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Abstract. We adopt a model of timed automata extended with asynchronous
processes i.e. tasks triggered by events. A task is an executable program char-
acterized by its worst execution time and deadline, and possibly other param-
eters such as priorities etc. for scheduling. The main idea is to associate each
location of an automaton with a task (or a set of tasks). A transition leading
to a location denotes an event triggering the tasks and the clock constraint
on the transition speci�es the possible arrival times of the event. This yields
a model for real-time systems expressive enough to describe concurrency and
synchronization, and tasks which may be periodic, sporadic, preemptive and
(or) non-preemptive. An automaton is schedulable if there exists a (preemp-
tive or non-preemptive) scheduling strategy such that all possible sequences
of events accepted by the automaton are schedulable in the sense that all as-
sociated tasks can be computed within their deadlines.

Our main result is that the schedulability checking problem is decidable. The
problem has been conjectured to be undecidable due to the nature of pre-
emptive scheduling. To our knowledge, this is the �rst decidability result for
preemptive scheduling in dense-time models. The proof is based on a class
of suspension automata, that is timed automata with subtraction in which
clocks may be updated by subtraction operations. We show that if each clock
is bounded with a maximal constant and subtraction operations are performed
on clocks only in the bounded zone, the reachability problem is decidable.
The crucial observation is that subtraction preserves region equivalence in the
bounded clock zone, and the schedulability checking problem can be encoded
as a reachability problem for such automata. Based on the proof, we have
developed a symbolic technique, which has been implemented as a prototype
tool for schedulability analysis.

1 Introduction

Real time systems are often designed as a set of tasks imposed with hard time con-
straints such as deadlines. The tasks may be triggered periodically or sporadically
(non-periodically) by either time or events. Hard time constraints mean that when-
ever a task is triggered (released), it must be computed within the given deadline.
One of the most important issues in the development of real time systems is schedu-
lability analysis prior to the implementation. It is to check, based on models of the
environment (controlled systems) and control software under development, whether
the tasks can be guaranteed to meet their deadlines with the available computing
resources such as processor time.
? Contact author.



In the area of real time scheduling, researchers have developed various methods
[But97] e.g. rate monotonic scheduling, which are widely applied in the analysis of
periodic tasks in time-driven systems. To deal with non-periodic tasks in event{driven
systems, the standard method is to consider non-periodic tasks as periodic using the
estimated minimal inter-arrival times as task periods. Clearly, the analysis based on
such a task model would be pessimistic in many cases, e.g. a task set which is schedu-
lable may be considered as non-schedulable as the inter-arrival times of the tasks may
vary over time, that are not necessary minimal. To achieve more precise analysis, we
need task models that allow more precise and relaxed timing constraints.

In recent years, in the area of formal methods, there have been several advances in
formal modeling and analysis of real time systems based the theory of timed automata
due to the pioneering work of Alur and Dill [AD94]. Notably, a number of veri�ca-
tion tools have been developed (e.g. Kronos and UPPAAL [DY95,BLL+96,LPY97])
in the framework of timed automata, that have been successfully applied in industrial
case studies (e.g. [BGK+96,LP97,LPY98]). Timed automata have proved expressive
enough to model many real-life examples, in particular, for event-driven systems. The
advantage with timed automata in modeling systems is that one may specify more
relaxed timing constraints on events (i.e. discrete transitions) than the traditional ap-
proach in which events are often considered to be periodic. Moreover, timed automata
also allow for modelling other behavioral aspects of systems such as synchronization
and concurrency. However, it is not clear how timed automata can be used for schedu-
lability analysis because there is no support for specifying resource requirements and
hard time constraints on computations.

Following the work of [EWY98], we propose to extend timed automata with asyn-
chronous processes i.e. tasks triggered by events. A task is an executable program
characterized by its worst case execution time and deadline, and possibly other pa-
rameters such as priorities etc for scheduling. The main idea is to associate each lo-
cation of an automaton with a task (or a set of tasks in the general case). Intuitively
a transition leading to a location in the automaton denotes an event triggering the
task and the guard (clock constraints) on the transition speci�es the possible arrival
times of the event. Semantically, an automaton may perform two types of transitions.
Delay transitions correspond to the execution of running tasks (with highest priority)
and idling for the other waiting tasks. Discrete transitions correspond to the arrival
of new task instances. Whenever a task is triggered, it will be put in the schedul-
ing queue for execution (i.e. the ready queue in operating systems). We assume that
the tasks will be executed according to a given scheduling strategy e.g. FPS (�xed
priority scheduling) or EDF (earliest deadline �rst). Thus during the execution of an
automaton, there may be a number of processes (released tasks) running logically in
parallel.

For example, consider the automaton shown in Figure 1. It has three locations l0; l1; l2,
and two tasks P and Q (triggered by a and b) with computing time and relative
deadline in brackets (2; 10), and (4; 8) respectively. The automaton models a system
starting in its initial location may move to location l1 by event a at any time, which
triggers the task P . In location l1, as long as the constraints x � 10 and y � 40 are
satis�ed and event a occurs, a copy (instance) of task P will be created and put in
the scheduling queue. However, in location l1, it can not create more than 5 instances
of task P because the constraint y � 40 will be violated after 40 time units. In fact,
every copy will be computed before the next instance arrives and the scheduling queue
may contain at most one task instance and no task instance will miss its deadline in
location l1. In location l1, the system is also able to accept event b, trigger the task Q
and then switch to location l2. In l2, because there is no constraints labelled on the
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Fig. 1. Timed automaton with asynchronous processes.

b-transition, it may accept an unbounded number of b's, and create an unbounded
number of copies of task Q in 0 time. in zero time because there is no constraint
on the b-transition. This is the so-called zeno behavior. However, after more than
two copies of Q, the queue will be non schedulable1. This means that the system is
non-schedulable. Thus, zeno-behaviour will correspond to non schedulability in our
setting, which is a natural property of the model.

