
Object-Oriented Design Frameworks: Formal

Speci�cation and Some Implementation Issues

Ivica Crnkovic

Department of Computer Engineering, M�alardalen University

721 23 V�aster�as, Sweden

E-mail: Ivica.Crnkovic@mdh.se

Juliana K�uster Filipe�

Abt. Informationssysteme, Informatik, Technische Universit�at Braunschweig

Postfach 3329, D-38023 Braunschweig, Germany

E-mail: J.Kuester-Filipe@tu-bs.de

Magnus Larsson

ABB Automation Products AB, LAB

721 59 V�aster�as, Sweden

E-mail: Magnus.Larsson@mdh.se

Kung-Kiu Lau

Department of Computer Science, University of Manchester

Manchester M13 9PL, United Kingdom

E-mail: kung-kiu@cs.man.ac.uk

Abstract

In component-based software development, object-oriented design (OOD) frameworks are

increasingly recognised as better units of reuse than objects. This is because OOD frame-

works are groups of interacting objects, and as such they can better reect practical

systems in which objects tend to have more than one role in more than one context. In

this paper, we show how to formally specify OOD frameworks, and briey discuss their

implementation and con�guration management.

Keywords: Object-oriented design frameworks, component-based software development.

1. Introduction

Object-Oriented Design (OOD) frameworks are groups of (interacting) objects. For example,

in the CBD (Component-based Software Development) methodology Catalysis [10], a driver
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Figure 1. The Driver OOD framework.

may be represented as the OOD framework shown in Figure 1.1 A driver is a person who drives

a car, or in OOD terminology, a driver is a framework composed of a car object and a person

object, linked by a `drives' association (or attribute).

OOD frameworks are increasingly recognised as better units of reuse in software development

than objects (see e.g. [12, 20]). The reason for this is that in practical systems, objects tend

to have more than one role in more than one context, and OOD frameworks can capture this,

whereas existing OOD methods (e.g. Fusion [6] and Syntropy [8]) cannot. The latter use

classes or objects as the basic unit of design or reuse, and are based on the traditional view

of an object, as shown in Figure 2, which regards an object as a closed entity with one �xed

role. On the other hand, OOD frameworks allow objects that play di�erent roles in di�erent

visible

functions

structure

internal

encapsulated

Figure 2. Traditional view of an object.

frameworks to be composed by composing OOD frameworks. In Catalysis, for instance, this is

depicted in Figure 3.
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role A role B

Framework 1

Framework 1 + 2
role B
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Figure 3. Objects by composing OOD frameworks.

For example, a person can play the roles of a driver and of a guest at a motel simultaneously.

These roles are shown separately in the PersonAsDriver and PersonAsGuest OOD frameworks

in Figure 4. If we compose these two frameworks, then we get the PersonAsDriverGuest OOD

framework as shown in Figure 5. In this OOD framework, a person object plays two roles, and

is a composite object of the kind depicted in Figure 3.

OOD frameworks should play a crucial role in the design and implementation of next-

generation component-based software systems. In this paper, we show how to formally specify

them, and briey discuss their implementation (in COM) and con�guration management.

�The second author was supported by the DFG under Eh 75/11-2 and partially by the EU under ESPRIT-IV

WG 22704 ASPIRE.
1Catalysis uses the UML notation, see e.g. [21].
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Figure 4. PersonAsDriver and PersonAsGuest OOD frameworks.
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Figure 5. PersonAsDriverGuest OOD framework.

2. Formal Speci�cation of OOD Frameworks

In this section, we describe formal speci�cation of OOD frameworks. First we consider the

static aspects, i.e. without time or state transitions, then we consider the dynamic aspects, i.e.

with time and state transitions.

2.1. Static Aspects

We have considered the static aspects of OOD frameworks in [17, 18]. In this section, we briey

outline this semantics.

As we have seen in Section 1., OOD frameworks are composite objects/classes. In our

approach, we de�ne OOD frameworks and objects/classes in terms of a basic entity that we

call a speci�cation framework, or just a framework, for short.2

A framework F = h�; Xi is de�ned in the context of �rst-order logic with identity. It is

composed of a signature � (containing sort symbols, function declarations and relation declara-

tions), and a �nite or recursive set X of �-axioms. The purpose of a framework is to axiomatise

a problem domain and to reason about it. In our approach, a problem domain contains the

ADT's and classes needed to de�ne the objects of the application at hand.

A framework is thus a (�rst-order) theory, and we choose its intended model to be a reachable

isoinitial model, de�ned as follows:3

Let X be a set of �-axioms. A �-structure i is an isoinitial model of X i�, for every other

model m of X, there is one isomorphic embedding i : i! m.

A model i is reachable if its elements can be represented by ground terms.

We distinguish between closed and open frameworks. The relationship between open and

closed frameworks plays a crucial role in our interpretation of objects. Roughly speaking,

in object-oriented programming terminology, open frameworks represent classes, and closed

frameworks represent their instances, i.e. objects.

A framework F = h�; Xi is closed i� there is a reachable isoinitial model i of X.

An open framework F(
) = h�; Xi does not have an isoinitial model, since its axioms leave

open the meaning of some symbols 
 of the signature, that we call open symbols. Non-open

symbols are called de�ned symbols.

Open frameworks can be closed, i.e made into closed frameworks, by instantiating its open

symbols. We will use only open frameworks which have reachable isoinitial models for all their

2To avoid confusion with OOD frameworks, in this section we will use `framework' to refer to a speci�cation

framework only, and not to an OOD framework.
3See [18] for a justi�cation of this choice and [3, 16] for a discussion of isoinitial theories.



instances. Such frameworks are called adequate, and they can be constructed incrementally

from small (adequate) closed frameworks (see [17, 18]).

Example 2..1 The Car class in Figures 4 and 5 can be de�ned as the following open framework:

OBJ-Framework CAR(:km; :option);

import: INT ; year96;

decls: :km : [ ]! Int

:option : [year96:opts]

constrs: :km � 0

where INT is a prede�ned ADT of integers, and year96 is an object that contains the sort

year96:opts of the possible options for a car in the year 96. The constraint :km � 0 is an axiom

for the open symbol :km.

We call a framework like this an OBJ-framework, since it is a class of objects. To obtain

objects we instantiate an OBJ-framework, i.e. by closing the OBJ-framework.

The axioms used to close F(
) into an object represent the state of the object, and are

called state axioms. State axioms can be updated, i.e. an object is a dynamic entity.

An object of class CAR is created, for example, by:

new spider : CAR;

close: spider:km by spider:km = 25000;

spider:option by spider:option(x)$ x = Airbag _ x = AirCond:

where spider:km = 25000 and spider:option(x) $ x = Airbag _ x = AirCond are (explicit)

de�nitions that close the constant spider:km and the predicate spider:option(x) respectively.

The state of a spider object can be updated, by rede�ning its state axioms:

update spider : CAR;

spider:km = 27000

spider:option(x)$ x = Airbag _ x = AirCond

As we can see, the constant spider:km has been changed.

An OOD framework is a composite OBJ-framework. It can be viewed as a system of objects,

in which objects can be created (and deleted) and updated dynamically.

Example 2..2 The PersonAsDriver OOD framework in Figure 5 can be formalised as the

following framework:

OOD-Framework DRIVER[PERSON ; CAR];

decls: :drives : [obj];

constrs: `X:drives(c)! PERSON(`X) ^ `X:age � 18 ^ CAR(c);

(9c : obj)(:drives(c));

where obj is a reserved sort symbol that contains the set of names of all existing objects in

the system; `X is a meta-symbol that stands for any object name; and the OBJ-framework

PERSON may be something like:



OBJ-Framework PERSON ;

import : : :;

decls: :name : ! string;

:age : ! int; : : :

constrs: :age � 0

Here the composite object is built via links between its components, which constrain object

creation (and deletion) methods. We cannot create an object n:DRIVER, if n is not a person.

Furthermore, we need at least one car c.

2.2. Dynamic Aspects

In this section, we consider how to introduce time and state changes. We will combine the static

formalisation outlined in the previous section with the logic Mdtl presented in [13]. Mdtl is

an extension of the Troll logic [11] for describing dynamic aspects of large object systems.

2.2.1. State Transitions.

In Mdtl, an OBJ or OOD framework has a local logic consisting of a home and a commu-

nication logic. The home logic allows us to express internal state changes, whereas the com-

munication logic describes framework interactions. The home logic of a framework is mainly a

�rst-order temporal logic with (true) concurrency. We do not deal with concurrency explicitly

in this paper, and so we will use axioms that are just �rst-order temporal formulae. Also,

in this paper, we will not use the communication logic, since we do not deal with framework

interactions.

In Mdtl, in addition to attributes, an object also has actions,4 which will a�ect its current

state. Actions may be either enabled or occurring in a particular state. The state of an object

is given by the current values of the attributes, and the current status of its actions. Thus

in Mdtl, a state formula is a conjunction of facts (the current values of the attributes) and

actions (enabled or occurring).

If an action is enabled, then it may occur in the next state. When an action occurs, the

state of the object changes. In the logic, �a is used to denote the occurrence of action a, and

�a that the action a is enabled. If an action occurs, then it must have been enabled in the

previous state: �a ) Y � a. In this formula, Y is the temporal operator Yesterday referring

to the previous state. Enabling (�) is useful for expressing preconditions, and occurrence (�)

for expressing postconditions.

In the sequel, we shall also use the temporal operators X (next state), F (sometime in the

future including the present), and P (sometime in the past including the present).

The state of an OOD framework is given by the states of the current objects belonging to

the framework.

We illustrate how to specify state transitions of an OOD framework inMdtl with a simple

example.

Example 2..3 Consider the OOD framework for employees as depicted in Figure 6, in which

a person plays the role of an employee of a company. A person as an employee has an attribute

pocket representing the amount of money he possesses, and two actions receive pay and work.

4More commonly known as methods in object-oriented programming.



Person
pocket: Money

receive_pay(amt: Money)

work(...)

PersonAsEmployee

pre:   has worked before
post: pocket increased by amt

Company

pre: pocket<500
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Figure 6. PersonAsEmployee OOD framework.

In this example, a person as an employee only works if he has less than $500 (precondition for

work). A person only receives a payment if he has worked before (precondition for receive pay).

If a person receives a payment, the money in his pocket increases by the amount received. Here,

we express the pre- and postconditions only informally, and we omit the parameters and the

postcondition of work, as well as the de�nition of the OBJ-framework for Company.

The class Person might be formalised by the following OBJ-framework:

OBJ-Framework PERSON ;

import: MONEY

decls: :pocket : [ ]!Money;

:receive pay : [Money];

:work : [: : :];

axioms: : : :

st-axioms: 8a � :receive pay(a)) P � :work(: : :);

8a;n � :receive pay(a)) Y (:pocket = n)) :pocket = n + a;

�:work(: : :)) :pocket < $500:

where the st-axioms are the state transition axioms.

Pre- and postconditions allow us to de�ne the state transitions of a framework. The state

transition axioms do not a�ect the (static) isoinitial model of the OBJ-framework, and are

relevant only for the behaviour model. The �rst axiom states that if the action receive pay

is enabled, then sometime in the past (temporal operator P ) the action work(: : :) must have

occurred. The second axiom says that the occurrence of action receive pay(a) implies that if in

the previous state the value of pocket was n, then its current value is n+ a. Finally, the third

axiom states that if the action work(:::) is enabled (it might occur in the next state) then the

value of pocket must be less than $500.

We can create an object joe of Person class as follows:

new joe : PERSON ;

close: joe:pocket by joe:pocket = $100;

joe:work by �joe:work(: : :);

joe:pay by :� joe:receive pay(a):

When an object is created, its initial state is de�ned. In the initial state of joe, (attribute)

pocket is $100, (action) receive pay(a) is disabled for any a, and (action) work(: : :) enabled.



In Mdtl we can also express general properties of objects. For example,5

joe:pocket < $500) F 9a � joe:receive pay(a)

means `if joe has less than $500 then he will receive a payment sometime'.

2.2.2. Event Structures.

Mdtl is interpreted over labelled prime event structures ([24]). A labelled prime event structure

is thus a model for an OOD framework if it satis�es all the axioms of the framework (both the

static and the state transition axioms).

A labelled prime event structure consists of a prime event structure and a labelling function.

Prime event structures can be used to describe distributed computations as event occurrences

together with a causal and a conict relations between them. The causal relation implies a

(partial) order among event occurrences, and the conict relation denotes a choice. Events in

conict cannot belong to the same run or life cycle. The labelling function associates each

event with a state.

Example 2..4 Consider the event structure in Figure 7. It shows a small part of a (sequential)

joe:pocket = $100 ^�joe:work(:::) ^ :8a � receive pay(a)

�joe:work(:::) ^ 8a � receive pay(a) �joe:work(:::) ^ 8a � receive pay(a)

�joe:work(:::) ^ joe:pocket = $120 ^

e3 e4

�joe:receive pay(20) ^ joe:pocket = $120 ^�joe:work(:::) ^ 8a � receive pay(a)

e2

�joe:work(:::) ^ joe:pocket = $100 ^�joe:work(:::) ^ 8a � receive pay(a)

e1

e0

...
...

#
�joe:receive pay(80) ^ joe:pocket = $200 ^

Figure 7. Event structure for joe as an employee.

behaviour model for joe.

In general, in event structures, boxes denote events fe0; e1; : : :g, arrows between boxes rep-

resent event causality, and # denotes event conict. The state of the object at a given event is

written inside the box as a state formula.

For the object joe, the events in the event structure are labelled by the formulae of the

state logic of the Person class. Event e0 corresponds to the initial state. The occurrence of e1
depends on the previous occurrence of e0. With the occurrence of action joe:receive pay(20)

at event e2, the current value of attribute pocket changes to $120. Events e3 and e4 are in

conict, which means that either one or the other occurs but not both. A conict thus denotes

a choice.

There are therefore two life cycles for joe in Figure 7. One consists of events fe0; e1; e2; e3; : : :g

and the other fe0; e1; e2; e4; : : :g. In the former, joe receives two payments after working. In

the latter, joe works, then receives a payment and then works again.

Finally, it is easy to see that this event structure satis�es the state transition axioms of the

OBJ-framework PERSON .

5We are not saying that this property necessarily follows from the ST-axioms of the object joe.



In general, labelled event structures provide models for concurrent computations. Other such

models include transition systems, Petri nets, traces, and synchronisation trees. Petri nets

and transition systems allow an explicit representation of the (possibly repeating) states in

a system, whereas trees, traces and event structures abstract away from such information,

and focus instead on the behaviour in terms of patterns of occurrences of actions over time.

Furthermore, event structures are a \true" concurrency model, as opposed to transition systems

that model systems as non-deterministically interleaved sequential computations. A detailed

survey and comparison of some of these models can be found in [24].

2.2.3. Composing Event Structures.

In order to create objects by composing OOD frameworks with state transitions in the manner

depicted in Figure 3, we need to be able to compose event structures.

Example 2..5 In the previous example, a person plays the role of an employee. This partial

de�nition of person could be combined with another view of a person, e.g., a person as a

consumer. The PersonAsConsumer OOD framework in Figure 8 de�nes this role for a person

post: pocket decreased by price
pre:   price<pocket

PersonAsConsumer

Person
pocket: Money

buy(price: Money)

Shopbuysfrom

Figure 8. PersonAsConsumer OOD framework.

object. The class Person here can be de�ned by the same OBJ-framework PERSON in

Example 2..3, but with the action buy(p) instead of the actions receive pay(a) and work(: : :).

We omit the de�nition of the OBJ-framework for Shop.

A consumer has an action buy(p), where p represents the price of the item bought. Pre-

and postconditions for this action are the expected ones. A consumer may only buy something

if he has enough money, and after buying an item the money in his pocket decreases by the

amount of money spent. The state transition axioms for buy(p) are thus:

8p � :buy(p)) :pocket > p

8p;n � :buy(p)) Y (:pocket = n)) :pocket = n� p

Let joe be a person playing now the role of a consumer. In the event structure for joe as a

consumer, a life cycle is a linear sequence of buy events starting from the initial state in which

joe:pocket is initialised. In Figure 9, we show two possible life cycles with distinct initial states.

We may compose the OOD frameworks for PersonAsEmployee and PersonAsConsumer, to

obtain a person with both roles together. A person now has all the actions of both roles,

namely receive pay, work and buy, and the attribute pocket in both roles. The composition is

illustrated by Figure 10.

The composite PersonAsEmployeeConsumer framework contains the union of the state tran-

sition axioms of its component OOD frameworks. An event structure, i.e. a model, for a person

as an employee and consumer is obtained by composing a model for person as an employee with

one for person as a consumer in a special manner. Several constructions for sequential and par-

allel composition of event structures have been de�ned in the literature, e.g. [23, 19]. What we



�joe:buy(20) ^ joe:pocket = $100 ^ 8p�100� joe:buy(p)

joe:pocket = $120 ^ 8p�120 � joe:buy(p) #

...

�joe:buy(50) ^ joe:pocket = $150 ^ 8p�150� buy(p)

joe:pocket = $200 ^ 8p�200 � buy(p)

...

f2

f4

f1

f3

Figure 9. Event structure for joe as a consumer.

Shop

PersonAsEmployeeConsumer

Company

receive_pay(amt:Money)
work(...)
buy(price:Money)

pocket: Money

Personworksfor buysfrom

Figure 10. PersonAsEmployeeConsumer OOD framework.

need for composing roles is in fact a combination of interleaving of the models and synchroni-

sation. Interleaving (sequential composition), because we are combining models for the same

object in di�erent roles (and objects are considered to behave sequentially), and therefore the

composed model must be sequential. Synchronisation, because some attributes and/or actions

for distinct roles may be identi�ed as the same (e.g. pocket).

Figure 11 shows the composed model for joe as an employee and consumer based on the

models of Figures 7 and 9 for joe as an employee and joe as a consumer respectively. In this

joe:pocket = $100

##joe:pocket = $100 joe:pocket = $200

...

#

e42

f1

f33

joe:pocket = $120

joe:pocket = $120

joe:pocket = $100joe:pocket = $150

joe:pocket = $100

e1

e0

joe:pocket = $120 #

joe:pocket = $120

e31f31

f41

(e3; f2)

...
...

...

...

(e2; f1)

joe:pocket = $120

e2

f32

...

# joe:pocket = $120joe:pocket = $200

joe:pocket = $100joe:pocket = $150

(e4; f1)

joe:pocket = $200

...

f2

f42

# joe:pocket = $200

e32e41

Figure 11. Event structure for joe as an employee and a consumer.

case, event synchronisation is done over the value of the common attribute pocket. That is,

only those events of both models that have the same value for pocket may be synchronised, e.g.,

events e2 and f1, e3 and f2, and e4 and f1. Synchronisation is indicated by the pairs (e2; f1),

etc.

Normally, synchronisation is done over actions, but we have a new situation here by com-

bining roles, namely that the attribute pocket of a person as an employee is to be identi�ed

with the attribute pocket of a person as a consumer, whereas the actions receive pay, work

and buy are all distinct. Synchronisation is not always necessary, and some of the life cycles in



Figure 11 show just interleaving.

The construction of composite event structures sometimes leads to the duplication of events,

e.g., event e3 has been duplicated and corresponds to events e31 and e32. The labels of these

events are the same as e3. In Figure 11, the states are just indicated by the value of the attribute

pocket for simplicity. The label of event (e2; f1) is given by the conjunction of the labels e2 and

f1, i.e., it corresponds to the formula

joe:pocket =$120 ^ �receive pay(20) ^�joe:work ^ 8areceive pay(a)^

8p�120 � buy(p)

Parallel composition of event structures with synchronisation is useful for modelling interacting

frameworks (e.g., [15]), whereas without synchronisation it models non-interacting frameworks.

3. Some Implementation Issues

Having shown how to formally specify OOD frameworks, we now turn to practical concerns. In

particular, we will discuss how we might construct such frameworks in practice using currently

available technology, and the issues involved in such constructions.

Of the current technologies for developing component-based software systems, COM [5]

seems to lend itself most readily to the implementation of OOD frameworks. Therefore, we will

briey show how to implement OOD frameworks in COM.

The fact that OOD frameworks are composite objects/classes means that constructing these

frameworks creates problems for con�guration management. Therefore, we will consider some

of these problems, in the case of COM implementations.

3.1. Implementing OOD Frameworks in COM

In this section, we show how to use COM to implement the OOD frameworks in Figures 6, 8

and 10. COM suits multiple roles because it can use multiple interfaces for each role. We will

use the aggregation mechanism in COM to compose OOD frameworks. First, we implement

the Person object, which corresponds to the encapsulated internal structure in Figure 2. The

Person object is constructed so it supports aggregation of role objects and it has one IPerson

interface (see Figure 12).

IUnknown IUnknown

Person
IPerson

IPerson IConsumer Consumer

Figure 12. A COM object for the person object and the consumer role.

Secondly, the consumer and employee roles are implemented so they support being aggre-

gated into a person object. Figure 12 shows the consumer role with one IConsumer interface.

The consumer object also needs a reference to the person object to be able to work on the pocket

variable. The person reference is set up when the consumer is aggregated into the person object

(see Figure 13). In a similar way the employee role is implemented. Using aggregation we can



reuse the di�erent components that we have created. Figure 13 shows how Person aggregates

the two already de�ned COM objects. Frameworks are created at run-time by adding roles to

an object.

IUnknown

IPerson

IUnknown

IPerson

IUnknown

Person

Employee

IPerson

IEmployee

IConsumer Consumer

Figure 13. The Consumer and Employee roles are aggregated into the Person object.

The COM implementation of the framework concept has some limitations. The COM model

de�nes frameworks as aggregates of the completed objects created at run-time, while a general

framework model allows us to use incomplete objects (at run-time) or classes (at build-time).

3.2. Con�guration Management

Using OOD frameworks instead of traditional objects yields several advantages, but it also

introduces an additional level of complexity when building these frameworks. Frameworks are

composite types of entities { they have an internal structure which is built from objects, or from

parts of them. A framework entity also has relations to other frameworks, and can be composed

from other (sub)frameworks. The de�nition and creation of such a composite entity introduces

con�guration problems. Some of them will be illustrated here for a COM implementation.

Let us consider the following cases:

� Sharing objects in several frameworks;

� Composing frameworks from objects and frameworks.

3.2.1. Sharing Objects in Several Frameworks.

Suppose framework F1 includes objects O1 and O2 with a relation R12 between them, and

framework F2 contains objects O1 and O3 with a relation R13. The object O1 is shared by two

frameworks:

F1 = fO1 O2 ; R12g; F2 = fO1 O3 ; R13g (1)

Suppose we now add a new property to the object O1, a property that is required in (an

improved version of) framework F2. This creates a new version of the object O1;v2, (v2 denotes

the new version) which is included into the framework F2:

F2 = fO1;v2 O3 ; R13g



However, if we do not take versioning into consideration, then the framework speci�cations will

remain the same. In this case, we can be aware of the change of the object O1 in the context

of framework F2, but not necessarily in that of F1. Our speci�cation of F1 is de�ned by (1),

but in reality we have

F1 = fO1;v2 O2 ; R12g

If the role of the object O1;v2 used in F1 is changed, then the behaviour of F1 will be changed

unpredictably, and a system using F1 can fail. To avoid these unpredictable situations we can

introduce basic con�guration management methods { a version management of objects and

con�guration of frameworks [7]:

� An object is identi�ed by its name and version.

� A framework is identi�ed by a name and a version. A new framework version is derived

from object versions included in the framework.

These rules imply that new versions of frameworks will be con�gured when a new object version

is created, as shown in our example:

F1;vi = fO1;vm O2;vn ; R12g; F2;vk = fO1;vm O3;vk ; R13g

F1;vi+1 = fO1;vm+1 O2;vn ; R12g; F2;vk+1 = fO1;vm+1 O3;vk ; R13g

As several frameworks can share one object, and a framework can contain several objects,

the number of generated frameworks can grow explosively. It is, however, possible to limit the

number of interesting con�gurations. Typically, in a development process, we would implement

the changes on all the objects we want, collect the versions of objects we want in a baseline

and derive the frameworks from the baselined object versions. In such a case, experience for

similar cases [2] shows that the number of derived entities does not necessarily grow rapidly.

A shared object is not necessarily completely shared, but di�erent parts of the object,

de�ned by the object's roles, are used in the frameworks. In the COM implementation a

complete object will be included, but a part of it will be used. In a general framework model,

a class (or an object at run-time) includes only those parts which are speci�ed in the object's

role. When we de�ne a new role for an object in a framework or re-de�ne the existing one, we

need to change a speci�c part of the object class. We call this speci�c part an object aspect.

The change of an object aspect will a�ect only those frameworks where the aspect is included.

Other frameworks, though containing the object (or part of it), are not a�ected by the change.

In this case, it is better to keep version control on the aspect level, and relate a framework

con�guration to the object aspects.

If we declare an aspect as a subset of an object Ai(Ok) � Ok, then an object version is

de�ned as a set of aspect versions:

Oi;vk = fAj;vlg

and a framework version is de�ned as a set of aspect versions with relations between the aspects:

Fvk = ffAj;vl(Oi;vk)g ; Rjlg

Having control over changes on the aspect level, we can gain control over the changes on the

framework level. Now we can more precisely identify the frameworks being a�ected by changes

in object roles.



3.2.2. Composing Frameworks from Objects and Frameworks.

In the framework model it is possible to compose new frameworks from existing frameworks.

A new framework is a superset of the classes and relations from the frameworks involved. If

a new framework is created at run-time, as in a COM implementation, then the objects from

the selected frameworks comprise the new framework. The following example illustrates the

merging process of two frameworks F1 and F2 into F3:

F1 = fO1 O2 ; R12g; F2 = fO1 O3 ; R13g; F3 = fO1 O2 O3 ; R12; R13; R23g

The composition works �ne as long as we do not need to consider the changes of objects

within one framework.

Suppose we create a new object version (or a new object aspect version) in F2 and keep the

old version of the same object in F1:

F1;vi = fO1;v1 O2;vk ; R12g; F2;vj = fO1;v1+1 O3;vl ; R13g

In the merging process we have to recognise if di�erent versions of the same objects are

included in the frameworks being merged. If that is the case, we have two possible solutions:

� Selecting one speci�c version of the object (for example the latest):

F3;v1 = fO1;v1+1 O2;vk O3;v1 ; R12; R13; R23g

� Selecting both versions and enable their consistence in the new framework:

F3;v1 = fO1;v1 O1;v1+1 O2; vk O3;v1 ; R12; R13; R23g

For the second case there must be support for identifying object versions. This support can be

provided by introducing an identi�cation interface [14] as the standard interface of an object.

There must also be support for managing di�erent versions of the same object in the running

system.

4. Conclusion

In this paper we have shown how to formally specify OOD frameworks using Mdtl and event

structures. In particular, we have shown a semantics for composing OOD frameworks with

state transitions in the manner depicted in Figure 3.

Our work here is closely related to Troll [11], which is used for specifying large dis-

tributed/concurrent object systems, and to [4], which formalises an algebraic semantics for

object model diagrams in OMT [22]. The main di�erence is that they take the traditional view

of objects (Figure 2), whereas we adopt the multiple-role, more reusable approach (Figure 3).

Their semantics is based on initial theories, as opposed to isoinitial theories that we use.

Overall, our approach to speci�cation is model-theoretic, whereas other approaches are

mostly proof- or type-theoretic. For example, our model-theoretic characterisation of states

and objects stands in contrast to the type-theoretic approach, e.g., [1]. Our model-theoretic

approach also enables us to de�ne a notion of correctness that is preserved through inheritance

hierarchies, which is particularly suitable for component-based software development.



We have also presented a possible implementation of OOD frameworks using the COM

technology. This implementation has some limitations, and we need to do further work to

investigate how to improve this implementation.

Finally we have discussed con�guration management for frameworks. We emphasise a need

for using con�guration management methods for managing frameworks as composite objects.

The con�guration management issues are complicated and need further investigation: Questions

of managing relations, concurrent versions of frameworks, inclusion of change management [9],

etc., must be addressed. Since aspects and objects are not entities recognised by standard

con�guration management tools (which recognise entities such as �les, directories, etc.), new,

semantic-based rules must be incorporated into such tools. For di�erent object-oriented and

component technologies, di�erent tools have to be made. How di�erent do they need to be,

and are there possibilities to de�ne common rules and implementation? These are questions

for future investigation.
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Abstract
We describe a novel tool developed to support

architectural design of distributed real-time control
systems. The approach enables the co-simulation of
functionality (from discrete-time control to logic) together
with the controlled continuous-time processes and the
behavior of the computer system. In particular, modelling
and simulation of distributed computer control systems is
supported allowing analysis of timing and control system
robustness. An emphasised feature of the tool is its
multidisciplinary and integrated approach that combines
the views of control and computer engineering into one view
at an appropriate level of abstraction. The use of the models
and the tool is illustrated through examples and the
usefulness of the approach for architectural design is
discussed together with avenues for further work. The
current models and the tool are designed with the modelling
and analysis of fault-tolerant systems in mind. Improved
support in this direction is the subject of ongoing work.

1. Introduction

The mechatronics perspective provides a large number
of opportunities to create improved machinery with the aid
of software, electronics, sensors, actuators and control.
Modern machinery, such as automobiles, trains and aircraft,
are equipped with embedded distributed computer control
systems, in which the software implemented functionality is
steadily increasing. At the same time, a number of
challenges face the developers of machinery in order to
really be able to benefit from the technological advances:

• Managing complexity arising from the sheer amount of
new functionality, as well as the non trivial dependencies
between system functions and components.

• Managing and exploiting multidisciplinarity in order to
achieve cost-efficient solutions and maintain

consistency (e.g. between goals, assumptions, design
and implementation) during development.

• Verification and validation of dependability
requirements with the challenge of developing
mechatronic systems that are safer and more reliable
than their mechanical counterparts.

Taking the current automotive systems as an example,
the computer system is typically composed of a number of
nodes connected via communication networks. With the
introduction of new functions in vehicular systems it is
inevitable that these will share resources in terms of sensors,
actuators, communication links and computer nodes with
the incentive of cost reduction. For example, in a brake-by
wire system, the dimensioning of the brake actuators will
need to consider not only the basic “by wire braking”, but
also braking demands from vehicle stability and cruise
control. Functional coordination will consequently be an
issue of increasing importance. The sharing of sensors will
influence the choice of sensors, filtering and the
information distribution. Computer system sharing
influences resource management and timing. Perhaps most
importantly, all types of sharing will have impact on the
system dependability and maintainability.

The development approach of such future mechatronic
systems, however, is still vague partly because the
application area is young and partly since it requires the
integrated cooperation of various disciplines from
mechanical, control and computer engineering. A key
element in addressing these challenges is to develop
models, methods and tools to support, in particular, the so
called architectural design stages.

1.1. The road towards architectural design

Essential architectural design decisions include
determining:

• The overall system structures, including functional,
software and computer structures.
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• The principles and means for error detection and
handling, and at what level these should be implemented.

• The policies for resource scheduling, synchronisation,
communication, and function/software triggering.

Establishing a system architecture requires considering
conflicting requirements such as cost, flexibility, safety and
reliability. One difficulty and typical characteristic is that
while some of these properties, such as reliability and
performance may be quantifiable, others are difficult or
impossible to quantify, and in choosing an architecture, the
balancing and resulting trade-offs become more or less
subjective. 

Architectural design requires the use of appropriate
models that describe structural and behavioural properties
[9], [4]. Models together with proper analysis tools provide
the possibility to perform solution space exploration early in
the development process, and prior to the point in time
where physical hardware (mechanics and/or electronics) is
available. Models also capture knowledge and form the
basis for reuse. A model and architecture based approach is
clearly highly motivated given the current state of practice
in industrial development of embedded control systems
where huge efforts and resources are spent on testing and
debugging. From an industrial perspective, Hanselmann [8]
points out the need for, and the current lack of, tools that
allow early analysis and verification of distributed control
systems.

The next section describes the general approach taken in
this project, followed by related work in section 3. Section
4 gives an overview of the model adopted in this approach.
After some implementation details in section 5, our
approach is illustrated in section 6 by walking through a
simple example. Finally, this paper concludes with some
future work proposals.

2. Approach and focus

The suggested approach allows for the analysis of
various architectural design decisions, and their impacts on
control functionality, through a modelling and simulation
tool. This analysis is intended to be carried out early in the
development process and being useful for engineers from
various disciplines. The co-simulation of the control system
functionality together with implementation details of the
chosen computer structure, allows the user to directly study
the resulting system behaviour, and thereby gives the
possibility to try out different architectures. In addition, the
modelling process, spanning control design and computer
system implementation, is important as such in that it
promotes the interdisciplinary design. The tool simulation
approach obviously needs to be complemented by other

types of analyses and approaches, such as control analysis
for performance and stability, and static timing analysis.

The work described in this paper in particular allows the
modelling and simulation of:

• Application software encompassing different
functionalities in a wide variety of styles (e.g. discrete-
time, even-triggered, data-flow, state machines etc.).

• System software such as communication protocols where
in principle the same modelling styles are used as for the
application software. The concurrency model includes
scheduling and thread interactions such as inter thread
communication.

• Distributed computer systems including networks and
computer system nodes (composed of processors with
network and I/O interfaces). Global scheduling is
supported including scheduling of processors, local and
global communication, and other resources.

• Mechanical systems with sensors, actuators and
mechanical system dynamics.

The work forms part of a larger research effort at the
Mechatronics lab [14] where a common denominator is the
development of a toolset supporting model based
architectural design with different types of analysis. An
essential requirement for the models and the toolset is the
interdisciplinary design support encompassing system,
control, computer and mechanical engineers. This will
require a large set of models and analysis features including
models encompassing discrete-time control, finite state
machines, continuous time dynamics, software tasks and
resource management. Our approach is to build upon and
reuse existing models and tools where appropriate, and to
add models and analysis features as required, as illustrated
in this paper.

3. Related Work

From a control system point of view, modelling and
simulation of distributed system implementations has been
used at least since the late 80s. The typical approach is to
map all implementation related problems into control
related effects such as time-varying feedback delays,
sampling period jitter, data loss and permanent errors
causing open loop drift (e.g. controller stuck at the
maximum value) [12], [15], [22]. In [18] it was shown how
special Simulink [10] blocks, can be developed to model
these effects. Although this approach is suitable from a
control design point of view it does not explicitly model the
real-time computer implementation and thus lacks in
supporting holistic architectural design.

Simulation tools such as the ones described in [16], [2]
and [23] tackle various aspects of the design and analysis of
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real-time applications. They are, however, limited in their
use in the multidisciplinary approach suggested in this
paper. The models used may be too abstract or domain
specific to be understood by another discipline. Also, the
tools’ aim could be to analyse a particular aspect of the
system such as a communication protocol or a specific
operating system. In particular, little support exists for the
co-simulation of a control application with the computer
system. Exceptions to this are the tools described in [5] and
[6], in which a control application can be simulated together
with a task scheduler, and with potential extensions to
include data sharing mechanisms. However, the usability
aspects of this tool are weak from the mechatronics
perspective since the control application needs to be
implemented in code prior to simulation and changes to the
system parameters are not straightforward. 

There is relatively little work on interdisciplinary
modelling. Exceptions in this regard include [21], [11] and
[3]. The latter two describe work that deals with safety and
reliability analysis in the context of computer control
systems. 

More detailed surveys of related work can be found in
[13] and [20].

4. The Model

In order to achieve the goal of a multidisciplinary
modelling environment, modelling aspects were borrowed
from models in the various disciplines. In particular, three
models are worth pointing out here. The AIDA modelling
framework [13] provided insights into the control
implementation requirements needed, the component
models and their parameters. As a software engineering
design methodology and model, the CODARTS method by
Gomaa [7] highlighted the aspects of software that need to
be included. Finally, the control engineering approach of
using data flow diagrams was kept in the modelling of the
internal task structure.

Inspiration is also drawn from an industrial case study
where the task was to evaluate the fault-tolerant computer
control system of the SMART satellite, to be launched by
the European Space Agency in 2002. The aim of the
evaluation was to analyse the high level redundancy
protocols being introduced in the system, and their behavior
when implemented using the Controller Area Network
(CAN). The work entailed modelling the distributed fault-
tolerant computer system and simulating its behaviour
during stipulated failure modes such as loss of
communication, node loss, and various CAN controller
failures. The modelling, tool development and evaluation
efforts are further described in [19].

The models described below maintain a good balance
between three factors that were considered important. First,
a good representative model is needed to reflect real entities
in the system and which is not too mathematically abstract.
At the same time, an executable model needs to be well
defined and unambiguous. Finally, the model should
contain a minimal number of different components with a
simple and generic interface in order to simplify the
development and use of the tool.

4.1. System Topology Model

At the top level, the hardware topology of the whole
system is modelled. This hardware structure consists of
three types of components: The surrounding environment,
communication links, and the computer nodes. The node
model will be described in more detail in section 4.2.

Environment.  It is necessary to include the environment
into the model in order to define its connection to the
embedded computer system. With the types of applications
considered here, the most apparent entity that needs to be
modelled is the mechanical dynamics of the system
including sensors and actuators. For this, well-established
mathematical models exist. These models will not be
discussed any further and the reader can refer to a wide
range of dynamics textbooks for details. It is however
necessary that the chosen environment model is integrable
with the rest of the hardware model, meaning that it should
be possible to actuate and sense appropriate parameters of
the mechanics. 

A computer node connects to the system environment at
various points. This connection is performed via Hardware
Units (see “Hardware Units” in Section 4.2) such as pulse
width modulators (PWM), analogue to digital converters
(ADC), and digital to analogue converters (DAC) that
reside in the node.

Communication Link.  A communication link provides
data exchange facilities between computer nodes. It defines
the protocols that handle the messages being sent between
connected nodes. A communication link indirectly interacts
with each connected node through communication
controllers that reside in the node. The communication link
performs the scheduling of messages requested from
connected controllers, while the controller internally
schedules its own messages. Such a setup allows for a
representation of a multitude of node and link models to be
connected, as well as allowing for a node to connect to one
or more links, and vice versa.

As an example, consider the implementation of the CAN
bus. Requests to send messages on the bus are received by
the bus from the controllers. These requests are only
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serviced if the bus is idle, and ongoing transmissions are not
disturbed. Once the bus is idle, controllers arbitrate between
each other to gain access to the bus according to the CAN
protocol. The message transmission time depends on the
bus bit rate and the message size including any protocol
overheads. Note that the arbitration within a CAN controller
is performed independently at the node level, and that this
local scheduling is not part of the CAN protocol itself.

4.2. Node model

A node consists of the following types of components:

• One or more tasks from which the system software is
built. The task model is described in section 4.3.

• A task scheduler.
• Zero or more operating system Service Providers (SP)

such as inter-task communication, task synchronisation
and semaphores.

• Zero or more hardware units such as communication
controllers, timers, ADCs and DACs

• A processor.

The application functionality to be developed by the user
is composed of application tasks, with services provided by
the other components comprising the operating system.
Software layers, which interface the application software to
the system hardware and operating system, can be easily
modelled and designed with this approach. For example,
system tasks, belonging to the operating system, can be
developed to implement software drivers or high level
network protocols.

Scheduler.  A single task scheduler exists for each node in
the system. The scheduler’s role is to, when triggered,
simply choose and activate a single task that is to run on the
node processor at that time. The scheduler may be triggered
by any of the service providers installed on that node, or by
a timer reaching certain predefined points in time. A task list
component also exists which holds certain information on
each task such as its ID, current status, priority and any user-
specific parameters. The scheduler only needs to interface
to the task list in its decision making, and different
scheduler models require different information about the
tasks and hence, the task list model should be consistent
with that of the scheduler.

This model allows for the modelling of a wide range of
schedulers such as event/time triggered, static/dynamic, and
off-line/on-line schedulers. Developing a new scheduler
requires the implementation of the function that decides on
the next running task, as well as the design of the data
structures needed for each task in the task list. Using a
particular scheduler simply requires the inclusion of the
scheduler and its accompanying task list into the node, and

any off-line customisation is done by the user through the
task list.

As an illustrating example, consider the design of a fixed
priority preemptive scheduler. The task list stores, for each
task, the user specified static priority as well as its current
status. A task status can be one of ready, running or blocked.
The scheduler in this case is triggered every time a task
changes its status in order to evaluate if a more legitimate
ready task needs to run on the processor. A scheduler
triggering may be caused by, for example, an interrupt or a
service provider.

Service Provider.  Examples of service providers are inter-
task communication and task synchronisation. Although
they vary in their functionality, these components have very
similar features and interactions to the rest of the system.
Essentially, a service provider (SP) responds to a service
request from a task to perform certain activities. This
activity may cause the calling task (or any other task, in
general) to change status due to the internal state of the SP.

The mechanism of making requests by a task and the
response to these requests is fixed across all services. What
varies is the interpretation of the requests and the way they
are handled. Hence, developing new services simply
requires the definition of the internal states, and the
functionality to handle the various types of possible
requests. All SPs have access to the task list and are able to
trigger the processor scheduler.

As an example, consider an inter-task communication
service implemented as a first-in/first-out, block-on-full
service. When a task requests to send a message, it simply
sends the data to the specific SP. Normally, the SP places
the data in the FIFO buffer. However, if the buffer is full,
the SP changes the task status to blocked, and triggers the
scheduler. When the buffer is available again, the SP
changes the task status to ready and triggers the scheduler.

Hardware Unit.  Hardware units may be fully embedded
in the computer node (such as a floating point processor)
and hence only interfacing with the processor, or they could
lie on the border (such as an ADC) and provide an interface
between the processor and the surrounding environment.

