalent system with a mini-
mal number of constraints. It is essentially a minimization algorithm for weighted
directed graphs, that extends the transitive reduction algorithm of [3] to weighted
graphs. Given a weighted, directed graph with n vertices, it constructs in time
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O(n3) a reduced graph with the minimal number of edges having the same shortest
path closure as the original graph.

Secondly, we have developed an on-the-y reduction technique to minimize the
space-usage by reducing the total number of symbolic states to save in reachability
analysis for timed systems. The technique is based on the observation that to ensure
termination in reachability analysis, it is not necessary to save all the explored
states in memory, but only certain critical states. Based on static analysis of the
control structure of timed automata, we are able to compute a set of covering states
that cover all the dynamic loops of a system. The set of covering states may not
be minimal but suÆcient to guarantee termination in an on-the-y reachability
algorithm.

The two techniques and their combination have been implemented in the tool
Uppaal. Our experimental results demonstrate that the techniques result in truly
signi�cant space-reductions: For a number of well-studied examples in the liter-
ature the space saving is between 75% and 94%, and in all large examples time-
performance is improved. Noteworthy is also the observation that the two tech-
niques are completely orthogonal.

As future work, we wish to further study the global on-the-y reduction technique
to identify theminimal sets of covering states that ensure termination and also avoid
repeated explorations in reachability analysis for timed systems.

Notes

1. Several veri�cation tools for timed systems (e.g. Uppaal [9]) have been implemented based on
this algorithm.

2. For reasons of simplicity and clarity in presentation we have chosen only to consider the non-
strict orderings. However, the techniques given extends easily to strict orderings.

3. We assume that D has been simpli�ed to contain at most one upper and lower bound for each
clock and clock-di�erence.

4. To be precise, it is the inclusion between the solution sets for D and D0.

5. This would correspond to constraint systems with empty solution set.

6. \<" refers to the assumed ordering on the vertices of G.

7. Note that this is only a suÆcient condition but not necessary.

8. For more information about the tool Uppaal, see the web site http://www.uppaal.com/.
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