We shall formalize the notion of schedulability in terms of reachable states. A state
of an extended automaton will be a triple (l; u; q) consisting of a location l, a clock
assignment u and a task queue q. The task queue contains pairs of remaining com-
puting times and relative deadlines for all released tasks. Naturally, a state (l; u; q)
is schedulable if q is schedulable in the sense there there exists a scheduling strategy
with which all tasks in q can be computed within their deadlines. An automaton is
schedulable if all reachable states of the automaton are schedulable. Note that the
notion of schedulablity above is relative to the scheduling strategy. A task queue
which is not schedulable with one scheduling strategy, may be schedulable with an-
other strategy. In [EWY98], we have shown that under the assumption that the tasks
are non-preemptive, the schedulability checking problem can be transformed to a
reachability problem for ordinary timed automata and thus it is decidable. The re-
sult essentially means that given an automaton it is possible to check whether the
automaton is schedulable with any non-preemptive scheduling strategy. For preemp-
tive scheduling strategies, it has been conjectured that the schedulability checking
problem is undecidable because in preemptive scheduling we must use stop-watches
to accumulate computing times for tasks. It appears that the computation model be-
hind preemptive scheduling is stop-watch automata for which it is known that the
reachability problem is undecidable.

Surprisingly the above conjecture is wrong. In this paper, we establish that the schedu-
lability checking problem for extended timed automata is decidable for preemptive
scheduling. Note that the preemptive earliest deadline �rst algorithm (EDF) is opti-
mal in the sense if EDF can not schedule a task set, no other algorithms can. Thus
our result applies to not only preemptive scheduling, but any scheduling strategy.
That is, for a given extended timed automata, it is checkable if there exists a schedul-
ing strategy (preemtive or non preemtive) with which the automaton is schedulable.
The main idea in the proof is to model scheduling strategies with variants of timed
automata (not stop-watch automata), and then encode the schedulability analysis

1 According to the optimal scheduling strategy EDF, no scheduling strategy will be able to
schedule the queue [Q(4; 8); Q(4; 8); Q(4; 8)] so that the deadline for the last instance of Q
can be met.



problem as a reachability problem. We identify a variant of timed automata (a class
of suspension automata): timed automata with subtraction in which clocks may be
updated by subtraction. We show that if each clock is bounded with a maximal con-
stant and subtraction operations are performed on clocks only in the bounded zone,
the reachability problem is decidable2. The crucial observation is that the schedulabil-
ity checking problem can be translated to a reachability problem for bounded timed
automata with subtraction.

The rest of this paper is organized as follows: Section 2 presents the syntax and
semantics of timed automata extended with tasks. Section 3 describes scheduling
problems related to the extended model. Section 4 is devoted to the main proof that
the schedulability checking problem for preemptive scheduling is decidable. Section
5 concludes the paper with summarized results and future work, as well as a brief
summary and comparison with related work.

2 Timed Automata with Tasks

Recall that a timed automaton is a standard �nite-state automaton extended with
a �nite collection of real-valued clocks. The transitions of a timed automaton are
labelled with a guard (constraints on clocks), an action, and a clock reset (a subset of
clocks to be reset to zero). We may view a timed automaton as an abstract model of a
running system. The model describes the possible events (alphabets accepted by the
automaton) that may occur during the operation of the system and the occurrence
of the events must obey the timing constraints (given by the clock constraints).

However it is not clear how events or action symbols accepted by a timed automaton
should be handled or computed. In fact, there is no way in timed automata to specify
resource requirements and hard time constraints on computations. We propose to
extend timed automata with asynchronous processes i.e. tasks triggered by events
asynchronously. The main idea is to associate each location of a timed automaton
with an executable program (or a set of programs in the general case) called a task
type or simply a task.

2.1 Syntax

Let P ranged over by P;Q;R, denote a �nite set of task types. A task type may
have di�erent instances that are copies of the same program with di�erent inputs. We
further assume that the worst case execution times and hard deadlines of tasks in P
are known 3. Thus, each task P is characterized as a pair of natural numbers denoted
P (C;D) with C � D, where C is the worst case execution time of P and D is the
relative deadline for P . The deadline D is a relative deadline meaning that when task
P is released, it should �nish within D time units. We shall use C(P ) and D(P ) to
denote the worst case execution time and relative deadline of P respectively.

As in timed automata, assume a �nite set of alphabets Act for actions and a �nite
set of real-valued variables C for clocks. We use a; b etc to range over Act and x1; x2
2 Because the subtraction preserves region equivalence in the bounded clock zone, and there-
fore the state space of a bounded automaton with subtraction can be partitioned according
to region equivalence

3 Note that tasks may have other parameters such as �xed priority for scheduling and other
resource requirements e.g. on memory consumption. For simplicity, in this paper, we only
consider computing time and deadline.



etc. to range over C. We use B(C) ranged over by g to denote the set of conjunctive
formulas of atomic constraints in the form: xi�C or xi � xj�D where xi; xj 2 C are
clocks, � 2 f�; <;�; >g, and C;D are natural numbers. The elements of B(C) are
called clock constraints.