From the task perspective, the interface to a hardware
unit is similar to that of a service provider in that a request
is made for a service which the unit provides. Hence, it is
important to match the requests to the correct service.
However, a hardware unit differs from a service provider in
that it has no direct access to the internal data structures of
the OS such as the scheduler or task list. Instead, the unit
may cause processor interrupts that tasks in the system need
to handle appropriately. This model naturally facilitates the
masking of these units by developing unit drivers
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(consisting of system tasks) that encapsulate the hardware
units and handle the generated interrupts.

As a simple example, consider a hardware unit
implementing a CAN communication controller. A task
requesting to send a message over CAN makes a request for
service by directly accessing the hardware registers. The
unit in turn communicates with the associated CAN
communication link, and upon receiving a message from
the link, produces a hardware interrupt (if so configured).
The CAN controller performs the local scheduling of
simultaneous transmission requests, e.g. FIFO or priority
based.

4.3. The task model

A task is modelled as a single sequence of elementary
functions (EF). Each EF is assumed to take a specified non-
zero amount of time to execute. We can draw a simple task
as shown in Figure 1a, illustrating the precedence
relationship between the elementary functions. The EF can
be either user-specific (octagonal block representation) or
an operating system service request (rectangular block).

When first triggered, the task is made ready to run on the
processor. During its lifetime, and depending on the system
activities and the scheduler being used, a task runs on the
processor at different time slots. The directed link between
two EFs within a task indicates passing control from the
source to the destination EF, triggering the destination EF to
begin its execution. The currently activated EF terminates
once the task executes for a time period that is equivalent to
the EF execution time, since the EF was first activated.
When the control is passed to the last block, the task is
terminated. 

This simple model can be extended in order to provide
looping and branching of the elementary functions, as
shown in Figure 2. Once triggered, the Branch block (B)
produces an output trigger in one, and only one of its
outputs, based on internal logic. The Merge block (M)
produces a trigger on the output as soon as any of its inputs
is triggered. These mechanisms do not consume any
processor time, and are only intended to be used for high
level modes of operations of the application.

Tasks may be initially triggered as soon as the node is
booted, or they may be configured to be triggered by an
interrupt. The first is typical for many application tasks,
while the latter can be used to model system interrupt
handlers. It is also necessary to have at least a single task
(the system idle task) in the system that is initiated during
boot time, and that may never terminate.

Elementary Function (EF). The internal model of an EF is
shown in Figure 1b. The input to an EF (either user-specific
or an operating system service request) consists of the
elementary function trigger and its data. When an EF is first
triggered, the input data is captured and when its specified
execution time elapses, an output trigger is produced
together with output data. By definition, an elementary
function may be preempted at any instance in its execution.
Non-preemptive EFs can be implemented as a subset of
normal EFs, by implicitly surrounding each elementary
function with service requests that disable and enable
preemption.

(a)

(b)
Figure 1. (a) The task model consisting of a sequence of

elementary functions (EF). (b) The internal model of
an EF.
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4.4. Model attributes

Table 1 lists the explicit attributes that the user needs to
specify for each of the components in the model. In
addition, components contain implicit properties that can be
automatically derived from their context. For example, a
task implicitly identifies the list of elementary functions that
are contained within it. Also, each component contains a
unique identifier that distinguishes it from other
components. 

4.5. Software structure

As well as being executable, the models described above
are representative enough that the collection of task models
from each of the nodes in the system can serve as a basis for
a detailed software model, which could be translated to a
more traditional and familiar form, if desired. Sufficient
level of detail is available to generate pseudo-code for each
task in the system, and configuration information indicating
the services needed for each node.

5. Simulator Overview

In this section, we will give a brief outline of the
simulator implementation of the above models. More
detailed description requires extensive explanations of
various Matlab/Simulink aspects and is the subject of a
technical report to be produced in the near future. The
Matlab/Simulink toolbox [10] has been chosen to
implement the simulator for the following reasons:

• Working in the control engineer environment allows the
control engineer to specify, validate and interact with the
computer engineer in a familiar environment that
reduces the chances of ambiguity and confusion.

• A rich API is available for the extension of the tool in a
variety of languages such as C and Java. Combined with
the broad range of existing blocks, the tool development
is simplified, particularly for monitoring and testing.

• Simulink allows for the integration of custom code into
its models. Hence, it is possible to model the control
application together with any encapsulating software. In
addition, Simulink supports hierarchical models.

• Simulink supports modelling and simulation of hybrid
systems. 

• Many commercial development tools such as rapid
prototyping tools, working with Simulink, can give a
well integrated working environment.

On the other hand, there is a strong gap between the
Simulink modelling level and the real-time system
implementation, further motivating this work.

The handling of hybrid systems required the simulator to
have an event-triggered architecture, where all the activities
in the system are event-triggered, and the Simulink
triggering capabilities are used extensively. Note that this
still allows for the modelling of purely time-triggered
architectures, where time is viewed as an event. A
combination of C-coded S-functions and Simulink blocks
were used in the implementation.

Each of the model components discussed in section 4, is
actually represented in the simulator as a Simulink block.
The drag-and-drop approach of blocks from libraries is used
to build the models. Blocks are then customised through a
graphical user interface. Also, there are no restrictions on
the types of standard Simulink blocks that can be used with
the simulator models, except for those imposed by Simulink
itself. This ensures a well integrated environment with
Simulink and the user does not need to learn a new tool.

As can be seen from the definitions in section 4, there is
extensive data exchange between the components. Taking
the traditional Simulink approach of connecting blocks to
exchange data is not favourable since this will certainly
complicate the model for the simplest cases. Even worse,
confusion will occur between data exchange of the
application itself and that needed for the implementation of
the underlying components. The approach taken in the
simulator is to hide all data exchanges that do not form part
of the representation model of the system. For example,
although data exchange is necessary between a scheduler
and each of the tasks on its processor, these links are not
explicit in the model presentation since they do not
contribute to the understanding of the model. The user need
not be concerned with these hidden links since each
component automatically reconfigures itself based on the
presence of other blocks in the system. Also, the interface
between these types of components within a node is well
defined and fixed, allowing for the independent
development of subtypes and variations in the internals of
each of the components.

The simulator permits the user to monitor any variable in
the system, as illustrated by the examples in section 6.

Table 1.  Explicit component attributes.

Component Attributes

Communication link Link Speed
Communication Protocol

Scheduler Scheduling Algorithm

Service Provider/
Hardware Unit

Service Response Policies
Internal Buffer Sizes

Elementary Function Execution Time
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Parameters that may be of interest for timing analysis
include a task’s status, the times when particular events or
activities within a task occur, or the time when a service
request is serviced.

6. Illustrative Examples

The aim of this simple example is to demonstrate how
the tool can be used in architectural design for the
evaluation of the computer implementation effects on the
control performance. We will proceed from a pure
functional design, to a single node and a distributed system
implementation. In addition, the usability aspects of the tool
are illustrated.

6.1. Controller Design

Consider the problem of controlling the angular position
of a DC motor in order to reach a set point specified by the
user. The control algorithm is to be implemented on a
computer system. After modelling the mechanics of the
motor, the control engineer uses established techniques in
designing a discrete controller that produces acceptable
performance. A Simulink model of the resulting system is
represented in Figure 3a.

In this example, a continuous time PID controller was
developed and then translated into a corresponding discrete-
time controller. A sampling period of 2ms was chosen
according to standard rules of thumb [24]. The angular
position of the motor and the user reference value are
measured by the controller. The controller outputs and

controls the motor voltage. This information becomes the
software specification to be implemented. At this stage of
development, important requirements such as controller
jitter and delays are often overlooked, since they are
dependant on implementation details and their values can
only be deduced once the system is implemented. As shown
in [5] and [22], these parameters are critical to ensure a
certain controller performance. One approach to determine
these parameters is to iterate between the control design and
the software implementation until satisfactory results are
achieved. Another cheaper alternative is to model and
evaluate the computer implementation effects early in the
design stage, and to try to take appropriate design measures
before the implementation is carried out.

6.2. A Single Node architecture

Assume that it has been decided that the whole controller
application should be implemented on a single computer
node. Having identified what needs to be measured from the
system environment, it is deduced that two ADCs and one
DAC are needed. A complete model of our hardware
structure is given in Figure 4a.

The node internal structure is shown in Figure 5a. The
application is to be divided into two tasks. The first, called
the Sensor task, performs the sampling of the sensor values,
while the second, called the Controller task, executes the
control algorithm. Data sharing between the two tasks is to
be done via a FIFO, block-on-empty, inter-task
communication buffer (FIFO_Buffer). The tasks’ internal

(a)

(b)
Figure 3. (a) A pure functional model of a DC-motor

controller together with a model of the motor
dynamics. (b) Closed loop performance of the system
in Figure 3a for a step response.
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structures are shown in Figure 5b. The sensor task is
triggered periodically (WaitTrigger) by a system timer with
a period of 2 milliseconds; the trigger is produced by an
interrupt handler task (IH_Task) and communicated to the
sensor task via a buffer (IH_Trigger). The controller task is
triggered by the arrival of messages (the sampled sensor
values) from the sensor task.

To build this model, the developer simply drags and
drops the blocks from the Simulink library. The parameters
of each block are then customised through a GUI.
Partitioning is performed by copying the blocks from the
original control model (e.g. “discrete PID” block in
Figure 3a.) into the appropriate EF (e.g. “Controller EF” in
Figure 5b). The execution time of each EF is then specified.
Having chosen a fixed priority preemptive scheduler for this
node, the user can specify the priority of each of the
application tasks in the system. The task list is designed
such that the priority of system tasks are automatically
generated by the task list component and may not be
modified by the user.

Once the model is built, a simulation is performed and
output devices such as scopes can be placed in various parts
of the system to monitor any data required. Figure 4b shows
the motor angular position. Note the difference between this
controller performance (such as overshoot, rise time and
settling time) and that achieved by the pure functional
model in Figure 3b.

By instrumenting the model, various jitter and delay
parameters were measured. For example, the motor
actuation occurred 1.4ms after the sensor reading. This
delay caused the change in the controller performance
detected in Figure 4.

6.3. A distributed architecture

Now, assume that it is required to distribute this control
application over two computer nodes. One node performs
the sensor sampling, while the other node performs the
motor actuation. CAN is chosen as the communication
protocol between the nodes. Hence, a CAN bus is placed in
the hardware model, with a CAN controller in each of the
computer nodes. This architecture is shown in Figure 6a
where the “Other Node” is added to introduce interference
and blocking to the CAN communication.

The internal node and task structures are essentially
similar to the previous example with the difference that the
Sensor and Controller tasks are placed in the Sensor and

(a)

(b)
Figure 5. (a) Internal node configuration. (b) Internal

task structure for the Sensor and Controller tasks.
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Actuator nodes respectively. Also, the communication of
the sensor samples is now performed over a communication
link. Figure 6b shows the internal node structure for the
“Actuator Node”. The Controller task is triggered by the
CAN Controller block upon receiving a message (the sensor
value) from the CAN bus. In this example, the CAN bus bit
rate is configured to 100kbit/s, and the sensor value is sent
on the bus with an ID of three and a size of three bytes. For
each CAN frame, the worst-case bit stuffing and frame
overhead are assumed [17].

This architecture gives the controller performance
shown in Figure 7a. As expected, this is worse than that of
the single node architecture since the transmission time of
messages over a bus is longer than inter-task
communication within a single node.

Studying the effects of interference and blocking.  
Assuming the presence of other functions in the system,

it may be desired to study how these affect our control
system. Here, we assume that another application resides on
a third node in the system and it periodically sends low
priority messages (ID = 4) on the CAN bus as shown in
Figure 6a. Also, at time = 25 ms, the node sends a single
high priority message, (ID = 2) eight bytes in size, on the

bus. How does this affect the controller application? By
incorporating the third node in our model and running a
simulation, the new controller performance can be
investigated (Figure 7b). The arrival times of each message
in the CAN controllers is shown in Figure 8.

Here, we see that the controller performance has
degraded even further, with a transient glitch, due to the
delays in communicating between the two nodes, induced
by the new function. Such information can be used by the
system designer for example to produce limiting
requirements on the communication bandwidth of other
functions in the system, and/or by modifying the control
system to be more robust towards (varying) time-delays.

Further Evaluation.  Early in the design stages, the
developer may wish to evaluate the effects on the
application of varying certain parameters such as the task
scheduler, inter-task communication mechanisms, or the
communication protocols used. The tool allows the simple
exchange of such parameters by simply replacing a
particular component with another and reconfiguring it
appropriately, with minimal effort from the user.

7. Future Work and Conclusion

This paper has described the current status of the models
and toolset being developed at the Mechatronics Lab, as
part of the AIDA project [1]. The analysis of computer
induced effects (due to design faults such as timing
problems and computer hardware faults) on the system
behaviour, constitutes a kind of failure mode and effects
analysis. We expect the simulation tool to be especially
useful for evaluating different error detection as well as
error handling techniques, spanning the computer and
control system levels. As mentioned earlier, this work is to
be extended in various directions in the future. Most

(a)

(b)
Figure 7. Closed loop performance for the (a)

distributed architecture (b) distributed architecture,
with interference at time = 25 ms.
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importantly, it is desired to validate and evaluate this work
through further industrial case studies, such as the
evaluation of architectures for x-by-wire systems in other
related projects at the Mechatronics lab. Currently, no
emphasis has been placed on simulation efficiency; this
may require work in the future.

Parallel to the work described here, an analysis tool,
aiming at the timing analysis of distributed control systems,
is also under development at the lab. In the future, the two
tools are to be integrated, providing two complementary
approaches for system analysis. This may necessitate the
extension of the current models in order to overcome any
unforeseen shortcomings in the models.

Certain tool implementation limitations also need to be
overcome. For example, in the current implementation, the
scheduler preemption overhead is not an explicit parameter
of the scheduler and need to be specified for each task in the
system. From the usability perspective, it will be desired to
expand the current libraries (for example, with a collection
of communication protocols) and extend the tool to support
features such as redundancy mechanisms and clock
synchronisation. Also, it is desired to further the
development of hardware entity models, such as simple
processors and smart sensors, allowing the modelling of
functionality implemented directly in hardware.
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Abstract. We adopt a model of timed automata extended with asynchronous
processes i.e. tasks triggered by events. A task is an executable program char-
acterized by its worst execution time and deadline, and possibly other param-
eters such as priorities etc. for scheduling. The main idea is to associate each
location of an automaton with a task (or a set of tasks). A transition leading
to a location denotes an event triggering the tasks and the clock constraint
on the transition speci�es the possible arrival times of the event. This yields
a model for real-time systems expressive enough to describe concurrency and
synchronization, and tasks which may be periodic, sporadic, preemptive and
(or) non-preemptive. An automaton is schedulable if there exists a (preemp-
tive or non-preemptive) scheduling strategy such that all possible sequences
of events accepted by the automaton are schedulable in the sense that all as-
sociated tasks can be computed within their deadlines.

Our main result is that the schedulability checking problem is decidable. The
problem has been conjectured to be undecidable due to the nature of pre-
emptive scheduling. To our knowledge, this is the �rst decidability result for
preemptive scheduling in dense-time models. The proof is based on a class
of suspension automata, that is timed automata with subtraction in which
clocks may be updated by subtraction operations. We show that if each clock
is bounded with a maximal constant and subtraction operations are performed
on clocks only in the bounded zone, the reachability problem is decidable.
The crucial observation is that subtraction preserves region equivalence in the
bounded clock zone, and the schedulability checking problem can be encoded
as a reachability problem for such automata. Based on the proof, we have
developed a symbolic technique, which has been implemented as a prototype
tool for schedulability analysis.

1 Introduction

Real time systems are often designed as a set of tasks imposed with hard time con-
straints such as deadlines. The tasks may be triggered periodically or sporadically
(non-periodically) by either time or events. Hard time constraints mean that when-
ever a task is triggered (released), it must be computed within the given deadline.
One of the most important issues in the development of real time systems is schedu-
lability analysis prior to the implementation. It is to check, based on models of the
environment (controlled systems) and control software under development, whether
the tasks can be guaranteed to meet their deadlines with the available computing
resources such as processor time.
? Contact author.



In the area of real time scheduling, researchers have developed various methods
[But97] e.g. rate monotonic scheduling, which are widely applied in the analysis of
periodic tasks in time-driven systems. To deal with non-periodic tasks in event{driven
systems, the standard method is to consider non-periodic tasks as periodic using the
estimated minimal inter-arrival times as task periods. Clearly, the analysis based on
such a task model would be pessimistic in many cases, e.g. a task set which is schedu-
lable may be considered as non-schedulable as the inter-arrival times of the tasks may
vary over time, that are not necessary minimal. To achieve more precise analysis, we
need task models that allow more precise and relaxed timing constraints.

In recent years, in the area of formal methods, there have been several advances in
formal modeling and analysis of real time systems based the theory of timed automata
due to the pioneering work of Alur and Dill [AD94]. Notably, a number of veri�ca-
tion tools have been developed (e.g. Kronos and UPPAAL [DY95,BLL+96,LPY97])
in the framework of timed automata, that have been successfully applied in industrial
case studies (e.g. [BGK+96,LP97,LPY98]). Timed automata have proved expressive
enough to model many real-life examples, in particular, for event-driven systems. The
advantage with timed automata in modeling systems is that one may specify more
relaxed timing constraints on events (i.e. discrete transitions) than the traditional ap-
proach in which events are often considered to be periodic. Moreover, timed automata
also allow for modelling other behavioral aspects of systems such as synchronization
and concurrency. However, it is not clear how timed automata can be used for schedu-
lability analysis because there is no support for specifying resource requirements and
hard time constraints on computations.

Following the work of [EWY98], we propose to extend timed automata with asyn-
chronous processes i.e. tasks triggered by events. A task is an executable program
characterized by its worst case execution time and deadline, and possibly other pa-
rameters such as priorities etc for scheduling. The main idea is to associate each lo-
cation of an automaton with a task (or a set of tasks in the general case). Intuitively
a transition leading to a location in the automaton denotes an event triggering the
task and the guard (clock constraints) on the transition speci�es the possible arrival
times of the event. Semantically, an automaton may perform two types of transitions.
Delay transitions correspond to the execution of running tasks (with highest priority)
and idling for the other waiting tasks. Discrete transitions correspond to the arrival
of new task instances. Whenever a task is triggered, it will be put in the schedul-
ing queue for execution (i.e. the ready queue in operating systems). We assume that
the tasks will be executed according to a given scheduling strategy e.g. FPS (�xed
priority scheduling) or EDF (earliest deadline �rst). Thus during the execution of an
automaton, there may be a number of processes (released tasks) running logically in
parallel.

For example, consider the automaton shown in Figure 1. It has three locations l0; l1; l2,
and two tasks P and Q (triggered by a and b) with computing time and relative
deadline in brackets (2; 10), and (4; 8) respectively. The automaton models a system
starting in its initial location may move to location l1 by event a at any time, which
triggers the task P . In location l1, as long as the constraints x � 10 and y � 40 are
satis�ed and event a occurs, a copy (instance) of task P will be created and put in
the scheduling queue. However, in location l1, it can not create more than 5 instances
of task P because the constraint y � 40 will be violated after 40 time units. In fact,
every copy will be computed before the next instance arrives and the scheduling queue
may contain at most one task instance and no task instance will miss its deadline in
location l1. In location l1, the system is also able to accept event b, trigger the task Q
and then switch to location l2. In l2, because there is no constraints labelled on the
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Fig. 1. Timed automaton with asynchronous processes.

b-transition, it may accept an unbounded number of b's, and create an unbounded
number of copies of task Q in 0 time. in zero time because there is no constraint
on the b-transition. This is the so-called zeno behavior. However, after more than
two copies of Q, the queue will be non schedulable1. This means that the system is
non-schedulable. Thus, zeno-behaviour will correspond to non schedulability in our
setting, which is a natural property of the model.

We shall formalize the notion of schedulability in terms of reachable states. A state
of an extended automaton will be a triple (l; u; q) consisting of a location l, a clock
assignment u and a task queue q. The task queue contains pairs of remaining com-
puting times and relative deadlines for all released tasks. Naturally, a state (l; u; q)
is schedulable if q is schedulable in the sense there there exists a scheduling strategy
with which all tasks in q can be computed within their deadlines. An automaton is
schedulable if all reachable states of the automaton are schedulable. Note that the
notion of schedulablity above is relative to the scheduling strategy. A task queue
which is not schedulable with one scheduling strategy, may be schedulable with an-
other strategy. In [EWY98], we have shown that under the assumption that the tasks
are non-preemptive, the schedulability checking problem can be transformed to a
reachability problem for ordinary timed automata and thus it is decidable. The re-
sult essentially means that given an automaton it is possible to check whether the
automaton is schedulable with any non-preemptive scheduling strategy. For preemp-
tive scheduling strategies, it has been conjectured that the schedulability checking
problem is undecidable because in preemptive scheduling we must use stop-watches
to accumulate computing times for tasks. It appears that the computation model be-
hind preemptive scheduling is stop-watch automata for which it is known that the
reachability problem is undecidable.

Surprisingly the above conjecture is wrong. In this paper, we establish that the schedu-
lability checking problem for extended timed automata is decidable for preemptive
scheduling. Note that the preemptive earliest deadline �rst algorithm (EDF) is opti-
mal in the sense if EDF can not schedule a task set, no other algorithms can. Thus
our result applies to not only preemptive scheduling, but any scheduling strategy.
That is, for a given extended timed automata, it is checkable if there exists a schedul-
ing strategy (preemtive or non preemtive) with which the automaton is schedulable.
The main idea in the proof is to model scheduling strategies with variants of timed
automata (not stop-watch automata), and then encode the schedulability analysis

1 According to the optimal scheduling strategy EDF, no scheduling strategy will be able to
schedule the queue [Q(4; 8); Q(4; 8); Q(4; 8)] so that the deadline for the last instance of Q
can be met.



problem as a reachability problem. We identify a variant of timed automata (a class
of suspension automata): timed automata with subtraction in which clocks may be
updated by subtraction. We show that if each clock is bounded with a maximal con-
stant and subtraction operations are performed on clocks only in the bounded zone,
the reachability problem is decidable2. The crucial observation is that the schedulabil-
ity checking problem can be translated to a reachability problem for bounded timed
automata with subtraction.

The rest of this paper is organized as follows: Section 2 presents the syntax and
semantics of timed automata extended with tasks. Section 3 describes scheduling
problems related to the extended model. Section 4 is devoted to the main proof that
the schedulability checking problem for preemptive scheduling is decidable. Section
5 concludes the paper with summarized results and future work, as well as a brief
summary and comparison with related work.

2 Timed Automata with Tasks

Recall that a timed automaton is a standard �nite-state automaton extended with
a �nite collection of real-valued clocks. The transitions of a timed automaton are
labelled with a guard (constraints on clocks), an action, and a clock reset (a subset of
clocks to be reset to zero). We may view a timed automaton as an abstract model of a
running system. The model describes the possible events (alphabets accepted by the
automaton) that may occur during the operation of the system and the occurrence
of the events must obey the timing constraints (given by the clock constraints).

However it is not clear how events or action symbols accepted by a timed automaton
should be handled or computed. In fact, there is no way in timed automata to specify
resource requirements and hard time constraints on computations. We propose to
extend timed automata with asynchronous processes i.e. tasks triggered by events
asynchronously. The main idea is to associate each location of a timed automaton
with an executable program (or a set of programs in the general case) called a task
type or simply a task.

2.1 Syntax

Let P ranged over by P;Q;R, denote a �nite set of task types. A task type may
have di�erent instances that are copies of the same program with di�erent inputs. We
further assume that the worst case execution times and hard deadlines of tasks in P
are known 3. Thus, each task P is characterized as a pair of natural numbers denoted
P (C;D) with C � D, where C is the worst case execution time of P and D is the
relative deadline for P . The deadline D is a relative deadline meaning that when task
P is released, it should �nish within D time units. We shall use C(P ) and D(P ) to
denote the worst case execution time and relative deadline of P respectively.

As in timed automata, assume a �nite set of alphabets Act for actions and a �nite
set of real-valued variables C for clocks. We use a; b etc to range over Act and x1; x2
2 Because the subtraction preserves region equivalence in the bounded clock zone, and there-
fore the state space of a bounded automaton with subtraction can be partitioned according
to region equivalence

3 Note that tasks may have other parameters such as �xed priority for scheduling and other
resource requirements e.g. on memory consumption. For simplicity, in this paper, we only
consider computing time and deadline.



etc. to range over C. We use B(C) ranged over by g to denote the set of conjunctive
formulas of atomic constraints in the form: xi�C or xi � xj�D where xi; xj 2 C are
clocks, � 2 f�; <;�; >g, and C;D are natural numbers. The elements of B(C) are
called clock constraints.

De�nition 1. A timed automaton extended with tasks, over actions Act, clocks C
and tasks P is a tuple hN; l0; E; I;Mi where

{ hN; l0; E; Ii is a timed automaton where

� N is a �nite set of locations ranged over by l;m; n,
� l0 2 N is the initial location, and
� E � N �B(C)�Act� 2C �N is the set of edges.
� I : N 7! B(C) is a function assigning each location with a clock constraint (a

location invariant).

{ M : N ,! P is a partial function assigning locations with tasks 4.

Intuitively, a discrete transition in an automaton denotes an event triggering a task
and the guard (clock constraints) on the transition speci�es all the possible arrival
times of the event (or the associated task). Whenever a task is triggered, it will be
put in the scheduling (or task) queue for execution (corresponding to the ready queue
in operating systems).

Clearly extended timed automata is at least as expressive as timed automata; for
example, if M is the empty mapping, we will have ordinary timed automata. It is
a rather general and expressive model. For example, it may model time-triggered
periodic tasks as a simple automaton as shown in Figure 2(a) where P is a periodic
task with computing time 2, deadline 8 and period 20. More generally it may model
systems containing both periodic and sporadic tasks as shown in Figure 2(b) which
is a system consisting of 4 tasks as annotation on locations, where P1 and P2 are
periodic with periods 20 and 40 respectively (speci�ed by the constraints: x=20 and
x=40), and Q1 and Q2 are sporadic or event driven (by event a and b respectively).

In general, there may be a number of processes (released tasks) running logically in
parallel. For example, an instance of task Q2 may be released before the preceding
instance of task P1 has been computed because there is no constraint on when b2 will
arrive. This means that the scheduling queue may contains at least P1 and Q2. In
fact, instances of all four task types may appear in the queue at the same time.

To have a more general model, we may allow data variables shared between automata
and tasks. For example. a boolean can be used to denote the completion of a task. The
arrivals of events may be e�ected by the completion of certain tasks. This will not add
any technical diÆculty. However for simplicity, we will not consider synchronization
between an automaton and the associated tasks in this paper. The only requirement
on the completion of a task is given by the deadline. When a task is �nished does not
e�ect the control behavior speci�ed in the automaton.

To handle concurrency and synchronization, parallel composition of extended timed
automata may be introduced in the same way as for ordinary timed automata (e.g. see
[LPY95]) using the notion of synchronization function [HK89]. For example, consider
the parallel composition AjjB of A and B over the same set of actions Act. The set

4 Note that M is a partial function meaning that some of the locations may have no task.
Note also that we may also associate a location with a set of tasks instead of a single one.
It will not introduce technical diÆculties.
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Fig. 2. Modeling Periodic and Sporadic Tasks.

of nodes of AjjB is simply the product of A's and B's nodes, the set of clocks is
the (disjoint) union of A's and B's clocks, the edges are based on synchronizable A's
and B's edges with enabling conditions conjuncted and reset-sets unioned. Note that
due to the notion of synchronization function [HK89], the action set of the parallel
composition will be Act and thus the task assignment function for AjjB is the same
as for A and B.

2.2 Operational Semantics

Semantically, an extended timed automaton may perform two types of transitions just
as standard timed automata. But the di�erence is that delay transitions correspond
to the execution of running tasks with highest priority (or earliest deadline) and idling
for the other tasks waiting to run. Discrete transitions corresponds to the arrival of
new task instances.

We represent the values of clocks as functions (called clock assignments) from C to the
non{negative realsR�0. We denote by V the set of clock assignments for C. Naturally,
a semantic state of an automaton is a triple (l; u; q) where l is the current control
location, u denotes the current values of clocks, and q is the current task queue. We
assume that the task queue takes the form: [P1(c0; d0); P2(c1; d1):::Pn(cn; dn)] where
Pi(ci; di) denotes a released instance of task type Pi with remaining computing time
ci and relative deadline di.

Assume that there are a number of processors running the released task instances ac-
cording to a certain scheduling strategy Sch e.g. FPS (�xed priority scheduling) or EDF

(earliest deadline �rst) which sorts the task queue whenever new tasks arrives accord-
ing to task parameters e.g. deadlines. In general, we assume that a scheduling strategy
is a sorting function which may change the ordering of the queue elements only. Thus
an action transition will result in a sorted queue including the newly released tasks by
the transition. A delay transition with c time units is to execute the task in the �rst
positon of the queue with c time units. Thus the delay transition will decrease the com-
puting time of the �rst task with c. If its computation time becomes 0, the task should
be removed from the queue (shrinking). We adopt the structural equivalence over
queues respecting [P1(0; d); P2(c1; d1):::Pn(cn; dn)] = [P2(c1; d1):::Pn(cn; dn)]. More-
over, after a delay transition with c time units, the deadlines of all tasks in the queue
will be decreased by c (since time has progressed by c). To summarize the above
intuition, we introduce the following functions on task queues:



{ Sch is a sorting function for task queues (or lists), that may change the or-
dering of the queue elements only. For example, EDF([P (3:1; 10); Q(4; 5:3)]) =
[Q(4; 5:3); P (3:1; 10)]). We call such sorting functions scheduling strategies that
may be preemptive or non-preemptive 5.

{ Run is a function which given a real number t and a task queue q returns the
resulted task queue after t time units of execution according to available comput-
ing resources. For simplicity, we assume that only one processor available 6. Then
the meaning of Run(q; t) should be obvious and it can be de�ned inductively. For
example, let q = [Q(4; 5); P (3; 10)]. Then Run(q; 6) = [P (1; 4)] in which the �rst
task is �nished and the second has been executed for 2 time units.

Further, for a real number t 2 R�0, we use u+ t to denote the clock assignment which
maps each clock x to the value u(x) + t, u j= g to denote that the clock assignment
u satis�es the constraint g and u[r 7! 0] for r � C, to denote the clock assignment
which maps each clock in r to 0 and agrees with u for the other clocks (i.e. Cnr).

Now we are ready to present the operational semantics for extended timed automata
by transition rules:

De�nition 2. Given a scheduling strategy Sch 7, the semantics of an extended timed
automaton hN; l0; E; I;Mi with initial state (l0; u0; q0) is a transition system de�ned
by the following rules:

{ (l; u; q)
a
�!Sch(m;u[r 7! 0]; Sch(M(m) :: q)) if l

g;a;r
�! m and u j= g

{ (l; u; q)
t

�!Sch(l; u+ t;Run(q; t)) if (u+ t) j= I(l)

where M(m) :: q denotes the queue with M(m) inserted in q.

We shall omit Sch from the transition relation whenever it is understood from the
context.

Consider the automaton in Figure 2(b). Assume that preemptive earliest deadline
(EDF) is used to schedule the task queue i.e. Sch is sorting the queue in EDF order,
(and Run is as de�ned earlier). Then the automaton with initial state (m1; [x =
0]; [Q1(1; 2)]) may demonstrate the following sequence of typical transitions:

(l0; [x = 0]; [Q1(1; 2)])
0:5
�! (m1; [x = 0:5]; [Q1(0:5; 1:5)])

10
�! (m1; [x = 10:5]; [Q1(0; 0)]) = (m1; [x = 10:5]; [])
a1�! (n1; [x = 0]; [P1(4; 20)])
0:5
�! (n1; [x = 0:5]; [P1(3:5; 19:5)])
b2
�! (m2; [x = 0:5]; [Q2(1; 4); P1(3:5; 19:5)])
0:3
�! (m2; [x = 0:8]; [Q2(0:7; 3:7); P1(3:5; 19:2)])
a2�! (n2; [x = 0]; [Q2(0:7; 3:7); P2(2; 10); P1(3:5; 19:2)])
b1�! (m1; [x = 0]; [Q2(0:7; 3:7); Q1(1; 2); P2(2; 10); P1(3:5; 19:2)])
: : :

5 As in scheduling theory, we adopt the standard assumptions on scheduling strategies: A
non-preemptive strategy will never change the position of the �rst element of a queue.
A preemtive strategy may change the ordering of task types only, but never change the
ordering of task instances of the same type.

6 However, the semantics may be extended to multi-processor setting. We only need to
modify the function Run according to available resources (i.e. number of processors in this
case).

7 Note that we �xed Run to be the function that represents a one-processor system.



Note that the queue is always ordered by EDF with increasing deadlines and though
the queue is growing, in location m1, the generation of new task instances will be
slowed down by the constraint x > 10 labeled on the edge m1 to n1 and the queue
will be reduced by the following transition:

(m1; [x = 0]; [Q2(0:7; 3:7); Q1(1; 2); P2(2; 10); P1(3:5; 19:2)])
10
�! (n1; [x = 10]; [])

The automaton may also perform other sequences of transitions triggering copies of
tasks. For example, it may stay in location n1 or n2 where instances of the periodic
tasks P1 and P2 may be released and executed.

3 Schedulability Analysis

In this section we study veri�cation problems related to the model presented in pre-
vious section. First, we have the same notion of reachability as for timed automata.

De�nition 3. We shall write (l; u; q)�!(l0; u0; q0) if (l; u; q)
a
�!(l0; u0; q0) for an ac-

tion a or (l; u; q)
t

�!(l0; u0; q0) for a delay t. For an automaton with initial state
(l0; u0; q0), (l; u; q) is reachable i� (l0; u0; q0)(�!)�(l; u; q).

Note that the reachable state space of an extended timed automaton is in�nite because
of not only the real-valued clocks, but also the unbounded size of the task queue.
However, for certain analysis, e.g. safety properties (that are not related to the task
queue), we may only be interested in the reachability of locations. A nice property of
our extension is that the location reachability problem can be checked by the same
technique as for timed automata [DOTY95,BLL+96,ACH+95,YPD94]. So we may
view the original timed automaton (without task assignment) as an abstraction of its
extended version, which preserves location reachability. The existing model checking
tools such as [DOTY95,BLL+96] can be applied directly to verify the abstract models.

But if properties related to the task queue are of interests, we need to develop a new
veri�cation technique. One of the most interesting properties of extended automata
related to the task queue is schedulability.

According to the transition rules, the task queue is growing with action transitions
and shrinking with delay transitions. Multiple copies (instances) of the same task
type may appear in the queue 8. To illustrate the changing size of the task queue, we
consider again the automaton shown in Figure 1 in Section 1. In location l1, it can
never generate more than 5 instances of P due to the constraint y � 40, namely the
number of copies may be bounded by the clock constraints 9. This is illustrated by
the following transitions:

8 In practice, copies of the same task type may have di�erent input to compute.
9 In fact, in location l1, the size of the queue will be bounded by 1 because every released
instance will be computed before the next release that will not arrive within 10 time units
due to the constraint x � 10.



(l0; [x = 0; y = 0]; [])
3

�! (l0; [x = 3; y = 3]; [])
a
�! (l1; [x = 0; y = 0]; [P (2; 10)])
2:5
�! (l1; [x = 2:5; y = 2:5]; [P (0; 7:5)]) = (l1; [x = 2:5; y = 2:5]; [])
7:5
�! (l1; [x = 10; y = 10]; [])
a
�! (l1; [x = 0; y = 10]; [P (2; 10)])
: : :
a
�! (l1; [x = 0; y = 40]; [P (2; 10)])
3:4
�! (l1; [x = 3:4; y = 43:4]; [P (0; 6:6)]) = (l1; [x = 3:4; y = 43:4]; [])

In fact, the queue size in location l1 is bounded by 1. But in location l2, an in�nite
number of copies of Q may be released in zero time because there is no constraint on
the b-transition, which demonstrates the so-called zeno behavior:

(l1; [x = 3:4; y = 43:4]; [])
b

�! (l2; [x = 3:4; y = 43:4]; [Q(4; 8)])
b

�! (l2; [x = 3:4; y = 43:4]; [Q(4; 8); Q(4; 8)])
b

�! (l2; [x = 3:4; y = 43:4]; [Q(4; 8); Q(4; 8); Q(4; 8)])
: : :

But note that after more than two copies of Q, the queue will be non schedulable10.
We notice that zeno-behaviour will correspond to non schedulability in our setting
which is a nice property of the model. We shall see that non-schedulability can be
checked by reachability analysis. However zeno-freeness does not necessarily implies
schedulability.

Now we formalize the notion of schedulability.

De�nition 4. (Schedulability) A state (l; u; q) where q = [P1(c1; d1) : : : Pn(cn; dn)]
is a failure denoted (l; u;Error) if there exists i such that ci � 0 and di < 0, that
is, a task failed in meeting its deadline. Naturally an automaton A with initial state
(l0; u0; q0) is non-schedulable with Sch i� (l0; u0; q0)(�!Sch)

�(l; u;Error) for some l
and u. Otherwise, we say that A is schedulable with Sch.

More generally, we say that A is schedulable i� there exists a scheduling strategy Sch

with which A is schedulable.

The schedulability of a state may be checked by the standard schedulability test.
We say that (l; u; q) is schedulable with Sch if Sch(q) = [P1(c1; d1) : : : Pn(cn; dn)] and
(
P

i�k ci) � dk for all k � n. Alternatively, an automaton is schedulable with Sch if
all its reachable states are schedulable with Sch.

Note that checking schedulability of a state is a trivial task according to the de�nition.
But checking the relative schedulability of an automaton with respects to a given
scheduling strategy is not easy, and checking the general schedulability (equivalent to
�nding a scheduling strategy to schedule the automaton) is even more diÆcult.

Fortunately the queues of all schedulable states of an automaton are bounded. First
note that a task instance that has been started can not be preempted by another
instance of the same task type. This means that there is only one instance of each task
type in the queue whose computing time can be a real number and it can be arbitrarily

10 According to the optimal scheduling strategy EDF, no scheduling strategy will be able to
schedule the queue [Q(4; 8); Q(4; 8); Q(4; 8)] to meet the deadline for the last instance of
Q.



small. Thus the number of instances of each task type P 2 P , in a schedulable queue
is bounded by dD(P )=C(P )e and the size of schedulable queues is bounded by

X

P2P

dD(P )=C(P )e

We will code schedulability checking problems as reachability problems. First, we
consider the case of non-preemptive scheduling to introduce the problems we are
aiming at in this paper. We have the following positive result.

Theorem 1. The problem of checking schedulability relative to non-preemptive schedul-
ing strategy for extended timed automata is decidable.

Proof. A detailed proof is given in [EWY98]. We scketch the proof idea here. It is
to code the given scheduling strategy as a timed automaton (called the scheduler)
denoted E(Sch) which uses clocks to remember computing times and relative dead-
lines for released tasks. Note that for non-preemptive scheduling, only one instance
is running, which means that only one clock, denoted c is needed to remember the
computing time for the running task and one clock, denoted di for each released task
instance Pi to remember the deadline.

The scheduler automaton is constructed as follows: Whenever a task instance Pi is
released by an event releasei, di is reset to 0. Whenever a task is started to run11, c
is reset to 0. Whenever the constraint di = 0 is satis�ed, and Pi is not running, an
error-state (non-schedulable) should be reached.

We also need to transform the original automaton A to E(A) to synchronize with the
scheduler that Pi is released whenever a location, say l to which Pi is associated, is
reached. This is done simply by replacing actions labeled on transitions leading to l
with releasei.

Finally we construct the product automaton E(Sch)jjE(A) in which both E(Sch)
and E(A) can only synchronize on identical action symbols namely releasei's. It can
be proved that if an error-state of the product automaton is reachable, the original
extended timed automaton is non-schedulable.

For preemptive scheduling strategies, it has been conjectured that the schedulability
checking problem is undecidable. The reason is that if we use the same ideas as for non-
preemptive scheduling to encode a preemptive scheduling strategy, we must use stop-
watches (or integrators) to add up computing times for suspended tasks. It appears
that the computation model behind preemptive scheduling is stop-watch automata
for which it is known that the reachability problem is undecidable. Surprisingly this
conjecture is wrong.

Theorem 2. The problem of checking schedulability relative to preemptive scheduling
strategy for extended timed automata is decidable.

The rest of this paper will be devoted to the proof of this theorem. It follows from
Lemma 3, 4, and 5 established in the following section.

Before we go further, we state a more general result follows from the above theorem.

11 Initially or the running task Pi is �nished i.e. the constraint c = C(P ) is satis�ed.



Theorem 3. The problem of checking schedulability for extended timed automata is
decidable.

From scheduling theory[But97], we know that the preemptive version of Earliest Dead-
line First scheduling (EDF) is optimal in the sense that if a task queue is non schedula-
ble with EDF, it can not be schedulable with any other scheduling strategy (preemptive
or non preemptive). Thus, the general schedulability checking problem is equivalent
to the relative schedulability checking with respects to EDF.

4 Decidability and Proofs

We shall code the schedulability checking problem as a reachability problem. Note
that in the case of non preemptive scheduling, we are able to do so using timed
automaton only. For preemptive scheduling, we need a more expressive model.

4.1 Timed Automata with Subtraction

De�nition 5. A timed automaton with subtraction is a timed automaton in which
clocks may be updated by subtraction in the form x := x � C in addition to reset of
the form: x := 0, where C is a natural number.