De�nition 1. A timed automaton extended with tasks, over actions Act, clocks C
and tasks P is a tuple hN; l0; E; I;Mi where

{ hN; l0; E; Ii is a timed automaton where

� N is a �nite set of locations ranged over by l;m; n,
� l0 2 N is the initial location, and
� E � N �B(C)�Act� 2C �N is the set of edges.
� I : N 7! B(C) is a function assigning each location with a clock constraint (a

location invariant).

{ M : N ,! P is a partial function assigning locations with tasks 4.

Intuitively, a discrete transition in an automaton denotes an event triggering a task
and the guard (clock constraints) on the transition speci�es all the possible arrival
times of the event (or the associated task). Whenever a task is triggered, it will be
put in the scheduling (or task) queue for execution (corresponding to the ready queue
in operating systems).

Clearly extended timed automata is at least as expressive as timed automata; for
example, if M is the empty mapping, we will have ordinary timed automata. It is
a rather general and expressive model. For example, it may model time-triggered
periodic tasks as a simple automaton as shown in Figure 2(a) where P is a periodic
task with computing time 2, deadline 8 and period 20. More generally it may model
systems containing both periodic and sporadic tasks as shown in Figure 2(b) which
is a system consisting of 4 tasks as annotation on locations, where P1 and P2 are
periodic with periods 20 and 40 respectively (speci�ed by the constraints: x=20 and
x=40), and Q1 and Q2 are sporadic or event driven (by event a and b respectively).

In general, there may be a number of processes (released tasks) running logically in
parallel. For example, an instance of task Q2 may be released before the preceding
instance of task P1 has been computed because there is no constraint on when b2 will
arrive. This means that the scheduling queue may contains at least P1 and Q2. In
fact, instances of all four task types may appear in the queue at the same time.

To have a more general model, we may allow data variables shared between automata
and tasks. For example. a boolean can be used to denote the completion of a task. The
arrivals of events may be e�ected by the completion of certain tasks. This will not add
any technical diÆculty. However for simplicity, we will not consider synchronization
between an automaton and the associated tasks in this paper. The only requirement
on the completion of a task is given by the deadline. When a task is �nished does not
e�ect the control behavior speci�ed in the automaton.

To handle concurrency and synchronization, parallel composition of extended timed
automata may be introduced in the same way as for ordinary timed automata (e.g. see
[LPY95]) using the notion of synchronization function [HK89]. For example, consider
the parallel composition AjjB of A and B over the same set of actions Act. The set

4 Note that M is a partial function meaning that some of the locations may have no task.
Note also that we may also associate a location with a set of tasks instead of a single one.
It will not introduce technical diÆculties.
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Fig. 2. Modeling Periodic and Sporadic Tasks.

of nodes of AjjB is simply the product of A's and B's nodes, the set of clocks is
the (disjoint) union of A's and B's clocks, the edges are based on synchronizable A's
and B's edges with enabling conditions conjuncted and reset-sets unioned. Note that
due to the notion of synchronization function [HK89], the action set of the parallel
composition will be Act and thus the task assignment function for AjjB is the same
as for A and B.

2.2 Operational Semantics

Semantically, an extended timed automaton may perform two types of transitions just
as standard timed automata. But the di�erence is that delay transitions correspond
to the execution of running tasks with highest priority (or earliest deadline) and idling
for the other tasks waiting to run. Discrete transitions corresponds to the arrival of
new task instances.

We represent the values of clocks as functions (called clock assignments) from C to the
non{negative realsR�0. We denote by V the set of clock assignments for C. Naturally,
a semantic state of an automaton is a triple (l; u; q) where l is the current control
location, u denotes the current values of clocks, and q is the current task queue. We
assume that the task queue takes the form: [P1(c0; d0); P2(c1; d1):::Pn(cn; dn)] where
Pi(ci; di) denotes a released instance of task type Pi with remaining computing time
ci and relative deadline di.

Assume that there are a number of processors running the released task instances ac-
cording to a certain scheduling strategy Sch e.g. FPS (�xed priority scheduling) or EDF

(earliest deadline �rst) which sorts the task queue whenever new tasks arrives accord-
ing to task parameters e.g. deadlines. In general, we assume that a scheduling strategy
is a sorting function which may change the ordering of the queue elements only. Thus
an action transition will result in a sorted queue including the newly released tasks by
the transition. A delay transition with c time units is to execute the task in the �rst
positon of the queue with c time units. Thus the delay transition will decrease the com-
puting time of the �rst task with c. If its computation time becomes 0, the task should
be removed from the queue (shrinking). We adopt the structural equivalence over
queues respecting [P1(0; d); P2(c1; d1):::Pn(cn; dn)] = [P2(c1; d1):::Pn(cn; dn)]. More-
over, after a delay transition with c time units, the deadlines of all tasks in the queue
will be decreased by c (since time has progressed by c). To summarize the above
intuition, we introduce the following functions on task queues:



{ Sch is a sorting function for task queues (or lists), that may change the or-
dering of the queue elements only. For example, EDF([P (3:1; 10); Q(4; 5:3)]) =
[Q(4; 5:3); P (3:1; 10)]). We call such sorting functions scheduling strategies that
may be preemptive or non-preemptive 5.