Note that this is the so called suspension automata [MV94] and also called updatable
automata in [BDFP00]. It is known that the reachability problem for this class of
automata is undecidable. However, for the following class of suspension automata,
location reachability is decidable.

De�nition 6. (Bounded Timed Automata with Subtraction) A timed automaton is
bounded i� for all its reachable states (l; u; q), there is a maximal constant Cx for each
clock x such that

1. u(x) � 0 for all clocks x, i.e. clock values should not be negative 12, and

2. u(x) � Cx for all l0 such that l
gar
�! l0 and (x := x� C) 2 r for some C.

Note that in general, it may be diÆcult to compute the maximal constants from the
syntax of an automaton. But we shall see that we can compute the constants for our
encoding of scheduling problems.

Because subtraction operations on clocks are performed only within a bounded area.
It preserves the region equivalence. We adopt the standard de�nition due to Alur and
Dill [AD94].

De�nition 7. (Region Equivalence denoted �) For a clock x 2 C, let Cx be a constant
(the ceiling of clock x). For a real number t, let ftg denote the fractional part of t, and
btc denote its integer part. For clock assignments u; v 2 V, u; v are region-equivalent
denote u�v i�

1. for each clock x, either bu(x)c = bv(x)c or (u(x) > Cx and v(x) > Cx), and

12 This condition may be relaxed (e.g. the clock values may be negative, but bounded with
a lower bound). But this is precisely what we need for the main proof.



2. for all clocks x; y if u(x) � Cx and u(y) � Cy then
(a) (fu(x)g = 0 i� fv(x)g = 0 and
(b) (fu(x)g � fu(y)g i� fv(x)g � fv(y)g)

It is known that region equivalence is preserved by the delay (addition) and reset. In
the following, we establish that region equivalence is also preserved by subtraction
for clocks that are bounded as de�ned in De�nition 6. For a clock assignment u, let
u(x � C) denote the assignment: u(x � C)(x) = u(x) � C and u(x � C)(y) = u(y)
for y 6= x. The following results states that � is a bisimulation with respect to the
operations: addition, reset and the conditional subtraction.

Cx

Cy

x

y

Bounded area alowed
for subtraction

u

v(x-1)
u(x-1)

v

Fig. 3. Region equivalence preserved by subtraction when clocks are bounded.

Lemma 1. Let u; v 2 V. Then u�v implies

1. u+ t�v + t for a positive real number t, and
2. u[x 7! 0]�v[x 7! 0] for a clock x and
3. u(x � C)�v(x � C) for all natural numbers C such that C � u(x) � Cx. for a

natural number C.

Proof. The proof for the �rst two items can be found in the literature e.g. [LW97].

We check the third according to the de�nition of regioin equivalence. It is illustrated
in Figure 3 that the equivalence is preserved by subtraction in the bounded area.
Assume that u � v, and for each clock x we also have C � u(x) � Cx. Note that
because u�v, and C � u(x), we have C � v(x). Then we have u(x � C)(y) � 0 and
v(x � C)(y) � 0 for any clock y. Now we have two cases to check:

1. If bu(x)c = bv(x)c, obviously we have bu(x)� Cc = bv(x) � Cc for a natural
number C and then bu(x� C)c = bv(x� C)c by de�nition.

2. Note that the subtraction operation on clocks does not change the fractional parts
of clock values. Therefore for all clocks y and z, we have:
(a) (fu(x� C)(y)g = 0 i� fv(x� C)(y)g = 0 and
(b) (fu(x� C)(y)g � fu(x� C)(z)g i� fv(x� C)(y)g � fv(x� C)(z)g)

In fact, region equivalence over clock assignments induces a bisimulation over reach-
able states of automata, which can be used to partition the whole state space as a
�nite number of equivalence classes.



Lemma 2. Assume a bounded timed automaton with subtraction, a location l and
clock assignments u and v. Then u�v implies that

1. whenever (l; u) �! (l0; u0) then (l; v) �! (l0; v0) for for some v0 s.t. u0�v0 and

2. whenever (l; v) �! (l0; v0) then (l; u) �! (l0; u0) for for some u0 s.t. u0�v0.

Proof. It follows from Lemma 1.

Note that the above lemma essentially states that if u�v then (l; u) and (l; v) are
bisimular, which implies the following result.

Lemma 3. The location reachability problem for bounded timed automata with sub-
traction, whose clocks are bounded with known maximal constants is decidable.

Proof. Because each clock of the automaton is bounded by a maximal constant, it
follows from lemma 2 that for each location l, there is a �nite number of equivalence
classes of states which are equivalent in the sense that they will reach the same
equivalence classes of states. Because the number of locations of an automaton is
�nite, the whole state space of an automaton can be partitioned into �nite number of
such equivalence classes.

4.2 Encoding of Schedulability as Reachability

Assume an automaton A extended with tasks, and a preemptive scheduling strategy
Sch. The aim is to check if A is schedulable with Sch. As for the case of non-preemptive
scheduling (Theorem 1), we construct E(A) and E(Sch), and check a pre-de�ned
error-state in the product automaton of the two. The construction is illustrated in
�gure 4.

E(A) is constructed as a timed automaton which is exactly the same as for the non-
preemptive case (Theorem 1) and E(Sch) will be constructed as a timed automaton
with subtraction.
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Fig. 4. Encoding of schelulability problem.



We introduce some notation. We use C(i) and D(i) to stand for the worst case ex-
ecution time and relative deadline respectively for each task type Pi. We use Pij to
denote the jth instance of task type Pi.

For each task instance Pij , we have the following state variables:

status(i; j) initialized to free. Let status(i; j) = running stand for that Pij is executing
on the processor, preempted for that Pij is started but not running, and released for
that Pij is released, but not started yet. We use status(i; j) = free to denote that Pij

is not released yet or position (i; j) of the task queue is free.

Note that according to the de�nition of scheduling strategy, for all i, there should
be only one j such that status(i; j) = preempted (only one instance of the same
task type is started), and for all i; j, there should be only one pair (k; l) such that
status(k; l) = running (only one is running for a one-processor system).

We need two clocks for each task instance:

1. c(i; j) (a computing clock) is used to remember the accumulated computing time
since Pij was started (when Run(i; j) became true) 13, and subtracted with C(k)
when the running task, say Pkl, is �nished if it was preempted after it was started.

2. d(i; j) (a deadline clock) is used to remember the deadline and reset to 0 when
Pij is released.

We use a triple hc(i; j); d(i; j); status(i; j)i to represent each task instance, and the
task queue will contain such triples. We use q to denote the task queue. Note that the
maximal number of instances of Pi appearing in a schedulable queue is dD(i)=C(i)e.
We have a bound on the size of queue as claimed earlier, which is

P
Pi2P

dD(i)=C(i)e.
We shall say that queue is empty denoted empty(q) if status(i; j) = free for all i; j.

For a given scheduling strategy Sch, we use the predicate Run(m;n) to denote that
task instance Pmn is scheduled to run according to Sch. For a given Sch, it can be
coded as a constraint over the state variables. For example, for EDF, Run(m;n) is the
conjunction of the following constraints:

1. d(k; l) � D(k) for all k; l such that status(k; l) 6= free: no deadline is violated yet
2. status(m;n) 6= free: Pmn is released or preempted
3. D(m)� d(m;n) � D(i)� d(i; j) for all (i; j): Pmn has the shortest deadline

E(Sch) contains three type of locations: Idling, Running and Error with Running being
parameterized with (i; j) representing the running task instance.

1. Idling denotes that the task queue is empty.
2. Running(i; j) denotes that task instance Pij is running, that is, status(i; j) =

running. We have an invariant for each Running(i; j): c(i; j) � C(i) and d(i; j) �
D(i).

3. Error denotes that the task queues are non-schedulable with Sch.

There are �ve types of edges labeled as follows:

1. Idling to Running(i; j): there is an edge labeled by

13 In fact, for each task type, we need only one clock for computing time because only one
instance of the same task type may be started.



{ guard: none
{ action: releasei
{ reset: c(i; j) := 0, d(i; j) := 0, and status(i; j) := running

2. Running(i; j) to Idling: there is only one edge labeled with

{ guard: empty(q) that is, status(i; j) = free for all i; j (all positions are free).
{ action: none
{ reset: none

3. Running(i; j) to Running(m;n): there are two types of edges.

(a) The running task Pij is �nished, and Pmn is scheduled to run by Run(m;n).
There are two cases:
i. Pmn was preempted earlier:

{ guard: c(i; j) = C(i), status(m;n) = preempted and Run(m;n)
{ action: none
{ reset: status(i; j) := free, fc(k; l) := c(k; l)�C(i)jstatus(k; l) = preemptedg,
and status(m;n) := running

ii. Pmn was released, but never preempted (not started yet):
{ guard: c(i; j) = C(i), status(m;n) = released and Run(m;n)
{ action: none
{ reset: status(i; j) := free, fc(k; l) := c(k; l)�C(i)jstatus(k; l) = preemptedg,
c(m;n) := 0; d(m;n) := 0 and status(m;n) := running

(b) A new task Pmn is released, which preempts the running task Pij :
{ guard: status(m;n) = free, and Run(m;n)
{ action: releasedm
{ reset: status(m;n) := running, c(m;n) := 0, d(m;n) := 0, and status(i; j) :=

preempted

4. Running(i; j) to Running(i; j). There is only one edge representing the case when
a new task is released, and the running task Pij will continue to run:
{ guard: status(k; l) = free, and Run(i; j)
{ action: releasedk
{ reset: status(k; l) := released and d(k; l) := 0

5. Running(i; j) to Error: for each pair (k; l), there is an edge labeled by d(k; l) > D(k)
and status(k; l) 6= free meaning that the task Pkl which is released (or preempted)
fails in meeting its deadline.

The third step of the encoding is to construct the product automaton E(Sch) k E(A)
in which both E(Sch) and E(A) can only synchronize on identical action symbols.
Now we show that the product automaton is bounded.

Lemma 4. All clocks of E(Sch) in E(Sch) k E(A) are bounded and non negative.

Proof. All computing clocks c(k; l) are bounded by D(k). This is due to the fact
that all edges labeled with a subtraction is guarded by the constraint: Run(m;n)
which requies d(k; l) � D(k) (no deadline is violated in order to stay in Running).
d(k; l) � D(k) implies that c(k; l) � D(k) because c(k; l) and d(k; l) are always reset
to zero at the same time when a new instance of Pk is released. Thus c(k; l) is bounded.

Secondly, the only possibility for a computing clock, say c(k; l) for task Pkl, to become
negative is by subtractions. But a subtraction is done on c(k; l) only when a task, say
Pij , is �nished i.e. c(i; j) = C(i) holds. As c(i; j) is reset to zero before c(k; l) is
reset to zero (status(k; l) = preempted implying that Pkl was released and preeempted
earlier), we have c(i; j) � c(k; l) implying that c(i; j)� C(k) � 0. Thus all clocks are
non-negative.



Now we have the correctness theorem for our encoding. Assume, without losing gen-
erality, that the initial task queue of an automaton is empty.

Lemma 5. Let A be an extended timed automaton and Sch a scheduling strategy.
Assume that (l0; u0; q0) and (hl0; Idlingi; u0) are the initial states of A and the product
automaton E(A)jjE(Sch) respectively where l0 is the initial location of A, u0 and v0
are clock assignements assigning all clocks with 0 and q0 is the empty task queue.
Then for all l; u; v:

(l0; u0; q0)(�!)�(l; u;Error) i� (hl0; Idlingi; u0 [ v0)(�!)�(hl;Errori; u [ v)

Proof. It is by induction on the length of transition sequence (i.e. reachability steps).

The above lemma states that the schedulability analysis problem can be solved by
solving a reachability problem for timed automata extended with subtraction. From
Lemma 4, we know that E(Sch) is bounded. Because the reachability problem is decid-
able due to Lemma 3, we complete the proof for our main result stated in Theorem 2.

5 Conclusions and Related Work

We have studied a model of timed systems (timed automata extended with tasks),
which uni�es timed automata with the classic task models from scheduling theory.
The model can be used to specify resource requirements and hard time constraints
on computations, in addition to features o�ered by timed automata. It is general
and expressive enough to describe concurrency and synchronization, and tasks which
may be periodic, sporadic, preemptive and (or) non-preemptive. The classic notion of
schedulability is nicely extended to automata model. Our main technical contribution
is the proof that the schedulability checking problem is decidable. The problem has
been conjectured to be undecidable for years. To our knowledge, this is the �rst decid-
ability result for preemptive scheduling in dense-time models. Based the results, we
have developed a symbolic schedulability checking algorithm based using the DBM
techniques. It has been implemented in a tool for modeling and scheduling of timed
systems. As future work, we shall study the schedule synthesis problem. More pre-
cisely given an automaton, it is desirable to characterize the set of schedulable traces
accepted by the automaton.

Related work. Scheduling is a well-established area. A numerous number of analysis
methods have been published in the literature. For systems restricted to periodic tasks,
algorithms such as rate monotonic scheduling and earliest-deadline �rst are widely
used and exact analysis methods exist, see e.g. [KS97]. These methods can be extended
to handle non-periodic tasks by considering them as periodic with the minimal inter-
arrival time as the task periods. Our work is more related to work on using automata
to model and solve scheduling problems. In several papers, e.g. [CL00,Cor94,AGS00],
stopwatch automata [ACH+95] are applied to model scheduling algorithms with spo-
radic tasks. However, as reachability analysis for stopwatch automata is undecidable,
this approach can not be applied in general to solve scheduling problems. Approxi-
mative and semi-decision algorithms exits but they can only be used to prove that
a system is not schedulable (inconclusive for schedulability) and they do not guar-
antee termination. In [MV94], McManis and Varaiya presents a restricted class of
stopwatch automata, called suspension automata, and give a set of conditions for



which reachability analysis of suspension automata is decidable. Unfortunately, the
given conditions restrict the applicability of the result as scheduling algorithms such
as rate-monotonic and earliest-deadline �rst, can not be analysed. The work presented
in this paper is more general and we show that the presented analysis is guaranteed
to terminate for all inputs. Another model for timed system is presented in [AGS00].
It is designed to be compositional and suitable for describing priority-driven schedul-
ing algorithms. The authors show that a number of scheduling algorithms, with or
without preemption, can be modeled. However, the problem of schedulability analysis
is not addressed in the paper. Related to this is the work on integrating speci�cation
and scheduler generation of real-time systems, presented in [AGP+99]. The model-
ing language, which can be used to describe both sporadic and preemptive tasks, is
a Petri-net model with time. The authors presents a controller synthesis technique
that can be used to construct an online non-preemptive scheduler that satis�es all
given constraints in the model. The problem addressed is restricted to non-preemptive
schedulers. In this paper, we use the idea of replacing suspensions of timers by sub-
traction of clock values, as suggested in [MV94]. It has been shown in [BDFP00] that
updating clock variables by subtraction of integer values in timed automata is unde-
cidable in general. We identify a decidable class of such updatable automata, which
is precisely what we need to solve scheduling problems.
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Abstract|This article presents and illustrates a reliability
analysis method developed with focus on Controller Area
Network (CAN) based automotive systems. The method
considers the e�ect of faults on schedulability analysis and
its impact on the reliability estimation of the system, and
attempts to integrate both to aid system developers. We
illustrate the method by modeling a simple distributed an-
tilock braking system, and showing that even in cases where
the worst-case analysis deem the system unschedulable, it
may be proven to satisfy its timing requirements with a suf-
�ciently high probability. From a reliability and cost per-
spective, this article underlines the tradeo�s between timing
guarantees, the level of hardware and software faults, and
per-unit cost.

I. Introduction

During the last decade or so, real-time researchers have
extended schedulability analysis to a mature technique
which for non-trivial systems can be used to determine
whether a set of tasks executing on a single CPU or in
a distributed system will meet their deadlines or not [3][4]
[5]. The main focus of the real-time research community
is on hard real-time systems, and the essence of analysing
such systems is to investigate if deadlines are met in a worst
case scenario. Whether this worst case actually will occur
during execution, or if it is likely to occur, is not normally
considered.
Reliability modeling, on the other hand, involves study

of fault models, characterization of distribution functions
of faults and development of methods and tools for compos-
ing these distributions and models in estimating an overall
reliability �gure for the system.
In [6] we present a model for calculating worst-case laten-

cies of messages under error assumptions for the Controller
Area Network (CAN). In many situations, this analysis
might infer that a given message set is not feasible un-
der worst case fault interferences. Such a result, though
correct, is of limited help to the system designers except to
prompt them to overdesign the system and waste resources
to tackle a situation, which might never happen during the
life time of the system.
When performing schedulability analysis (or any other

type of formal analysis) it is important to keep in mind

* This article extends and improves preliminary results presented in
[1] and [2], by re�ning the fault model and providing a more rigorous
treatment.
1 Vikram Sarabhai Space Centre, Trivandrum, India. Work per-

formed while on leave at M�alardalen University.

that the analysis is only valid under some speci�c model
assumptions, typically under some assumed \normal con-
dition", e.g., no hardware failures and a \friendly" envi-
ronment. The \abnormal" situations are typically catered
for in the reliability analysis, where probabilities for fail-
ing hardware and environmental interferences are combined
into a system reliability measure. This separation of deter-
ministic (0/1) schedulability analysis and stochastic relia-
bility analysis is a natural simpli�cation of the total anal-
ysis, which unfortunately is quite pessimistic, since it as-
sumes that the \abnormal" is equivalent to failure. Espe-
cially for transient errors/failures, this may not at all be
the case.

Consider, for instance, occasional external interference
on a communication link. The interference will lead to
transmission errors and subsequent retransmission of mes-
sages. The e�ect will be increased message latencies which
may lead to missed deadlines, especially if the interference
coincides with the worst case message transmission sce-
nario considered when performing schedulability analysis.
In other scenarios, the interference will not increase the
worst case message latency, as illustrated in Figure 1. The
�gure shows a system with 3 periodic messages M1, M2

and M3, with the parameters shown in Table I. Assuming
an overhead, O = 1 for error signaling and recovery (but
not including retransmission of the corrupted message), we
have shown the e�ects of 3 di�erent scenarios, correspond-
ing to an external interference hitting the system at di�er-
ent points in time. In the �rst case the error caused by the
interference results in a retransmission of M1, causing M2

andM3 to miss their deadlines. In the second case, though
a re-transmission is necessitated, still the message set meets
its deadlines, whereas in the third scenario, the error has
no e�ect at all since it falls in a period of inactivity of bus.

This simple example shows that there are situations (sce-
narios) when system requirements (e.g. deadlines) are not
violated by the \abnormal". Hence, there is a potential for
obtaining a more accurate and tight reliability analysis by
considering the likelihood of the \abnormal" actually caus-
ing a deadline violation. The basic argument of our work,
is that for any system (even the most safety critical one)
the analysis is only valid as long as the underlying assump-
tions hold. A system can only be guaranteed up to some
level, after which we must resort to reliability analysis. The
main contribution of this article is in providing a method-



Msg ID Period Deadline Transmission time Priority
M1 5 5 2 High
M2 10 7 1 Medium
M3 20 8 1 Low

TABLE I

Message Set Parameters

Schedule

Scenario 1
Deadline miss

Scenario 2
Schedulable

Scenario 3
No effect

0 10 205 15

0 10 205 15

0 10 205 15

0 10 205 15

M1 M1 M1

M1 M1M1 M1

M1 M1M1 M1

M1 M1M1 M1O M1

M2M3
M2

M2 M2

M2

M2

Error

Error

M3

O M1M2 M3

M2

Error

M1

M3

Fig. 1. Dependency of E�ects of Faults on Phasings

ology to calculate such an estimate by way of integrating
schedulability and reliability analysis.
Though we use automotive examples throughout the ar-

ticle, it should be pointed put that our results have sub-
stantially wider applicability, both in the sense that CAN
is used in other application domains, such as factory au-
tomation, and that the general approach is applicable also
to other communication systems. Furthermore, our type
of reasoning is especially pertinent considering the growing
trend of using wireless networks in factory automation and
elsewhere. The error behaviour of such systems will most
likely require reliability to be incorporated into the analysis
of timing guarantees.
The outline of the article is as follows. Section II presents

general reliability modelling for distributed real-time sys-
tems and introduces our approach. Section III speci�cally
discusses the scheduling of message sets in Controller Area
Networks under a general fault model, presents schedula-
bility analysis for the model, and introduces a simulation
based approach for analysis of arbitrary samples of phas-
ings and interferences. Section IV illustrates our results,
with a sample message set used in a distributed computer
network inside passenger cars. Section V discusses possible
extensions and presents some conclusions.

II. Reliability Modelling

Reliability is de�ned as the probability that a system can
perform its intended function, under given conditions, for
a given time interval. In the context of an automobile its
intended function is to provide reliable and cost-e�ective
transport of men and material. At a subsystem level,
such as for an Antilock Braking System (ABS) for automo-

biles, this boils down to performing the tasks (mainly in-
put sensors, compute control, and output actuators etc.,)
as per the speci�cations. Being part of a real-time sys-
tem, the speci�cations for ABS, imply the necessity for the
results to be both functionally correct and within timing
speci�cations.
A major issue here is how to compose hardware relia-

bility, software reliability, environment model, and timing
correctness to arrive at reasonable estimates of overall sys-
tem reliability (Fig 2).

Component
Reliability

Message
Correctness

Timely Delivery Reliability
Growth Models

Hardware Communications Software

Vehicle
Reliability

Fig. 2. System Reliability: A Top-Down View

Let us de�ne

pHF(t) = Probability(Hardware failure at t)

pSF(t) = Probability(Software failure at t)

pF(t) = Probability(Communication failure at t)

The reliability of the system, R(t), is the probability that
the system performs all its intended functions correctly for
a period t. This is given by the product of cumulative prob-
abilities that there are no failures in hardware, software and
communication subsystem during the period (0; t). That is,
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In this article, we concentrate only on the �nal term in
Equation 1, i.e., the probability that no errors occur in the
communication subsystem. Please note that, when we talk
about communication subsystem, we are not concentrating
on the faults in the hardware (as in Pinho et al. [7]) or
in the software of such a system. Instead we look at it
from a system level and treat its correctness as the proba-
bility of correct and timely delivery of message sets. Since
the main cause for an incorrect (corrupted, missing or de-
layed) message delivery is environmental interferences, an
appropriate modelling of such factors in the context of the
environment in which the system will operate is essential
for performing reliability analysis. A completely accurate
modeling of the probability of timely delivery of messages
is far from being trivial and hence we have made certain
simplifying assumptions in order to divide the problem into
manageable proportions.

A. Problem Statement

The premises of our problem (from a designer's perspec-
tive) are:
� We are given the overall reliability requirements of the
system (say for example, a vehicle), from which we derive
the reliability requirement of a particular subsystem (say,
the computer system controlling pedal brake and ABS),
which in turn de�nes a requirement on the reliability of its
communication subsystem.
� The given requirements of the subsystem, after a series of
design steps, get converted to a set of relevant tasks along
with their timing properties. In our example of cars, the
overall vehicle level safety and performance requirements,
in conjunction with the vehicle dynamics and properties of
subsystems allow us to have separation of concerns between
hydraulic/mechanical systems and the electrical system. In
the next step we convert these requirements and constraints
into the timing speci�cations for the individual tasks and
messages.
� We have an environment model and know how to perform
response time analysis of CAN messages under normal and
error conditions [6].
The problem analysed is, given the above information,

how to �nd a suitable way of predicting the reliability of
the communication subsystem. The simple approach will
be to give a 0/1 weight to the schedulability aspect in eval-
uating the system `correctness' and calculate the reliability.
However, the environment model provides worst case sce-
narios, which may not occur in practice and its impact may
depend on the actual phasing of messages and the way in
which they interact with the environment/fault model. So,
the major issues are:
� Can we partition the schedulability analysis under faults
by considering a set of scenarios corresponding to di�erent

message and fault model phasings? (As illustrated in Fig-
ure 1; and where the worst case considered in our previous
analysis [6] is only one of several scenarios.)
� How can we use such an analysis to obtain a more accu-
rate reliability estimate?

B. Reliability Estimation

By de�nition, reliability is speci�ed over a mission time.
Normally we can assume a repetitive pattern of messages
(over the least common multiple (LCM) of the individual
message periods). Each LCM is typically a very small frac-
tion of the mission time.
We will now outline a methodology for estimating com-

munication failures due to external interference in a CAN-
bus. It should be noted that, the methodology presented in
this section can easily be applied to other communication
models as well.
Let t represent an arbitrary time point when the external

interference hits the bus and causes an error. If we can
assume zero error latency and instantaneous error detection
then t becomes the time point of detection of an error in
the bus due to external interferences.
We now de�ne the following probabilities:

pI(t) = Probability(Interference at t)

pC(t) = Probability(Msg corruptionjInterference at t)

pM(t) = Probability(Deadline missjInterference at t)

By relying on the extensive error detection and handling
features available in CAN, we can safely assume that an er-
ror in message corruption is either detected and corrected
by re-transmission or will ultimately result in a timing er-
ror. This allows us to ignore pC(t) and de�ne in our con-
text, the probability of communication failure due to an
interference starting at t as:

pF(t) = pM(t)� pI(t) (2)

In the environment model in [6], we have assumed the
possibility of an interference I1, having a certain pattern
hitting the message transmission. Let pI1(t) be the proba-
bility of such an event occurring at time t. We also assume
that another interference I2, having a di�erent pattern, can
hit the system at time t with a probability, say, pI2(t). In
[6], we assumed that both these interferences hit the mes-
sage transmission in a worst case manner and looked at
their impact on the schedulability. In this article, we will
increase the realism by relaxing the requirement on the
worst-case phasing between schedule and interference. It
should be noted that there is an implicit assumption that
these interferences are independent.

C. Failure Semantics

In the above presentation we assume that a single dead-
line miss causes a failure. This may be true for many sys-
tems, but in general, the failure semantics does not have to
be restricted to this simple case. For instance, most con-
trol engineers would require the system to be more robust,



i.e., the system should not loose stability if single dead-
lines, or even multiple deadlines, are missed. A tolerable
failure semantics for such a system [8] could for instance
be \3 consecutive deadlines missed or 5 out of 50 deadlines
missed". Such a de�nition of failure is more realistic and
also leads to a substantial increase in reliability estimates,
as compared to the single deadline miss case. To simplify
the presentation we will, however, stick to the simple \sin-
gle missed deadline" failure semantics for the time being,
but return to this issue in the reliability analysis in Sec-
tion IV-C.

D. Calculating Failure Probabilities

To calculate the subsystem reliability, �rst we need to
calculate the failure probability (in our case of the com-
munication subsystem subject to possible external inter-
ference), i.e., the probability of at least one failure (de�ned
as a missed deadline) during the mission time. In doing this
we assume that the interference free system is schedulable,
i.e. that it meets all deadlines with probability 1. This
can for a CAN-bus be veri�ed by using the analysis pre-
sented in Section III-A. Furthermore, due to the bit wise
behaviour of the CAN-bus, we can with respect to the ex-
ternal interference make a discretization of the time scale,
with the time unit corresponding to a single bit time �bit
(1�s for a 1Mbps bus), i.e., we make no distinction between
an interference hitting the entire bit or only a fraction of
it. In either case, the corruption will both occur and be
detected.

We will distinguish between two types of interference
sources:

� Intermittent sources, which are bursty sources that in-
terfere during the entire mission time T , and are for an
interference source I characterized by a period TI and a
burst length lI (where lI < TI), as illustrated in Figure 3.
� Transient sources, which are bursty sources of limited
duration. These occur at most once during a mission time
T , and are for an interference source J characterized by a
period TJ , a burst length lJ , and a number of bursts nJ
(where lJ < TJ and TJ �nJ < T ), as illustrated in Figure 4.

For a single intermittent source I we de�ne the proba-
bility of a communication failure during the mission time
as follows:

P T
F (I) =

X
t2[0;TI�1]

pI(t)� P T
F (I jh(I) = t) (3)

where P T
F (I jh(I) = t) denotes the conditional probability

of a communication failure, given that the system was hit
by interference from source I at time t, denoted by h(I) =
t. It follows, since interference and bus communication are
independent, that pI(t) =

1
TI
. To calculate P T

F (I jh(I) = t)
we will use simulation, i.e., we will simulate the bus traÆc
during a mission, including the e�ects of interference, to
determine if any communication failure (deadline violation)
occurs. This will for each t result in either 0, if no deadline
is missed, or 1, if a deadline miss is detected.

For a single transient source J we de�ne the probabil-
ity of a communication failure during the mission time as
follows:

P T
F (J) =

X
t2[�nJTJ ;T �1]

pJ(t)� P T
F (J js(J) = t) (4)

where pJ (t) denotes the probability that the �rst transient
interference hits the system at time t, and P T

F (J js(J) = t)
denotes the conditional probability of a communication
failure during T due to interference from J , given that
the interference J starts at time t. In the above sum-
mation all possible full or partial interferences from the
transient source during mission time are considered. The
interval [�nJTJ ; 0] speci�cally captures initial partial in-
terferences, starting before mission time, but ending dur-
ing mission. It follows, since interference and bus com-
munication are independent, that pJ (t) = 1

T+nJTJ
. To

calculate P T
F (J js(J) = t) we will use simulation, just as

above. The number of scenarios to simulate here is po-
tentially much larger than for an intermittent source, since
typically T >> TI . However, the number of simulations
can be reduced, since the probability of failure is indepen-
dent of the LCM, in which the interference hits the system.
We can prove that

P T
F (J) �

T + nJTJ

LCM
�

X
t2[0;LCM�1]

pJ(t)� P T
F (J js(J) = t)

=

X
t2[0;LCM�1]

P T
F (J js(J) = t)

LCM
(5)

It should be noted that we introduce a slight pessimism
(which is the reason for the �) since the probability for
failure in T is lower towards the end, when the interference
bursts are extending past the end of T . However, since we
assume nJ � TJ << T , the introduced pessimism can be
considered negligible.
Also, note that in (5) the e�ects of the interference start-

ing before the LCM is covered by the interference on the
subsequent LCM, which is the reason for starting the sum-
mation with t = 0 (rather than t = �njTj as in (4)).
Finally, note that by not counting the interferences start-

ing outside the very �rst LCM (at the beginning of the
mission time), we introduce some optimism, but since the
assumption of nJ�TJ << T this optimism is insigni�cant.
To be more precise a fraction of (4),

P
t2[�nJTJ ;0]

pJ (t) �

P T
F (J js(J) = t), could be added to (5) in order to cover for

the pre-mission time trigged transient faults.
We now extend the above basic analysis to the analysis

of multiple sources of interference. First, we consider the
case of two independent sources of interference. There are
three cases to consider:

1. Two intermittent sources I1 and I2:
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Fig. 3. Pattern of interference from an intermittent source, with burst length lI and period TI .
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... ... ...
Fig. 4. Pattern of interference from a transient source, hitting the system at time x, with burst length lJ , period TJ and consisting of nJ
bursts.

P T
F (I1; I2) =

X
t1 2 [0; TI1 � 1]
t2 2 [0; TI2 � 1]

pI1(t1)� pI2(t2)� (6)

� P T
F (I1; I2jh(I1) = t1 ^ h(I2) = t2)

2. Two transient sources J1 and J2:

P T
F (J1; J2) =

X
t1 2 [�nJ1TJ1 ;T � 1]
t2 2 [�nJ2TJ2 ;T � 1]

pJ1(t1)� pJ2(t2)� (7)

� P T
F (J1; J2js(J1) = t1 ^ s(J2) = t2)

3. One intermittent and one transient source:

P T
F (I1; J2) =

X
t1 2 [0; TI1 � 1]

t2 2 [�nJ2TJ2 ;T � 1]

pI1(t1)� pJ2(t2)� (8)

� P T
F (I1; J2jh(I1) = t1 ^ s(J2) = t2)

The number of scenarios to simulate for the above three
cases are in the order of TI1 � TI2 , T

2, and TI1 � T , re-
spectively. This may be rather large, especially for the two
latter cases. By observing symmetries in the formulas we
can however reduce the number of scenarios. For case 3,
consider the following two mutually exclusive situations:

� LCM � TI1 , which leads to the following reduced for-
mula:

P T
F (I1; J2) =

T + nJ2TJ2
LCM

�
X

t1 2 [0; TI1 � 1]
t2 2 [0; LCM � 1]

pI1(t1)� (9)

� pJ2(t2)�

� P T
F (I1; J2jh(I1) = t1 ^ s(J2) = t2)

� LCM < TI1 , which leads to the following reduced for-

mula:

P T
F (I1; J2) =

T + nJ2TJ2
TI1

�
X

t1 2 [0; TI1 � 1]
t2 2 [0; TI1 � 1]

pI1(t1)� (10)

� pJ2(t2)�

� P T
F (I1; J2jh(I1) = t1 ^ s(J2) = t2)

The above two equations can be combined into:

P T
F (I1; J2) =

T + nJ2TJ2
max(LCM;TI1)

� (11)

�
X

t1 2 [0; TI1 � 1]
t2 2 [0;max(LCM;TI1 )� 1]

pI1(t1)� pJ2(t2)�

� P T
F (I1; J2jh(I1) = t1 ^ s(J2) = t2)

and thus, we have reduced the number of scenarios from
the order of TI1 �T to the order of TI1 �max(LCM;TI1).
Finally, we present the general formula for an arbitrary

number of interference sources of either type (n intermit-
tent and m transient sources of interference):

P T
F (I1; : : : ; In; J1; : : : ; Jm) = (12)

X
t1 2 [0; TI1 � 1]

: : :
tn 2 [0; TIn � 1]

t
0

1
2 [�nJ1TJ1 ;T � 1]

: : :

t
0

m
2 [�nJmTJm ;T � 1]

0
BBBBBBBBBBBBBBBBBBBBBBBB@

pI1(t1)�
: : :

�pIn(tn)�

� pJ1(t
0

1)�
: : :

�pJm(t
0

m)�

�P T
F

0
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I1; : : : ; In;

J1; : : : ; Jm j
h(I1) = t1 ^

: : :

^ h(In) = tn ^

^ s(J1) = t
0

1 ^
: : :

^ s(Jm) = t
0

m

1
CCCCCCCCCCA
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E. Approach to Analysis

The above equations de�ne the probability of communi-
cation failure given a set of sources interfering with the
communication according to speci�ed patterns. In our
modeling we will additionally specify the probability that
an interference source actually is active during the mission.
This gives us the following:

� We have a set of external sources of interference K =
I[J , where I is a set of intermittent sources of interference
and J is a set of transient sources, as de�ned above.
� Each interference source k 2 K is either active or inac-
tive during a mission. The probability for the source to be
active is P act

k , and the probability for inactivity is conse-
quently 1� P act

k .

For a scenario with a single intermittent interference
source I1 and a single transient interference source J2, we
can now (with a slight generalization of the notation) de-
�ne the probability of a communication failure in a mission
as follows:

QT
F (fI1; J2g) = P act

I1
� P act

J2
� P T

F (I1; J2) + (13)

+P act
I1

� (1� P act
J2

)� P T
F (I1) +

+(1� P act
I1

)� P act
J2

� P T
F (J2)

which for an arbitrary set I of intermittent sources and
an arbitrary set J of transient interference sources can be
generalized to

QT
F (I [ J ) =

X
A�I[J

 Y
a2A

P act
a

!
� (14)

�

0
@Y

b2A

(1� P act
b )

1
A� P T

F (A)

where A = (I [J )nA. Intuitively, Equation 15 de�nes the
failure probability for a system that is potentially subjected
to interference from a set I [ J of interference sources as
the sum of weighted probabilities that a failure occurs in
each of the possible combination of sources.
The value of P T

F (A) is, as mentioned above, obtained by
simulation. This amounts to:

� For each intermittent interference source I 2 A make a
selection from the set of discrete time points [0; TI � 1].
Each picked sample s indicates the phasing of the corre-
sponding source at time 0. The selected phasing will give
a scenario with interferences from source I starting at s,
s+ TI , s+ 2TI ,: : : , s+ nTI , where n = d T

TI
e.

� For each transient interference source J 2 A we make a
selection from the set of discrete time points [�nJTJ ; T �1].
Each picked sample indicates the time when the interfer-
ence from the corresponding source hits the system.
� Perform the simulation (as detailed in Section III) to ob-
tain P T

F (Ajselected phasings of interferences). The result
will be either 1 or 0, corresponding to no communication
failures or communication failure detected, respectively.

We can then calculate QT
F (A) using Equation 15.

For most realistic systems with multiple sources of in-
terference, complete analysis involving simulation of all
combinations of phasings and interference sources will not
be computationally feasible. An alternative approach can
then be to use a statistical sampling based method in which
only a restricted set of phasings are simulated. That ap-
proach is further elaborated on in Section III-C.

III. Schedulability Analysis of CAN Messages

The Controller Area Network (CAN) is a broadcast bus
designed to operate at speeds of up to 1 Mbps. Data is
transmitted in messages containing between 0 and 8 bytes
of data. An 11 bit identi�er is associated with each mes-
sage. The identi�er is required to be unique, in the sense
that two simultaneously active messages originating from
di�erent sources must have distinct identi�ers. The iden-
ti�er serves two purposes: (1) assigning a priority to the
message, and (2) enabling receivers to �lter messages.

CAN is a collision-detect broadcast bus, which uses de-
terministic collision resolution to control access to the bus.
The basis for the access mechanism is the electrical charac-
teristics of a CAN bus: if multiple stations are transmitting
concurrently and one station transmits a `0' then all sta-
tions monitoring the bus will see a `0'. Conversely, only
if all stations transmit a `1' will all processors monitoring
the bus see a `1'. During arbitration, competing stations
are simultaneously putting their identi�ers, one bit at the
time, on the bus. By monitoring the resulting bus value, a
station detects if there is a competing higher priority mes-
sage and stops transmission if this is the case. Because
identi�ers are unique within the system, a station trans-
mitting the last bit of the identi�er without detecting a
higher priority message must be transmitting the highest
priority queued message, and hence can start transmitting
the body of the message.

A. Classical CAN Bus Analysis

Tindell et al. [9] [10] present analysis to calculate the
worst-case latencies of CAN messages. This analysis is
based on the standard �xed priority response time anal-
ysis for CPU scheduling [3].

Calculating the response times requires a bounded worst
case queuing pattern of messages. The standard way of
expressing this is to assume a set of traÆc streams S (cor-
responding to CPU tasks), each generating messages with
a �xed priority. The worst case behaviour of each stream
is to periodically queue messages. Each Si 2 S is a triple
< Pi; Ti; Ci >, where Pi is the priority (de�ned by the mes-
sage identi�er), Ti is the period and Ci the worst case trans-
mission time of messages sent on stream Si. The worst-case
latency Ri of a CAN message sent on stream Si is de�ned
by

Ri = Ji + qi + Ci (15)

where Ji is the queuing jitter of the message, i.e., the max-
imum variation in queuing time relative Ti, inherited from



the sender task which queues the message, and qi repre-
sents the e�ective queuing time, given by:

qi = Bi +
X

j2HP(i)

�
qi + Jj + �bit

Tj

�
Cj +E(qi + Ci) (16)

where the term Bi is the worst-case blocking time of mes-
sages sent on Si, HP(i) is the set of streams with priority
higher than Si, �bit (the bit-time) caters for the di�erence
in arbitration start times at the di�erent nodes due to prop-
agation delays and protocol tolerances, and E(qi+Ci) is an
error term denoting the time required for error signalling
and recovery. The reason for the blocking factor is that
transmissions are non-preemptive, i.e., after a bus arbi-
tration has started the message with the highest priority
among competing messages will be transmitted till com-
pletion, even if a message with higher priority gets queued
before the transmission is completed. However, in case
of errors a message can be interrupted/preempted during
transmission, requiring a complete retransmission of the
entire message. The extra cost for this is catered for in the
error term E above.

B. Our Previous Generalization

In [6] we present a generalization of the relatively sim-
plistic error model by Tindell and Burns [9]. Our error
model speci�cally addresses,
� multiple sources of errors: Handling of each source sep-
arately is not suÆcient; instead they have to be composed
into a worst case interference with respect to the latency
on the bus.
� the signalling pattern of individual sources: Each source
can typically be characterized by a pattern of shorter or
longer bursts, during which the bus is unavailable, i.e., no
signalling will be possible on the bus.
The above model is, just as Tindell and Burns' model,

deterministic in that it models speci�c �xed patterns of
interferences. An alternative is to use a stochastic model
with interference distributions. Such a model is proposed
by Navet et al. [11], which use a Generalized Poisson Pro-
cess to model the frequency of interference, as well as their
duration (single errors and error bursts).
In this article, we will use the following deterministic

error model, which is a simpli�ed version of the model in-
troduced in [6]:
� There is a set K of sources of interference, with each
source ki 2 K contributing an error term Eki(t). Their
combined e�ect E(t) can be de�ned as,

E(t) = Ek1(t)jEk2 (t)j : : : jEkjKj
(t) (17)

where j denotes composition of error terms.
� Each source ki 2 K interferes by inducing an unde�ned
bus value during a characteristic time period Tki . Each
such interference will (if it coincides with a transmission)
lead to a transmission error. If Tki is larger than �bit, then
the error recovery will be delayed accordingly.
� Patterns of interferences for each source ki 2 K can inde-
pendently be speci�ed as a sequence of nki bursts of length
lki with period Tki .