{ Run is a function which given a real number t and a task queue q returns the
resulted task queue after t time units of execution according to available comput-
ing resources. For simplicity, we assume that only one processor available 6. Then
the meaning of Run(q; t) should be obvious and it can be de�ned inductively. For
example, let q = [Q(4; 5); P (3; 10)]. Then Run(q; 6) = [P (1; 4)] in which the �rst
task is �nished and the second has been executed for 2 time units.

Further, for a real number t 2 R�0, we use u+ t to denote the clock assignment which
maps each clock x to the value u(x) + t, u j= g to denote that the clock assignment
u satis�es the constraint g and u[r 7! 0] for r � C, to denote the clock assignment
which maps each clock in r to 0 and agrees with u for the other clocks (i.e. Cnr).

Now we are ready to present the operational semantics for extended timed automata
by transition rules:

De�nition 2. Given a scheduling strategy Sch 7, the semantics of an extended timed
automaton hN; l0; E; I;Mi with initial state (l0; u0; q0) is a transition system de�ned
by the following rules:

{ (l; u; q)
a
�!Sch(m;u[r 7! 0]; Sch(M(m) :: q)) if l

g;a;r
�! m and u j= g

{ (l; u; q)
t

�!Sch(l; u+ t;Run(q; t)) if (u+ t) j= I(l)

where M(m) :: q denotes the queue with M(m) inserted in q.

We shall omit Sch from the transition relation whenever it is understood from the
context.

Consider the automaton in Figure 2(b). Assume that preemptive earliest deadline
(EDF) is used to schedule the task queue i.e. Sch is sorting the queue in EDF order,
(and Run is as de�ned earlier). Then the automaton with initial state (m1; [x =
0]; [Q1(1; 2)]) may demonstrate the following sequence of typical transitions:

(l0; [x = 0]; [Q1(1; 2)])
0:5
�! (m1; [x = 0:5]; [Q1(0:5; 1:5)])

10
�! (m1; [x = 10:5]; [Q1(0; 0)]) = (m1; [x = 10:5]; [])
a1�! (n1; [x = 0]; [P1(4; 20)])
0:5
�! (n1; [x = 0:5]; [P1(3:5; 19:5)])
b2
�! (m2; [x = 0:5]; [Q2(1; 4); P1(3:5; 19:5)])
0:3
�! (m2; [x = 0:8]; [Q2(0:7; 3:7); P1(3:5; 19:2)])
a2�! (n2; [x = 0]; [Q2(0:7; 3:7); P2(2; 10); P1(3:5; 19:2)])
b1�! (m1; [x = 0]; [Q2(0:7; 3:7); Q1(1; 2); P2(2; 10); P1(3:5; 19:2)])
: : :

5 As in scheduling theory, we adopt the standard assumptions on scheduling strategies: A
non-preemptive strategy will never change the position of the �rst element of a queue.
A preemtive strategy may change the ordering of task types only, but never change the
ordering of task instances of the same type.

6 However, the semantics may be extended to multi-processor setting. We only need to
modify the function Run according to available resources (i.e. number of processors in this
case).

7 Note that we �xed Run to be the function that represents a one-processor system.



Note that the queue is always ordered by EDF with increasing deadlines and though
the queue is growing, in location m1, the generation of new task instances will be
slowed down by the constraint x > 10 labeled on the edge m1 to n1 and the queue
will be reduced by the following transition:

(m1; [x = 0]; [Q2(0:7; 3:7); Q1(1; 2); P2(2; 10); P1(3:5; 19:2)])
10
�! (n1; [x = 10]; [])

The automaton may also perform other sequences of transitions triggering copies of
tasks. For example, it may stay in location n1 or n2 where instances of the periodic
tasks P1 and P2 may be released and executed.

3 Schedulability Analysis

In this section we study veri�cation problems related to the model presented in pre-
vious section. First, we have the same notion of reachability as for timed automata.

De�nition 3. We shall write (l; u; q)�!(l0; u0; q0) if (l; u; q)
a
�!(l0; u0; q0) for an ac-

tion a or (l; u; q)
t

�!(l0; u0; q0) for a delay t. For an automaton with initial state
(l0; u0; q0), (l; u; q) is reachable i� (l0; u0; q0)(�!)�(l; u; q).

Note that the reachable state space of an extended timed automaton is in�nite because
of not only the real-valued clocks, but also the unbounded size of the task queue.
However, for certain analysis, e.g. safety properties (that are not related to the task
queue), we may only be interested in the reachability of locations. A nice property of
our extension is that the location reachability problem can be checked by the same
technique as for timed automata [DOTY95,BLL+96,ACH+95,YPD94]. So we may
view the original timed automaton (without task assignment) as an abstraction of its
extended version, which preserves location reachability. The existing model checking
tools such as [DOTY95,BLL+96] can be applied directly to verify the abstract models.

But if properties related to the task queue are of interests, we need to develop a new
veri�cation technique. One of the most interesting properties of extended automata
related to the task queue is schedulability.

According to the transition rules, the task queue is growing with action transitions
and shrinking with delay transitions. Multiple copies (instances) of the same task
type may appear in the queue 8. To illustrate the changing size of the task queue, we
consider again the automaton shown in Figure 1 in Section 1. In location l1, it can
never generate more than 5 instances of P due to the constraint y � 40, namely the
number of copies may be bounded by the clock constraints 9. This is illustrated by
the following transitions:

8 In practice, copies of the same task type may have di�erent input to compute.
9 In fact, in location l1, the size of the queue will be bounded by 1 because every released
instance will be computed before the next release that will not arrive within 10 time units
due to the constraint x � 10.



(l0; [x = 0; y = 0]; [])
3

�! (l0; [x = 3; y = 3]; [])
a
�! (l1; [x = 0; y = 0]; [P (2; 10)])
2:5
�! (l1; [x = 2:5; y = 2:5]; [P (0; 7:5)]) = (l1; [x = 2:5; y = 2:5]; [])
7:5
�! (l1; [x = 10; y = 10]; [])
a
�! (l1; [x = 0; y = 10]; [P (2; 10)])
: : :
a
�! (l1; [x = 0; y = 40]; [P (2; 10)])
3:4
�! (l1; [x = 3:4; y = 43:4]; [P (0; 6:6)]) = (l1; [x = 3:4; y = 43:4]; [])

In fact, the queue size in location l1 is bounded by 1. But in location l2, an in�nite
number of copies of Q may be released in zero time because there is no constraint on
the b-transition, which demonstrates the so-called zeno behavior:

(l1; [x = 3:4; y = 43:4]; [])
b

�! (l2; [x = 3:4; y = 43:4]; [Q(4; 8)])
b

�! (l2; [x = 3:4; y = 43:4]; [Q(4; 8); Q(4; 8)])
b

�! (l2; [x = 3:4; y = 43:4]; [Q(4; 8); Q(4; 8); Q(4; 8)])
: : :

But note that after more than two copies of Q, the queue will be non schedulable10.
We notice that zeno-behaviour will correspond to non schedulability in our setting
which is a nice property of the model. We shall see that non-schedulability can be
checked by reachability analysis. However zeno-freeness does not necessarily implies
schedulability.

Now we formalize the notion of schedulability.

De�nition 4. (Schedulability) A state (l; u; q) where q = [P1(c1; d1) : : : Pn(cn; dn)]
is a failure denoted (l; u;Error) if there exists i such that ci � 0 and di < 0, that
is, a task failed in meeting its deadline. Naturally an automaton A with initial state
(l0; u0; q0) is non-schedulable with Sch i� (l0; u0; q0)(�!Sch)

�(l; u;Error) for some l
and u. Otherwise, we say that A is schedulable with Sch.

More generally, we say that A is schedulable i� there exists a scheduling strategy Sch

with which A is schedulable.

The schedulability of a state may be checked by the standard schedulability test.
We say that (l; u; q) is schedulable with Sch if Sch(q) = [P1(c1; d1) : : : Pn(cn; dn)] and
(
P

i�k ci) � dk for all k � n. Alternatively, an automaton is schedulable with Sch if
all its reachable states are schedulable with Sch.

Note that checking schedulability of a state is a trivial task according to the de�nition.
But checking the relative schedulability of an automaton with respects to a given
scheduling strategy is not easy, and checking the general schedulability (equivalent to
�nding a scheduling strategy to schedule the automaton) is even more diÆcult.

Fortunately the queues of all schedulable states of an automaton are bounded. First
note that a task instance that has been started can not be preempted by another
instance of the same task type. This means that there is only one instance of each task
type in the queue whose computing time can be a real number and it can be arbitrarily

10 According to the optimal scheduling strategy EDF, no scheduling strategy will be able to
schedule the queue [Q(4; 8); Q(4; 8); Q(4; 8)] to meet the deadline for the last instance of
Q.



small. Thus the number of instances of each task type P 2 P , in a schedulable queue
is bounded by dD(P )=C(P )e and the size of schedulable queues is bounded by

X

P2P

dD(P )=C(P )e

We will code schedulability checking problems as reachability problems. First, we
consider the case of non-preemptive scheduling to introduce the problems we are
aiming at in this paper. We have the following positive result.

Theorem 1. The problem of checking schedulability relative to non-preemptive schedul-
ing strategy for extended timed automata is decidable.

Proof. A detailed proof is given in [EWY98]. We scketch the proof idea here. It is
to code the given scheduling strategy as a timed automaton (called the scheduler)
denoted E(Sch) which uses clocks to remember computing times and relative dead-
lines for released tasks. Note that for non-preemptive scheduling, only one instance
is running, which means that only one clock, denoted c is needed to remember the
computing time for the running task and one clock, denoted di for each released task
instance Pi to remember the deadline.

The scheduler automaton is constructed as follows: Whenever a task instance Pi is
released by an event releasei, di is reset to 0. Whenever a task is started to run11, c
is reset to 0. Whenever the constraint di = 0 is satis�ed, and Pi is not running, an
error-state (non-schedulable) should be reached.

We also need to transform the original automaton A to E(A) to synchronize with the
scheduler that Pi is released whenever a location, say l to which Pi is associated, is
reached. This is done simply by replacing actions labeled on transitions leading to l
with releasei.

Finally we construct the product automaton E(Sch)jjE(A) in which both E(Sch)
and E(A) can only synchronize on identical action symbols namely releasei's. It can
be proved that if an error-state of the product automaton is reachable, the original
extended timed automaton is non-schedulable.

For preemptive scheduling strategies, it has been conjectured that the schedulability
checking problem is undecidable. The reason is that if we use the same ideas as for non-
preemptive scheduling to encode a preemptive scheduling strategy, we must use stop-
watches (or integrators) to add up computing times for suspended tasks. It appears
that the computation model behind preemptive scheduling is stop-watch automata
for which it is known that the reachability problem is undecidable. Surprisingly this
conjecture is wrong.

Theorem 2. The problem of checking schedulability relative to preemptive scheduling
strategy for extended timed automata is decidable.

The rest of this paper will be devoted to the proof of this theorem. It follows from
Lemma 3, 4, and 5 established in the following section.