From the generic parameters it is possible to model both
intermittent and transient sources of interference, as intro-
duced in Section II-D. An intermittent source k is de�ned
by letting nk > T

Tk
. Any interference source with smaller

nk is a transient source. See �gures 3 and 4 for illustrations.
Using such a model we can see that

Eki(t) = Bki(t)� (O +max(0; lki � �bit)) (18)

where the number of interferences until t, Bki(t), is given
by

Bki(t) = min

�
nki ;

�
t

Tki

��
(19)

Note that, max(0; lki��bit) de�nes the length of lki exceed-

ing �bit, whereas
l

t
Tki

m
is the number of initiated bursts

until t.
We assume that the overhead Oi is given by:

Oi = 31� �bit + max
l2HP(i)[fig

(Cl) (20)

where 31 � �bit is the time required for error signalling in
CAN and the max-term denotes the worst-case retransmis-
sion time as the largest transmission time of any message
of higher priority (HP(i)) or the considered message (i).
Retransmissions of corrupted messages with lower priority
will not interfere, since the considered message will, due to
the priority based arbitration, be transmitted before any
such message.

C. Analysis with Random Phasings of Interferences

The analysis in Section III-B above assumes worst-case
phasings of queuings and interferences. In combining tim-
ing and reliability modeling, we will use a relaxed model
which considers the probability of di�erent interference sce-
narios, not only the extreme worst-case. Our relaxed model
will be based on
1. Worst-case phasings of message queuings at time 0 in the
LCM (actually this could be at any time, so why not choose
0?). This introduces some pessimism, since the worst case
may not occur in every LCM, but is consistent with the
assumed traÆc in the interference free model.
2. Random phasings of interferences. This can be ex-
pressed as an o�set from the beginning of the mission time
to when the �rst interference hits. For each interference
source Ii that hits, such an o�set should be \sampled" (as
outlined in Section II-E).
To calculate the probability of a deadline miss we per-

form a simulation of the message transfer and interference
during the mission time T , as described in Section II-E.
The analysis we make is based on either exhaustive simu-

lation or by sampling. If the LCM is small and the number
of combined interference sources to be analysed are few,
then exhaustive simulation is recommended. Algorithms
for both exhaustive and sampling based simulation are pre-
sented in Appendix A.
In calculating the �nal failure probability QT

F (Equa-
tion 15) we can use either of the algorithms in Appendix A



can be used to calculate P T
F . In general, the total num-

ber of required simulations in the exhaustive case is rather
large, since there are 2jKj � 1 combinations of interference
sources to consider, and for each combination A, there areY
a2A

�
Ta if a 2 I
T if a 2 J

phasings to consider. The actual sit-

uation is however not as bad as this may indicate, since the
algorithms can be optimized for special cases (e.g., using
Equation 12 instead of Equation 13) and using Rnd sim

rather than Ex sim. Due to the regular pattern of many
scenarios and that we immediately can conclude \commu-
nication failure" if a single failure is detected, the time to
perform simulations can be substantially reduced as well.
The details of this are however outside the scope of this
article.

We have implemented the analysis using a simulator de-
veloped by Lindgren et al. [12].

IV. Example : A Distributed Braking System

We now present a case study of a simpli�ed intelligent
Antilock Braking System (ABS), where each separate brake
is controlled by a computer. Furthermore, there is one
computer that controls the brake pedal. All nodes are
connected by a CAN-bus (see Figure 5). The applica-
tion is a distributed control algorithm, which calculates
the brake force for each wheel depending on the brake
pressure achieved from the driver. Therefore, each wheel-
computer has to receive information about the state of the
other wheels, to be able to make correct calculation and
actuation. Thus each wheel is equipped with a sensor that
monitors the rotation of the wheel. Each node sends the
monitored values periodically.

brake discs

ABS-1

ABS-2

ABS-3

ABS-4

BRAKE
CAN

actuator

rotation
sensor

load
sensor

Fig. 5. Typical Computer Network in a Car with ABS

Our task is to implement a `reliable' antilock braking
system for vehicles. Since this is a subsystem of the entire
vehicle system, we assume an appropriate reliability �gure
(say less than 10�9 faults/hour) to be attained by the ABS.
This �gure is in fact mandated by an assumed overall sys-
tem reliability requirement of less than 10�7 faults/hour.

Table II speci�es a typical subset of messages sent in this
simpli�ed ABS and the timing details (in ms) of these mes-
sages sent via CAN in a car. The timing parameters are
typically requirements derived from the vehicle dynamics

by a control engineer. Priority 1 is assumed to be the high-
est and 6 is the lowest. We assume a maximum blocking
time of 135�bit due to background message traÆc. We also
assume that the CAN bus operates at 250 Kbps.

Msg ID Priority Ti Di Ci Sender
OPERATOR-1 1 8 8 0.54 BRAKE
ABS-1 2 4 4 0.54 ABS-1
ABS-2 3 4 4 0.54 ABS-2
ABS-3 4 4 4 0.54 ABS-3
ABS-4 5 4 4 0.54 ABS-4
OPERATOR-2 6 15 15 0.54 BRAKE

TABLE II

A Typical Message Set in Car

Please note that the task set above is a quite simpli�ed
one from those used in practice. Our aim here is, however,
not to present an accurate model of an ABS-system, but
to illustrate our methodology and indicate its usefulness.

A. Interference Characteristics

In our example, we will consider two sources of interfer-
ence, viz., a mobile phone lying inside the vehicle and radar
transmissions from ships while the vehicle crosses bridges.
These are considered to represent typical sources of inter-
ference. We characterize them in the following manner.
Mobile phones (such as GSM-phones) typically operate

at 900MHz - 1800 MHz frequencies. The carrier when a
call is active or being activated is for a period of about 500
�s duration out of a 4ms cycle (since each frequency can
be shared by up to 8 phones). When inactive, the mobile
phone will send signals to the base station once in every
half-an-hour. In addition, on a moving vehicle extra signals
are sent when the phone switches between base-stations. It
should be noted that these interferences may have impact
only when the mobile phone is lying close to the network
cables. We assume a typical interval between bursts to be
30 secs, i.e. Tphone = 30s and lphone = 500�s.
For our second interference source, viz., radar transmis-

sions from a ship, we assume the duration of an interference
burst to be 1 ms with a single burst in each interference,
i.e., lradar = 1ms and nradar = 1.

B. Experiments

To illustrate our method we will provide the following
analysis of our simple ABS system:

� Classical worst-case analysis, without considering any
faults, using the analysis of Section III-A.
� Worst-case analysis under worst-case fault phasings, us-
ing the analysis of Section III-B.
� Worst-case analysis under arbitrary fault phasings, using
the analysis of Section III-C. Since we are considering two
independent sources of interferences, three cases will be
considered: a) interference from the mobile phone only, b)
interference from the radar only, and c) interference from
both the sources.



In combining the obtained results to an overall reliability
estimate for the considered mission time of eight hours, we
will make the following assumptions:
� If a mobile phone is lying too close to a network cable,
it will remain there for the entire mission.
� The probability that a mobile phone is lying too close to
a network cable is 10�4.
� The probability of passing a bridge (under which a ship
equipped with a powerful radar may pass) is for each mis-
sion 0:5.
� The probability that a ship equipped with a powerful
radar is passing under a bridge when a speci�c car (which
is known to pass such a bridge during its current mission)
is passing is 10�3.
� The probability of a ship having activated its radar while
passing a bridge is 0:7.
From the above information we derive: P act

phone = 10�4

and P act
radar = 0:5� 10�3 � 0:7 = 3:5� 10�4. Note that we

have no strong basis for the assumed values above. They
merely represent intelligent guesses indicating the type of
parameters that need to be identi�ed.

C. Reliability Analysis Results

We have performed reliability analysis on our example
message set. First, we calculated the response time with-
out interference using Equation 15 in Section III-A. The
resulting values (in milliseconds) in column (0) in Table III
show that the message set is schedulable under interference
free conditions.
Next we analysed the system under worst case interfer-

ence phasings using the analysis from Section III-B. The
results, presented in columns (1)-(3) in Table III, show that
some messages miss deadlines (indicated by a `*') in all
three cases: interferences from phone only (column (1)),
radar only (column (2)), and both sources (column (3)).
According to the analysis under worst case assumptions,

we can see that 1 out of 6 and 2 out of 6 messages miss their
deadlines considering individual interference from phone
only and radar only, respectively, whilst 5 out of 6 mes-
sages miss their deadlines under combined interferences
from both the sources.
We �nally conducted simulation runs by varying the

points of start of interferences according to Algorithm 2
in Appendix A. The results are shown in Table IV. Com-
bining the obtained failure probabilities, using the proba-
bilities for the di�erent interference scenarios derived from
the assumptions in the previous section, we get the follow-
ing failure probability formula (derived from Equation 15):

QT
F (fphone; radarg) =P act

phone(1� P act
radar)� 0:000968+

+ P act
radar(1� P act

phone)� 0:001256+

+ P act
phone � P act

radar � 0:002722 (21)

which evaluates to 5:36� 10�7.
Unfortunately this is an unacceptable high failure prob-

ability compared to the admissible failure probability of
10�9. However, returning to the discussion on failure se-
mantics at the end of Section II-C, we note that systems

that fail due to a single deadline miss should be avoided,
since they are extremely sensitive. Especially for critical
systems, the designer has an obligation to make the system
more robust. For instance, for our simple system a more
reasonable failure semantics would be: \a failure occurs if
more than 2 out of 10 deadlines are missed". It should be
noted that changing failure semantics may have implica-
tions for the design, since we have to make sure that the
system appropriately can handle the new situation, e.g., in
our case that a few deadline misses can be tolerated.
Table V reports the results from a simulation of exactly

the same system as above, except that we now use the new
failure semantics.
Recalculating the overall mission failure probability

QT
F using the failure probabilities from Table V gives

QT
F (fphone; radarg) = 7:84� 10�12, which is quite negli-

gible in relation to the required failure probability of 10�9.
This means that the system has suÆciently high reliability
to be acceptable. Hence, our analysis has relieved the de-
signer from the costly redesign process which would have
been chosen if only the analysis with worst case phasing
was considered.

V. Conclusions

We have presented a method that allows controlled relax-
ation of the timing requirements of safety-critical hard real-
time systems. The underlying rational is that no real sys-
tem is (or can ever be) hard real-time, since the behaviour
of neither the design nor the hardware components can
be completely guaranteed. By integrating hard real-time
schedulability with the reliability analysis normally used
to estimate the imperfection of reality, we obtain a more
accurate reliability analysis framework with high potential
for providing solid arguments for making design tradeo�s,
e.g., that allow a designer to choose a slower (and less ex-
pensive) bus or CPU, even though the timing requirements
are violated in some rare worst-case scenario.
Using traditional schedulability analysis techniques, the

designer will in many cases have no other choice than to
redesign the system (in hardware, software or both). How-
ever, by resorting to our new analysis, we may see that
the probability of an extreme error situation arising is very
low and thus the designer may not need to perform a costly
re-design.
It is well known [8] that a control system that fails due to

a single deadline miss is not robust enough to be of much
practical use. Rather the system should tolerate single
deadline misses, or even multiple deadline misses or more
complex requirements on the acceptable pattern of dead-
line misses. These requirements should of course be derived
from the requirements on stability in the control of the ex-
ternal process. The possibility to handle such requirements
in the analysis can makes the use of the resources even more
eÆcient, i.e., we achieve a tradeo� situation between algo-
rithmic fault-tolerance and resource usage. By considering
each message separately in our example we could increase
the reliability by incorporating algorithmic fault tolerance
for functions which are dependent on a message that has



Msg ID Priority Ti Di Ci Response Time
(0) no interf. (1)phone (2)radar (3) phone&radar

OPERATOR-1 1 8 8 0.54 1.08 2.24 2.74 3.549
ABS-1 2 4 4 0.54 1.64 2.78 3.28 * 4.374
ABS-2 3 4 4 0.54 2.16 3.32 3.82 * 6.131
ABS-3 4 4 4 0.54 2.70 3.86 * 4.36 * 7.339
ABS-4 5 4 4 0.54 3.24 * 4.40 * 6.52 * 8.419
OPERATOR-2 6 15 15 0.54 3.78 7.86 7.60 *16.384

TABLE III

Response Time Analysis- Normal and under Faults

Interference Average Case in Simulation
Sources Total Missed Failure 99.9% Con�dence

Messages Deadlines Probability Interval

phone only 4530000 4385 96:8� 10�5 +
- 4:2� 10�5

radar only 4530000 5691 125:6� 10�5 +
- 5:3� 10�5

phone and radar 4530000 12331 272:2� 10�5 +
- 8:3� 10�5

TABLE IV

Simulation results: Simple failure semantics

Interference Average Case in Simulation
Sources Total Number of Failure 99.9% Con�dence

Messages Failures Probability Interval
phone only 4530000 0 0 0
radar only 4530000 0 0 0

phone and radar 4530000 1015 22:4� 10�5 +
- 6:6� 10�5

TABLE V

Simulation results: Refined failure semantics

the lowest reliability.

The presented method is tailored for analysis of the ef-
fects of external interference on CAN-bus communication.
The method could be extended in various directions, such
as including stochastic modeling of external interferences,
distributions of transmission times due to bit-stuÆng, dis-
tributions of actual queuing times, distributions of queuing
jitter, as well as applying the framework to CPU schedul-
ing, including variations in execution times of tasks, jitter,
periods for sporadic tasks, etc. Some of these extensions
require dependency issues to be carefully considered. For
instance, message queuing jitter may for all messages on
the same node be dependent on interrupt frequencies. As-
suming independence in such a situation may lead to highly
inaccurate results. Another critical issue which should be
given further attention is the sensitivity of the analysis to
variations in model parameters and assumptions, such as
the assumed probabilities for the interference sources to be
active in our example.

We are convinced that a successful development of a
holistic analysis framework, taking both reliability and
schedulability (as well as other pertinent issues) into ac-
count will be of immense value for the development of re-

source constrained safety-critical real-time systems. The
method presented here is an important step in that direc-
tion.
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Appendix

I. Simulation algorithms

The following are high level pseudo code descriptions of
the algorithms for the simulation based analysis in Sec-
tion III-C.

Algorithm 1 (Exhaustive Simulation)
The algorithm takes as input a list of interference sources
A and returns the probability that an interference scenario
causes a communication failure.

Algorithm Ex sim(A : \list of interference sources"):
probability
sample : array [\A"] of int;

Function startsample(k: interference source): Int
If k 2 I fintermittent sourceg
then startsample:= 0
else ftransient sourceg

startsample:= �nkTk;
end.func

Function maxsample(k: interference source): Int
If k 2 I fintermittent sourceg
then maxsample:= Tk - 1
else ftransient sourceg

maxsample:= T -1;
end.func

Function simulate(\list of phasings"): 1/0
\Simulate behavior during T "
If deadline violation
then simulate:=1
else simulate:=0;

end.func

begin.alg
scenarios:=0;
fail:=0;
For sample[First(A)]:=startsample(First(A)) to

maxsample(First(A)) do
For sample[next(First(A))]:=

startsample(next(First(A))) to
maxsample(next(First(A))) do

...
For sample[Last(A)]:=

startsample(Last(A)) to
maxsample(Last(A)) do

scenarios:= scenarios + 1;
fail:= fail + simulate(sample);

od
...
od

od
Ex sim:= fail/scenarios;

end.alg
The algorithm Ex sim investigates for each combination of
phasings if the interference sources cause a communication
failure or not.
Algorithm 2 (Random Simulation)

The algorithm takes as input a list of interference sources
A and returns the probability that an interference scenario
causes a communication failure.

Algorithm Rnd sim(A : \list of interference sources"):
probability
sample : array [\A"] of int;
begin.alg

scenarios:=0;
fail:=0;
Do until con�dence � required con�dence

For a = First(A) to Last(A) do
sample[a]:=

pick a sample(startsample(a),
maxsample(a))

od
scenarios:= scenarios + 1;
fail:= fail + simulate(sample);

od
Rnd sim:= fail/scenarios;

end.alg
The algorithm Rnd sim randomly selects phasings of the

interference sources and investigates if the selected combi-
nation of interferences causes a communication failure. The
procedure is repeated until required level of con�dence is
reached.
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Abstract. During the past few years, a number of veri�cation tools have been developed for
real-time systems in the framework of timed automata. One of the major problems in applying
these tools to industrial-sized systems is the huge memory-usage for the exploration of the state-
space of a network (or product) of timed automata, as the model-checkers must keep information
about not only the control structure of the automata but also the clock values speci�ed by clock
constraints.
In this paper, we present a compact data structure for representing clock constraints. The data

structure is based on an O(n3) algorithm which, given a constraint system over real-valued vari-
ables consisting of bounds on di�erences, constructs an equivalent system with a minimal number
of constraints. In addition, we have developed an on-the-y reduction technique to minimize the
space-usage. Based on static analysis of the control structure of a network of timed automata, we
are able to compute a set of symbolic states that cover all the dynamic loops of the network in an
on-the-y searching algorithm, and thus ensure termination in reachability analysis.
The two techniques and their combination have been implemented in the tool Uppaal. Our

experimental results demonstrate that the techniques result in truly signi�cant space-reductions:
for six examples from the literature, the space saving is between 75% and 94%, and in (nearly)
all examples time-performance is improved. Noteworthy is also the observation that the two
techniques are completely orthogonal.

Keywords: Real-Time Systems, Model Checking, Design Tool, Formal Speci�cation and Veri-
�cation, Timed Automata

1. Introduction

Reachability analysis has been one of the most successful methods for automated
analysis of concurrent systems. Many veri�cation problems e.g. invariant checking
can be solved by means of reachability analysis. It can in many cases also be used for
checking whether a system described as an automaton satis�es a requirement speci-
�cation formulated e.g. in linear temporal logic, by converting the requirement to an
automaton and thereafter checking whether the parallel composition of the system
and requirement automata can reach certain annotated states [32, 21, 2]. However,
the major problem in applying reachability analysis is the potential combinatorial
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Passed:= fg
Waiting:= f(l0; D0)g
repeat

begin

get (l; D) from Waiting

if (l; D) j= ' then return \YES"
else if D 6� D0 for all (l; D0) 2 Passed then

begin

add (l; D) to Passed
Succ:=f(ls; Ds) j (l; D); (ls; Ds) and Ds 6= ;g
for all (ls; Ds) in Succ do

put (ls; Ds) to Waiting

end

end
until Waiting=fg
return \NO"

Figure 1. An Algorithm for Symbolic Reachability Analysis.

explosion of state spaces. To attack this problem, various symbolic and reduction
techniques have been put forward over the last decade to eÆciently represent state
space and to avoid exhaustive state space exploration (e.g. [11, 17, 31, 12, 13, 16, 5]);
such techniques have played a crucial role for the successful development of veri�-
cation tools for �nite-state systems.

In the last few years, new veri�cation tools have been developed, for the class of
in�nite-state systems known as timed systems [19, 14, 9]. Notably the veri�cation
engines of most tools in this category are based on reachability analysis of timed
automata following the pioneering work of Alur and Dill [4]. A timed automaton
is an extension of a �nite automaton with a �nite set of real-valued clock-variables.
The foundation for decidability of reachability problems for timed automata is Alur
and Dill's region technique, by which the in�nite state space of a timed automaton
due to the density of time, may e�ectively be partitioned into �nitely many equiv-
alence classes i.e. regions in such a way that states within each class will always
evolve to states within the same classes. However, reachability analysis based on
the region technique is practically infeasible due to the potential state explosions
arising from not only the control-structure (as for �nite-state systems) but also the
region space [23].

EÆcient data structures and algorithms have been sought to represent and manip-
ulate timing constraints over clock variables (e.g. by Di�erence Bounded Matrices
[7, 15], or Binary Decision Diagrams [11, 6]) and to avoid exhaustive state space
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exploration (e.g. by application of partial order reductions [17, 31, 26] or compo-
sitional methods [5, 23]). One of the main achievements in these studies is the
symbolic technique [15, 33, 20, 34, 23], that converts the reachability problem to
that of solving simple constraints. The technique can be simply formulated in an
abstract reachability algorithm1 as shown in Figure 1. The algorithm is to check
whether a timed automaton may reach a state satisfying a given state formula '.
It explores the state space of the automaton in terms of symbolic states in the form
(l; D) where l is a control-node and D is a constraint over clocks variables.

We observe that several operations of the algorithm are critical for eÆcient im-
plementations. Firstly, the algorithm depends heavily on the test operations for
checking the inclusion D � D0 (i.e. the inclusion between the solution sets of D;D0)
and the emptiness of Ds in constructing the successor set Succ of (l; D). Clearly,
it is important to design eÆcient data structures and algorithms for the representa-
tion and manipulation of clock constraints. One such well-known data structure is
that of dbm (Di�erence Bounded Matrix), which o�ers a canonical representation
for constraint systems. It has been successfully used in several real-time veri�cation
tools, e.g. Uppaal [9] and Kronos [14]. A dbm representation is in fact a weighted
directed graph where the vertices correspond to clocks (including a zero-clock) and
the weights on the edges stand for the bounds on the di�erences between pairs of
clocks [7, 15, 33]. As it gives an explicit bound for the di�erence between each pair
of clocks, its space-usage is in the order of O(n2) where n is the number of clocks.
However, in practice it often turns out that most of these bounds are redundant.

In this paper, we present a compact data structure for dbm, which provides
minimal and canonical representations of clock constraints and also allows for ef-
�cient inclusion checks. We have developed an O(n3) algorithm that given a dbm
constructs a minimal number of constraints equivalent to the original constraints
represented by the dbm (i.e. with the same solution set). The algorithm is essen-
tially a minimization algorithm for weighted directed graphs, and hence solves a
problem of independent interest. Note that the main global data structure of the
algorithm in Figure 1 is the passed list (i.e. Passed) holding the explored states.
In many cases, it will store all the reachable symbolic states of the automaton.
Thus, it is desirable that when saving a (symbolic) state in the passed list, we save
the (often substantially smaller) minimal constraint system. The minimal repre-
sentation also makes the inclusion-checking of the algorithm more eÆcient. Our
experimental results demonstrate truly signi�cant space-savings as well as better
time-performance (see statistics in section 5).

In addition to the local reduction technique above, which is to minimize the space-
usage of each individual symbolic state, as the second contribution of this paper,
we have developed a global reduction technique to reduce the total number of states
to save in the global data structure, i.e. the passed list. It is completely orthogonal
to the local technique. In the abstract algorithm of Figure 1, we notice the step
of saving the new encountered state (l; D) in the passed list when the inclusion-
checking for D � D0 fails (i.e. D 6� D0). Its purpose is �rst of all to guarantee
termination but also to avoid repeated exploration of states that have several pre-
decessors. However, this is not necessary if all the predecessors of (l; D) are already
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y � 3

y := 0x � 1

x := 0; y := 0
l0 l1

x � 4
x � 5^

Figure 2. A Timed Automaton.

present in the passed list. In fact, to ensure termination, it suÆces to save only
one state for each dynamic loop. An improved on-the-y reachability algorithm ac-
cording to the global reduction strategy has been implemented in Uppaal [9] based
on static analysis of the control structure of timed automata. Our experimental
results demonstrate signi�cant space-savings and also better time-performance (see
statistics in section 5).

The outline of this paper is as follows: In the next section we review the semantics
of timed automata and the notion of Di�erence Bounded Matrix (dbm) for clock
constraints. Section 3 presents the compact data structure for dbm and the local
reduction technique (i.e. the minimization algorithm for weighted directed graphs).
Section 4 is devoted to develop the global reduction technique based on control
structure analysis. Section 5 presents our experimental results for both techniques
and their combination. Section 6 concludes the paper.

2. Preliminaries

2.1. Timed Automata

The model of timed automata was �rst introduced in [4] and has since then estab-
lished itself as a standard model for real-time systems. For the reader not familiar
with the notion of timed automata we give a short informal description.

Consider the timed automaton of Figure 2. It has two control nodes l0 and l1
and two real-valued clocks x and y. A state of the automaton is of the form (l; s; t),
where l is a control node, and s and t are non-negative reals giving the value of the
two clocks x and y. A control node is labelled with a condition (the invariant) on
the clock values that must be satis�ed for states involving this node. Assuming that
the automaton starts to operate in the state (l0; 0; 0), it may stay in node l0 as long
as the invariant x � 4 of l0 is satis�ed. During this time the values of the clocks
increase synchronously. Thus from the initial state, all states of the form (l0; t; t),
where t � 4, are reachable. The edges of a timed automaton may be decorated
with a condition (guard) on the clock values that must be satis�ed in order to be
enabled. Thus, only for the states (l0; t; t), where 1 � t � 4, is the edge from l0 to
l1 enabled. Additionally, edges may be labelled with simple assignments reseting
clocks. For example, when following the edge from l0 to l1 the clock y is reset to 0
leading to states of the form (l1; t; 0), where 1 � t � 4.
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In general, a timed automaton is a standard �nite-state automaton extended
with a �nite collection C of real-valued clocks ranged over by x; y etc. We use B(C)
ranged over by g (and latter D), to stand for the set of formulas that can be an
atomic constraint of the form: x � n or x� y � n for x; y 2 C, �2f�;�g2 and n
being a natural number, or a conjunction of such formulas. Elements of B(C) are
called clock constraints or constraint systems over C.

De�nition 1. [Timed Automata] A timed automaton A over clocks C is a tuple
hN; l0;�!; Ii where N is a �nite set of nodes (control-nodes), l0 is the initial node,
�!� N �B(C)�2C�N corresponds to the set of edges, and �nally, I : N 7! B(C)

assigns invariants to nodes. In the case, hl; g; r; l0i 2�!, we write l
g;r
�! l0.

Formally, we represent the values of clocks as functions (called clock assignments)
from C to the non-negative reals IR+. We denote by IRC+ the set of clock assignments
for C. A semantical state of an automaton A is now a pair (l; u), where l is a
node of A and u is a clock assignment for C, and the semantics of A is given by
a transition system with the following two types of transitions (corresponding to
delay-transitions and edge-transitions):

� (l; u)�!(l; u� d) if I(l)(u) and I(l)(u� d)

� (l; u)�!(l0; u0) if there exist g and r such that l
g;r
�! l0, g(u) and u0 = r[u]

where for d 2 IR+, u�d denotes the time assignment which maps each clock x in C
to the value u(x) + d, and for r � C, r[u] denotes the assignment for C which maps
each clock in r to the value 0 and agrees with u over Cnr.
Clearly, the semantics of a timed automaton yields an in�nite transition system,

and is thus not an appropriate basis for decision algorithms. However, eÆcient
algorithms may be obtained using a �nite-state symbolic semantics based on sym-

bolic states of the form (l; D), where D 2B(C) [20, 34]. We shall consider a clock
constraint as a set of clock assignments and use u 2 D to stand for u satis�ed D.

The symbolic counterpart to the standard semantics is given by the following two
(fairly obvious) types of symbolic transitions:

� (l; D);

�
l; (D ^ I(l))" ^ I(l)

�

� (l; D);

�
l0; r(g ^D)

�
if l

g;r
�! l0

where D" = fu� d j u 2 D ^ d 2 IR+g and r(D) = fr[u] j u 2 Dg. It may be shown
that B(C) (the set of clock constraints) is closed under these two operations (and
^) [15]. Moreover, the symbolic semantics characterize the standard semantics in
the sense that, whenever u 2 D and (l; D) ; (l0; D0) then (l; u) �! (l0; u0) for
u0 2 D0.



6

Finally, we introduce the notion of networks of timed automata [34, 23]. A net-
work is the parallel composition of a �nite set of automata for a given synchroniza-
tion function. To illustrate the on-the-y veri�cation technique, we only need to
study the case dealing with interleaving, that is, the network of automata A1 : : : An,
is the Cartesian product of Ai's. Assume a vector l of control nodes. We shall use
l[i] to stand for the ith element of l and l[l0i=li] for the vector where the ith element
li of l is replaced by l0i. A control node (i.e. control vector) l of a network A1 : : : An

is a vector where l[i] is a node of Ai and the invariant I(l) of l is the conjunction of
I(l[1]) : : : I(l[n]). The symbolic semantics of networks is given in terms of control
vectors by the following two types of symbolic transitions:

� (l; D);

�
l; (D ^ I(l))" ^ I(l)

�

� (l; D);

�
l[l0i=li]; r(g ^D)

�
if li

g;r
�! l0i

In the later case, we shall say that the symbolic transition is derived by the edge

li
g;r
�! l0i.

2.2. Di�erence Bounded Matrices & Shortest-Path Closure

To utilize the symbolic semantics of (networks of) timed automata algorithmically,
as for example in the reachability algorithm of Figure 1, it is important to design
eÆcient data structures and algorithms for the representation and manipulation of
clock constraints.
One such well-known data structure is that of di�erence bounded matrices (dbm,

see [7, 15]), which o�ers a canonical representation for constraint systems. A dbm

representation of a constraint system D is simply a weighted, directed graph, where
the vertices correspond to the clocks of C and an additional zero-vertex 0. The
graph has an edge from x to y with weightm provided y�x � m is a constraint ofD.
Similarly, there is an edge from 0 to x with weightm, whenever x � m is a constraint
of D 3. As an example, consider the constraint system E over fx0; x1; x2; x3g being
a conjunction of the atomic constraints x0 � x1 � 3, x3 � x0 � 5, x3 � x1 � 2,
x2 � x3 � 2, x2 � x1 � 10, and x1 � x2 � �4. The graph representing E is given
in Figure 3 (a).
In general, the same set of clock assignments may be described by several con-

straint systems (and hence graphs). To test for inclusion between constraint sys-
tems D and D0 4, which we recall is essential for the termination of the reachability
algorithm of Figure 1, it is advantageous if D is closed under entailment in the
sense that no constraint of D can be strengthened without reducing the solution
set. In particular, for D a closed constraint system, D � D0 holds if and only if
for any constraint in D0 there is a constraint in D at least as tight; i.e. whenever
(x � y � m0) 2 D0 then (x � y � m) 2 D for some m � m0. Thus, closedness
provides a canonical representation, as two closed constraint systems describe the
same solution set precisely when they are identical. To close a constraint system D
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Figure 3. Graph for E (a), its shortest-path closure (b), and shortest-path reduction (c).

amounts to derive the shortest-path closure for its graph and can thus be computed
in time O(n3), where n is the number of clocks of D. The graph representation
of the closure of the constraint system E from Figure 3 (a) is given in Figure 3
(b). The emptiness-check of a constraint system D simply amounts to checking for
negative-weight cycles in its graph representation. Finally, given a closed constraint
system D the operations D" and r(D) may be performed in time O(n).

3. Minimal Constraint Systems & Shortest Path Reductions

For the reasons stated above a matrix representation of constraint systems in closed
form is an attractive data structure, which has been successfully employed by a
number of real-time veri�cation tools, e.g. Uppaal [9] andKronos [14]. As it gives
an explicit (tightest) bound for the di�erence between each pair of clocks (and each
individual clock), its space-usage is of the order O(n2). However, in practice it often
turns out that most of these bounds are redundant, and the reachability algorithm
of Figure 1 is consequently hampered in two ways by this representation. Firstly,
the main data structure Passed, will in many cases store all the reachable symbolic
states of the automaton. Thus, it is desirable, that when saving a symbolic state
in the Passed-list, we save a representation of the constraint system with as few
constraints as possible. Secondly, a constraint system D added to the Passed-list
is subsequently only used in checking inclusions of the form D0 � D. Recalling
the method for inclusion-check from the previous section, we note that (given D0

is closed) the time-complexity of the inclusion-check is linear in the number of
constraints of D. Thus, again it is advantageous for D to have as few constraints
as possible.

In the following subsections we shall present an O(n3) algorithm, which given a
constraint system constructs an equivalent reduced system with the minimal num-
ber of constraints. The reduced constraint system is canonical in the sense that
two constrain systems with the same solution set give rise to identical reduced sys-
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tems. The algorithm is essentially a minimization algorithm for weighted directed
graphs. Given a weighted, directed graph with n vertices, it constructs in time
O(n3) a reduced graph with the minimal number of edges having the same shortest
path closure as the original graph. Figure 3 (c) shows the minimal graph of the
graphs in Figure 3 (a) and (b), which is computed by the algorithm.

3.1. Reduction of Zero-Cycle Free Graphs

A weighted, directed graph G is a structure (V;EG), where V is a �nite set of
vertices and EG; is a partial function from V � V to Z (the integers). The domain
of EG constitutes the edges of G, and when de�ned, EG(x; y) gives the weight of
the edge between x and y. We assume that EG(x; x) = 0 for all vertices x, and
that G has no cycles with negative weight5.
Given a graph G, we denote by GC the shortest-path closure of G, i.e. EGC (x; y)

is the length of the shortest path from x to y in G. A shortest-path reduction of a

graph G is a graph GR with the minimal number of edges such that (GR)
C
= GC .

The key to reduce a graph is obviously to remove redundant edges, where an edge
(x; y) is redundant if there exist an alternative path from x to y whose (accumu-
lated) weight does not exceed the weight of the edge itself. For example, in the
graph of Figure 3 (a), the edge (x1; x2) is clearly redundant as the accumulated
weight of path (x1; x0); (x0; x3); (x3; x2) has a weight (10) not exceeding the weight
of the edge itself (also 10). The path (x1; x3); (x3; x2) makes also the edge (x1; x2)
redundant. Being redundant, the edge (x1; x2) may be removed without changing
the shortest-path closure. We shall use G n(x1; x2) to denote the result of removing
the edge (x1; x2) from the graph G.
Now, consider the edge (x1; x2) in the graph of Figure 3 (b). Clearly, the edge

is redundant as the path (x1; x3); (x3; x2) has equal weight. Similarly, the edge
(x3; x2) is redundant as the path (x3; x1); (x1; x2) has equal weight. However,
though redundant, we cannot just remove the two edges (x1; x2) and (x3; x2) as
removal of one clearly requires the presence of the other. In fact, all edges be-
tween the vertices x1; x2 and x3 are redundant, but obviously we cannot remove
them all simultaneously. The key explanation of this complicating phenomena is
that x1; x2; x3 constitutes a cycle with length zero (a zero-cycle). However, for
zero-cycle free graphs the situation is the simplest possible:

Lemma 1 Let G1 and G2 be zero-cycle free graphs such that G1
C = G2

C . If there

is an edge (x; y) 2 G1 such that (x; y) 62 G2, then (G1 n f(x; y)g)
C
= G1

C = G2
C .

Proof: Let � denote the edge (x; y) and let m be the weight of � in G1. We will
show that there is an alternative path in G1 not using � with weight no more than
m. From this fact the Lemma obviously follows.
As G1

C = G2
C , the shortest path from x to y in G2 has weight no more than

m. As � 62 G2, this path must visit some vertex z di�erent from x and y. Now let
m1 be the shortest path-weight from x to z and let m2 be the shortest path-weight
from z to y; note that G1 and G2 agrees on m1 and m2, as they have the same
shortest-path closure. Then clearly, m � m1 +m2.
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Now assume that the shortest path in G1 from x to z uses � = (x; y). Then, as
a sub-path, G1 will be a path from y to z. Since G1 also has a path from z to y, it
follows that G1 will have a cycle from y via z back to y. The weight of this cycle
can be argued to be no more than (m1 � m) + m2. However, as m � m1 + m2

and there are no negative cycles, this cycle must have weight 0 contradicting the
assumption that G1 is zero-cycle free.

Similarly, a contradiction with the zero-cycle free assumption of G1 is obtained,
if the shortest path in G1 from z to y uses �. thus we can conclude that there is
an path from x to y not using � with length no greater than m.

From the above Lemma it follows immediately that all redundant edges of a zero-
cycle free graph may be removed without a�ecting the closure. On the other hand,
removal of an edge which is not redundant will of course change the closure of the
graph, and must be present in any graph with the same closure. Thus the following
theorem follows:

Theorem 1 Let G be a zero-cycle free graph, and let f�1; : : : ; �2g be the set of

redundant edges of G. Then GR = GC n f�1; : : : ; �kg.

Proof: Follows from Lemma 1.

From an algorithmic point of view, redundancy of edges is easily determined given
the closure GC of a graph G as only path of length 2 needs to be considered:
An edge (x; y) is redundant precisely when there is a vertex z ( 6= x; y) such that
EGC (x; y) � EGC (x; z)+EGC (z; y). Thus for zero-cycle free graphs computing GR

is O(n3).

3.2. Reduction of Negative-Cycle Free Graphs

For general graphs (without negative cycles) our reduction construct relies on a
partitioning of the vertices according to zero-cycles. We say that two vertices x and
y are equivalent or zero-equivalent, if there is a zero-cycle containing them both. We
write x � y in this case. Given the closure GC of a graph G, it is extremely easy
to check for zero-equivalence: x � y holds precisely when EGC (x; y) = �EGC (y; x).
Thus, in the graphs of Figure 3 (a) and (b), � partitions the vertices into the two
classes fx0g and fx1; x2; x3g.
To obtain a canonical reduction, we assume that the vertices of G are ordered by

assigning them indices as x1; x2; : : : ; xn. The equivalence � now induces a natural
transformation G� on the graph G:

De�nition 2. Given a graph G, the vertices of the graph G� are �-equivalence
classes, denoted Ek, of G. There is an edge between the classes Ei and Ej (i 6= j)
if for some x 2 Ei and y 2 Ej there is an edge in G between x and y. The weight
of this edge is EGC (E

min
i ; Emin

j ), where Emin is the vertex in E with the smallest
index. 2
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Thus, the distance between Ei and Ej in G� is the weight of the shortest path
in G between the elements of Ei and Ej with smallest index. It is obvious that G�
is a zero-cycle free graph. It is also easy to see that G1� = G2� if G1

C = G2
C .

Let H be the graph of Figure 3 (a). Then H� will have vertices E0 = fx0g and
E1 = fx1; x2; x3g. The two vertices are connected by two edges both having weight
3.
The following provides a dual to the operator of De�nition 2:

De�nition 3. Let F be a graph with vertices being �-equivalence classes with
respect to a graph G = (V;EG). Then the expansion of F is a graph F+ with
vertices V and with weight satisfying:

� For any multi-member equivalence class6 fz1 < z2 < � � � < zkg of F , F+

contains a single cycle z1; z2; : : : ; zk; z1, with the weight of the edge (zi; zi+1)
being the weight of the shortest path from zi to zi+1 in G.

� Whenever (Ei; Ej) is an edge in F with weight m, then F+ will have an edge
from Emin

i to Emin
j with weight m. 2

We are now ready to state the main Theorem giving the shortest-path reduction
construct for arbitrary negative-cycle free graphs:

Theorem 2 Let G be negative-cycle free graph. Then the shortest-path reduction

GR of G is given by the graph (G�
R)

+
, i.e. GR = (G�

R)
+
.

Proof: We show: (1) that (G�
R)

+
is a candidate for a shortest-path reduction of

G in the sense that (G�
R)

+
= GC , and (2) that (G�

R)
+
is minimal.

1. We �rst prove that (G�
R)

+
= GC . As all edges (x; y) of (G�

R)
+
have weight

of the form EGC (x; y), it follows that for any path in (G�
R)

+
there is a path

in G with same weight.

Now consider an edge (x; y) of G. We will demonstrate that there is a path in

(G�
R)

+
with no greater weight.

� If x = Emin
i and y = Emin

j for two �-classes Ei and Ej , it follows that
EG�(Ei; Ej) � EG(x; y). Furthermore, due to the property of reduction

construction, there is a path in G�
R between Ei and Ej with weight no

greater than EG�(Ei; Ej). The same path, but now between the nodes with

the minimal indices of the �-classes, can be found in (G�
R)

+
. Thus, there

is a path in (G�
R)

+
with weight no greater than EG(x; y).

� If x; y 2 Ei for some �-class Ei, an easy argument gives that E(G�R)
+ (x;

y) = EGC (x; y) � EG(x; y).

� Consider the case when x 2 Ei and y 2 Ej for two di�erent �-classes, and
assume that EG(x; y) = m.
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Let m1 = E(G�R)
+(x;Emin

i ), m2 = E(G�R)
+(Emin

i ; Emin
j ), and m3 =

E(G�R)
+(Emin

j ; y). Note that by the reduction construction m2 � EGC

(Emin
i ; Emin

j ). Then there is a path in (G�
R)

+
from x to y via Emin

i and

Emin
j with weight m1 +m2 +m3. Now, if m < m1 +m2 +m3, there is a

path in G from Emin
i to Emin

j of weight m�m1 �m3 < m2 contradicting

that m2 is the weight of the shortest path in G between Emin
i and Emin

j .

Thus the path x, Emin
i , Emin

j , y in (G�
R)

+
has weight no greater than the

edge (x; y) in G.

2. Next we prove that (G�
R)

+
has minimal number of edges by showing that

whenever HC = GC then H has at least as many edges as (G�
R)

+
.

As HC = GC , H and G induces the same �-equivalence relation on the same
zero-length cycles. Obviously the fewest edges that will identify k (> 1) vertices,

with respect to � is k. Hence, (G�
R)

+
uses a minimal number of edges between

vertices in the same �-equivalence class.

Now let (Emin
i ; Emin

j ) be an edge in (G�
R)

+
with weight m. We claim that H

must have at least one edge from Ei to Ej .

Assume that this is not the case. Then, as HC = GC , there must be a path in
H from Emin

i to Emin
j as shown in Figure 4 such that m =

Pk+2
i=0 vi+

Pk+1
i=0 wi.