Before we go further, we state a more general result follows from the above theorem.

11 Initially or the running task Pi is �nished i.e. the constraint c = C(P ) is satis�ed.



Theorem 3. The problem of checking schedulability for extended timed automata is
decidable.

From scheduling theory[But97], we know that the preemptive version of Earliest Dead-
line First scheduling (EDF) is optimal in the sense that if a task queue is non schedula-
ble with EDF, it can not be schedulable with any other scheduling strategy (preemptive
or non preemptive). Thus, the general schedulability checking problem is equivalent
to the relative schedulability checking with respects to EDF.

4 Decidability and Proofs

We shall code the schedulability checking problem as a reachability problem. Note
that in the case of non preemptive scheduling, we are able to do so using timed
automaton only. For preemptive scheduling, we need a more expressive model.

4.1 Timed Automata with Subtraction

De�nition 5. A timed automaton with subtraction is a timed automaton in which
clocks may be updated by subtraction in the form x := x � C in addition to reset of
the form: x := 0, where C is a natural number.

Note that this is the so called suspension automata [MV94] and also called updatable
automata in [BDFP00]. It is known that the reachability problem for this class of
automata is undecidable. However, for the following class of suspension automata,
location reachability is decidable.

De�nition 6. (Bounded Timed Automata with Subtraction) A timed automaton is
bounded i� for all its reachable states (l; u; q), there is a maximal constant Cx for each
clock x such that

1. u(x) � 0 for all clocks x, i.e. clock values should not be negative 12, and

2. u(x) � Cx for all l0 such that l
gar
�! l0 and (x := x� C) 2 r for some C.

Note that in general, it may be diÆcult to compute the maximal constants from the
syntax of an automaton. But we shall see that we can compute the constants for our
encoding of scheduling problems.

Because subtraction operations on clocks are performed only within a bounded area.
It preserves the region equivalence. We adopt the standard de�nition due to Alur and
Dill [AD94].

De�nition 7. (Region Equivalence denoted �) For a clock x 2 C, let Cx be a constant
(the ceiling of clock x). For a real number t, let ftg denote the fractional part of t, and
btc denote its integer part. For clock assignments u; v 2 V, u; v are region-equivalent
denote u�v i�

1. for each clock x, either bu(x)c = bv(x)c or (u(x) > Cx and v(x) > Cx), and

12 This condition may be relaxed (e.g. the clock values may be negative, but bounded with
a lower bound). But this is precisely what we need for the main proof.



2. for all clocks x; y if u(x) � Cx and u(y) � Cy then
(a) (fu(x)g = 0 i� fv(x)g = 0 and
(b) (fu(x)g � fu(y)g i� fv(x)g � fv(y)g)

It is known that region equivalence is preserved by the delay (addition) and reset. In
the following, we establish that region equivalence is also preserved by subtraction
for clocks that are bounded as de�ned in De�nition 6. For a clock assignment u, let
u(x � C) denote the assignment: u(x � C)(x) = u(x) � C and u(x � C)(y) = u(y)
for y 6= x. The following results states that � is a bisimulation with respect to the
operations: addition, reset and the conditional subtraction.

Cx

Cy

x

y

Bounded area alowed
for subtraction

u

v(x-1)
u(x-1)

v

Fig. 3. Region equivalence preserved by subtraction when clocks are bounded.

Lemma 1. Let u; v 2 V. Then u�v implies

1. u+ t�v + t for a positive real number t, and
2. u[x 7! 0]�v[x 7! 0] for a clock x and
3. u(x � C)�v(x � C) for all natural numbers C such that C � u(x) � Cx. for a

natural number C.

Proof. The proof for the �rst two items can be found in the literature e.g. [LW97].

We check the third according to the de�nition of regioin equivalence. It is illustrated
in Figure 3 that the equivalence is preserved by subtraction in the bounded area.
Assume that u � v, and for each clock x we also have C � u(x) � Cx. Note that
because u�v, and C � u(x), we have C � v(x). Then we have u(x � C)(y) � 0 and
v(x � C)(y) � 0 for any clock y. Now we have two cases to check:

1. If bu(x)c = bv(x)c, obviously we have bu(x)� Cc = bv(x) � Cc for a natural
number C and then bu(x� C)c = bv(x� C)c by de�nition.

2. Note that the subtraction operation on clocks does not change the fractional parts
of clock values. Therefore for all clocks y and z, we have:
(a) (fu(x� C)(y)g = 0 i� fv(x� C)(y)g = 0 and
(b) (fu(x� C)(y)g � fu(x� C)(z)g i� fv(x� C)(y)g � fv(x� C)(z)g)

In fact, region equivalence over clock assignments induces a bisimulation over reach-
able states of automata, which can be used to partition the whole state space as a
�nite number of equivalence classes.



Lemma 2. Assume a bounded timed automaton with subtraction, a location l and
clock assignments u and v. Then u�v implies that

1. whenever (l; u) �! (l0; u0) then (l; v) �! (l0; v0) for for some v0 s.t. u0�v0 and

2. whenever (l; v) �! (l0; v0) then (l; u) �! (l0; u0) for for some u0 s.t. u0�v0.

Proof. It follows from Lemma 1.

Note that the above lemma essentially states that if u�v then (l; u) and (l; v) are
bisimular, which implies the following result.

Lemma 3. The location reachability problem for bounded timed automata with sub-
traction, whose clocks are bounded with known maximal constants is decidable.