Now letm0 = E(G�R)
+(Emin

i ; Emin
0 ),m1 = E(G�R)

+(Emin
0 ; Emin

1 ), . . . ,mk+1 =

E(G�R)
+(Emin

k ; Emin
i ) (illustrated with dashed lines in Figure 4). Then m0 �

v0 + w0 + v01, m1 � v001 + w1 + v02, . . . , mk+1 � v00k+1 + wk+1 + vk+2, where
v1 = v01 + v001 , v2 = v02 + v002 , . . . , vk+1 = v0k+1 + v00k+1.

It follows that
Pk+1

i=0 mi � m. Hence (Ei; Ej) is redundant in (G�
R)

+
and can

be removed, contradicting Lemma 1.

First, note that the above construction of (G�
R)

+
is well-de�ned as G� is a zero-

cycle free graph and the reduction construction of Theorem 1 thus applies. Given
the closure GC of G the constructions of De�nitions 2 and 3 can be computed in

O(n2). Since GR is computed from G in O(n3), it follows that also (G�
R)

+
can

be constructed in O(n3). Now applying the above construction to the graph H
of Figure 3 (a), we �rst note that H�

R = H� as H� has no redundant edges.
Expanding H� with respect to the vertex ordering x0 < x1 < x2 < x3 gives the
graph of Figure 3 (c), which according to Theorem 2 above is the shortest-path
reduction of H .

Experimental results show that the use of minimal constrain systems (obtained
by the above shortest-path reduction algorithm) as a compact data structure leads
to truly signi�cant space-savings in practical reachability analysis of timed systems:
the space-savings are in the range 68{85%. We refer to Section 5 for more details.
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Figure 4. A path in the graph H.

4. Global Reductions and Control Structure Analysis

The preceding section is about local reductions in reachability analysis in the sense
that the technique developed is for each individual symbolic state. In this section,
we shall develop a global reduction technique to reduce the total number of symbolic
states to save in the global data structure i.e. the passed list.

4.1. Potential Space-Reductions

We recall the standard reachability analysis algorithm for �nite graphs (see e.g.
[27]). It is similar to the one in Figure 1, but simpler as no constraints but only
control nodes are involved. The algorithm repeats three main operations: examin-

ing every new encountered node (to see if it is in the passed list), exploring the new
encountered nodes (computing all their successors for further analysis), and saving

the explored nodes in the passed list until all reachable nodes are present in the list
(i.e. all new encountered nodes are already in the passed list).
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Figure 5. Illustration of Space-Reduction.

Note that the saving of an explored node is to ensure termination and also to
avoid repeated exploration of nodes with more than one incoming edge. However
it is not necessary to save all reachable nodes. Consider for example, the simple
graph in Figure 5 with initial node l0. Clearly, there is no need to save node l2; l3
or l4 as they will be visited only once if l1 is present in the passed list.

In fact, to guarantee termination on a �nite graph, it is suÆcient to save only
one node for each cycle in the graph. For example, as l1 covers the two cycles
of the graph in Figure 5, in addition to l2; l3; and l4, it is not necessary to save
l0 either. In general, for a �nite graph, there is a minimal number of nodes to
save in the passed list in order to guarantee termination. However the trade-o� of
the space-saving strategy may be increased time-consumption. Consider the same
graph of Figure 5. If node l0 is not present in the passed list, it will be explored
again whenever l3 is explored. This can be avoided by saving l0 when it is �rst
visited. But the di�erence from saving l1 is that saving l0 is for eÆciency and l1
for termination.

Now we again recall the abstract reachability algorithm in Figure 1 for timed sys-
tems. To ensure termination and also to avoid repeated exploration of states (that
have more than one predecessors), it saves every new encountered state (l; D) in the
passed list when the inclusion-checking for D � D0 fails (i.e. D 6� D0). Obviously
this is not necessary if all the predecessors of (l; D) already exist in the Passed-list.
Similar to the case for �nite graphs, for termination, we need to save only one state
for every dynamic loop of a timed automaton.

De�nition 4. [Dynamic Loops] Assume a timed automaton with an initial state
(l0; D0). The set of symbolic states Ld = f(l1; D1) : : : (ln; Dn)g is a dynamic
loop of the timed automaton if (l1; D1) ; (l2; D2) : : : (ln�1; Dn�1) ; (ln; Dn)
and (ln; Dn) ; (l1; D

0
1) with D0

1 � D1, and (l0; D0) is reachable in the sense that
(l0; D0) ; : : : ; (l1; D1). A symbolic state is said to cover a dynamic loop if it is
a member of the loop.
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We claim that to ensure termination, it is suÆcient (but not necessary) to save a
set of symbolic states that cover all the dynamic loops. Now, the problem is how
to compute eÆciently such a set.

4.2. Control Structure Analysis and Application

We shall utilize the statical structure of an automaton to identify potential candi-
dates of states to cover dynamic loops.

De�nition 5. [Statical Loops and Entry Nodes] A set of nodes L = fl1; : : : ;
lng of a timed automaton is a statical loop if there is a sequence of edges l1 �!

l2 � � � ln�1 �! ln and ln �! l1 where li �! lj denotes that li
g;r
�! lj for some g; r

is an edge of the automaton. A node li 2 L is an entry node of the statical loop
L if it is an initial node of the automaton or there exists a node l 62 L (outside
of the loop) and an edge l �! li. Further, we say that a vector of nodes (i.e. a
node of a network) is an entry node if any of its components are entry nodes.

For example, nodes l0; l1; l2 and l3 in Figure 5 constitute a statical loop with
entry nodes l0 and l1; another statical loop is nodes l1 and l4 with entry node l1. In
general, since the sets of control nodes and edges of a timed automaton are �nite,
the number of statical loops is �nite and so is the set of entry nodes of all statical
loops. In fact the set of entry nodes of a timed automaton can be easily computed
by statical analysis using a stack or a slightly modi�ed loop detecting algorithm
(see e.g. [29]).
Now note that according to De�nition 4, a dynamic loop (a set of symbolic states)

must contain a subset of symbolic states whose control nodes constitute a statical
loop. As a statical loop always contains an entry node, we have the following fact.

Proposition 1 Every dynamic loop of a timed automaton contains at least one

symbolic state (l; D) where l is an entry node.

Proof: Standard proof by contradiction.

Following Proposition 1, to cover all the dynamic loops, we may simply save all the
states whose control-nodes are an entry node, and ignore the others. Obviously,
this will not give much reduction when dynamic loops include mostly entry nodes,
which is the case when a network of automata contains a component whose nodes
are mostly entry nodes e.g. a testing automaton. For networks of automata, we
adopt the strategy of saving the �rst derived states whose control nodes are an
entry node, known as covering states in the following sense.

De�nition 6. [Covering States] Assume a network of timed automata with
an initial state (l0; D0) and a given symbolic state (l; D). We say that (l; D) is
a covering state of the network if it is reachable in the sense that there exists
a sequence of symbolic transitions (l0; D0) ; (l1; D1) : : : (ln; Dn) ; (l; D) and
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an i (standing for the ith component of the network) such that l[i] is an entry

node and (ln; Dn) ; (l; D) is derived by an edge ln[i]
g;r
�! l[i] for some g and r.

From the above de�nition, it should be obvious that we can easily decide whether
a reachable symbolic state is a covering state by an on-the-y algorithm when the
entry nodes of all the component automata are known through statical analysis as
discussed earlier.

Finally, we claim that the set of covering states of a network covers all its dy-
namic loops and therefore it suÆces to keep them in the passed list for the sake of
termination in reachability analysis7.

Theorem 3 Every dynamic loop of a network of timed automata contains at least

one covering state.

Proof: Assume a dynamic loop Ld = (l1; D1) ; : : : ; (lk; Dk) with no covering
states. However according to Proposition 1, Ld contains at least one entry node.
Further, assume (without loss of generality) that the symbolic state (l; D) 2 Ld is
an entry node and the components l[1]; : : : ; l[m] of l are all in an entry node, and
all the other components of l, i.e. l[m+ 1]; : : : ; l[n], are not.

Now, we claim that if Ld contains no covering states, the set of components
li[1]; : : : ; li[m] will remain in an entry node in all symbolic states (li; Di) 2 Ld.
Otherwise, if the set of local entry nodes changes, either grows or reduces, it will
introduce a covering state. The case of growing is obvious due to the de�nition for
covering states. The argument for the case of reducing is the same as the control
nodes of all the components will reach l1 again by the end of Ld, meaning that the
set will sooner or later grows again.

In fact, the assumption that Ld contains no covering states, implies an even
stronger property, that is, all symbolic transitions in Ld are derived by components
in li[m+ 1]; : : : ; li[n]. A transition is derived by a local transition of a component
in l[1]; : : : ; l[m], means that the set of local entry nodes will either grow or reduce
(discussed above) or the local transition leaves the current entry node and enters
an another entry node. The later case implies that the new entry node is a covering
state.

Now we construct L0d by removing li[1]; : : : ; li[m] from all symbolic states (li; Di) 2
Ld, that is, L

0
d contains only the components that are not in an entry nodes. Obvi-

ously, all the symbolic transitions of Ld are also in L0d; thus L
0
d must be a loop by

de�nition. However, L0d contains no components that are in an entry node. This
contradicts Proposition 1.

An improved reachability algorithm according to the saving strategy induced from
Theorem 3 (i.e. saving only the covering sates in the passed list) has been im-
plemented in Uppaal. Our experimental results show that the space-reduction is
between 13{72% (see Table 1 and 2 in Section 5).
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5. Experimental Results

The techniques developed in preceding sections have been implemented and added
to the tool Uppaal8[9]. In this section we present the results of an experiment
where both the original version of Uppaal and its extension were applied to verify
the following six well-studied examples from the literature:

Philips Audio Protocol (Audio) The protocol was developed and implemented
by Philips to exchange control information between components in audio equip-
ment using Manchester encoding. The correctness of the encoding relies on
timing delays between signals. It is �rst studied and manually veri�ed in [10].

We have veri�ed that the main correctness property holds of the protocol, i.e.
all bit streams sent by the sender are correctly decoded by the receiver [24], if
the timing error is �5%.

Philips Audio Protocol with Bus Collision (Audio w. Collision) This is an
extended variant of Philips audio control protocol with bus collision detec-
tion [8]. It is signi�cantly larger than the version above since several new
components (and variables) are introduced, and existing components are mod-
i�ed to deal with bus collisions.

In the experiment we checked that correct bit sequences are received by the
receiver (i.e. Property 1 of [8]), using the error tolerances set by Philips.

Bang & Olufsen Audio/Video Protocol (Bang & Olufsen) This is an audio
control protocol highly dependent on real-time. The protocol is developed by
Bang & Olufsen, to transmit messages between audio/video components over a
single bus, and further studied in [18].

In the experiment we have veri�ed the correctness criteria of the protocol. We
refer the reader to Section 5.1 of [18] for more details.

Box Sorter (Box Sorter) The example of [25] is a model of a sorter unit that sorts
red and blue boxes. When the boxes moves down a lane they pass a censor and
a piston. The sorter reads the information from the censor and sorts out the red
boxes by controlling the position of the piston. We have shown, using Uppaal,
that only blue boxes arrive at the end of the lane.

Manufacturing Plant (Manufact. Plant) The example is a model of the manu-
facturing plant of [28, 14]. It is a production cell with: a 50 feet belt moving
from left to right, two boxes, two robots and a service station. Robot A moves
boxes o� the rightmost extreme of the belt to the service station. Robot B
moves boxes from the service station to the left-most extreme of the belt.

Assuming an initial distance between the boxes on the belt we veri�ed that no
box will fall o� the belt.

Mutual Exclusion Protocol (Mutex 2{Mutex 5) It is the so-called Fischer's
protocol that has been studied previously in many experiments, e.g. [1, 30].
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Current Local Global Local+Global

# # % # % # %

Audio 828 219 26 774 93 206 25

Audio w. Collision 646 092 198 178 31 370 800 57 111 632 17

Bang & Olufsen 778 288 249 175 32 642 752 83 204 795 26

Box Sorter 625 139 22 175 28 36 6

Manufact. Plant 92 592 27 042 29 50 904 55 14 933 16

Mutex 2 225 44 20 99 44 18 8

Mutex 3 3 376 621 18 1 360 40 240 7

Mutex 4 56 825 9 352 16 22 125 39 3 532 6

Mutex 5 1 082 916 158 875 15 416 556 38 59 720 6

Train Crossing 464 130 28 384 83 114 25

Table 1. Space performance statistics: number of constraints (#) and percentage of Current (%).

The protocol is to ensure mutual exclusion among several processes competing
for a critical section using timing constraints and a shared variable. In the ex-
periment we use the version of the protocol where a process may recover from
failed attempts to enter the critical section, and also eventually leave the critical
section [22].

The protocol is shown to enjoy the invariant property: There is never more
than one process existing in the critical section. The results for 2 to 5 processes
are shown in Table 1 and 2.

Train Crossing Controller (Train Crossing) It is a variant of the train gate
controller [19]. An approaching train signals to the controller which reacts by
closing the gate. When the train have passed the controller opens the crossing.
We have veri�ed that the gate is closed whenever a train is close to the crossing.

In Table 1 and 2 we present the space (in number of timing constraints stored on
the Passed-bu�er) and in the time requirements (in seconds) of the examples on
a Sun SPARCstation4 equipped with 64 MB of primary memory. Each example
was veri�ed using the current algorithm of Uppaal (Current), and using modi�ed
algorithms for: Compact Data Structure for Constraints (Local), Control Structure
Reduction (Global), and their combination (Local+Global).

As shown in Table 1 and 2 both techniques give truly signi�cant space savings:
Compact Data Structure for Constraints saves 68{85% of the original consumed
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Current Local Global Local+Global

sec sec % sec % sec %

Audio 0:44 0:43 98 0:44 100 0:47 107

Audio w. Collision 3 465:22 2 067:37 60 1 515:88 44 929:22 27

Bang & Olufsen 13 240:49 6 967:38 53 9 348:48 71 4 966:79 38

Box Sorter 0:20 0:18 90 0:41 205 0:41 205

Manufact. Plant 155:61 39:85 26 56:61 36 24:22 16

Mutex 2 0:13 0:14 108 0:15 115 0:14 108

Mutex 3 1:40 0:67 48 0:65 46 0:51 36

Mutex 4 102:49 24:48 24 25:97 25 12:14 12

Mutex 5 14 790:56 3 299:96 22 3 111:21 21 1 138:32 8

Train Crossing 0:19 0:18 95 0:20 105 0:18 95

Table 2. Time performance statistics: seconds (sec) and percentage of Current (%).

space while Control Structure Reduction demonstrates more variation saving 13{
72%. Both methods result in better time-performance on the examples consuming
more than half a second, whereas the time-perfomance is worse on the smaller
examples. Most signi�cant is that the two techniques are completely orthogonal,
witnessed by the numbers for the combined technique which shows a space-saving
between 75% and 94%.

6. Conclusion

In this paper, we have two contributions to the development of eÆcient data struc-
tures and algorithms for memory-usage reduction in the automated analysis of
timed systems.

Firstly, we have presented a compact data structure, for representing the subsets
of Euclidean space that arise during veri�cation of timed automata, which provides
minimal and canonical representations for clock constraints, and also allows for
eÆcient inclusion checks between constraint systems. The data structure is based
on an O(n3) algorithm which, given a constraint systems over real-valued variables
consisting of bounds on di�erences, constructs an equivalent system with a mini-
mal number of constraints. It is essentially a minimization algorithm for weighted
directed graphs, that extends the transitive reduction algorithm of [3] to weighted
graphs. Given a weighted, directed graph with n vertices, it constructs in time
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O(n3) a reduced graph with the minimal number of edges having the same shortest
path closure as the original graph.

Secondly, we have developed an on-the-y reduction technique to minimize the
space-usage by reducing the total number of symbolic states to save in reachability
analysis for timed systems. The technique is based on the observation that to ensure
termination in reachability analysis, it is not necessary to save all the explored
states in memory, but only certain critical states. Based on static analysis of the
control structure of timed automata, we are able to compute a set of covering states
that cover all the dynamic loops of a system. The set of covering states may not
be minimal but suÆcient to guarantee termination in an on-the-y reachability
algorithm.

The two techniques and their combination have been implemented in the tool
Uppaal. Our experimental results demonstrate that the techniques result in truly
signi�cant space-reductions: For a number of well-studied examples in the liter-
ature the space saving is between 75% and 94%, and in all large examples time-
performance is improved. Noteworthy is also the observation that the two tech-
niques are completely orthogonal.

As future work, we wish to further study the global on-the-y reduction technique
to identify theminimal sets of covering states that ensure termination and also avoid
repeated explorations in reachability analysis for timed systems.

Notes

1. Several veri�cation tools for timed systems (e.g. Uppaal [9]) have been implemented based on
this algorithm.

2. For reasons of simplicity and clarity in presentation we have chosen only to consider the non-
strict orderings. However, the techniques given extends easily to strict orderings.

3. We assume that D has been simpli�ed to contain at most one upper and lower bound for each
clock and clock-di�erence.

4. To be precise, it is the inclusion between the solution sets for D and D0.

5. This would correspond to constraint systems with empty solution set.

6. \<" refers to the assumed ordering on the vertices of G.

7. Note that this is only a suÆcient condition but not necessary.

8. For more information about the tool Uppaal, see the web site http://www.uppaal.com/.
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Abstract. Formal veri�cation of computer-based engineering systems is only meaningful if
the mathematical models used are derived systematically, recording the assumptions made at
each modelling stage. In this paper we give an exposition of research e�orts in cooperation with
aerospace industries in Sweden. We emphasize the need for modelling techniques and languages
covering the whole spectrum from informal engineering documents, to hybrid mathematical mod-
els. In this modelling process we give as much weight to the physical environment as to the
controlling software. In particular, we report on our experience using switched bond graphs for
the modelling of hardware components in hybrid systems. We present the basic ideas underly-
ing bond graphs and illustrate the approach by modelling an aircraft landing gear system. This
system consists of actuating hydromechanic and electromechanic hardware, as well as controlling
components implemented in software and electronics. We present a detailed analysis of the closed
loop system with respect to safety and timeliness properties. The proofs are carried out within
the proof system of Extended Duration Calculus.

Keywords: formal veri�cation, hybrid system, physical modelling, bond graph, aerospace appli-
cation, Duration Calculus

1. Introduction

In this article we present some insights gained from the work performed in a multi-
disciplinary project in cooperation with the Swedish aerospace industries, by com-
puter science, electrical engineering, and mechanical engineering departments at
Link�oping university. The project concerns generation of models and analysis of
hybrid systems { mathematical models including both continuous and discrete el-
ements. The article addresses modelling and formal veri�cation of a system, in-
volving hydromechanical and electromechanical sensors and actuators as well as
electronic and software modules performing diagnosis and control. The technical
system, hereafter referred to as \the system", is moreover in dynamic interaction
with a human operator (the pilot).

Our main thesis is that verifying properties of computer based systems bene�ts
from modelling both the embedded controller and its surrounding physical envi-
ronment. Furthermore, unless care is taken in developing the mathematical models
which form the basis of formal veri�cation, the results of veri�cation can not be
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relied upon. Therefore, rather than verifying properties of ad hoc models we take
a number of steps for systematically deriving the models from engineering design
documents. The models of the hardware and the software are typically fundamen-
tally di�erent in their character1. Hence, di�erent competences are required in
development and documentation of these models. However, it is the composition of
the models for these two parts, also referred to as the closed loop model, which is
needed for proving the properties we are interested in. The work reported here has
been partially presented in international conferences in the form of shorter articles.
This article can therefore be seen as the full version of [21, 32].

Deriving mathematical models from engineering documents, is an inherently dif-
�cult task. We have approached this problem by adopting an iterative process in
which models are successively re�ned as a result of earlier analysis. The pragmatic
reason for this is the following. The level of detail in the model is dependent on
factors such as the requirement speci�cation, assumptions made about the physical
components, and the choice of veri�cation technique. Hence, in real-world appli-
cations, the modelling and the analysis processes must go hand-in-hand. For this
kind of iterative process to be realistic in a multi-disciplinary setting, the formal
models derived and the assumptions made must be easy to convey to the domain
specialists. Also, new assumptions derived from results made available by earlier
analysis, must be easy to incorporate into the model at any time.

The above process necessitates the employment of a range of formalisms and
methodologies in our application. To mention a few, we have, at the physical level
of abstraction, ideal physical model diagrams and switched bond graphs [33]. At
the mathematical level of abstraction, we have employed hybrid transition systems
(HTS) [18, 19], and an architecture for the top-level decomposition of hybrid sys-
tems [17]. This modular framework allows us to plug in a re�ned version of an
arbitrary module without having to consider (or redo) the rest of the model. In
connection with the veri�cation technique, we have experimented with several other
mathematical modelling languages: Linear Hybrid Automata (LHA) [1] with the
tool HyTech, and Extended Duration Calculus (EDC) [6] from the hybrid family
of languages, as well as Esterel (I/O automata) [4] and statecharts [12] from the
synchronous family of languages.
In this article we concentrate on the derivation of mathematical models for a

landing gear system and the analysis of safety and timeliness properties of the
system within EDC. The application of the other veri�cation techniques are covered
in a longer technical report [22].

1.1. The Example

The techniques above are illustrated in the context of a landing gear in which the
response to the landing command by a pilot are analysed (see Figure 1). When de-
riving the mathematical models we note that some major elements of the physical
con�guration have already been �xed due to other demands on the aircraft as a
whole (weight, etc.). Also, some back-up mechanisms have already been envisaged.
That is, under abnormal situations there should always be possible to initiate land-
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Landing gear controller
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Figure 1. The landing gear system as documented by a mechanical engineer.

ing using a reserve power supply. Thus we have started the modelling activity at
an architectural level.

A basic problem at this level is that the segregation of the landing gear subsystem
from the rest of the aircraft is not a straight-forward task. This is due to the fact
that achieving the goals of the landing gear is not solely dependent on the functional
correctness of a single controller. Rather, the proper operation of the landing gear
is possible under certain conditions in the rest of the aircraft. For example the
physical operation of the mechanical door and gear components is dependent on
hydraulic power at certain locations in the hydraulic power supply system and at
certain times. The load on the hydraulic system itself is dependent on several other
\clients" to which hydraulic pressure is delivered. Thus, in order to identify the
mode of operation in the landing gear control system there exists another module
for monitoring and diagnosis of the hydraulic power supply.

Based on the above observations we have identi�ed a sub-system consisting of two
blocks for modelling and analysis. The two blocks cover the power supply and the
mechanical linkage parts respectively { each consisting in turn of physical mecha-
nisms and control subsystems. Figure 2 shows the topology of the system under
study, where the full arrows denote directions of information exchange and half
arrows directions of (positive) energy exchange. In other words, full arrows corre-
spond to signals transmitted (one-way) via some abstract communication channel
(e.g. computer programs and communication protocols) and half arrows to bilateral
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Figure 2. An abstraction of the landing gear system.

signals transmitted via some physical structure (e.g. electromechanical or hydrome-
chanical hardware). The inputs denoted by di are abstractions of other activities
in the aircraft treated as disturbances, u denotes pilot commands, and y denotes
system state information delivered to the pilot.

1.2. Summary of the Work

The work in the project has led to derivation of physical and mathematical abstrac-
tions for all components of the system. In the current presentation we exclude the
diagnosis subsystem, since only proofs pertaining to one of its modes are presented
here.

At the �rst stage, models for the hydromechanical subsystems, in terms of
schematic engineering diagrams, have been developed. These models have been
transformed to the energy-based graphical language of switched bond graphs. The
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latter step signi�cantly aids the derivation of mathematical models for mode-
switching physical systems. These are physical systems which can not be described
by one set of di�erential and algebraic equations (DAE); rather di�erent sets of
DAE are needed depending on the discrete mode in the system. Next, models for
diagnosis and controller modules (to be implemented in hardware or software) have
been developed.

The modelling phase was followed by proofs of the following three properties for
several versions of landing gear models.

� The door and the gear do not collide under movement

� Whenever the pilot issues the landing (airborne) command, the gear will be out
(in) and the door closed within T seconds.

This article presents the proofs for a static controller in combination with two
di�erent environment models: one in which the environment variables change as
a linear function of time, and the second where the environment model is a non-
linear system of DAE. This corresponds to a mathematical model for a more re�ned
version of the hydraulic supply system in which the hydraulic pressure is not as-
sumed to be constant as in the �rst case. It is rather assumed to be regulated by
a hydromechanic pump.

The model of the composed system was in both cases analysed using the proof
system of EDC, leading to proofs for the above properties. While the closed loop
model based on the time-linear evolutions in the environment could also be analysed
using model checking (e.g. HyTech), the non-linear model required a combination
of analysis and logical deductions. Thus, the point with the proof of the time-linear
model with EDC was to provide the necessary structure over which the same proofs
for the non-linear model of the hydromechanical system could be based.

2. From Schematic Diagrams to Mathematical Models

We let the term 'apparatus' refer to an object for which the behaviour is described
by physical laws. By behaviour we mean the evolution in time of measurable
physical quantities such as pressure, ow, velocity, current etc. In the context of
computer controlled systems, apparatus models generally cover models of actuators,
the plant actuated by these actuators, and the sensors used to measure the e�ects
of the actuation. As a consequence, apparatus models generally involve several
di�erent physical domains. The apparatus model in Figure 1 involves at least three
di�erent physical domains: electric, hydraulic and mechanic.

Industrial apparatus models are typically provided in terms of schematic dia-
grams. Within each physical domain there is a set of generally accepted icons
representing more or less complex standard apparatuses such as pilot controlled
valves, check valves, double-acting cylinders etc. These icons are fairly well de�ned
in the sense that they represent speci�c functions, e.g. electrical control of ow,
recti�cation of ow, mechanical actuation by ow etc. They are well understood
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by experts within the same physical domain, but are often di�cult to comprehend
by experts outside that domain.

Also, the icons used in schematic drawings are ambiguous with respect to the
underlying physics; it is not clear from the syntax which physical e�ects are taken
into account. The reason for this is that the behaviour of an apparatus depends
on the circumstances in which it is used. Often the e�ects needed to be considered
depend on the required accuracy of the model, timing properties, dynamic range
etc. Moreover, certain interaction e�ects are not so naturally captured in terms of
apparatus models { an example of such interaction e�ects being friction. Hence, the
type of models typically used in industry are in themselves not informative enough
for determining a unique mathematical model suitable for e.g. formal veri�cation.
From this perspective there is therefore a genuine need for modelling according to
physical principles.

2.1. Physical Modelling

In our project the apparatus models provided by the industry were made precise
by means of switched bond graphs. Switched bond graphs [34, 35, 33, 30] are based
on the graphical bond graph language [15], earlier introduced by Henry M. Payn-
ter [25]. The language was originally proposed as a means to bridge the gap between
di�erent physical domain experts in the context of complex industrial plants.

To meet these requirements, bond graphs are based on energy concepts. By
means of a set of well de�ned primitive energy concepts, bond graphs can be pre-
cisely interpreted by experts in several di�erent domains since they have a precise
mathematical and physical interpretation. Further, the bond graph concepts are
powerful enough to capture even very complex mechanisms using only a few sym-
bols.

2.2. Elementary Bond Graph Concepts

More speci�cally, bond graphs are based on the theory known as '�rst principle
of energy conservation'. As a consequence, the nodes in a bond graph represent
degenerate primitive energy processes and the directed arcs represent potential ow
of energy. The arcs are also referred to as power bonds, or simply bonds. The
direction of the bonds represent the direction of positive energy ow. Every bond
is associated with a pair (e; f) of variables referred to as generalised power variables.
The power variable e is further referred to as e�ort and the variable f as ow.

For a given physical domain, the generalised power variables represent a pair of
physical quantities such that [ef ] = Watts, where [q] denotes the unit of the physical
quantity represented by q. Recall that a physical quantity is a pair (value; unit) and
that a variable q representing it is a real-valued function on time, i.e. q : R ! R.

By means of e and f the semantics of a bond can now be summarised:

� ef � 0 i� the direction of energy ow coincides with the direction of the bond.
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� jef j represents the magnitude of the energy ow, i.e. the power transferred by
the bond.

Example: Consider the hydraulic domain. Let e represent pressure, i.e. [e] =
N=m2, and f volumetric ow, i.e. [f ] = m3=sec. Then we have [ef ] = [e][f ] =
N

m2

m
3

sec
= Nm

sec
= Watts, i.e. the pair (e; f) is indeed an instance of power variables.

In the same way we show that voltage (e) and current (f) is a pair of power variables
in the electrical domain and that torque (e) and angular velocity (f) is a pair in
the rotating mechanical domain.

Bond graphs de�ne a necessary and su�cient set of primitives for the modelling
of a wide range of practical systems. The necessary and su�cent set of primitives
consists of �ve elements, but normally a more practical set of nine elements is used.
These nine elements are grouped into �ve categories as follows:

1. Ideal sources: ideal source of e�ort denoted Se and ideal source of ow de-
noted Sf.

2. Ideal storages: ideal storage of e�ort denoted I and ideal storage of ow
denoted C.

3. Ideal dissipation: ideal energy dissipation denoted R.

4. Ideal conversions: ideal transformer denoted TF and ideal gyrator denoted
GY.

5. Ideal distributions: common e�ort junction denoted E and common ow
junction denoted F.

For example, the following instances of the abstract energy primitives are found in
the hydraulic domain: a wide container (Se), accumulator (C), hydraulic restriction
(R), hydromechanic pump (TF), parallel connection of components (E), and series
connection of components (F).
It is important to note that the nine energy primitives are degenerate ideals.

Hence, 'real' phenomena found in nature must be modelled by combining two or
more of these primitives. Typically the nodes of a bond graph are labelled by the
type (Se, Sf, C, . . . ) and a graph-unique identity. Hence a bond graph node is
labelled X:id, where X is the type and id the unique identity.

2.3. Constitutive Relations

From an energy perspective, the behaviour of a physical mechanism is an n-ary
relation over entities representing power variable pairs. Hence we have n = 2m;m 2
N, and m is sometimes referred to as the number of power ports.
For the ideal primitive mechanisms de�ned above, the set of possible behaviours

is further restricted. The formal de�nition of this structure will be exempli�ed in
what follows; further details, though informal, can be found in e.g. [2].
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Figure 3. Some example bond graph primitives.

2.3.1. The Ideal Dissipation R Consider the primitive ideal dissipation, i.e. the
R-element as depicted in Figure 3 (a). As a one-port R-element its behaviour is
a relation over two time functions. Let e; f represent the power variables of the
R-element. Then � � R

2 , where (e(t); f(t)) 2 � for all t, is a constitutive relation
with the following properties:

1. (0; 0) 2 �.

2. e(t) f(t) � 0.

3. There exists a bijective function �f : R ! R such that (e(t); f(t)) 2 � i�
�f (e(t)) = f(t).

The �rst two requirements ensure that an ideal dissipation can never generate en-
ergy. The third requirement ensures existence of an inverse function �e such that
(e(t); f(t)) 2 � implies �e(f(t)) = e(t).

Example: Consider a long narrow pipe carrying a hydraulic uid. Let e be the
pressure drop across, and f be the ow through the pipe. Let us assume the ow
is laminar. Then, according to any standard book in uid power,

� = f(e(t); f(t)) j k1 e(t)� f(t) = 0 for a speci�c k1 2 R
+g

where k1 is a physical parameter computed from properties of the pipe (e.g. friction)
and the uid (e.g. viscousity).

2.3.2. The Ideal Flow Storage C Consider the primitive ideal ow storage, i.e. the
C-element as depicted in Figure 3 (b). Let e; f represent the power variables of
the element, and x a state variable de�ned through _x � f = 0. By de�nition, x
represents a physical quantity which is referred to as the energy state of the mecha-
nism. If for instance [f ] = m3=sec, then it follows that [x] = m3, i.e. volume, which
further supports the intuition behind the energy state concept.
Provided _x(t) exists for all t, we have (e(t); x(t)) 2 � for all t where � � R

2

is a relation with the same properties as the constitutive relation de�ned for the
R-element.

Example: Consider an open hydraulic accumulator. The hydraulic pressure e at
the bottom of the accumulator (in which the uid is a�ected by gravity g only) is
proportional to the height h of the uid level. Hence, if the cross section area A is
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Figure 4. The two primitive ideal distribution elements. In this particular example �1 = �2 =
��m = 1.

constant with respect to the height, the pressure is proportional to the accumulated
ow f . Let x be accumulated ow and � the density of the uid. Then, for all t,
we get

� = f(e(t); x(t)) j e(t) � k2 x(t) = 0 and _x(t)� f(t) = 0g

where k2 = �g=A.

2.3.3. The Ideal Flow Source Sf Consider the primitive ideal ow source Sf as
depicted in Figure 3 (c). Let e; f be the power variables of the element and u
an independent physical quantity referred to as the modulation signal or control
signal. The full arrow in Figure 3 (c) underlines the fact that u represents a causally
directed entity. We now have (e(t); f(t)) 2 � for all t and � = f(e(t); f(t)) ju(t)�
f(t) = 0g. Note that an ideal e�ort source actually does not restrict e in any way.

2.3.4. The Ideal Distribution Elements Consider the primitive ideal junctions
E and F as depicted in Figure 4. We note that the elements are multi-ports in that
m > 1. As the name suggests, distribution elements are used to model interaction
between other primitives, and hence m � 2 follows as an immediate consequence.

Let ei; fi be the power variables of bond i. For an E-junction we have, for all t

f(e1(t); f1(t); : : : ; em(t); fm(t)) j
mX
i=1

�i fi = 0 and 8m�1i=1 ei � ei+1 = 0g

and for an F-junction

f(e1(t); f1(t); : : : ; em(t); fm(t)) j

mX
i=1

�i ei = 0 and 8m�1i=1 fi � fi+1 = 0g

where �i 2 f�1; 1g represents the relative direction of bond i. If bond i is directed
towards the junction, then �i = 1, otherwise �i = �1.
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+
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loadsource
(k1)(u)
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e1 e2

f2

R: loadE: press

Figure 5. (a) A simple hydraulic circuit. (b) A �rst bond graph model of the circuit. Note that
the system pressure e = e1 = e2 = e3 is the same for all three apparatuses.

2.4. Model Composition

The composition of primitive ideals to form models of real systems is obtained after
a series of steps. Here we simply outline the modelling process by providing a simple
example.

Example: Consider the hydraulic system as represented by the schematic drawing
in Figure 5 (a). The ow source provides a ow f1 proportional to the control signal
u, the hydraulic load is essentially dissipative and the accumulator nearly loss-free.
The interaction between the source, the accumulator and the load is such that the
pressures e1; e2; e3 at the ports of the mechanisms are all the same. Consequently,
Figure 5 (b) depicts a �rst potential bond graph model of the system.

Combining the constitutive relations of the individual mechanisms, we get the
following set of equations (omitting t for clarity):

u� f1 = 0

k1 e2 � f2 = 0

_x� f3 = 0

e3 � k2 x = 0

f1 � f2 � f3 = 0

e1 � e2 = 0

e2 � e3 = 0

This set of equations uniquely de�nes the behaviour of the system once the initial
value x(t0) is known.
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2.5. Causality in Bond Graphs

We have now seen how a given bond graph and a set of constitutive relations maps
to a mathematical model of the underlying system. We have already observed that
such a model is a non-minimal set of equations which can in general be di�cult
to solve explicitly. A preferred alternative is a sequence of directed assignment
statements such that unknowns can be immediately and sequentially computed
from the knowns on the right hand side. Such a model is sometimes referred to as
a computational model.
Such a causal computational model requires the model variables to be ordered

in a speci�c cause-e�ect relationship. Bond graph theory comes with algorithms
for assigning causality to a given graph [36]. The choice of algorithm depends on
the speci�c form of computational model required as well as on the complexity
of the bond graph itself. There are graph oriented algorithms suitable for man-
ual calculations as well as algorithms better suited for machine implementation.
One classical algorithm is the so called Sequential Causality Assignment Procedure
(SCAP) which is used to derive classical state space forms consisting of ordinary
di�erential equations only.

Example: Applying SCAP on the model in Section 2.4 we obtain

_x = �k1k2 x+ u

The above equation is the basis for the physical model of the landing gear ap-
pearing in our application.

2.6. The Switched Extension

Classical bond graphs only allow for �nite ows of energy and are thus restricted
to the modelling of continuous change over time only. However, many practical
apparatuses undergo abrupt changes in their behaviour, usually due to external or
internal discrete control. Examples of such apparatuses are diodes, check valves,
relays and devices with end-stops. Systems consisting of at least one such apparatus
will be referred to as mode-switching systems.
Switched bond graphs were introduced to extend bond graphs to mode-switching

physical system while maintaining the classical bond graph theory. The main ingre-
dient in the extension is a new ideal degenerate element, namely the ideal generalised
switch (Sw). As opposed to the other bond graph elements, the Sw-element is not
associated with a constitutive mathematical relation over e�ort and ow. Instead,
it is associated with a discrete mathematical structure determining the Boolean
state of the switch. The two states of the Sw-element are referred to as the e�ort
and the ow state. The reason for these terms is the following: In state e�ort
the Sw-element is equivalent with an Se-element for which u = 0 for all t, and in
state ow it is equivalent with an Sf-element for which u = 0. Given a switched
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Figure 6. The physical environment models. Left: the coarsest model of the hydraulic supply.
Right: the model including a hydromechanically regulated pump.

bond graph with p Sw-elements, once all the elements have been mathematically
characterised, we get a computational hybrid system with � 2p sets of DAE, and a
set of Boolean transition conditions. In this paper we do not elaborate further on
the switched versions of the landing gear models. The interested reader is referred
to [33, 30, 31].

2.7. The Landing Gear Models

The hardware components in the landing gear system consist of the landing gear
itself, i.e. the wheel{and{suspension system, a pair of doors protecting the gear
during ight and landing, and a pair of hydraulic actuators for the manouvering of
the gear and the doors (Figure 1). As part of the landing gear system, the hydraulic
power supply system provides the hydromechanic energy needed to manoeuvre the
gear and the doors under all operating conditions.
For the purpose of illustration, we present two di�erent bond graph models of the

hydraulic power supply subsystem only and a single model of the door{and{gear
subsystem. These models di�er in the assumptions made about the subsystems,
and therefore illustrate the capability of bond graphs to make such assumptions
clear.
In the coarsest model of the hydraulic power supply we represent the assump-

tion that the hydraulic power supply system behaves as an ideal constant pressure
source; see the lowest left-most box in Figure 6 where p and q stand for hydraulic
pressure and ow respectively. Combining it with the model of the door{and{gear
subsystem, the overall plant model converts to a simple time-linear dynamic system

_xd = �d ud; xd 2 [0; 1]

_xg = �g ug ; xg 2 [0; 1]
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where �d; �g > 0 are constants (time-invariants), xd (xg) the normalised door (gear)
position and ud (ug) 2 f�1; 0;+1g is the three-valued door (gear) control signal.
In the more detailed model of the power supply system (lowest right-most box

in Figure 6), we no longer assume that the hydraulic pressure is ideal. Instead we
make an explicit model of the hydromechanic regulator which in fact attempts to
make the pressure 'as constant as possible' given a particular engine velocity !. In
this case the overall bond graph converts to a non-linear dynamic system

_xd = �0d p ud; xd 2 [0; 1]

_xg = �0g p ug; xg 2 [0; 1]

_p = �( + d judj+ g jugj) p+ �

where �0d; �
0
g ; d; g > 0 are constants. The quotient �= is a monotonic function

of the aircraft engine velocity !.
These models are only a small selection of models we have derived. Other models

consisting of some �fty bond graph elements have been e�ciently developed in
cooperation with hardware experts from Saab Aerospace and the Department of
Fluid Power at Link�oping University. The e�ciency of this iterative modelling
process has signi�cantly gained from the use of bond graphs. By means of the
bond graphs we were able to communicate our models with all engineers from the
industrial partners and were able to sort out misunderstandings and misconceptions
at an early stage of the modelling process.
The DAE models derived can now be plugged into the model of the closed loop

system as required. To do this we use a hybrid modelling architecture [17] described
in the next section.

3. Framework for Iterative Modelling

This section describes a framework for putting together the environment models
derived earlier with mathematical models for the other parts of the system. It can
be used for re�ning the overall architecture in Figure 2 by making the interface
between the controller (diagnoser) and the physical world more explicit.
The generic architecture as depicted in Figure 7, accommodates both the mathe-

matical models for the physical environment and the mathematical models for the
discrete controllers and supervisory systems. It has been adopted from the multi-
layer architecture for hierarchical control suggested earlier [17]. This architectural
decomposition is used as a framework for veri�cation and makes the interfaces (as
dictated by the choice of sensors and actuators) explicit.
The discrete controller consists of a selector asynchronously reacting on discrete

events e detected by the characterizer. The characterizer generates these using a
classi�cation function over the real valued environment variables z. The output
of the selector is the discrete choices c of control algorithms implemented by the
e�ector. The environment is driven by the real valued control variables u. The
unpredictability of the environment is made explicit by the disturbance variable v.
This variable is typically used for allowing uncertainties in sensor measurements.
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Figure 7. A generic architecture for decomposition of hybrid systems

In addition, it may be used to model major elements of the environment not under
control.

This architecture has been used in a number of di�erent applications and aids
the process of modelling the closed loop system for the purpose of veri�cation. In
the landing gear study we have used the architecture as a framework for iterative
modelling of the closed loop system. It was thus used to plug in di�erent models
of the environment while keeping the same selector, characterizer and e�ector;
or di�erent selectors while keeping the same environment model. Thus, we have
been able to study and illustrate di�erent veri�cation techniques depending on the
complexity (granularity) of the closed loop model and the property to be veri�ed.