Proof. Because each clock of the automaton is bounded by a maximal constant, it
follows from lemma 2 that for each location l, there is a �nite number of equivalence
classes of states which are equivalent in the sense that they will reach the same
equivalence classes of states. Because the number of locations of an automaton is
�nite, the whole state space of an automaton can be partitioned into �nite number of
such equivalence classes.

4.2 Encoding of Schedulability as Reachability

Assume an automaton A extended with tasks, and a preemptive scheduling strategy
Sch. The aim is to check if A is schedulable with Sch. As for the case of non-preemptive
scheduling (Theorem 1), we construct E(A) and E(Sch), and check a pre-de�ned
error-state in the product automaton of the two. The construction is illustrated in
�gure 4.

E(A) is constructed as a timed automaton which is exactly the same as for the non-
preemptive case (Theorem 1) and E(Sch) will be constructed as a timed automaton
with subtraction.

m l
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Fig. 4. Encoding of schelulability problem.



We introduce some notation. We use C(i) and D(i) to stand for the worst case ex-
ecution time and relative deadline respectively for each task type Pi. We use Pij to
denote the jth instance of task type Pi.

For each task instance Pij , we have the following state variables:

status(i; j) initialized to free. Let status(i; j) = running stand for that Pij is executing
on the processor, preempted for that Pij is started but not running, and released for
that Pij is released, but not started yet. We use status(i; j) = free to denote that Pij

is not released yet or position (i; j) of the task queue is free.

Note that according to the de�nition of scheduling strategy, for all i, there should
be only one j such that status(i; j) = preempted (only one instance of the same
task type is started), and for all i; j, there should be only one pair (k; l) such that
status(k; l) = running (only one is running for a one-processor system).

We need two clocks for each task instance:

1. c(i; j) (a computing clock) is used to remember the accumulated computing time
since Pij was started (when Run(i; j) became true) 13, and subtracted with C(k)
when the running task, say Pkl, is �nished if it was preempted after it was started.

2. d(i; j) (a deadline clock) is used to remember the deadline and reset to 0 when
Pij is released.

We use a triple hc(i; j); d(i; j); status(i; j)i to represent each task instance, and the
task queue will contain such triples. We use q to denote the task queue. Note that the
maximal number of instances of Pi appearing in a schedulable queue is dD(i)=C(i)e.
We have a bound on the size of queue as claimed earlier, which is

P
Pi2P

dD(i)=C(i)e.
We shall say that queue is empty denoted empty(q) if status(i; j) = free for all i; j.

For a given scheduling strategy Sch, we use the predicate Run(m;n) to denote that
task instance Pmn is scheduled to run according to Sch. For a given Sch, it can be
coded as a constraint over the state variables. For example, for EDF, Run(m;n) is the
conjunction of the following constraints:

1. d(k; l) � D(k) for all k; l such that status(k; l) 6= free: no deadline is violated yet
2. status(m;n) 6= free: Pmn is released or preempted
3. D(m)� d(m;n) � D(i)� d(i; j) for all (i; j): Pmn has the shortest deadline

E(Sch) contains three type of locations: Idling, Running and Error with Running being
parameterized with (i; j) representing the running task instance.

1. Idling denotes that the task queue is empty.
2. Running(i; j) denotes that task instance Pij is running, that is, status(i; j) =

running. We have an invariant for each Running(i; j): c(i; j) � C(i) and d(i; j) �
D(i).

3. Error denotes that the task queues are non-schedulable with Sch.

There are �ve types of edges labeled as follows:

1. Idling to Running(i; j): there is an edge labeled by

13 In fact, for each task type, we need only one clock for computing time because only one
instance of the same task type may be started.



{ guard: none
{ action: releasei
{ reset: c(i; j) := 0, d(i; j) := 0, and status(i; j) := running

2. Running(i; j) to Idling: there is only one edge labeled with

{ guard: empty(q) that is, status(i; j) = free for all i; j (all positions are free).
{ action: none
{ reset: none

3. Running(i; j) to Running(m;n): there are two types of edges.

(a) The running task Pij is �nished, and Pmn is scheduled to run by Run(m;n).
There are two cases:
i. Pmn was preempted earlier:

{ guard: c(i; j) = C(i), status(m;n) = preempted and Run(m;n)
{ action: none
{ reset: status(i; j) := free, fc(k; l) := c(k; l)�C(i)jstatus(k; l) = preemptedg,
and status(m;n) := running

ii. Pmn was released, but never preempted (not started yet):
{ guard: c(i; j) = C(i), status(m;n) = released and Run(m;n)
{ action: none
{ reset: status(i; j) := free, fc(k; l) := c(k; l)�C(i)jstatus(k; l) = preemptedg,
c(m;n) := 0; d(m;n) := 0 and status(m;n) := running

(b) A new task Pmn is released, which preempts the running task Pij :
{ guard: status(m;n) = free, and Run(m;n)
{ action: releasedm
{ reset: status(m;n) := running, c(m;n) := 0, d(m;n) := 0, and status(i; j) :=

preempted

4. Running(i; j) to Running(i; j). There is only one edge representing the case when
a new task is released, and the running task Pij will continue to run:
{ guard: status(k; l) = free, and Run(i; j)
{ action: releasedk
{ reset: status(k; l) := released and d(k; l) := 0

5. Running(i; j) to Error: for each pair (k; l), there is an edge labeled by d(k; l) > D(k)
and status(k; l) 6= free meaning that the task Pkl which is released (or preempted)
fails in meeting its deadline.