In the following section we will show the details of two alternative landing gear
models by �lling the boxes in the above architecture.

4. Hybrid Mathematical Models

In this section we describe how the models for the closed loop system can be derived
using the mathematical models for the hardware derived earlier. Here, we concen-
trate on a static selector as depicted in Figure 8. This model can be a representa-
tion of a hard-wired electronics implementation of the controller, or alternatively, a
model obtained from the compilation of a synchronous software model, e.g. in Es-
terel or Lustre [9]. Analysis of similar properties in presence of a dynamic selector
with communication and computation delays can be found elsewhere [21, 22].

Next we will make the mappings in the interface between the controller and its
environment (i.e. the characterizer and the e�ector) explicit.

As it can be seen in Figure 9, the inputs to the static selector are discrete states
open, closed, in, out, cmd. Changes in these states are determined by the character-
izer based on the sensed values of the door and gear position and the current pilot
command. Note also that keeping the same selector and changing the environment
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Figure 8. A static selector operating in two alternative physical environments.
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((cmd ^ :out) _ (:cmd ^ :in)) ^ :open ^ :u12 , u11
((cmd ^ out) _ (:cmd ^ in)) ^ :closed ^ :u11 , u12

cmd ^ open ^ :out ^ :u22 , u21
:cmd ^ open ^ :in ^ :u21 , u22

open , xd � 1
closed , xd � 0

in , xg � 0
out , xg � 1
cmd , r > 0

u11 ^ :u12 , ud = 1
(:u11 ^ :u12) _ (u11 ^ u12) , ud = 0

:u11 ^ u12 , ud = �1
u21 ^ :u22 , ug = 1

(:u21 ^ :u22) _ (u21 ^ u22) , ug = 0
:u21 ^ u22 , ug = �1

_xd = �d ud �d; �g > 0
_xg = �g ug xd; xg 2 [0; 1]

Environment

Selector

Characterizer E�ector

r Pilot command

Figure 9. The system built up from the time-linear environment model and the static selector.

model to a more realistic one is simply achieved by plugging in the �ner non-linear
model in the architectural decomposition.
To analyse the model �rst we need to represent the closed loop model and the

required properties in an extension of the interval temporal logic Duration Calculus
(DC). Then verifying that the requirements are met by the given model is achieved
through proving theorems in the proof system of the logic.

4.1. Brief Introduction to EDC

We use the extension of Duration Calculus in accordance with [27] in which a
mathematical theory about state functions is assumed as given. The logical foun-
dations of DC can be found in [11]. Here we give a brief exposition of the extended
language. The syntactic constituents of EDC are state names denoting functions
on time (in our case real valued functions xd; xg ; _xd; _xg , etc), including Boolean
state names denoting a Boolean valued function on time (in our case open, closed,
etc). State expressions and state assertions are built from variables, functions and
relations on real numbers, and propositional logic operators in a standard form. In
our example we have ud�d as an state expression, and xg � 1 as well as P ^ C as
state assertions.
State expressions and assertions are evaluated in accordance with interpretations

of states and operators. Assertions evaluate to 0 or 1 in a given interpretation. In
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particular, true and false as state assertions evaluate to 1 and 0 respectively at
all times. Durations are formed from state expressions and assertions, using the
symbol

R
. Thus, for an assertion P ,

R
P denotes the duration of P holding over an

interval. Its semantics with respect to interpretation I and interval [b; e] is de�ned
by the integral

R e
b
I(P )dt, where I assigns values of the right type to state names,

and de�nes the (non standard) operator symbols of the language.
The length ` of an interval, is de�ned by the duration of true holding over the

interval, expressed as `b= R true. Thus, the semantics for `, in any interpretation I
over any interval [b; e], is de�ned by I(`)[b; e] = e� b. Furthermore, for Q being an
assertion, the notion of Q holding over an interval (represented by dQe) is related
to durations by the following de�nition:

dQeb=(RQ = `) ^ (` > 0)

Atomic duration formulas have the form dQe or /(dterm1; : : : ; dtermn) where / is
an n-ary relation on reals and dtermi are duration terms. Duration terms essentially
have the form

R
se (for state expression se), b.se and e.se denoting the value of

the state expression se at the beginning and end of an interval respectively, and
terms built with operators on reals. Compound duration formulas are built from
atomic formulas using the usual logical connectives as well as the chop connective
of interval temporal logic (denoted by ;) which chops an interval in two parts.
The truth of a formula D, determined over an interval [b; e] in an interpretation

I, is denoted VI ; [b; e] j= D. Speci�cally, the semantics of formulas built using the
chop operator is de�ned as follows. For duration formulas D1 and D2, we have:

VI ; [b; e] j= D1;D2 i� VI ; [b;m] j= D1 and VI ; [m; e] j= D2

for somem 2 [b; e]:

A formula D is satis�able in an interpretation I (written VI j= D) i� VI ; [0; t] j=
D for all t 2 R

�0 . A formula D is valid (written j= D) i� VI j= D for every
interpretation I. The following abbreviations are introduced at the formula level:

d e b= ` = 0 the empty interval
3D b= true;D; true D holds in some sub-interval
2D b= :3:D D holds in every sub-interval

To avoid excessive use of parentheses, precedence rules for the operators in the
language are provided [27] { e.g. :; 2 and 3 bind stronger than chop (;) which
binds stronger than the other logical operators.
Next we present a number of proof rules (laws) from the proof system of EDC [27]

which will be used in the proofs later on in the paper.

P-And:

dP ^Qe , dP e ^ dQe
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P-Always:

dP e ) 2 (dP e _ d e)

Somewhere-Neg:

:3D, 2:D and 3:D, :2D

Always-intro:

2D ^ (D1 ; D2)) (2D ^D1) ; (2D ^D2)

Always-Once-Somewhere:

2D ) D and D ) 3D

Zero:

R
false = 0

Chop-false:

D ; false) false and false ; D ) false

Chop-P-Or:

dP1 _ P2e ; true, dP1e ; true _ dP2e ; true

Dur-Chop:

(
R
P = r1) ; (

R
P = r2),

R
P = (r1 + r2)

Chop-Exists: provided v does not occur free in D1

D1 ; (9v : T � D2), 9v : T �D1 ; D2

Continuity:

(e.se = v1) ; (b.se = v2)) (v1 = v2)

Note that the last law applies only to continuous state expressions. In the proofs
which follow we sometimes use analysis where the current line can be motivated
by the immediately preceding line and real arithmetic. As well as the above rules,
the proofs may use another motivation denoted by PL, whenever the preceding line
in the proof leads to the current line according to the rules in predicate logic. We
further include a general EDC result which is used in later proofs.

Lemma 1 For duration formulas D1 and D2 and state assertion P

dP e ^ (D2 ; D2)) ((dP e _ d e) ^D1) ; ((dP e _ d e) ^D2)
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Table 1. Declaration of states and global variables.

Name: Signature Type: Description

xd : R! R Plant state: door position (closed: 0, opened: 1)
xg : R! R Plant state: gear position (retracted: 0, extended: 1)
�d : R Plant parameter: door speed
�g : R Plant parameter: gear speed
u11 : R! f0; 1g Controller command: open door (hold: 0, open: 1)
u12 : R! f0; 1g Controller command: close door (hold: 0, close: 1)
u21 : R! f0; 1g Controller command: extend gear (hold: 0, extend: 1)
u22 : R! f0; 1g Controller command: retract gear (hold: 0, retract: 1)
r : R! f0; 1g Pilot command: extend gear (retract: 0, extend: 1)

Proof:

dP e ^ (D1 ; D2)
) fP-Alwaysg

2 (dP e _ d e) ^ (D1 ; D2)
) fAlways-introg

(2 (dP e _ d e) ^D1) ; (2 (dP e _ d e) ^D2)
) fAlways-Once-Somewhereg

((dP e _ d e) ^D1) ; ((dP e _ d e) ^D2)

4.2. EDC Model of the Landing Gear

Table 1 gives the declaration of the constituents in the coarse plant model of the
landing gear, the only variables determined externally being the reference pilot
signal (r).
Using the above notation and the architectural breakdown in Figure 9, the closed

loop system for the landing gear is represented by

S � P ^ C

where the plant model
P � Env ^ E�

and the controller model
C � Char ^ Sel

Here Env, Char, Sel, and E� are assertions within the underlying mathematical
theory and de�ned in accordance with the formulas provided in the appropriate
boxes in Figure 9. Then the behaviour of the system over an interval of time can
be represented by lifted duration formulas over these assertions.
Note that the composition of the environment and e�ector model leads to the

following two sets of constraints on the door and the gear parts of the model re-
spectively. That is, dP e ) dP1e ^ dP2e.
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P1 b=

8>>>><
>>>>:

(u11 ^ :u12 ) _xd = �d)^
((:u11 ^ :u12) _ (u11 ^ u12) ) _xd = 0)^

(:u11 ^ u12 ) _xd = ��d)
0 � xd � 1
0 � �d � 1

(1)

P2 b=

8>>>><
>>>>:

(u21 ^ :u22 ) _xg = �g)^
((:u21 ^ :u22) _ (u21 ^ u22) ) _xg = 0)^

(:u21 ^ u22 ) _xg = ��g)
0 � xg � 1
0 � �g � 1

(2)

Likewise, the selector and characterizer models can be combined to the give the
following EDC formulation:

C b= (3)8>><
>>:

(r > 0 ^ :(xg � 1)) _ (r � 0 ^ :(xg � 0)) ^ :(xd � 1) ^ :u12 , u11
((r > 0 ^ (xg � 1)) _ (r � 0 ^ (xg � 0))) ^ :(xd � 0) ^ :u11 , u12
r > 0 ^ (xd � 1) ^ :(xg � 1) ^ :u22 , u21
r � 0 ^ (xd � 1) ^ :(xg � 0) ^ :u21 , u22

Given the static controller model, for example, it is possible to verify

dCe ) d:(u11 ^ u12)e (4)

dCe ) d:(u21 ^ u22)e (5)

i.e. open and close (extend and retract) commands can never be issued simul-
taneously. Also, the overall system model can be summarised by the following
invariant

2 (:d:Se ^ continuous(xd) ^ continuous(xg)):

4.3. Requirement Speci�cations in EDC

We now present the EDC formulations of the three closed loop system properties
which were presented in the introduction. First we consider the safety property
that the door and gear do not collide in operation. The property is proved by
proving the stronger property that the gear must never move when the door is not
fully open. This requirement R1 may be formalised as
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R1 � 2:d _xg 6= 0 ^ xd < 1e

The timeliness properties require that the extension (or retraction) to be com-
pleted within T time units. These requirements may now be formalised by the two
formulas R2 and R3.

R2 � 2:((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)

R3 � 2:((dr � 0e ^ ` = T ) ; d:(xg � 0 ^ xd � 0)e)

In other words, it is never the case that the landing (no landing) command is in
operation for an interval of length T and the desired e�ect has not been achieved
immediately after the interval. In order to verify these properties we thus have to
prove

dSe ) R1 ^ R2 ^ R3

5. Veri�cation of the Requirements

In what follows we give the proofs that the closed loop system satis�es requirements
R1 and R2. The proof for R3 is analogous to the one for R2 and is therefore omitted.
First we show how proofs in EDC can be used to verify the design in presence of
the coarse environment model. Next, in section 6, we show another proof for the
closed loop model, now including the non-linear environment model instead. This
is carried out by just adding three extra lemmas and preserving the proof structure
for the simpler environment model.

5.1. Veri�cation of R1

In order to verify the �rst requirement we employ proof by contradiction within the
proof system of EDC [27]. But before that we need to state the following lemma
which gives a property of the application model as presented in 4.2.

Lemma 2 dP ^ Ce ^ d _xg 6= 0 ^ xd < 1e ) false

Proof:
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dP ^ Ce ^ d _xg 6= 0 ^ xd < 1e
) fP-Andg

dP ^ C ^ _xg 6= 0 ^ xd < 1e
) f2, PLg

dC ^ :((:u21 ^ :u22) _ (u21 ^ u22)) ^ xd < 1e
) fPLg

dC ^ ((u21 ^ :u22) _ (:u21 ^ u22)) ^ xd < 1e
) f3, PLg

d((xd � 1) _ (xd � 1)) ^ xd < 1e
) fPLg

dfalsee
) fDefngR

false = ` > 0
) fZerog

0 = ` > 0
) fanalysisg

false

Now we can prove the safety property.

Theorem 1 dSe ^ :R1 ) false

Proof:

dP ^ Ce ^ :2:d _xg 6= 0 ^ xd < 1e
) fSomewhere-Neg, PLg

dP ^ Ce ^ 3 d _xg 6= 0 ^ xd < 1e
) fDefng

dP ^ Ce ^ true ; d _xg 6= 0 ^ xd < 1e ; true
) fLemma 1g

((d e _ dP ^ Ce) ^ true) ; ((d e _ dP ^ Ce) ^ d _xg 6= 0 ^ xd < 1e) ;
((d e _ dP ^ Ce) ^ true)

) fLemma 2, PLg
(d e _ dP ^ Ce) ; (d e ^ d _xg 6= 0 ^ xd < 1e) ; (d e _ dP ^ Ce)

) fDefng
(d e _ dP ^ Ce) ; false ; (d e _ dP ^ Ce)

) fChop-falseg
false
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5.2. Veri�cation of R2

To prove the timeliness property we �rst need to make the structure of the appli-
cation more explicit. This conceptualisation then provides the necessary structure
over which a case-based proof can be carried out.

5.2.1. Structure of Closed Loop System First, going back to our closed loop
model as depicted in Figure 9 and the mathematical formulation of the controller
in equation (3) we note that the controller represents the combination of a static
selector and a static characterizer, whereas the plant equations (1), (2) can be seen
as a combination of the static e�ector and the dynamic environment model.
Using hybrid transition systems [18, 20, 19] for modelling the environment, phases

of continuous activity are interleaved with discrete mode transitions. The system
stays in a mode where its behaviour is de�ned by a set of DAE until the guard of
some transition out of the mode is true, whereby it immediately moves to the next
mode as de�ned by a di�erent set of DAE. This compares with a hybrid automa-
ton in which taking an enabled discrete transition is not optional but progress is
enforced.2.
Using di�erent expertise for deriving the models necessitates that the model of a

controller and its environment are modularly developed. With no knowledge about
the controller, the model of the environment could be represented by a hybrid
transition system with two di�erential equations in each mode. The derivatives of
the door and gear positions ( _xi) could then take any of the values (��i; 0; �i) for
i 2 fd; gg in di�erent modes. The system would have 9 modes and would change its
mode depending on various choices of e�ector output. There would therefore be 8
transitions into each mode from all the other 8 modes, and 8 transitions out of each
mode, each going to one of the other 8 modes. A parallel composition of the plant
and controller would then give us a hybrid transition system in which the reachabil-
ity of some modes would be constrained. In what follows we provide the structure
of the closed loop system after application-based simpli�cation (minimisation) of
the hybrid transition system3.
The following properties of the closed loop model gives us the underlying struc-

ture. First, not all 9 combinations of e�ector output are allowed by the combination
of the e�ector and the selector. In other words, the composition of the character-
izer, selector and e�ector mappings is not surjective. To see this note that if the
e�ector is seen as a function

E : B 4 ! fhud; ugi j ud 2 f�1; 0; 1g and ug 2 f�1; 0; 1gg

then it is surjective. However, the selector mapping S : B 5 ! B
4 is not surjective.

More speci�cally, some combinations of hu11; u12; u21; u22i are not in the range of
the selector function. For example, u11 and u12 are not allowed to be true at the
same time (see equation 4). Also, if the landing command is active, then based on
the selector equations it is possible to eliminate some other combinations of uij .
Lemma 4 formalises this property of the selector-e�ector composition. The allowed
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values of uij , however, depend on a partitioning of the state space given below.
Note that state regions Si provide a covering of the state space in presence of the
landing command.

Lemma 3 Let Si be de�ned according to the following combinations of state vari-
ables and pilot command:

S1 � (((0 < xd < 1) ^ (0 < xg < 1))_
((xd � 0) ^ (0 < xg < 1))_
((xd � 0) ^ (xg � 0))_
((0 < xd < 1) ^ (xg � 0))) ^ r > 0

S2 � (((xd � 1) ^ (0 < xg < 1))_
((xd � 1) ^ (xg � 0))) ^ r > 0

S3 � (((0 < xd < 1) ^ (xg � 1))_
((xd � 1) ^ (xg � 1))) ^ r > 0

S4 � (xd � 0) ^ (xg � 1) ^ r > 0

Then we have

dP e ^ dr > 0e ) dS1 _ S2 _ S3 _ S4e

Lemma 4 Let Si be de�ned according to Lemma 3. Then the following statements
can be derived using propositional logic:

dS1 ^ Ce ) du11 ^ :u12 ^ :u21 ^ :u22e

dS2 ^ Ce ) d:u11 ^ :u12 ^ u21 ^ :u22e

dS3 ^ Ce ) d:u11 ^ u12 ^ :u21 ^ :u22e

dS4 ^ Ce ) d:u11 ^ :u12 ^ :u21 ^ :u22e

Note that the above result implies that while the landing command is in operation
(implicit in the region conditions), no combinations of uij other than those listed
above are possible. This means that in none of the given regions, no pairs of door
and gear movement commands are issued simultaneously by the selector. This is a
direct corollary to Lemma 3. It rests on the fact that the domain of the function
composed from the characterizer and selector functions has been completely covered
by the conditions on the left hand side of ) in the above formulas. Based on this
result and the e�ector mapping described in P1 and P2, we can now state the
following lemma, again proved using propositional logic and Lemma 4.

Lemma 5 Let Si be de�ned according to Lemma 3. Then we have

dS1e ^ dP ^ Ce ) d _xd = �d ^ _xg = 0e

dS2e ^ dP ^ Ce ) d _xd = 0 ^ _xg = �ge

dS3e ^ dP ^ Ce ) d _xd = ��d ^ _xg = 0e
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_xd = �1
_xg = 0

_xd = 0
_xg = �2

S2S1

xd � 1

xd � 0

S4
S3

xg � 1

_xd = 0
_xg = 0

_xd = ��1
_xg = 0

Figure 10. State space regions of the closed loop system with landing command in operation.

dS4e ^ dP ^ Ce ) d _xd = 0 ^ _xg = 0e

This lemma provides the necessary structure over which the proof of the timeliness
property R2 can be carried out. To make the structure of the proof for the main
theorem more visible we present a fraction of a hybrid transition system which is
derived for the closed loop system. With each mode in this system we associate a
region in the continuous state space given that the pilot command is in operation4.
Figure 10 associates one mode with each of the state space regions Si in Lemma 3

above. Each mode in the graph is annotated with the corresponding door and
gear equations given in Lemma 5. Note that reexive transitions have an implicit
\otherwise" condition. They have only been drawn to simplify visualisation: if the
guard of the outgoing transition is not true the system remains in the current Si
region. In particular, the system will remain in the S4 region unless the landing
command is altered { a transition for moving out to the other half of the model
which has not been depicted.
Based on Lemma 3 and Lemma 5 we can provide a pictorial representation of

the mode changes, where the choice of arcs and their respective labels are justi�ed
by characteristics of each region Si. This analysis is formalised in the following
EDC formulation. The �rst formula, for example, states that if S1 holds during a
subinterval which starts an interval, then it will either continue to hold during the
rest of the interval, or the subinterval will be followed by an adjacent subinterval
in which S2 holds.



26

Lemma 6 For Si as de�ned in Lemma 3 we have:

(1) (dS1e ; true) ^ dr > 0e ) (dS1e _ (dS1e ; dS2e ; true))

(2) (dS2e ; true) ^ dr > 0e ) (dS2e _ (dS2e ; dS3e ; true))

(3) (dS3e ; true) ^ dr > 0e ) (dS3e _ (dS3e ; dS4e ; true))

(4) (dS4e ; true) ^ dr > 0e ) dS4e and dS4e ) (true ; dS4e)

Proof: By straight forward mathematical analysis, we can motivate the transition
from S1 to S2 as follows: based on Lemma 5 the value of xg in the region S1 is
constant. Therefore, during every interval in which the landing command remains
constant (r > 0), if the state of the system should move out of this region, it should
do so due to the value of xd. That is, xd should increase beyond the bounds set
by the region. This will take the system to state S2 with xd � 1 as a condition.
Similar reasoning can be performed for other transitions.

5.2.2. The Proof Sketch for R2 The above structure is the basis for the following
proof steps which lead to the proof of R2. First, we show that if the system arrives
at S4 then we can be sure that the condition stipulated in the second subinterval
of R2 is not violated (i.e. the door not fully closed or the gear not fully extended)
{ this is shown in Lemma 7. Hence, it su�ces to show that from any state, if
r > 0 persists, then the system will reach S4 within the time limit stipulated in
the �rst subinterval of R2. To begin with, we show that the duration of stay in
each mode is limited according to Lemma 8. Then the main theorem shows that
starting anywhere in the state space will take us to S4 within the allowed time T
provided that the following relation holds: 2

�d
+ 1

�g
� T . Alternatively stated, we

obtain these additional constraints as a by-product of the main proof. The proofs
of the lemmas and the main theorem can be found in the appendix.

Lemma 7 Let S4 be de�ned as in Lemma 3. Then we have:

(dP ^ Ce ^ true ; dS4e) ; d:(xg � 1 ^ xd � 0)e ) false

Next, we show the constraints over the duration of stay in each of S1; : : : ; S3.

Lemma 8 Let Si be de�ned as in Lemma 3. Then we have:

(1) dP ^ Ce ^ dS1e ) ` � 1

�d

(2) dP ^ Ce ^ dS2e ) ` � 1

�g

(3) dP ^ Ce ^ dS3e ) ` � 1

�d

This will in turn imply that, under the above constraint over �d; �g and T , neither
of these modes can last for as long as T time units.
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Corollary 1 Let 1

�d
� T and 1

�g
� T . Then for i 2 f1; 2; 3g we have

dSie ^ ` = T ) false

Theorem 2 Let 2=�d + 1=�g � T . Then dSe ^ :R2 ) false

6. Verifying the Non-linear Hybrid Model

We now present the additional proof steps necessary to show that the same prop-
erties hold in presence of the non-linear environment model. Let the environment
model in Env be replaced by Env0 to give the mathematical model S0. We recall
the re�ned physical model of the hydraulic supply system (corresponding to the
bond graph to the right of Figure 6) we have:

_xd = �0d p ud

_xg = �0g p ug

_p = �( + d judj+ g jugj) p+ �

where �0d; �
0
g ; �; ; d; g > 0 are constants, xd; xg 2 [0; 1] are the positions of the

door and the gear actuators as before, and where p is the hydraulic supply pressure.
First we note that the proofs for Lemma 2 and Theorem 1 are not a�ected by the

new plant model. Hence, the safety property continues to hold.
Next, we study the proof of the timeliness property R2. The coarse model S was

shown to have this property under the assumption that 2=�d + 1=�g � T . We
need similar assumptions in the case of S0, only the di�erence is that due to the
higher complexity in the model more insights from the physical world are needed to
formulate and validate the assumptions. More speci�cally, the new proof requires
that the values of the constants ; d; g; � and the pressure level p are made explicit.
But before that we review the impact of the new plant model on the existing
lemmas. We note that Lemma 4 still holds since it is based on the combination
of the characterizer and the selector which remain unchanged. Lemma 5 will be
restated as the following lemma taking account of Env0 equations.

Lemma 9 Let Si be de�ned according to Lemma 3. Let P 0 b= Env0 ^ E�. Then we
have

dS1e ^ dP
0 ^ Ce ) d _xd = �0dp ^ _xg = 0e ^ d _p = �( + d)p+ �e

dS2e ^ dP
0 ^ Ce ) d _xd = 0 ^ _xg = �0gpe ^ d _p = �( + g)p+ �e

dS3e ^ dP
0 ^ Ce ) d _xd = ��0dp ^ _xg = 0e ^ d _p = �( + d)p+ �e

dS4e ^ dP
0 ^ Ce ) d _xd = 0 ^ _xg = 0e ^ d _p = �p+ �e

The above lemma can then be used to redraw Figure 10 to get a similar �gure
which covers the state space of S0 in presence of r > 0. This is done by simply
replacing the di�erential equations in Figure 10 with the equations on the right
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hand side of implications in Lemma 9. Based on the above lemma, Lemma 7 will
continue to hold for S0. Furthermore, the new structure and the following lemma
can be used to show that the earlier result about S stated in Lemma 6 continues
to hold for S0.

Lemma 10 Consider S0 � P 0 ^ C. Let ̂ = max ( + d;  + g).
Let p(0) � p̂ = �=̂. Then p(t) � p̂ > 0 for all t � 0.

Proof:

Based on physical knowledge we know that � is a positive constant dependable
on the engine velocity ! (for a particular ! we get a particular �); also that d and
g are positive. We show that if p is positive to begin with, it will remain positive
under all circumstances. We consider two cases.
Case 1: p(0) = p̂. Then _p = 0 and hence p = p̂ at all times. This case reduces the
problem to the coarse model analysed earlier.
Case 2: p(0) > p̂. Then _p < 0 and hence p will eventually reach p̂, in which case
the argument under case 1 will continue to hold.

Thus, p̂ is the minimum value that p can take if the system is initialised with
adequate pressure. Next we show that the positions of the door and gear will
monotonically increase (decrease) in every Si region except for S4.

Lemma 11 For any interval in which ud and ug have �xed values, p is monotonic
in t.

Proof: Follows from Lemma 9 and Lemma 10.

It is therefore the case that the earlier transition relation between the modes
(regions) holds even in the new system S0. In other words, Lemma 6 holds also for
S0. The last two results can be used to derive the upper bound for the duration
of staying in each region in terms of the minimal pressure value p̂, in a similar
fashion to the non-linear case. Only the duration of stay in each mode is now also
dependent on the minimal pressure p̂. The higher the pressure the shorter time
it takes for moving from an end position (for the door or gear) to another end
position.

Theorem 3 Let 2

p̂�0

d

+ 1

p̂�0

g
� T . Then

dS0e ^ :R2 ) false

Proof:

We follow the same proof structure as in Theorem 2 only with the initial assump-
tion that 2

p̂�0

d

+ 1

p̂�0

g
� T . In addition, we systematically replace the references

to Lemma 5 and the associated right hand side di�erential equations, with ref-
erences to Lemma 9 and the new equations from Env0 as given in Lemma 9.
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7. Concluding Remarks

We have reported here on an approach to formal veri�cation which is initiated at
the informal engineering documents. We have described the physical components,
derived bond graph and mathematical models for the environment systematically,
and then combined them with the mathematical model of the discrete controller,
to obtain models suitable for formal veri�cation.
We used a generic architecture to derive alternative closed loop models based on

alternative environment models. These ranged from simple time-linear models to
non-linear models allowing variable hydraulic pressure. We also illustrated the use
of proofs in Extended Duration Calculus to ensure safety and timeliness properties
of the di�erent closed loop models.

7.1. The Insights Gained

Going back to our generic hybrid architecture, the work reported in this article
illustrates a possible technique when the complexity and the dynamics of the closed
loop system lies in the lower half (the environment model). Typical for these cases
is that a fair amount of the formal veri�cation is mathematical analysis over the
real-valued variables. This can be contrasted with other methods illustrated in
[21, 22], for cases where the complexity arises due to the size or non-deterministic
timing characteristics of the upper half of the architecture (discrete controllers).
This study is among the �rst applications of formal deductive proofs to hybrid
systems with non-linear DAE.
It should be obvious from the illustration of the method that, aided by the archi-

tectural decomposition, the EDC formulations of the closed loop model were easy
to obtain. Moreover, switching from one plant model to another simply amounts
to changing one conjunct in the formula representing S (the closed loop system)
with another (representing the re�ned plant model).
The EDC proofs, of course, require a general familiarity with constructing logical

proofs. However, having this familiarity, the use of EDC proof system was not
particularly di�cult. Nevertheless, since similar proof tactics (contradiction, case
analysis, etc.) tend to appear in di�erent applications, the use of mechanised proof
assistants is recommendable. Thus, the next step for making this type of analysis
worthwhile in a larger example is the use of theorem provers. PC/DC, a mechan-
ical prover for Duration Calculus implemented on top of PVS [24] has existed for
some years [29]. An attempt to mechanically check some of our hand proofs was
successfully carried out [23]. There is, however, more work to be done; tedious
rewriting to bring the sequent in a special form can be eliminated by provision of
more infrastructure in the prover. The PC/DC proof for Lemma 2 which requires
8 hand proof steps, for example, required 140 proof steps.
Another reection over the work performed is the close connection between the

region based transition system (Figure 10) and the structure of the proof. Much
of the literature on formal veri�cation assumes that the model (or axiomatisation)
of the system to be analysed exists a priori. This formalisation is additionally
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assumed to be in a form suitable for the application of the given proof technique.
HyTech [14] could for example analyse the transition system based on the coarse
model automatically, thereby eliminating the need for the EDC proof in the time-
linear case. However, the exercise illustrates that the very derivation of this model
may be nontrivial { or rather, once a satisfactory model is found, the proof work is
more or less routine. Moreover, the insights gained while modelling can be reused
for verifying later re�nements of the model (e.g. for the non-linear case).

7.2. The Wider Perspective

Fundamental research in formal methods and its deployment in several real world
applications has seen a major progress over the past decade. Among the notable
examples are the application of formal methods and tools to the London air tra�c
management system [10], avionic software for the Lockheed C130J [7], the Tra�c
Collision avoidance system (TCAS) [13], the Motorola 68020 microcode proces-
sor [5], and the proof of correctness for an SRT division algorithm [28].

However, despite the impressive results, it is clear that the road to application
of formal techniques as a routine step within the system development process is
quite a long and bumpy one. To attack the problems along this road research in
two directions is needed. There is a need for basic research in formal languages,
data structures and algorithms for speci�cation and reasoning about complex em-
bedded systems. There is also a requirement to study the needs of application
domain engineers, the suitable models and abstractions in di�erent domains (e.g.
telecommunications, aerospace, electronic design, etc.) and to obtain suitable in-
terfaces accessible to non formal method experts. The key to success is to get a
good synergy between both of these tracks of research.

The �rst phase of the reported project started along the second track. Our work
con�rms conclusions reported in similar projects [8], that analysis by deductive
techniques requires a great deal of user knowledge and interaction. We note that
this is also true with algorithmic approaches. When applying model-checking in
our example, the bulk of the work was in justifying the time-linearity assumption
by the physical modelling activity, and presenting the exact hardware assumptions
under which this veri�cation result makes sense.

Another approach that we studied may be labelled the `discrete events approach',
whereby the system is represented as parallel composition of a set of �nite automata.
Although the theory for synthesis of discrete controllers has existed for a while [26],
its application to veri�cation requires obtaining natural discrete models of the plant,
and practical automatic veri�cation tools.

Our study of the landing gear example in this framework was carried out within
the development environment of Esterel/Mauto [3]. The synchronous family of
languages have the bene�t of a formal semantics (as synchronous I/O machines
or Mealy automata) and an intuitive appeal within the engineering community {
one attraction being the possibility of automatic code generation. Once the model
of a controller in interaction with a plant has been formally veri�ed for certain



31

properties, then the high level controller model can be automatically translated to
C, Ada or a circuit design language.
Again, our application of these techniques rests on the fact that realistic discrete

models of the mechanics and hydraulics could be developed based on the physically
driven models.
To sum up, our experience with di�erent modelling and veri�cation techniques

con�rms that a principled derivation of the models remains a cornerstone of the
veri�cation activities. For smaller systems it is possible to manually translate be-
tween model types while preserving their essential properties; but applications in
an industrial setting require more support tools for derivation and management of
models.
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Appendix

Proofs for the timeliness property

Lemma 7

Proof:

(dP ^ Ce ^ true ; dS4e) ; d:(xg � 1 ^ xd � 0)e
) fLemma 1g

((dP ^ Ce _ d e) ^ true) ; ((dP ^ Ce _ d e) ^ dS4e) ; d:(xg � 1 ^ xd � 0)e
) fPLg

(dP ^ Ce _ d e) ; ((dP ^ Ce ^ dS4e) _ (d e ^ dS4e)) ; d:(xg � 1 ^ xd � 0)e
) fDefn, PLg

(dP ^ Ce _ d e) ; (dP ^ Ce ^ dS4e) ; d:(xg � 1 ^ xd � 0)e
) fLemma 5g

(dP ^ Ce _ d e) ; (dP ^ Ce ^ dS4e ^ d _xd = 0 ^ _xg = 0e) ;
d:(xg � 1 ^ xd � 0)e

) fanalysis, PLg
(dP ^ Ce _ d e) ;
(dP ^ Ce ^ dS4e ^ (9v1v2 : R � b.xg = e.xg = v1 ^ b.xd = e.xd = v2)) ;
d:(xg � 1 ^ xd � 0)e

) fChop-Existsg
(9v1v2 : R � (dP ^ Ce _ d e) ;
(dP ^ Ce ^ dS4e ^ b.xg = e.xg = v1 ^ b.xd = e.xg = v2) ;
d:(xg � 1 ^ xd � 0)e)

) fContinuityg
(9v1v2 : R � (dP ^ Ce _ d e) ;
(dP ^ Ce ^ dS4e ^ b.xg = e.xg = v1 ^ b.xd = e.xd = v2) ;
(b.xg = v1 ^ b.xd = v2 ^ d:(xg � 1 ^ xd � 0)e))

) fLemma 3g
(9v1v2 : R � (dP ^ Ce _ d e) ; (v1 � 1 ^ v2 � 0) ;
(b.xg = v1 ^ b.xd = v2 ^ d:(xg � 1 ^ xd � 0)e))

) fanalysisg
(9v1v2 : R � (dP ^ Ce _ d e) ; (v1 � 1 ^ v2 � 0) ; false)

) fChop-Existsg
(9v1v2 : R � (dP ^ Ce _ d e) ; (v1 � 1 ^ v2 � 0)) ; false

) fChop-falseg
false

Lemma 8

Proof:

We show the proof for (1) which is a proof by contradiction. Proofs for (2) and
(3) are analogous.
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dP ^ Ce ^ dS1e ^ ` > 1

�d

) fLemma 3,Lemma 5, P-Andg
dP ^ C ^ x < 1 ^ _xd = �d ^ _xg = 0e ^ ` > 1

�d

) fDefng
dx � 0 ^ x < 1 ^ _xd = �d ^ _xg = 0e ^ ` > 1

�d

) fanalysisg
` � 1

�d
^ ` > 1

�d

) fPLg
false

Theorem2

Proof:

dP ^ Ce ^ :2:((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)
) fSomewhere-Neg, PLg

dP ^ Ce ^ 3 ((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)
) fDefng

dP ^ Ce ^ (true ; (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e ; true)
) fLemma 1, PLg

(d e _ dP ^ Ce) ;
(d e _ dP ^ Ce) ^ ((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e) ;
(d e _ dP ^ Ce)

Considering the middle intervals:

(d e _ dP ^ Ce) ^ ((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)
) fPLg

(d e ^ (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)_
(dP ^ Ce ^ (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)

) fDefn, PL, Chop-falseg
false _ (dP ^ Ce ^ (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)

) fLemma 1g
((d e _ dP ^ Ce) ^ dr > 0e ^ ` = T ) ; ((d e _ dP ^ Ce) ^ d:(xg � 1 ^ xd � 0)e)

) fDefn, PLg
(dP ^ Ce ^ dr > 0e ^ ` = T ) ; (dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fP-And, Lemma 3g
(dP ^ Ce ^ dS1 _ S2 _ S3 _ S4e ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fChop-P-Org
(dP ^ Ce^
(dS1e ; true _ dS2e ; true _ dS3e ; true _ dS4e ; true)^
dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)
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We prove each case separately. The �rst three cases cover the possibilities that the
�rst subinterval is started by S1, S2, and S3 respectively. Cases 2 and 3 essentially
appear as a subproof in case 1, which is the longest subproof and will be shown
here.
Case 1:

(dP ^ Ce ^ (dS1e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6g
(dP ^ Ce ^ (dS1e _ (dS1e ; dS2e ; true)) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fCorollary 1, PLg
(dP ^ Ce ^ (dS1e ; dS2e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6g
(dP ^ Ce ^ (((dS1e ; dS2e) _ (dS1e ; dS2e ; dS3e ; true))^
dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 8, PLg
(dP ^ Ce^
((` � 1=�d ; ` � 1=�g _ (dS1e ; dS2e ; dS3e ; true)) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fDur-Chop, analysisg
(dP ^ Ce ^ (false _ (dS1e ; dS2e ; dS3e ; true)) ^ dr > 0e ^ ` = T ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6, PLg
(dP ^ Ce^
(((dS1e ; dS2e ; dS3e) _ (dS1e ; dS2e ; dS3e ; dS4e ; true)) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fanalysisg
(dP ^ Ce^
((` � 1=�d ; ` � 1=�g ; ` � 1=�d _ (dS1e ; dS2e ; dS3e ; dS4e ; true))^
dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fDur-Chop, analysisg
(dP ^ Ce ^ (false _ (dS1e ; dS2e ; dS3e ; dS4e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6, PLg
(dP ^ Ce ^ (dS1e ; dS2e ; dS3e ; true ; dS4e) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 7, Chop-falseg
false
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Next we show the case where S4 holds at the beginning of the �rst subinterval.
Case 4:

(dP ^ Ce ^ (dS4e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6g
(dP ^ Ce ^ (true ; dS4e) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 7, Chop-falseg
false

Based on the above case analysis and through two further applications of Chop-
false we can conclude the proof for

dSe ^ :R2 ) false

Notes

1. Our notion of hardware includes mechanical, electrical and hydraulic components. The paper
will make some of these di�erences clear.

2. Note that once the guard is true, the jump is immediate in physically modelled plants, but
may be subject to explicit time constraints for timed controllers.

3. In general, we need formal rewrite rules and tools to obtain the simplest form for each appli-
cation, but here the model is presented in simpli�ed form

4. A similar but slightly di�erent fraction can also be derived for the case when r � 0 holds, in
order to prove the property R3.
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Abstract

Ascomplexity andtheamountof dataaregrowingin embeddedreal-timesystems,theneed
for a uniformandefficientwayto storedatabecomesincreasinglyimportant,i.e., database
functionalityis neededto providesupportfor storage andmanipulationof data. However,
a databasethatcanbeusedin anembeddedreal-timesystemmustfulfill requirementsboth
froman embeddedsystemandfroma real-timesystem,i.e., at thesametimethedatabase
needsto bean embeddedanda real-timedatabase. Thereal-timedatabasemusthandle
transactionswith temporal constraints, as well as maintainconsistencyas in a conven-
tional database. Themain objectivesfor an embeddeddatabaseare low memoryusage,
i.e., small memoryfootprint, portability to different operating systemplatforms,efficient
resourcemanagement,e.g., minimizationof theCPUusage, ability to run for a longperiod
of time without humanpresence, and ability to be tailored for different applications. In
addition,developmentcostsmustbekeptaslow aspossible, with shorttime-to-marketand
a reliablesoftware. In this reportwesurvey embeddedandreal-timedatabaseplatforms
developedin industrial and research environments.This survey representsthe state-of-
the-art in the area of embeddeddatabasesfor embeddedreal-timesystems.Thesurvey
enablesus to identify a gap betweenembeddedsystems,real-timesystemsand database
systems,i.e., embeddeddatabasessuitablefor real-timesystemsare sparse. Furthermore,
it is observedthat there is a needfor a more generic embeddeddatabasethat can be
tailored, such that the applicationdesignercan get an optimizeddatabasefor a specific
typeof application.We considerintegration of a modernsoftware engineeringtechnique,
component-basedsoftwareengineering, for developingembeddeddatabasesfor embedded
real-timesystems.Thismergeprovidesmeansfor building anembeddeddatabaseplatform
that can be tailored for differentapplications,such that it hasa smallmemoryfootprint,
minimumof functionality, andis highly integratedwith theembeddedreal-timesystem.
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Chapter 1

Intr oduction

Digital systemscan be classified in two categories: general purposesystemsand
application-specificsystems[41]. Generalpurposesystemscan be programmedto run
a variety of differentapplications,i.e., they arenot designedfor any specialapplication.
Application-specificsystemsaredesignedfor a specificapplication.Application-specific
systemscanalsobepartof a largerhostsystemandperformspecificfunctionswithin the
hostsystem[20], andsuchsystemareusuallyreferredto asembeddedsystems. An em-
beddedsystemis implementedpartly on softwareandpartly on hardware.Whenstandard
microprocessors,microcontrollersor DSPprocessorsareused,specializationof anembed-
dedsystemfor a particularapplicationconsistsprimarily on specializationof software. In
this reportwe focuson suchsystems.An embeddedsystemis requiredto beoperational
duringthelifetime of thehostsystem,which mayrangefrom a few years,e.g.,a low end
audiocomponent,to decades, e.g.,anavionic system.Thenatureof embeddedsystems
alsorequiresthe computerto interactwith the externalworld (environment). They need
to monitor sensorsandcontrol actuatorsfor a wide varietyof real-world devices. These
devicesinterfaceto the computervia input andoutputregistersandtheir operationalre-
quirementsaredeviceandcomputerdependent.