The third step of the encoding is to construct the product automaton E(Sch) k E(A)
in which both E(Sch) and E(A) can only synchronize on identical action symbols.
Now we show that the product automaton is bounded.

Lemma 4. All clocks of E(Sch) in E(Sch) k E(A) are bounded and non negative.

Proof. All computing clocks c(k; l) are bounded by D(k). This is due to the fact
that all edges labeled with a subtraction is guarded by the constraint: Run(m;n)
which requies d(k; l) � D(k) (no deadline is violated in order to stay in Running).
d(k; l) � D(k) implies that c(k; l) � D(k) because c(k; l) and d(k; l) are always reset
to zero at the same time when a new instance of Pk is released. Thus c(k; l) is bounded.

Secondly, the only possibility for a computing clock, say c(k; l) for task Pkl, to become
negative is by subtractions. But a subtraction is done on c(k; l) only when a task, say
Pij , is �nished i.e. c(i; j) = C(i) holds. As c(i; j) is reset to zero before c(k; l) is
reset to zero (status(k; l) = preempted implying that Pkl was released and preeempted
earlier), we have c(i; j) � c(k; l) implying that c(i; j)� C(k) � 0. Thus all clocks are
non-negative.



Now we have the correctness theorem for our encoding. Assume, without losing gen-
erality, that the initial task queue of an automaton is empty.

Lemma 5. Let A be an extended timed automaton and Sch a scheduling strategy.
Assume that (l0; u0; q0) and (hl0; Idlingi; u0) are the initial states of A and the product
automaton E(A)jjE(Sch) respectively where l0 is the initial location of A, u0 and v0
are clock assignements assigning all clocks with 0 and q0 is the empty task queue.
Then for all l; u; v:

(l0; u0; q0)(�!)�(l; u;Error) i� (hl0; Idlingi; u0 [ v0)(�!)�(hl;Errori; u [ v)

Proof. It is by induction on the length of transition sequence (i.e. reachability steps).

The above lemma states that the schedulability analysis problem can be solved by
solving a reachability problem for timed automata extended with subtraction. From
Lemma 4, we know that E(Sch) is bounded. Because the reachability problem is decid-
able due to Lemma 3, we complete the proof for our main result stated in Theorem 2.

5 Conclusions and Related Work

We have studied a model of timed systems (timed automata extended with tasks),
which uni�es timed automata with the classic task models from scheduling theory.
The model can be used to specify resource requirements and hard time constraints
on computations, in addition to features o�ered by timed automata. It is general
and expressive enough to describe concurrency and synchronization, and tasks which
may be periodic, sporadic, preemptive and (or) non-preemptive. The classic notion of
schedulability is nicely extended to automata model. Our main technical contribution
is the proof that the schedulability checking problem is decidable. The problem has
been conjectured to be undecidable for years. To our knowledge, this is the �rst decid-
ability result for preemptive scheduling in dense-time models. Based the results, we
have developed a symbolic schedulability checking algorithm based using the DBM
techniques. It has been implemented in a tool for modeling and scheduling of timed
systems. As future work, we shall study the schedule synthesis problem. More pre-
cisely given an automaton, it is desirable to characterize the set of schedulable traces
accepted by the automaton.

Related work. Scheduling is a well-established area. A numerous number of analysis
methods have been published in the literature. For systems restricted to periodic tasks,
algorithms such as rate monotonic scheduling and earliest-deadline �rst are widely
used and exact analysis methods exist, see e.g. [KS97]. These methods can be extended
to handle non-periodic tasks by considering them as periodic with the minimal inter-
arrival time as the task periods. Our work is more related to work on using automata
to model and solve scheduling problems. In several papers, e.g. [CL00,Cor94,AGS00],
stopwatch automata [ACH+95] are applied to model scheduling algorithms with spo-
radic tasks. However, as reachability analysis for stopwatch automata is undecidable,
this approach can not be applied in general to solve scheduling problems. Approxi-
mative and semi-decision algorithms exits but they can only be used to prove that
a system is not schedulable (inconclusive for schedulability) and they do not guar-
antee termination. In [MV94], McManis and Varaiya presents a restricted class of
stopwatch automata, called suspension automata, and give a set of conditions for



which reachability analysis of suspension automata is decidable. Unfortunately, the
given conditions restrict the applicability of the result as scheduling algorithms such
as rate-monotonic and earliest-deadline �rst, can not be analysed. The work presented
in this paper is more general and we show that the presented analysis is guaranteed
to terminate for all inputs. Another model for timed system is presented in [AGS00].
It is designed to be compositional and suitable for describing priority-driven schedul-
ing algorithms. The authors show that a number of scheduling algorithms, with or
without preemption, can be modeled. However, the problem of schedulability analysis
is not addressed in the paper. Related to this is the work on integrating speci�cation
and scheduler generation of real-time systems, presented in [AGP+99]. The model-
ing language, which can be used to describe both sporadic and preemptive tasks, is
a Petri-net model with time. The authors presents a controller synthesis technique
that can be used to construct an online non-preemptive scheduler that satis�es all
given constraints in the model. The problem addressed is restricted to non-preemptive
schedulers. In this paper, we use the idea of replacing suspensions of timers by sub-
traction of clock values, as suggested in [MV94]. It has been shown in [BDFP00] that
updating clock variables by subtraction of integer values in timed automata is unde-
cidable in general. We identify a decidable class of such updatable automata, which
is precisely what we need to solve scheduling problems.
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