Most embeddedsystemsarealsoreal-timesystems,i.e., thecorrectnessof thesystem
dependsboth on the logical resultof the computation,andthe time whenthe resultsare
produced[104]. We referto thesesystemsasembeddedreal-timesystems1 Real-timesys-
temsaretypically constructedoutof concurrentprograms,calledtasks.Themostcommon
typeof temporalconstraintthat a real-timesystemmustsatisfyis the completionof task
deadlines.Dependingon theconsequencedueto a misseddeadline,real-timesystemscan
beclassifiedashardor soft. In ahard real-timesystemconsequencesof missingadeadline
canbecatastrophic,e.g.,aircraftcontrol,while in a soft-real-timesystem, missinga dead-
line doesnot causecatastrophicdamageto thesystem,but affect performancenegatively,
e.g.,multimedia.Below followsa list of exampleswhereembeddedreal-timesystemscan
befound.

� Vehiclesystemsfor automobiles,subways,aircrafts,railways,andships.

� Traffic controlfor highways,airspace,railway tracks,andshippinglines.

� Processcontrolfor powerplantsandchemicalplants.

� Medicalsystemsfor radiationtherapy andpatientmonitoring.

� Military usessuchasadvancedfiring weapons,tracking,andcommandandcontrol.

1Someauthorsusethe termsembeddedsystemsandreal-timesystemsinterchangeably. We, however, dis-
tinguishbetweenembeddedandreal-timesystems,sincetherearesomeembeddedsystemsthatdo not enforce
real-timebehavior, andtherearereal-timesystemsthatarenotembedded.
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� Manufacturingsystemswith robots.

� Telephone,radio,andsatellitecommunications.

� Multimediasystemsthatprovidetext, graphic,audioandvideointerfaces.

� Householdsystemsfor monitoringandcontrollingappliances.

� Building managersthatcontrolsuchentitiesasheat,lights,doors,andelevators.

In thelastyearsthedeploymentof embeddedreal-timesystemshasincreaseddramat-
ically. As canbe seenfrom the examples,thesesystemsarenow virtually embeddedin
every aspectof our lives. At thesametime theamountof datathatneedsto bemanaged
is growing, e.g.,embeddedreal-timesystemsthat areusedto control a vehicle,suchas
a moderncar, must keeptrack of several hundredsof sensorvalues. As the amountof
informationmanagedby embeddedreal-timesystemsincreases,it becomesincreasingly
importantthatdatais managedandstoredefficiently andin a uniform mannerby thesys-
tem. Currenttechniquesadoptedfor storingandmanipulatingdataobjectsin embedded
andreal-timesystemsareadhoc,sincethey normallymanipulatedataobjectsasinternal
datastructures.That is, in embeddedreal-timesystemsdatamanagementis traditionally
built asa partof theoverall system.This is a costlydevelopmentprocesswith respectto
design,implementation,andverificationof the system. In addition,suchtechniquesdo
not provide mechanismsthatsupportportingof datato otherembeddedsystemsor large
centraldatabases.

Databasefunctionality is neededto provide supportfor storageandmanipulationof
data.Embeddingdatabasesinto embeddedsystemshave significantgains:(i) reductionof
developmentcostsdueto thereuseof databasesystems;(ii) improvementof quality in the
designof embeddedsystemssincethe databaseprovidessupportfor consistentandsafe
manipulationof data,whichmakesthetaskof theprogrammersimpler;and(iv) increased
maintainabilityasthesoftwareevolves.Consequently, this improvestheoverall reliability
of thesystem.Furthermore,embeddeddatabasesprovidemechanismsthatsupportporting
of datato otherembeddedsystemsor largecentraldatabases.

However, embeddedreal-timesystemsput demandson suchembeddeddatabasethat
originatefrom requirementsonembeddedandreal-timesystems.

Mostembeddedsystemsneedto beableto runwithout humanpresence,which means
thata databasein sucha systemmustbeableto recover from the failurewithout external
intervention[81]. Also, the resourceload thedatabaseimposeson theembeddedsystem
shouldbecarefullybalanced,in particular, memoryfootprint. For example,in embedded
systemsusedto control a vehicleminimizationof the hardwarecost is of utmostimpor-
tance. This usually implies that memorycapacitymustbe kept as low aspossible,i.e.,
databasesusedin suchsystemsmusthavesmallmemoryfootprint. Embeddedsystemscan
beimplementedin differenthardwareenvironmentssupportingdifferentoperatingsystem
platforms,which requirestheembeddeddatabaseto beportableto differentoperatingsys-
templatforms.

Ontheotherhand,real-timesystemsputdifferentsetof demandsonadatabasesystem.
Thedatain thedatabaseusedin real-timesystemsmustbelogically consistent,aswell as
temporallyconsistent[51]. Temporalconsistency of datais neededin orderto maintain
consistency betweentheactualstateof theenvironmentthatis beingcontrolledby thereal-
time system,andthestatereflectedby thecontentof thedatabase.Temporalconsistency
hastwo components:

� Absoluteconsistency, betweenthestateof theenvironmentandits reflectionin the
database.

� Relativeconsistency, amongthedatausedto deriveotherdata.
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We usethe notationintroducedby Ramamritham[51] to give a formal definition of the
temporalconsistency.

A dataelement,denoted
�
, which is temporallyconstrained,is definedby threeat-

tributes:

� value
���������
	

, i.e., thecurrentstateof data
�

in thedatabase,

� time-stamp
����

, i.e., thetimewhentheobservationrelatingto
�

wasmade,and

� absolutevalidity interval
� �����

, i.e.,thelengthof thetimeinterval following
����

during
which

�
is consideredto beabsoluteconsistent.

A setof dataitemsusedto derive a new dataitem forms a relative consistency set,de-
noted � , andeachsuchsetis associatedwith a relativevalidity interval, ��� ��� . Datain the
database,suchthat

��� � , hasacorrectstateif andonly if [51]

1.
����������	

is logically consistent,and

2.
�

is temporallyconsistent,both

� absolute����� � ���� � ������� , and� relative ! ��"#� �%$
& � �� � ��"�� & � �'� ��� .
A transaction,i.e., a sequenceof readand write operationson data items, in conven-
tional databasesmustsatisfy following properties:atomicity, consistency, isolation,and
durability, calledACID properties. In addition, transactionsthat processreal-timedata
must satisfy temporalconstraints. Someof the temporalconstraintson transactionsin
a real-timedatabasecomefrom the temporalconsistency requirement,and somefrom
requirementsimposedon the systemreactiontime (typically, periodicity requirements)
[51]. Theseconstraintsrequiretime-cognizanttransactionprocessingsothat transactions
canbeprocessedto meettheirdeadlines,bothwith respectto completionof thetransaction
aswell assatisfyingthetemporalcorrectnessof thedata.

An exampleapplication

We describeoneexampleof a typical embeddedreal-timesystem.Theexampleis typical
for a largeclassindustrialprocesscontrolsystem,thathandleslargevolumeof data,where
datahavetemporalconstraints.In orderto keeptheexampleasillustrativeandassimpleas
possiblewe limit our exampleto a specificapplicationscenario,namelythecontrolof the
waterlevel in awatertank(seefigure1.1).Throughthisexampleweillustratedemandsput
ondatamanagementin suchasystem.Ourexample-systemcontainsa real-timeoperating
system,a database,anI/O managementsubsystemanda user-interface.

A controllertask(PID-regulator)controlsthe level in thewatertankaccordingto the
desiredlevel setby theuser, i.e., thehighestallowedwaterlevel. Theenvironmentconsists
of thewaterlevel, thealarmstate,thesettingof thevalveandthevalueof theuserinterface.
Theenvironmentstateis reflectedby the contentof thedatabase(denoted( " $*) " $,+ " $,- " in
figure 1.1). Furthermore,PID variablesthat reflect internalstatusof the systemarealso
arestoredin thedatabase.TheI/O manager(I/O MGNT) is responsiblefor dataexchange
betweentheenvironmentandthedatabase.Thus,thedatabasestorestheparametersfrom
the environmentand to the environment,and configurationdata. Data in the database
needto betemporallyconsistent,bothabsoluteandrelative. In this case,absolutevalidity
interval candependonthewaterflow. Thatis, if thethetankin figure1.1is verybig andthe
flow is small,absolutevalidity interval canbegreaterthanin thecasewherethewater-flow
is big andthedataneedsto besampledmorefrequently. Therelative consistency depicts
thedifferencebetweentheoldestdatasampleandtheyoungestsampleof data.Hence,if
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Figure1.1: An examplesystem.On theleft sidea watertank is controlledby thesystem
on the right side. ThePID-taskcontrolstheflow out by the valve (y) so that the level in
tank(x) is thesameasthelevel setby theuser(r). An alarmtaskshutsthesystemdown if
thelevel alarm(a) is activated.

Level Alarm a

Level indicator x

Valve y

System
Event occuring at time t1

Shutdown occuring at time t1

Figure1.2: Theend-to-enddeadlineconstraintfor thealarmsystem.Theemergency shut-
down mustbecompletedwithin a giventime

��./����� �,0 implying that �21'�3��4 � ��./����� �*0 .

thealarmin oursystemis activated,dueto highwaterlevel, andx’ indicatesa lover level,
thesetwo valuesarenotvalid eventhoughthey haveabsolutevalidity.

For thisapplicationscenario,anadditionaltemporalconstraintmustbesatisfiedby the
database,andthatis anend-to-enddeadline.This temporalconstraintis importantbecause
the maximumprocessingtime for the alarmevent mustbe smallerthanthe end-to-end-
deadline. Figure1.2 shows the whole end-to-endprocessfor an alarmevent. Whenan
alarmis detected,analarmsensorsendsthesignalto theA/D converter. Thissignalis read
by theI/O managerrecordingthealarmin thedatabase.Thealarmtaskthenanalyzesthe
alarmdataandsendsasignalbackto indicateanemergency shutdown.

In our example,thedatabasecanbeaccessedby thealarmtask,thePID task,theuser
interface,andtheI/O manager. Thus,anadequateconcurrency controlmustbeensuredin
orderto serializetransactionscomingfrom thesefour differentdatabaseclients.

Let us now assumethat the water level in the tank is just below the highestallowed
level, i.e., the level whenan alarmis triggered. The waterflowing into the tank creates
rippleson the surface. Theseripplescould causethe alarmto go on andoff with every
ripple touchingthe sensor, andconsequentlysendingburstsof alarmsto the system. In
thiscase,onemoretemporalconstraintmustbesatisfied,adelayedresponse.Thedelayed
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responseis a periodof time within which thewaterlevel mustbehigherthanthehighest
allowedlevel in orderto activatethealarm.

As we can see,this simple applicationscenarioputs different requirementson the
database.A completeindustrial processcontrol system,of which this exampleis part
of, wouldputa varietyof additionalrequirementsonadatabase,e.g.,logging.

Notethatrequirementsplacedonthedatabaseby theembeddedreal-timesystemareto
someextentgeneralfor all embeddedandreal-timeapplications,but at thesametime,there
are requirementsthat arespecificto an applicationin question(e.g., delayedresponse).
Thus, an embeddeddatabasesystemmust, in a sense,be tailored, i.e., customizedfor
eachdifferent applicationto give an optimized solution. That is, given the resource
demandsof theembeddedreal-timesystem,a databasemustbetailoredto have minimum
functionality, i.e.,only functionalitythata specificapplicationneeds.

In recentyears, a significant amountof researchhas focusedon how to incorporate
databasefunctionality into real-timesystemswithout jeopardizingtimeliness,andhow to
incorporatereal-timebehavior into embeddedsystems.However, researchfor embedded
databasesusedin embeddedreal-timesystems,explicitly addressingthedevelopmentand
designprocess,andthelimited amountof resourcesin embeddedsystemsis sparse.Hence,
thegoalof our reportis to identify thegapbetweenthefollowing threedifferentsystems:
real-timesystems,embeddedsystems,anddatabasesystems.Further, we investigatehow
component-basedsoftwareengineeringwouldprovideafeasibleapproachfor bridgingthis
gapby enablingdevelopmentof acustomizableembeddeddatabasesuitablefor embedded
real-timesystems,in a short time with reduceddevelopmentcosts,and high quality of
software.

Therearemany embeddeddatabasesonthemarket,but, asweshow in this report,they
varywidely form vendorto vendor. Existingcommercialembeddeddatabasesystems,e.g.,
Polyhedra[93], RDM andVelocis[70, 71], Pervasive.SQL[91], Berkeley DB [102], and
TimesTen[113], have differentcharacteristicsandaredesignedwith specificapplications
in mind. They supportdifferent datamodels,e.g., relationalvs object-orientedmodel,
andoperatingsystemplatforms.Moreover, they have differentmemoryrequirementsand
providedifferenttypesof interfacesfor usersto accessdatain thedatabase.

Application developersmust carefully choosethe embeddeddatabasetheir applica-
tion requires,andfind the balancebetweenthe functionality an applicationrequiresand
the functionality that an embeddeddatabaseoffers. Thus, finding the right embedded
database,in additionof beinga quite time consuming,costly anddifficult process,is a
processwith lot of compromises.Althougha significantamountof researchin real-time
databaseshasbeendonein thepastyears,it hasmainly focussedon variousschemesfor
concurrency control,transactionscheduling,andloggingandrecovery. Researchprojects
that arebuilding real-timedatabaseplatforms,suchasART-RTDB [118], BeeHive [50],
DeeDS[99] andRODAIN [49], mainly addressreal-timeperformance,have monolithic
structure,andarebuilt for a particularreal-timeapplication. Hence,the issueof how to
enabledevelopmentof anembeddeddatabasesystemthatcanbetailoredfor differentem-
beddedreal-timeapplicationsarises.Thedevelopmentcostsof suchdatabasesystemmust
be kept low, andthe developmentmustensuregoodsoftwarequality. We show that ex-
ploiting component-basedsoftwareengineeringin thedatabasedevelopmentseemto have
a potential,andexaminehow component-basedsoftwareengineeringcanenabledatabase
systemsto beeasilytailored,i.e., optimized,for a particularapplication.By having well-
definedreusablecomponentsasbuilding blocks,not only developmentcostsarereduced,
but moreimportantly, costsrelatedto verificationandcertificationarereducedsincecom-
ponentswill only needto becheckedonce.Althoughsomemajordatabasevendorssuch
asOracle,Informix, Sybase,andMicrosoft have recognizedthatcomponent-baseddevel-
opmentofferssignificantbenefits,their component-basedsolutionsarelimited in termsof
tailorability with, in mostcases,inadequatesupportfor developmentof suchcomponent-
baseddatabasesystems.Furthermore,commercialcomponent-baseddatabasesdo not en-
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forcereal-timebehavior andarenot, in mostcases,suitablefor environmentswith limited
resources.We arguethat in orderto composea reliableembeddedreal-timesystemout of
components,componentbehavior mustbepredictable.Thus,componentsmusthave well
definedtemporalattributes.However, existing component-baseddatabasesystemsdo not
enforcereal-timebehavior. Also, issuesrelatedto embeddedsystemssuchaslow-resource
consumptionarenot addressedat all in thesesolutions.We show thatreal-timeproperties
arepreservedonly in a few of theexistingcomponent-basedreal-timesystems.In addition
to temporalproperties,componentsin component-basedembeddedsystemsmusthaveex-
plicitly addressedmemoryneedsandpowerconsumptionrequirements.At theendof this
report,we outline initial ideasfor preservingreal-timeandembeddedpropertiesin com-
ponentsusedfor building anembeddeddatabaseplatformthatcanbetailoredfor different
applications.

The report is organizedas follows. In chapter2 we survey commercialembedded
andresearchreal-timedatabasesystems.We thenexaminethecomponent-basedsoftware
engineeringparadigm,andits integrationwith databasesfor embeddedreal-timesystemsin
chapter3. In chapter4 wediscussapossiblescenariofor developinganembeddeddatabase
platformthatcanbetailoredfor differentapplications,andgiveconclusions.



Chapter 2

Databasesystems

2.1 Traditional databasesystems

Databasesareusedto storedataitemsin a structuredway. Dataitemsstoredin a database
shouldbepersistent,i.e.,adataitemstoredin thedatabaseshouldremainthereuntil either
removedor updated.Transactionsaremostoftenusedto read,write, or updatedataitems.
Transactionsshouldguaranteeserialization.The so-calleddatabasemanageris accessed
throughinterfaces,andonedatabasemanagercansupportmultiple interfaceslike C/C++,
SQL,or ActiveX interfaces.

Accordingto [26] mostdatabasemanagementsystemsconsistof threelevels:

� Theinternallevel, or physicallevel, dealswith thephysicalstorageof thedataonto
amedia.Its interfaceto theconceptuallevel abstractsall suchinformationaway.

� The conceptuallevel handlestransactionsand structuresof the data,maintaining
serializationandpersistence.

� Theexternallevel containsinterfacesto users,uniforming transactionsbeforethey
aresentto theconceptuallevel.

Oneof themaingoalsfor many traditionaldatabasesystemsaretransactionthrough-
put andlow averageresponsetime [51], while for real-timedatabasesthemaingoal is to
achieve predictabilitywith respectto responsetimes,memoryusageandCPUutilization.
We cansaythatwhena worst caseresponsetime or maximummemoryconsumptionfor
a databasecanbe guaranteed,thesystemis predictable.However, therecanbe different
levelsof predictability. For a systemthatcanguaranteea certainresponsetimewith some
definedconfidence,is saidto havea certaindegreeof predictability.

2.2 Embeddeddatabasesystems

2.2.1 Definitions

A device embeddeddatabasesystemis a databasesystemthat residesinto an embedded
system.In contrast,anapplication-embeddeddatabaseis hiddeninsideanapplicationand
is not visible to the applicationuser. Application-embeddeddatabasesarenot addressed
further in this survey. This survey focusesonly on databasesembeddedin real-timeand
embeddedsystems.Themainobjectivesof a traditionalenterprisedatabasesystemoftenis
throughput,flexibility , scalability, functionalityetc.,while thingslikesize,resourceusage,
andprocessorusagearenotasimportant,sincehardwareis relatively cheap.In embedded
systemstheseissuesaremuchmoreimportant.Themainissuesfor anembeddeddatabase
systemcanbesummarizedas[98, 68, 96]:

9
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� Minimizing the memoryfootprint: The memorydemandfor an embeddedsystem
aremostoften,mainly for economicalreasons,kept aslow aspossible.A typical
footprint for anembeddeddatabaseis within therangeof somekilobytesto acouple
of megabytes.

� Reductionof resourceallocations:In anembeddedsystem,thedatabasemanagement
systemandtheapplicationaremostoftenrunon thesameprocessor, puttinga great
demandon the databaseprocessto allocateminimum CPU bandwidthto leave as
muchcapacityaspossibleto theapplication.

� Supportfor multipleoperatingsystems:In anenterprisedatabasesystem,theDBMS
is typically run on a dedicatedserver usinga normaloperatingsystem.Theclients,
thatcouldbedesktopcomputers,otherservers,or evenembeddedsystems,connect
to theserver usinga network connection.Becausea databasemostoftenrun on the
samepieceof hardwareastheapplicationin anembeddedsystem,andthatembedded
systemsoftenusespecializedoperatingsystems,thedatabasesystemmustsupport
theseoperatingsystems.

� High availability: In contrastto a traditional databasesystem,most embedded
databasesystemsdonothaveasystemadministratorpresentduringrun-time.There-
fore,anembeddeddatabasemustbeableto runon its own.

Dependingon thekind of systemthedatabaseshouldresidein, someadditionalobjec-
tivesmight bemoreemphasized,while othersarelessimportant.For example,Pervasive,
which manufacturesPervasive.SQLDBMS system,hasidentifiedthreedifferenttypesof
embeddedsystemsandhasthereforedevelopeddifferentversionsof theirdatabaseto sup-
port thesesystems[90]:

� Pervasive.SQLfor smartcardsis intendedfor systemswith very limited memory
resources,typically atenkilobytes.Thisversionhastradedoff sophisticatedconcur-
rency controlandflexible interfacesfor size. Typical applicationsincludebanking
systemslike cash-cards,identificationsystems,health-care,andmobilephones.

� Pervasive.SQLfor embeddedsystemsis designedfor smallcontrolsystemslike our
examplesystemin figure 1.1. It canalsobe usedasa datapump,which is a sys-
tem that readsdatafrom a numberof sensors,storesthe datain a local database,
andcontinuously“pumps” datato a large enterprisedatabasein an unidirectional
flow. Importantissuesherearepredictability, with respectto bothtiming andsystem
resources,aswe areapproachinga real-timeenvironment. The interfacesarekept
rathersimpleto increasespeedandpredictability. Sincethe numberof usersand
therateof transactionsoftencanbepredicted,theneedfor a complex concurrency
controlsystemmightnotbenecessary.

� Pervasive.SQLfor mobilesystemsis usedin mobiledeviceslike cellularphonesor
PDAs, wherethereis a needfor higherdegreeof concurrency control. Consider
that a userbrowsesthroughe-mailson a PDA while walking into his/hersoffice,
thenthesynchronizerupdatesthee-maillist usingawirelesscommunicationwithout
interruptingtheuser. The interfacessupportmorecomplex ad-hocqueriesthanthe
embeddedversion. The interfacesaremodularandcanbe includedor excludedto
minimizememoryfootprint.

2.2.2 An industrial casestudy

In 1999,ABB Roboticswho developsandmanufacturesrobotsfor industrialuse,wanted
to exchangethe existing in-housedevelopedconfigurationstoragemanagementsystem
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into amoreflexible andgenericsystem,preferablysomecommercial-of-the-shelf(COTS)
embeddeddatabase.

An industrial robot is a complex andcomputer-controlledsystem,which consistsof
many sub-systems.In eachrobot someconfigurationinformationaboutits equipmentis
stored. Today, this amountsto about600 kilobytesof data[86]. This dataneedsto be
storedin a structuredandorganizedway, allowing easyaccess.

Thecurrentsystem,calledCFG,is a custommadeapplicationandresemblesin many
ways to a regular databaseapplication. However, it is nowadaysconsideredto be too
non-flexible andthe user-interfaceis not userfriendly enough.Furthermore,the internal
structuresandthechoiceof index systemhave leadto muchlongerresponsetimesasthe
datasizehasincreased.

ABB Roboticsdecidedto investigatethemarket for anexisting suitabledatabasesys-
tem that would fulfill their demands.The following requirementswereconsideredto be
important[63]:

� Connectivity. It shouldbe possibleto accessthe databaseboth directly from the
robotcontrollingapplicationandfrom anexternalapplicationvia anetwork connec-
tion. Furthermorethedatabaseshouldsupportviewssodatacouldbequeriedfrom
a certainperspective. It would bepreferableif somekind of standardinterface,e.g.,
ODBC,couldbeused.If possible,thedatabaseshouldbebackwardcompatiblewith
the querylanguageusedin the CFG system. The databaseshouldalsobe ableto
handlesimultaneoustransactionsandqueries,andbeableto handleconcurrency.

� Scalability. Theamountof dataitemsin thesystemmustbeallowedto grow asthe
systemevolves. Transactiontimesanddatabasebehavior mustnot changedueto
increasein datasize.

� Security. It shouldbepossibleto assigndifferentsecuritylevelsfor differentpartsof
thedatain thedatabase.Thatis, someform of useridentificationandsomesecurity
levelsmustexist.

� Datapersistence.Thedatabaseshouldbeableto recover safelyaftera systemfail-
ure. Thereforesomeform of persistentstoragemustbesupported,andthedatabase
shouldremaininternallyconsistentafterrecovery.

� Memoryrequirements.To keepthesizeof theDBMS systemlow is a key issue.

2.3 Commercial embeddedDBMS: a survey

In this sectionwe discussandcomparea numberof commercialembeddeddatabasesys-
tems.Wehaveselectedahandfulof systemswith differentcharacteristics.Thesedatabases
arecomparedwith eachotherwith respectto asetof criteria,whichrepresentthemostfun-
damentalissuesrelatedto embeddeddatabases.

2.3.1 Criteria investigated
� DBMS model,whichdescribesthearchitectureof thedatabasesystem.Two DBMS

architecturesfor embeddeddatabasesaretheclient/server modelandtheembedded
library model.

� Datamodel,whichspecifieshow datain thedatabaseis organized.Commonmodels
aretherelational,theobject-orientedandtheobjectrelational.

� Dataindexing, whichdescribeshow thedataindexesareconstructed.
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� Memory requirements,which describesthe memoryrequirementsfor the system,
bothdataoverheadandthememoryfootprint,which is thesizeof thedatabaseman-
agementsystem.

� Storagemedia,whichspecifiesthedifferentkindsof storagemediasthatthedatabase
supports.

� Connectivity, which describesthedifferentinterfacestheapplicationcanuseto ac-
cessthe database.Network connectivity is alsospecified,i.e. the ability to access
thedatabaseremotelyvia a network connection.

� Operatingsystemplatforms,whichspecifiestheoperatingsystemssupportedby the
databasesystem.

� Concurrency control, which describeshow concurrenttransactionsarehandledby
thesystem.

� Recovery, whichspecifieshow backup/restorationis managedby asystemin caseof
failures.

� Real-timeproperties,whichdiscussesdifferentreal-timeaspectsof thesystem.

2.3.2 Databasesinvestigated

In this survey we have selecteda handfulof systemsthat togetherrepresentsa somewhat
completepictureof theproductscurrentlyon themarket. This list of systemsis not to be
consideredcompletein any way, worth mentioningare,for example,theSQL.Anywhere
systemdevelopedby Sybase[110] andthec-treePlussystemby FairCom[35].

� Pervasive.SQLby PervasiveSoftwareInc. Thisdatabasehasthreedifferentversions
for embeddedsystems:Pervasive.SQLfor smart-card,Pervasive.SQLfor mobile
systems,andPervasive.SQLfor embeddedsystems.All threeversionsintegratewell
with eachotherandalsowith their nonembeddedversionsof Pervasive.SQL.Their
systemview andthefactthatthey have,comparedto mostembeddeddatabases,very
smallmemoryrequirementswasonereasonfor investigatingthisdatabase[91].

� Polyhedraby PolyhedraPlc. Thisdatabasewasselectedfor threereasons,first of all
it is claimedto bea real-timedatabase,secondlyit is a mainmemorydatabaseand
third, it hasactivebehavior [93].

� Velocisby MbraneLtd. Thissystemis primarily intendedfor e-CommerceandWeb
applications,but hassomesupportfor embeddedoperatingsystems[71].

� RDM by MbraneLtd. Like Polyhedra,RDM alsoclaimsto bea real-timedatabase.
It is however fundamentallydifferentfrom the Polyhedrasystem,by, for example,
beinganembeddedlibrary and,thus,doesnotadopttheclient/servermodel[70].

� Berkeley DB by SleepycatSoftwareInc. This database,which alsois implemented
asa library, wasselectedfor thesurvey becauseit is distributedasopensourceand
thereforeinterestingfrom a researchpointof view [102].

� TimesTenby TimesTenPerformanceSoftware. This relationaldatabaseis, like the
Polyhedrasystema mainmemoryreal-timedatabasesystem[113].
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DBMS system Client/server Library
Pervasive.SQL x
Polyhedra x
Velocis x
RDM x
Berkeley DB x
TimesTen x

Table2.1: DBMS modelssupportedby differentembeddeddatabasesystems.

2.3.3 DBMS model

Therearebasicallytwo differentDBMS modelssupported(seetable2.1). Thefirst model
is theclient/servermodel,wherethedatabaseservercanbeconsideredto beanapplication
runningseparatelyfromthereal-timeapplication,eventhoughthey runonthesameproces-
sor. TheDBMS is calledusinga request/responseprotocol. Theserver is accessedeither
throughinter-processcommunicationor somenetwork. The secondmodelis to compile
theDBMS togetherwith thesystemapplicationinto oneexecutablesystem.Whena task
wantsto accessthedatabaseit only performsfunctioncallsto make therequest.Transac-
tionsexecuteon behalfof their tasks’threads,eventhoughinternalthreadsin theDBMS
might be used. Thereareadvantagesanddrawbackswith both models. In a traditional
enterprisedatabase,theserver mostoftenrun on a dedicatedservermachine,allowing the
DBMS to usealmost100%of theCPU.However in anembeddedclient/serversystem,the
applicationandthe server processoften sharethe sameprocessor. This implies that for
every transactionat leasttwo context switchesmustbe performed,seefigure 2.1. More
complex transactions,likeanupdatetransactionmight requireevenmorecontext switches.
Considerfor exampleanreal-timetaskthatexecutesanupdatetransactionthatfirst reads
thedataelement) , thenderivesa new valueof ) from theold valueandfinally writes it
backto the database.This transactionwould generatefour context switches.Two while
fetchingthevalueof ) andtwo while writing ) backto thedatabase.

Thesecontext-switchesaddsto thesystemoverhead,andcanfurthermoremake worst
caseexecutiontime estimationsof transactionsmore complex to predict. The network
messagepassingor inter-processcommunicationbetweentheserverandtheclientalsoadd
to theoverheadcost.A drawbackwith anembeddedlibrary is that they lack standardized
interfaceslikeODBC.[68].

Theproblemwith messagepassingoverheadhasbeenreducedin theVelocissystem.
They allow the processto be compiledtogetherwith the application,thus reducingthe
overheadsincesharedmemorycanbeusedinstead.

Application task
DBMS server

task
Application task

continued

DBMS
request

DBMS
response

Context
switches

Figure2.1: In anembeddedclient/serverDBMS atleasttwo context switchesarenecessary
for eachtransaction.

2.3.4 Data model

The datamodelconcernshow datais logically structured.The mostcommonmodel is
therelationalmodelwheredatais organizedin tableswith columnsandrows. Databases
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DBMS system Relational Object-oriented Object-relational Other
Pervasive.SQL x
Polyhedra x (x)
Velocis x
RDM x
Berkeley DB x
TimesTen x

Table2.2: Datamodelssupportedby differentembeddeddatabasesystems.

implementingrelationaldatamodelarereferredto asrelationaldatabases(RDBMS).One
advantagewith a relationalmodelis thatcolumnsin thetablecanrelateto othertablesso
arbitrarycomplex logical structurescanbecreated.Fromthis logical structurequeriescan
beusedto extracta specificselectionof data,i.e. a view. However, onedisadvantagewith
therelationalmodelis addeddatalookupoverhead.This is becausethatdataelementsare
organizedwith indexesin which pointersto the datais stored,andto performthe index
lookupcantake significantamountof time,especiallyfor databasesstoredonharddrives.
This canbe a seriousproblemfor databasesthat residesin time critical applicationslike
ourexampleapplicationin figure1.1.

The relationalmodel,which wasdevelopedby Codd,only supportsa few basicdata
types,e.g., integers,floating point numbers,currency, and fixed length arrays. This is
nowadaysconsidereda limitation which hasleadto the introductionof databaseswhich
supportsmorecomplex datatypes,e.g.,Binary Large Objects(BLOBs). BLOB is data,
which is treatedas a set of binary digits. The databasedoesnot know what a BLOB
containsandthereforecannotindex anything insideof theBLOB.

The object-orienteddatabase(ODMBS) is a different kind of datamodel, which is
highly integratedwith object-orientedmodelingandprogramming,TheODBMSis anex-
tensionto thesemanticsof anobject-orientedlanguage.An object-orienteddatabasestores
objectsthatcanbesharedby differentapplications.For example,a company which deals
with e-Commercehasadatabasecontainingall customers.Theapplicationis written in an
object-orientedlanguageanda customeris modeledasan object. This objecthasmeth-
ods,likebuy andchangeAdress, associatedwith it. Whena new customerarrives,an
instanceof the classis createdandthenstoredin thedatabase.The instancecanthenbe
retrievedatany time. Controlledaccessis guaranteeddueto concurrency control.

A third datamodel,whichhasevolvedfrom boththerelationalandtheobject-oriented
model, incorporatesobjectsin relations,thus is called object-relationaldatabases(OR-
DBMS).

As shown in table2.2,all systemsin thesurvey exceptBerkeley DB arerelational.Fur-
thermorethePolyhedrahassomeobject-relationalbehavior throughits Control language
describedbelow. However it is not fully object-relationalsinceobjectsitself cannotbe
storedin the database.To our knowledge,no pureobject-orientedembeddeddatabases
existson themarket today. Therearehowever somelow requirementsdatabasesthatare
object-oriented,suchastheObjectivity/DB [80] system.Furthermoresomeobject-oriented
client-librariesexiststhatcanbeusedin anembeddedsystem,suchasthePowerTier [89]
andthe PoetObjectsystem[92]. Theseclient-librariesconnectsto an externaldatabase
server. SincetheactualDBMS andthedatabaseis locatedon a non-embeddedsystemwe
donotconsiderthemembeddeddatabasesin thissurvey.

Mostsystemshavewaysto “shortcut”accessto data,andthereforebypassingtheindex
lookup routine. Pervasive, for example,can accessdatausing the Btrieve transactional
enginethatbypassestherelationalengine.Mbraneusesa differentapproachin theRDM
system.In many real-timesystemsdataitemsareaccessedin a predefinedorder(think of
a controllingsystemwheresomesensorvaluesarereadfrom the databaseandthe result
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is written backto the database).By insertingshortcutsbetweendataelementssuchthat
they aredirectly linkedin theorderthey areaccessed,very fastaccessescanbeachieved.
As theseshortcutspoint directly to physicallocationsin memory, reorganizationof the
databaseis muchmorecomplex sincea largenumberof pointerscanbecomestalewhena
singledatais droppedor moved.

The PolyhedraDBMS systemis fundamentallydifferentcomparedto the restof the
relationalsystemsin this survey, becauseof its active behavior. This is achievedthrough
two mechanisms,active queriesandby thecontrol language(CL). An active querylooks
quitelikeanormalquerywheresomedatais retrievedand/orwritten,but insteadthequery
staysin thedatabaseuntil explicitly aborted.Whena changein thedataoccursthatwould
alter the resultof the query, the applicationis notified. The CL, which is a fully object-
orientedscript languagethat supportsencapsulation,informationhiding andinheritance,
candeterminethe behavior of datain the database.This meansthat methods,privateor
public, canbeassociatedwith dataperformingoperationson themwithout involving the
application.In our exampleapplication,theCL couldbeusedto derive thevalve setting
+ " from thelevel indicator ) " andthePID parameters,thusremoving theneedfor thePID
task. The CL hasanotherimportantusage,sinceit canbe usedin the displaymanager
(DM) to makeagraphicalinterface.TheDM, whichis implementedasaPolyhedraClient,
togetherwith thecontrollanguageis ableto presenta graphicalview on a local or remote
userterminal.This is actuallyexactly theuserinterfacein our exampleapplication,since
DM alsocantakeuserinputandforwardthatto thedatabase.Activedatabasemanagement
will befurtherdiscussedin section2.4.4.

As mentionedabove, Berkeley DB is the only non-relationalsystemin this survey.
Insteadit usesa key-datarelationship.Onedatais associatedwith a key. Therearethree
waysto searchfor data,from key, partof key or sequentialsearch.Thedatacanbearbitrary
large andof virtually any structure. Sincethe keys areplain ASCII stringsthe datacan
containotherkeys so complex relationscanbe built up. In fact it would be possibleto
implementa relationalengineon top of theBerkeley DB database.This approachclaims
for a very intimaterelationshipbetweenthedatabaseandtheprogramminglanguageused
in theapplication.

2.3.5 Data indexing

To beableto efficiently searchfor specificdata,anefficient index systemshouldexist. To
linearlysearchthrougheverysinglekey from anunsortedlist wouldnotbeagoodsolution
sincetransactionresponsetimeswouldgrow asthenumberof dataelementsin thedatabase
increases.To solvethisproblemtwo majorapproachesareused,treestructuresandhashed
lists. Both approachessupplysimilar functionality, but differ somewhat in performance.
Two major treestructuresareused,B 5 -tree indexing, which suitsdisk baseddatabases,
andT-treeindexing,which is primarily usedin main-memorydatabases.

Themainissuefor B 5 -treeindexing is to minimizedisk I/O, thustradingdisk I/O for
addedalgorithmcomplexity. B 5 -treeindexing sortsthekeys in a treestructurein which
every nodehasa predefinednumberof children,denoted6 . A largevalueof 6 resultsin
a wide but shallow tree,thusthetreehasa largefanout.A small valueof 6 resultsin the
opposite.For 68791 treeis abinarytree.Sinceall dataindexesresidein theleavenodesof
the tree,while only the innernodesareusedto navigateto theright leave, thenumberof
visitednodeswill be fewer for a shallow tree. This resultsin fewer nodesthathave to be
retrievedfrom disk,thusreducingdiskI/O. In figure2.3.5weseeanexampleof aB 5 -tree.
Therootdirectsrequeststo all keys thatarelessthansix to theleft child andkeysfrom six
to its middlechild. As thevalueof 6 increases,thelongertime it takesto passtherequest
to the correctchild. Thus,whendecidingthe fanoutdegree,the time it takesto fetch a
nodefrom disk mustbe in proportionto thetime it takesto locatewhich child to redirect
to. Proposalsonreal-timeconcurrency controlfor B 5 -treeindexing havebeenmade[59].

For main-memorydatabasesa differenttype of treecanbe used,the T-treestructure
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Figure2.2: Thestructureof a B 5 -treewith fanoutof 3. Theinnernodesareonly usedto
index down to the leave nodecontainingthe pointerto the correctdata. Figurepartially
from [59].

Figure2.3: Thestructureof a T-tree.Eachnodecontainsa numberof entriesthatcontains
thekey andapointerto thecorrespondingdata.All key valuesthatarelessthenthebound-
aryof thisnodeis directedto theleft child, andkey valuesthatareabovetheboundaryare
directedto theright. Figurefrom TimesTenWhitepaper.
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DBMS system B 5 -tr ee T-tr ee Hashing Other
Pervasive.SQL x
Polyhedra x
Velocis n/a n/a n/a n/a
RDM x
Berkeley DB x x x
TimesTen x x x

Table2.3: Dataindexing strategiesusedby differentembeddeddatabasesystems.

[61]. TheT-treeusesa deepertreestructurethantheB 5 -treesinceit is a balancedbinary
tree,seefigure2.3.5,with amaximumof two childrenfor everynode.To locatedata,more
nodesarenormally visited, comparedto the B 5 -tree , beforethe correctnodeis found.
This is notaproblemfor amain-memorydatabasesincememoryI/O is significantlyfaster
thandisk I/O. Theprimaryissuefor T-treeindexing is thatthealgorithmsusedto traverse
a T-treehave a lower complexity andfasterexecutiontime thancorrespondingalgorithms
for the B-tree. However, it hasbeenpointedout that a T-tree traversalcombinedwith
concurrency control performworsethanB-tree indexesdue to the fact that morenodes
in the T-treehad to be locked to ensuretree integrity during traversal[65] . They also
proposedan improvementcalledT-tail, which reducesthenumberof costly re-balancing
operationsneeded.Furthermore,they proposedtwo concurrency algorithmsfor T-tail and
T-treestructures,oneoptimisticandonepessimistic(for a moredetaileddiscussionabout
pessimisticandoptimisticconcurrency control,seesection2.3.10).

Thesecondapproach,hashing,usesanhashlist in which keys areinsertedaccording
to a valuederivedfrom thekey itself (differentkeys canbeassignedthesamevalue)[62].
Therefore,eachentry in the list is a bucket that cancontaina predefinednumberof data
keys. If abucket is full a rehashoperationmustbeperformed.Theadvantagewith hashing
is that the time to searchfor certaindatais constantindependentof the amountof data
entriesin thedatabase.However, hashingoftencausemoredisk I/O thanB-trees.This is
becausedatais oftenusedwith locality of reference,i.e., if dataelement

�;:
is used,it is

moreprobablethatdataelement
��<

will beusedshortly. In a B-treebothelementswould
besortedcloseto eachother, andwhen

�;:
is retrieved from disk, thenit is probablethat

also
��<

will be retrieved. However in a hashlist
�=:

and
��<

are likely to be in different
buckets,causingextra disk I/O if bothdataareused.Anotherdisadvantagewith hashing
comparedto tree-basedindexing is thatnon-exactqueriesis time consumingto perform.
For example,considera queryfor all keys greaterthan ) . After that ) hasbeenfound,all
keys arefound to theright of ) in a B 5 -tree. For a hashedindex, all bucketsneedto be
searchedto find all matchingkeys.

Wecannoticethatmain-memorydatabases,namelyPolyhedraandTimesTenusehash-
ing (seetable2.3).Additionally, TimesTensupportsT-trees.Pervasive,RDM andBerkeley
DB useB-treeindexing.

It is alsonoteworthy that Berkeley DB usesboth B 5 -treeand hashing. They claim
thathashingis suitablefor databaseschemesthatareeithersosmallthattheindex fits into
mainmemoryor whenthe databaseis so large thatB 5 -treeindexing will causedisk I/O
uponmostnodefetchingdueto that the cachecanonly fit a small fractionof the nodes.
Thusmakingthe B 5 -treeindexing suitablefor databaseschemeswith a sizein between
theseextremes.Furthermore,Berkeley DB supportsa third accessmethod,queue,which
is usedfor fastinsertsin thetail, andfastretrieval of datafrom theheadof thequeue.This
approachis suitablefor thelargeclassof systemsthatconsumelargevolumesof data,e.g.,
statemachines.
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DBMS system Memory requirements1

Pervasive.SQLfor smartcards 8kb
Pervasive.SQLfor embeddedsystems 50kb
Pervasive.SQLfor mobilesystems 50 - 400kb
Polyhedra 1.5- 2Mb
Velocis 4Mb
RDM 400- 500kb
Berkeley DB 175kb
TimesTen 5Mb

Table2.4: Differentmemoryneedsof investigatedembeddeddatabasesystems.

2.3.6 Memory requirements

Memoryrequirementof thedatabaseis animportantissuefor embeddeddatabasesresiding
in environmentswith smallmemoryrequirements.Formass-producedembeddedcomputer
systemslike computernodesin a car, minimizing hardwareis usuallya significantfactor
for reducingdevelopmentcosts.Therearetwo interestingpropertiesto considerfor em-
beddeddatabases,first of all thememoryfootprint size,which is thesizeof thedatabase
without any dataelementsin it. Second,dataoverheadis of interest,i.e., the numberof
bytesrequiredto storea dataelementapartfrom the sizeof the dataelementitself. An
entry in the index list with a pointerto the physicalstorageaddressis typical dataover-
head. Typically client/server solutionsseemsto requiresignificantlymorememorythan
embeddedlibraries,with Pervasive.SQLbeingtheexception(seetable2.4).Thisexception
couldpartially beexplainedby Pervasive’sBtrieve native interfacebeinga very low-level
interface(seesection2.3.8),andthatmuchof thefunctionalityis placedin theapplication
instead. In the caseof Berkeley DB, thereis a similar explanationto its small memory
footprint. Additional functionality (not provided by the vendor)canbe implementedon
topof thedatabase.

Regardingdataoverhead,Polyhedrahasa dataoverheadof 28 bytesfor every record.
Pervasive’s dataoverheadis not aseasilycalculatedsinceit usespaging. Dependingon
recordand pagesizesdifferentamountof fragmentationis introducedin the datafiles.
Therearehowever formulasprovidedby Pervasive for calculatingexactrecordsizes.The
othersystemsinvestigatedin thissurvey suppliesnoinformationaboutactualdataoverhead
costs.

For systemswherelow memoryusageis consideredmoreimportantthanprocessing
speed,thereis an option of compressingthe data. Datawill thenbe transparentlycom-
pressedanddecompressedduringruntime. This,however, requiresfreeworking memory
of 16 timesthesizeof therecordbeingcompressed/decompressed.

2.3.7 Storagemedia

Embeddedcomputersystemssupportdifferentstoragemedias.Normally, datausedon the
computeris storedon a hard-drive. Hand-heldcomputeruseFlashor othernon-volatile
memoryfor storageof bothprogramsanddata.Sincedatain adatabaseneedsto bepersis-
tentevenupona power loss,someform of stablestoragetechniquemustbeused.As can
beseenfrom table2.5,mostsystemssupportFlashin additionto a hard-drive. ThePoly-
hedrasystemalsosupportsstoragevia a FTP-connection.This impliesthatthePolyhedra
systemcanrun without persistentstorage,sincedatacanbe loadedvia FTP-connection
uponsystemstartup.

1Thevaluesgivenin thetablearethe“footprint”-valuesmadeavailableby databasevendors.
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DBMS system Hard-dri ve Flash Smart card FTP
Pervasive.SQL x x x
Polyhedra x x x
Velocis x
RDM x
Berkeley DB x x
TimesTen x

Table2.5: Storagemediasusedby investigatedembeddeddatabasesystems.

2.3.8 Connectivity

Databaseinterfacesaretheusersway to accessthedatabase.An interfacenormallycon-
tainsfunctionsfor connectingto theserver, makingqueries,performingtransactions,and
makingchangesto thedatabaseschema.However differentinterfacescanbespecialized
on specifictypesof operations,e.g.,SQL is usedmainly for schemamodificationsand
queries,while a C/C++ API normallyarespecializedfor transactionalaccess.Figure2.4
showsa typical interfaceconfigurationfor anembeddeddatabasesystem.

Themostbasicinterfaceis thenative interface.This interface,which is for a specific
programminglanguage,e.g.,C or C++, is often usedby the applicationrunningon the
embeddedsystem.In ourexamplein figure1.1,tasksandI/O managementwouldtypically
usethenative interfaceto performtheir transactions.

MicrosofthasdevelopedtheOpenDatabaseConnectivity (ODBC) interfacein thelate
80’s. This interfaceusesthequerylanguageSQL,andis todayoneof thelargeststandards
of databaseinterfaces.Theadvantagewith ODBCis thatany databasethatsupportsODBC
canconnectwith any applicationwritten for ODBC. ODBC is a low-level interface,that
requiresmoreimplementationperdatabaseaccessthena high-level interfacelike ActiveX
DataObject(ADO) interface,explainedbelow in moredetail.TheODBCinterfacecannot
handlenon-relationaldatabasesvery well. Main benefits,besidetheinterchangeability, is
that theperformanceis generallyhigherthanhigh-level interfaces,andtheinterfacegives
thepossibilityof detailedtuning.

A newerstandard,alsodevelopedby Microsoft,is theOLE DB interfacewhichis based
on theMicrosoft COM technology(for moredetaileddescriptionof OLE DB’s function-
ality seesection3.2.5). OLE DB is, asODBC,a low-level interface.Thefunctionalityof
OLE DB is similar to ODBC,but object-oriented.However, oneadvantageis thepossibil-
ity to useOLE DB on non-relationaldatabasesystems.Therearealsodriversavailableto
connectthe OLE DB interfaceon top of anODBC driver. In this casethe ODBC driver
wouldactasa server for theapplicationbut asa client to theDBMS.

On top of OLE DB, thehigh-level ADO interfacecouldbeused.SincebothOLE DB
andADO arebasedonMicrosoftCOM,they canbereachedfromalmostany programming
language.

For Javaapplications,theJDBCinterfacecanbeused.It buildsonODBCbut hasbeen
developedwith the samephilosophyastheOLE DB andADO interfaces.For databases
that do not directly supportJDBC, an ODBC driver can be usedas intermediatelayer,
just like OLE DB. Pervasive.SQLusestheBtrieve interfacefor fastreadingandupdating
transactions.Btrieve is very closelyconnectedto thephysicalstorageof data. In Btrieve
datais written asrecords.A recordcanbedescribedasa predefinedsetof dataelements,
similartoastructin theC programminglanguage.Btrieveis notawareof thedataelements
in therecord,but treatsdataelementsasstringof bytesthatcanberetrievedor stored.An
index key is attachedto every record.Recordscanthenbeaccessedin two ways,physical
or logical. Whenarecordis locatedlogically, anindex containingall keysis usedto lookup
thelocationof thedata.Theindexesaresortedin eitherascendingor descendingorderin a
B-tree. Somemethodsto accessdata,exceptby keyword,areget first, get last,
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Figure 2.4: Figure showing the architectureof applicationsthat usesdifferent typesof
databaseinterfaces.Theshadedboxesarecomponentsthatnormallyareprovidedby the
databasevendor.

DBMS system C/C++ ODBC OLE DB ADO JDBC Java Other
Pervasive.SQL x x x x Btrieve

RSI
Polyhedra x x x x x
Velocis x x x Perl
RDM x
Berkeley DB x x x TCL

Perl
TimesTen x

Table2.6: Interfacessupportedby differentembeddeddatabasesystems.

DBMS system Network connectivity
Pervasive.SQL x
Polyhedra x
Velocis x
RDM x
Berkeley DB
TimesTen x

Table2.7: Network connectivity in investigatedembeddeddatabasesystems.
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get greater than, etc. However for very fastaccess,the physicalmethodcanbe
used.Thenthedatais retrievedusinga physicallocation. This techniqueis usefulwhen
datais accessedin apredefinedorder, thiscanbecomparedto thepointernetwork usedby
RDM discussedpreviously. Physicalaccessis performedusingfour basicmethods,step
first, step last, step next andstep previous.

Onelimitation with theBtrieve interfaceis thatit is not relational.Pervasivehasthere-
foreintroducedtheirRowSetinterface(RSI)thatcombinessomefunctionalityfromBtrieve
andsomefrom SQL.Everyrecordis arow andthedataelementsin therecordscanbecon-
sideredcolumnsin therelation.This interfaceis availablefor thesmartcardversion,em-
beddedversion,andmobileversiononly, andis not availablefor non-embeddedversions
of Pervasive.SQL.

TheBtrieve andRSI interfacesarequitedifferentfrom thenative interfacein Polyhe-
dra, which doesnot requirethe sameunderstandingof the physicaldatastructure. The
PolyhedraC/C++ interfaceusesSQL, thusoperatingon a higher level. Basically, three
differentwaysto accessthedatabaseareprovidedin theinterface:queries,activequeries,
andtransactions.A queryperformsaretrievalof datafrom thedatabaseimmediately, using
theSQLselect command,andthequeryis thereafterdeleted.An activequeryworksthe
sameway asanordinaryquerybut will not bedeletedafter theresulthasbeendelivered,
but will be reactivatedassoonasany of the involveddatais changed.This will continue
until theactive queryis explicitly deleted.Oneproblemwith active queriesis that if data
changesveryfast,thenumberof activationsof thequerycanbesubstantial,thusriskingto
overloadthesystem.To preventthis a minimuminter-arrival time canbeset,andthusthe
querycannotbereactivateduntil thetimespecifiedhaselapsed.Froma real-timeperspec-
tive, theactivationcouldthenbetreatedasa periodicevent,addingto thepredictabilityof
thesystem.

Using transactionsis the only way to make updatesto the database,queriesareonly
for retrieval of data. A transactioncanconsistof a mixture of active updatequeriesand
directSQLstatements.Notethata querymightupdatethedatabaseif it is placedinsideof
a transaction.Active updatequeriesinsertor updatea singledataelementandalsodelete
on singlerow. Transactionsare,asalways,treatedasatomicoperationsandareaborted
upondataconflict. To further speedup transactionexecutiontime, SQL procedurescan
beused,bothin queriesandtransactions.Theseproceduresarecompiledonceandcannot
bechangedafter that,only executed.This eliminatesthecompilationprocessandis very
usefulfor queriesthatrunoften.However, proceduresdonotallow schemachanges.

Noteworthyis thatTimesTenonly supportsODBCandJDBC,andit hasnonativeinter-
facelike therestof thesystems.To increasethespeedof ODBCconnections,anoptimized
ODBC driver is developedthat connectsonly to TimesTen. Like the PolyhedraDBMS,
TimesTenusesprecompiledqueries,but in additionsupportsparameterizedqueries.A pa-
rameterizedqueryis aprecompiledquerythatsupportsargumentspassedto it. For example
theparameterizedquery

query( X )
SELECT * from X

would returnthetablespecifiedby X.
The Berkeley DB, asmentionedearlier, is not a client/server solution,but is imple-

mentedasan embeddedlibrary. It is, furthermore,not relationalbut uses,similar to the
Btrieve interface,a key thatrelatesto a record.Thesimilaritiesto Btrieve go furtherthan
that;datacanbeaccessedin two ways,by key or by physicallocation,justasBtrieve. The
methodsget() andput() accessdataby thekey, while cursormethodscanbeusedto
getdataby physicallocationin thedatabase.As in Btrieve,thefirst, last,next, current,and
previousrecordnumbercanberetrieved. A cursoris simply a pointerthatpointsdirectly
to a record.Thefunctionalityandmethodnamesaresimilar to eachotherindependentof
whichof thesupportedprogramminglanguagethatis used.Therearethreedifferentmodes
thatthedatabasecanrun in:
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DBMS system DesktopOS
Windows UNIX Linux OS/2 DOS

Pervasive.SQLfor smartcards
Pervasive.SQLfor embeddedsystems
Pervasive.SQLfor mobilesystems x
Polyhedra x x x
Velocis x x x
RDM x x x x x
Berkeley DB x x x
TimesTen x x x

Table2.8: Desktopoperatingsystemssupportedby investigatedembeddeddatabasesys-
tems.

� SingleuserDB. This versiononly allows oneuserto accessthedatabaseat a time,
thus,removing theneedfor concurrency controlandtransactionsupport.

� ConcurrentDB. Thisversionallowsmultipleusersto accessthedatabasesimultane-
ously, but doesnot supporttransactions.This databaseis suitablefor systemsthat
hasvery few updatesbut multiple read-onlytransactions.

� Transactionaldatabase.Thisversionallowsbothconcurrentusersandtransactions.

The RDM database,which is implementedasa library, hasa C/C++ interfaceas its
only interface. This library is, in contrastto Berkeley DB, relational. The interfaceis a
low-level interfacethatdoesnotcomplywith any of theinterfacestandards.As mentioned
earlier, oneproblemwith databasesthat doesnot usethe client/server model is the lack
of standardinterfaces. However, sinceRDM is relational,a separateSQL-like interface
dbqueryis developed.It is a supersetof thestandardlibrary, which makesuseof a subset
of SQL.

2.3.9 Operating systemplatforms

Differentembeddedsystemsmight run on variousoperatingsystemsdueto differencesin
thehardwareenvironment.Also thenatureof theapplicationdetermineswhich operating
systemsthatmightbemostuseful.Thus,mostembeddeddatabasesmustbeableto runon
differentoperatingsystemplatforms.

DBMS system Real-Time OS Hand-heldOS SmartcardOS
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Pervasive.SQL1 x x
Pervasive.SQL2 x x x
Pervasive.SQL3 x x
Polyhedra x x x x
Velocis
RDM x x
Berkeley DB x
TimesTen x x

Table2.9: Real-timeandembeddedoperatingsystemssupportedby investigatedembedded
databasesystems.
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Tables2.8 and2.9 give an overview of differentoperatingsystemssupportedby em-
beddeddatabasesweinvestigated.Therearebasicallyfour categoriesof operatingsystems
thatinvestigatedembeddeddatabasessupport:

� Operatingsystemstraditionallyusedby desktopcomputers.In thiscategoryyouwill
find themostcommonoperatingsystemslike,MicrosoftWindows,differentversions
of UNIX andLinux.

� Operatingsystemsfor hand-heldcomputers.In this category you find Palm OSand
Windows CE/PocketPC.Theseoperatingsystemsdemandsmall memoryrequire-
mentsbut still havemostof thefunctionalityof theordinarydesktopcomputeroper-
atingsystems.A goodinteractionandinteroperabilitybetweentheoperatingsystems
on thehand-heldcomputeranda standarddesktopis alsoimportant.This is recog-
nizedby all databases,if you considerthe completePervasive.SQLfamily asone
databasesystem.

� Real-timeoperatingsystems.In this category you find systemslike VxWorks and
QNX.

� Smartcardoperatingsystems.Thesesystems,like JavaCardandMultOS,aremade
for very smallenvironments,typically no morethan32kb. TheJava Cardoperating
systemis simplyanextendedJava virtual machine.

Most commercialembeddeddatabasesystemsin this survey supporta real-timeoper-
atingsystem(seetable2.9). Additionally, Pervasive.SQLsupportsoperatingsystemsfor
hand-heldcomputersandsmartcardoperatingsystems,in thePervasive.SQLfor mobile
systemsversionandthePervasive.SQLfor smartcardversion,respectively.

2.3.10 Concurrencycontrol

Concurrency control(CC)serializestransactions,retainingtheACID properties. All trans-
actionsin a databasesystemmustfulfill all four ACID properties.Theseare:

� Atomic: A transactionis indivisible,eitherit is run to completionor it is not run at
all.

� Consistent:It mustnotviolatelogicalconstraintsenforcedby thesystem.For exam-
ple, a banktransactionmustfollow the law of conservationof money. This means
thatafteramoney transfer, thesumof thereceiverandthesendermustbeunchanged.

� Isolated:A transactionmustnot interferewith any otherconcurrenttransaction.This
is alsoreferredto asserializationof transactions.

� Durable:A transactionis, oncecommitted,writtenpermanentlyinto thedatabase.

If two transactionsthathavesomedataelementsin commonis activeatthesametime,a
dataconflictmightoccur. Thenit is upto theconcurrency controlto detectandresolvethis
conflict. Thisis mostcommonlydonewith someform of lockingmechanism.It substitutes
thesemaphoreguardinga globaldatain a real-timesystem.Therearetwo fundamentally
differentapproacheson achieving this serialization,an optimistic and a pessimisticap-
proach.

The mostcommonpessimisticalgorithmis two-phase-locking(2PL) algorithmpro-
posedin 1976by Eswaranet al. [33]. This algorithmconsists,asthenameindicates,of

0Smartcardoperatingsystemfor Windows.
1Pervasive.SQLfor smartcards.
2Pervasive.SQLfor embeddedsystems.
3Pervasive.SQLfor mobilesystems.
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DBMS system PessimisticCC Optimistic CC No CC
Pervasive.SQL x
Polyhedra x
Velocis x
RDM x
Berkeley DB x x
TimesTen x

Table2.10:Concurrency controlstrategiesusedin differentembeddeddatabasesystems.

two phases.In thefirst phaseall locksarecollected,no readingor writing to datacanbe
performedbeforea lock hasbeenobtained.Whenall locksarecollectedandtheupdates
havebeendone,thelocksarereleasedin thesecondphase.

Optimisticconcurrency control(OCC)wasfirst proposedby KungandRobinson[58]
in 1981. This strategy takesadvantageof the fact thatconflictsin generalareratherrare.
Thebasicideais to readandupdatedatawithout regardingpossibleconflicts.All updates
are,however, doneon temporarydata. At commit-timea conflict detectionis performed
andthedatais written permanentlyto thedatabaseif no conflict wasdetected.However
theconflictdetection(verificationphase)andtheupdatephaseneedto beatomic,implying
someform of locking mechanism.Sincethesetwo phasestake muchshortertime thana
whole transaction,locks that involvesmultiple data,or the whole database,canbe used.
Sinceit is an optimistic approach,performancedegradeswhencongestionin the system
increases.

For real-timedatabasesa numberof variantsof thesealgorithmshave beenproposed
thatsuit thesedatabasesbetter[119, 10]. Thesealgorithmstry to find a goodbalancebe-
tweenmisseddeadlinesandtemporallyinconsistenttransactions.SongandLiu showed
that OCC algorithmsperformedpoorly with respectto temporalconsistency in real-time
systemsthat consistof periodicactivities [103], while they performedvery well in sys-
temswheretransactionshadrandomparameters,e.g.,event-drivensystems.However, it
hasbeenshown that thestrategiesandtheimplementationof the locking andabortional-
gorithmssignificantlydeterminetheperformanceof OCC[46]. All databasesexceptthe
PolyhedraDBMS usepessimisticCC (seetable2.10). SincePolyhedrais anevent-driven
system,OCCis a naturalchoice.Furthermore,Polyhedrais a main-memorydatabasewith
very fastexecutionof queries,therisk of a conflict is thusreduced.

Pervasive.SQLhastwo kind of transactions:exclusive andconcurrent.An exclusive
transactionlocksacompletedatabasefile for theentiredurationof thetransaction,allowing
only concurrentnon-transactionalclients to performread-onlyoperationson the file. A
concurrenttransaction,however, usesreadand write locks with muchfiner granularity,
e.g.,pageor singledatalocks.

TheBerkeley DB hasthreeconfigurations:(i) Thenon-concurrentconfigurationallows
only onethreadatatimetoaccessthedatabase,removing theneedfor concurrency control.
(ii) Theconcurrentversionallows concurrentreadersandconcurrentwritersto accessthe
databasesimultaneously. (iii) The concurrenttransactionalversionallows for full trans-
actionalfunctionality with concurrency control, suchasfine grain locking anddatabase
atomicity.

Similar to Berkeley DB, TimesTenalsohasa “no concurrency” option,in which only
a singleprocesscanaccessthedatabase.In addition,TimesTensupportstwo lock sizes:
data-storelevel andrecordlevel locking.
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DBMS system Roll-forward Roll-back Journalling No recovery
Pervasive.SQL x x
Polyhedra x x
Velocis x
RDM x
Berkeley DB x
TimesTen x x

Table2.11:Strategiesfor recoveryusedin differentembeddeddatabasesystems.

2.3.11 Recovery

Oneimportantissuefor databasesis persistence,that is datawritten andcommittedto the
databaseshouldremainuntil it is overwrittenor explicitly removed,evenif thesystemfails
andhave to berestarted.Furthermore,thestateof all ongoingtransactionsmustbesaved
to be ableto restorethe databaseto a consistentstateuponrecovery, sinceuncommitted
datamighthavebeenwrittento thedatabase.Thereis basicallytwo differentstrategiesfor
backuprestoration:roll-backrecovery, androll-forwardrecovery,normallycalled“forward
errorrecovery”. Duringoperationcontinuousbackuppointsoccurswhereaconsistentstate
of thedatabaseis storedon a non-volatile media,like a hard-drive. Thesebackuppoints
arecalledcheckpoints.

In roll-backrecovery you simply restartthedatabaseusingthe latestcheckpoint,thus
guaranteeinga consistentdatabasestate.Theadvantagewith this approachis that it does
not requirea lot of overhead,but thedisadvantageis thatall changesmadeto thedatabase
afterthecheckpointarelost.

Whenroll-forwardrecoveryis used,checkpointsarestoredregularly, but all intermedi-
ateevents,likewrites,commitsandabortsarewrittento alog. In roll-forwardrecovery, the
databaseis restoredto thelastcheckpoint,andall log entriesareperformedin thesameor-
derasthey havebeenenteredinto thelog. Whenthedatabasehasbeenrestoredto thestate
it wasat the time of the failure,uncommittedtransactionsareroll-backed. This approach
requiresmorecalculationsat recovery-time,but will restorethedatabaseto thestateit was
in beforethe failure. Pervasive.SQLoffers threedifferenttypesof recovery mechanisms,
aswell asthe option to ignorerecovery (seetable2.11). This canalsobe selectedparts
of the database.Ignoring check-pointingfor somedatacanbe usefulfor systemswhere
somedatamustbepersistentwhile otherdatacanbevolatile. Goingbackto our example
in section1.1, the desiredlevel givenby the userinterface,andthe regulatorparameters
needto bepersistent,while thecurrentreadingfrom thelevel indicatormustnot,sinceby
the time the databaseis recoveredthe datawill probablybe stale. The secondoption is
shadow-paging,which simply makesa copy of the databasefile andmakesthe changes
there,andwhenthetransactionis complete,thedatais writtenbackto theoriginalpage.A
similarapproachis thedelta-paging,whichcreatesanemptypagefor eachtransaction,and
only writes thechanges(delta-values)to it. At theendof a transactionthedatais written
backto theoriginal,justasfor shadow-paging.With bothof thesetechniques,thedatabase
is consistentatall times.Thelastoptionis to useloggingandroll-forwardrecovery.

The default configurationfor Polyhedrais non-Jornalling,which meansthat no au-
tomatic backupis performed,but the applicationis responsiblefor saving the database
to non-volatile memory. This is particularlyimportantsincethis systemis a mainmem-
ory database,andif no backupsis taken all datais, of course,lost. Whenjournalling is
used,theusercanselectwhich tablesthatshouldbepersistentandthejournallerwill write
an entry in the log whena transactioninvolving persistentdatais committed. Thereare
two approacheswhendatais persistentlywritten,directjournallingandnon-blockingjour-
nalling. Thedirectjournallingapproachwritesdatato persistentstoragewhentheloadon
theDBMS is low. However, thedatabaseis blockedduringthisprocessandthiscancause
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problemsfor systemswith time-criticaldata.Thesecondapproachcanthenbeused,and
thatis to usea separatejournallingprocessresponsiblefor writing entriespersistent.

TimesTensupportsthreedifferentlevelsof recoverycontrol. Themoststringentguar-
anteestransactionatomicityanddurability uponrecovery, in which casethetransactionis
notcommitteduntil thetransactionis writtenontodisk. Thesecondlevelof controlguaran-
teestransactionatomicitybut notdurability. Uponcommit,thelog entryis put into aqueue
andis laterwritten to disk. Uponrecovery thedatabasewill beconsistent,but committed
transactionsthat have not yet beenwritten to disk might be lost. The lowestlevel of re-
coverycontrolis no recoverycontrol.Neitheratomicitynordurability is guaranteed.This
optionmightnotbeasinappropriateasit might seemata first glance,sinceTimesTenis a
main-memorydatabase,oftenusedin systemswith datathatwouldbestaleuponrecovery,
e.g.,a processcontroller.

2.3.12 Real-timeproperties

Eventhoughnoneof thecommercialdatabasesystemsin this survey canbeclassifiedas
a real-timedatabasefrom a hardreal-timesystemsperspective, mostof the systemsare
successfullyusedin time-criticalsystems(to differentextent). EricssonusesPolyhedrain
their 3G platformfor wirelesscommunication.DelcanCorporationusesVelocisDB in a
traffic controlsystemthathandlesabout1200traffic lightssimultaneouslyeventhoughthis
databaseprimarily is usedin webande-Commerceapplications.Thedatabasesystemsare
simply so fastandefficient andhave so many optionsfor fine tuning their performance
that the applicationsystemsworks, even thoughthe DB systemscannotitself guarantee
predictability.

A questiononecouldaskis: How wouldweuseoneof thesesystemsin ahardreal-time
system?Are thereany waysto minimizetheunpredictabilityto sucha degreethata pes-
simisticestimationwould fulfill hardreal-timerequirements?In our opinion it is. For an
eventtriggeredreal-timesystem,Polyhedrawouldfit well. Let ususeourexampleapplica-
tion again.Whennew sensorvaluesarrivetheI/O management,thedatabaseis updated.If
thereis a changein thealarmdatatheCL codethat is connectedto thatdatais generating
anevent to trigger thealarmtask. Built into thesystemis alsotheminimuminter-arrival
interval mentionedin theinterfacessection.Soby usingthePolyhedradatabaseto activate
tasks,that will thenbe scheduledby a priority basedreal-timeoperatingsystem,a good
enoughdegreeof predictability is achieved. To further increaseguaranteesthat critical
datawill beupdatedis to usea socalledwatchdog,thatactivatesa taskif it hasnot been
activatedfor a predefinedtime. Thememoryandsizepredictabilitywould beno problem
sincethey have specifiedtheexactmemoryoverheadfor every typeof object. However,
temporalvalidity is notaddressedwith thisapproach.

For staticallyscheduledreal-timesystemstheRDM “Network access”couldbeableto
run with predictableresponsetimes.This becausetheorderof thedataaccessesis known
a priori andcan thereforebe linked togetherin a chain,and the recordlookup index is
bypassed.

2.4 Curr ent state-of-the-art fr om research point of view

Thereexists a numberof databasesthat could be classifiedaspurereal-timedatabases.
However thesedatabasesareresearchprojectandarenot yet on the commercialmarket.
We haveselecteda numberof real-timedatabasesystemsandcomparedthemwith respect
to thefollowing criteria:

� Real-timeproperties.Thecriteriaenablesusto discussreal-timeaspectsof thesys-
temsandhow they areimplemented.
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� Distribution. The criteria enablesus to talk aboutdifferentaspectswith respectto
distributing thedatabase.

� Transactionsworkload characteristics.The criteria enablesus to discusshow the
transactionsystemis implemented.

� Active behavior. Thecriteriaenablesusto talk abouttheactive aspectsfor someof
thesystems.

The systemsselectedin this survey representsome of the more recent real-time
databaseplatformsdeveloped. Thesesystemsarerepresentative of the ongoingresearch
within thefield.

STRIP The STanfordReal-timeInformationProcessor(STRIP) [4] is a soft real-time
databasesystemdevelopedat StanfordUniversity, US.STRIPis built for theUNIX oper-
atingsystem,is distributedandusesstreamsfor datasharingbetweennodes.It is anactive
databasethatusesSQL3-typerules.

DeeDS The Distributed active, real-timeDatabaseSystem(DeeDS)[9] supportsboth
hardandsoft real-timetransactions.It is developedat theUniversityof Skövde,Sweden.
It usesextendedECA rulesto achieve an active behavior with real-timeproperties.It is
built to takeadvantageof a multiprocessorenvironment.

BeeHive TheBeeHive system[106] is a virtual databasedevelopedat theUniversityof
Virginia, Charlottesville,US, in which thedatain thedatabasecanbe locatedin multiple
locationsandforms. The databasesupportsfour different interfacesnamely, a real-time
interface,a qualityof serviceinterface,a fault-tolerantinterface,andasecurityinterface.

REACH TheREACH system[121], developedattheTechnicalUniversityof Darmstadt,
Germany, is anactive object-orienteddatabaseimplementedon top of theobject-oriented
databaseopenOODB.Their goal is to archive active behavior in an OO databaseusing
ECA rules. A benchmarkingmodeis supportedto measureexecutiontimes of critical
transactions.TheREACH systemis intendedfor soft real-timesystems.

RODAIN TheRODAIN system[112] developedat theUniversityof Helsinki, Finland,
is a firm real-timedatabasesystemthatprimarily is intendedfor telecommunication.It is
designedfor high degreeof availability andfault-tolerance.It is tailoredto fit the char-
acteristicsof telecommunicationtransactionsidentifiedasshortqueriesandupdates,and
longmassiveupdates.

ARTS-RTDB The ARTS-RTDB system[53], developedat the University of Virginia,
Charlottesville,US, supportsboth soft andhardreal-timetransactions.It usesimprecise
computingto ensuretimelinessof transactions.It is built on top of the ARTS real-time
operatingsystem[114].

2.4.1 Real-timeproperties

STRIP

TheSTRIP[4] systemis intendedfor soft real-timesystemsin which theultimategoal is
to make asmany transactionsaspossiblecommitbeforetheir deadlines.It is developed
for the UNIX operatingsystemwhich might seemodd, but sinceSTRIP is intendedto
run in opensystemsUNIX wasselected.EventhoughUNIX is not a real-timeoperating
systemit has,whenusedin theright way, turnedout to beagoodoperatingsystemfor soft
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real-timesystemssincea real-timeschedulingemulatorcanbeplacedon topof theUNIX
schedulerwhich setsthe priorities accordingto somereal-timeschedulingalgorithm,a
real-timebehavior canbeachieved.However, therehavebeensomeproblemsthatneeded
to beovercomewhile implementingSTRIPthatis relatedto real-timeschedulingin UNIX.
For exampleto forcea UNIX schedulenot to adjusttheprioritiesof processesasthey are
running. Non-real-timeoperatingsystemsoften have mechanismsto dynamicallyadjust
theprioritiesof processesduringrun time to addto throughputandfairnessin thesystem.
By usingPosixUNIX, a new classof processeswhoseprioritiesarenot adjustableby the
schedulerwasprovided. In [5] versionsof theearliestdeadlineandleastslackalgorithms
wasemulatedontopof aschedulerin atraditionaloperatingsystem,andtheresultsshowed
thatearliestdeadlineusingabsolutedeadlineandleastslackfor relativedeadlineperformed
equalor betterthantheir real-timecounterparts,while the emulatedearliestdeadlinefor
relative deadlinemissedmoredeadlinesthantheoriginal EDF algorithmfor low systems
load.However, duringhighloadtheemulatedalgorithmoutperformedtheoriginalEDF. In
STRIPEDF, highestvaluefirst,highestdensityvaluefirst or acustomschedulingalgorithm
canbeusedto scheduletransactions.To minimizeunpredictability, theSTRIPsystemis a
main-memorydatabase,thusremoving disk I/O.

DeeDS

DeeDS[9] is intendedfor bothhardandsoft real-timesystems.It is built for theOSEdelta
real-timeoperatingsystemdevelopedby ENEADATA [30]. Thisdistributedhardreal-time
operatingsystemis designedfor bothembeddeduniprocessorandmultiprocessorsystems.
If usedin a multiprocessorenvironmentthe CPUsarelooselycoupled. A moredetailed
descriptionof OSEdeltacanbefound in [43]. TheDeeDSsystemconsistsof two parts,
onepart that handlesnon critical systemservicesandone that handlesthe critical. All
critical systemsservicesareexecutedon a dedicatedprocessorto simplify overheadcost
andincreasetheconcurrency in thesystem.TheDeeDSsystemis, astheSTRIPsystem,a
mainmemorydatabase.

BeeHive

BeeHive utilizes the conceptof data-deadline,forced-wait and the datadeadlinebased
schedulingalgorithms[117]. Theseconceptsassurethat transactionsarekept temporally
consistentby assigninga morestringentdeadlineto a transactionbasedon themaximum
allowedageof thedataelementsthatareusedin thetransaction,thusthenamedatadead-
line. Thekey conceptof forcedwait is to, if a transactioncannotcompletebeforeits data
deadline,postponeit until dataelementsget updated,thusgiving the transactiona later
datadeadline.Thesetransactionscanthenbe scheduledusing,for example,the earliest
data-deadlinefirst (EDDF) or datadeadlinebasedleastslack first (DDLSF) algorithms
[117].

For real-timedatastoragea four level memoryhierarchyis assumed:main memory,
non-volatile RAM (e.g., Flash),persistentdisk storage,and archival storage(e.g., tape
storage)[106]. The main memoryis usedto storedatathat is currently in useby the
system. The non-volatile RAM is usedasa disk-cachefor dataor logs that arenot yet
written to disk. Furthermore,systemdatastructureslike lock tablesandrule basescanbe
storedin non-volatileRAM. Thedisk is usedto storethedatabase,just likeany disk-based
database.Finally, thetapestorageis usedto make backupsof thesystem.By usingthese
four levelsof memorymanagementa higherdegreeof predictabilitycanbeachievedthan
for entirelydisk-baseddatabases,sincethebehavior canbesomewhatlikeamain-memory
databaseeventhoughit is a disk-basedsystem.
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REACH

REACH is built ontopof TexasInstrumentsopenOODBsystem,whichis anopendatabase
system. By an opensystemwe refer to a systemthat canbe controlled,modified,and
partly extendedby developersandresearcher[116]. TheOpenOODBsystemis by itself
not a real-timedatabasesystem,but an object-orienteddatabase.Someefforts hasbeen
donein theREACH projectto aid theuserwith respectto systempredictability[18] such
asmilestones,contingency plans,abenchmarkingtool anda tracetool.

Milestonesareusedto monitor theprogressof transactions.If a milestoneis missed,
thetransactioncanbeabortedandacontingency planis releasedinstead.Thiscontingency
planshouldbeimplementedto handlea misseddeadlinesituationby eitherdegradingthe
systemin a safeway, or producea good-enoughresult beforethe original transactions
deadline.Onecouldsaythatacontingency planin cooperationwith milestonesworksasa
watch-dogthatis activatedwhenadeadlineis aboutto bemissed.

The REACH systemhasa benchmarkingtool that canbe usedto measureexecution
timesfor methodinvocationsandevent triggering. The REACH tracetool cantracethe
executionorderin thesystem.If thebenchmarkingtool is usedtogetherwith thetracetool,
systembehavior andtimelinesscouldbedetermined.

RODAIN

The RODAIN systemis a real-timedatabasesystemintendedfor telecommunicationap-
plications. The telecommunicationenvironmentis a dynamicandcomplex environment
that dealswith both temporaldataandnon-temporaldata. A databasein sucha system
must,supportbothsoft andfirm real-timetransactions[112]. However, thebelieve is that
hardreal-timedatabaseswill notbeusedin telecommunicationin thenearfuturesincethey
generallyareto tooexpensiveto developor useto suit themarket [112].

Oneof thekey issuesfor RODAIN is availability. Thereforea fault-tolerantsystemis
necessary. TheRODAIN systemis designedto have two nodes,thusgiving full database
replication. This is especiallyimportantsincethe databaseis a main-memorysystem.It
usesa primaryanda mirror node.Theprimarydatabasesendslogsto themirror database
whichin turnacknowledgesall calls.Thecommunicationbetweenthenodesis assumedto
bereliableandhaveaboundedmessagetransferdelay. A watchdogmonitorkeepstrackof
any failing subsystemandcaninstantlyswaptheprimarynodeandthemirror nodein case
of a failure,seefigure2.5. Thefailednodealwaysrecoverasa mirror nodeandloadsthe
databaseimagefrom permanentstorage.Furthermore,theUserRequestInterpretersystem
(URIS)cankeeptrackof all ongoingtransactionandtake appropriateactionsif a transac-
tion fails. Sinceboth theprimaryandthemirror nodehasa URIS no active transactions
will belost if a failurein theprimarysystemleadsto anodeswapbetweentheprimaryand
themirror. Figure2.5shows thearchitectureof RODAIN. ThesubsystemOODBMShan-
dlesall traditionaldatabaseactivities, like concurrency control,physicalstorage,schema
managementetc. Therearethreeinterfacesto thedatabase,the traditionaluserinterface,
referredto astheApplicationsinterface,theDBMS nodesinterface,andtheMirror inter-
face. Noteworthy is the distinctionbetweenmirror nodesanddistributedDBMS nodes.
Themirror nodespurposeis to ensurea fault-tolerantrunning,while thedistributionnodes
areusedfor normaldatabasedistribution.

ARTS-RTDB

The relationaldatabaseARTS-RTDB [53] incorporatesan interestingfeaturecalled im-
precisecomputing. If a query, whenits deadlineexpires,is not finished,the resultso far
canbereturnedto theclient if theresultcanbeconsideredmeaningful.Take a querythat
calculatesthe averagevalueof hundredsof valuesin a relationcolumn. If an adequate
amountof valueshasbeencalculatedatthetimeof deadline,theresultcouldbeconsidered
meaningfulbut impreciseandit is thereforereturnedto theclientanyway.
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Figure2.5: RODAIN DBMS node.Figurefrom [112]

ARTS-RTDB is built on top of the distributedreal-timeoperatingsystemARTS, de-
velopedby Carnegie Mellon University[114]. ARTS schedulestasksaccordingto a time-
varyingvaluefunction,which specifiesbothcriticality andsemanticsimportance.It does
supportbothsoftandhardreal-timetasks.

In ARTS-RTDB themostcritical dataoperationshasbeenidentifiedto betheINSERT,
DELETE,UPDATE andSELECToperations.Effortshasthereforebeenmadeto optimize
the systemto increasethe efficiency for thosefour operations.Accordingto [53] many
real-timeapplicationsalmostonly usetheseoperationsat run-time.

2.4.2 Distribution

To increaseconcurrency in the system,distributeddatabasescanbe used. Distributedin
a sensethat the databasecopiesresideon differentcomputernodesin a network. If the
datais fully replicatedover all nodes,applicationscanaccessany nodeto retrieve a data
element.Unfortunately, maintainingdifferentdatabasenodesconsistentwith eachotheris
notaneasytask,especiallyif timelinessis crucial.Onemighthaveto tradeconsistency for
timeliness.A mechanismthatcontinuouslytries to keepthedatabasenodesasconsistent
with eachother as possibleis needed. Sincethe systemis distributed all updatesto a
databasenodemustbepropagatedviamessagepassing,or similar, thusaddingsignificantly
to thedatabaseoverheadbecauseof theaddedamountof synchronizationtransactionsin
the system.Oneof the mostcritical momentsfor a transactiondeployed in a distributed
databaseis the point of commit. At this point all the involved nodesmust agreeupon
committingthetransactionor not.

Oneof themostcommonlyusedcommitprotocolsfor distributeddatabasesis thetwo-
phasecommitprotocol[39]. As thenameof thealgorithmsuggeststhealgorithmconsists
of two phases,theprepare-phaseandthecommit-phase.In thepreparephase,thecoordi-
natorfor the transactionsendsaprepare messageto all othernodesandthenwaits for
all answers.Thenodesthenanswerswith a ready messageif they canacceptthecom-
mit. If thecoordinatorreceivesready from all nodesacommit messageis broadcasted,
otherwisethe transactionis aborted.Thecoordinatorthenfinally waits for afinished
messagefrom all nodesto confirmthecommit.Herebyis consistency guaranteedbetween
nodesin thedatabase.
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DeeDS

TheDeeDS[9] systemhasa lessstrict criteria for consistency, in orderto enforcetimeli-
ness.They guaranteethateachnodehasa localconsistency, while thedistributeddatabase
might be inconsistentdue to differentviews of the systemon the differentnodes. This
approachmight be suitablefor systemsthat mostly rely on datathat is gatheredlocally,
but sometimesusesdataimportedfrom othersubsystems.Consideranenginethathasall
enginedata,e.g.,ignition control,enginespeedandfuel injection,storedin a localnodeof
a distributeddatabase.Thetimelinessof theselocal dataitemsareessentialin orderto run
the engine. To further increasethe efficiency of the engine,remotelygathereddata,like
datafrom thetransmissionbox,with lesscritical timing requirementscanbedistributedto
thelocalnode.

STRIP

The conceptof streamscommunicatingbetweennodesin a distributedsystemhasbeen
recognizedin STRIP[4]. Nodescanstreamviews or tablesto eachotheron a regularba-
sis. Theusercanselectif wholetables/views or deltatables,which only reflectschanges
to thetables/views, shouldbestreamed.Furthermoreit is selectableif thedatashouldbe
streamed,periodicallywhensomedatahasreacheda predefinedageor only afteranex-
plicit instructionto stream. In figure 2.6 we canseethe processarchitectureof STRIP.
Themiddlepartof thefigureshowstheexecutionprocess,thetransactionqueue,theresult
queueandtherequestprocess.This partmakesthequerylayerof thedatabaseandcanbe
comparedto anordinarydatabasethatprocessestransactionsandqueriesfrom theapplica-
tion. Remoteapplicationaddressesqueriesor transactionsto therequestingprocess,which
in turn placesthe transactionin the transactionqueue. However, local applicationscan
accessthe transactionqueuedirectly via a client library, thusminimizing overhead.Each
executionprocessescanexecuteatransactionfromthetransactionqueueor anupdatetrans-
actionfrom oneof theupdatequeues.Theupdatequeuesarefedfrom theincomingupdate
streams.Whena table/view needsto besentto anoutgoingstream,oneof theexecution
processesenqueuesit to theupdatequeuereadby theexport process.It hasbeenshown
thatwhentheupdatefrequency is low, the import andexport processescanrun at a high
priority without significantlyaffectingtransactionresponsetimesbut whenthefrequency
increasesthe needfor a differentupdateschedulingpolicy is necessary[4], seesection
2.4.3.

Figure2.6: Theprocessarchitectureof theSTRIPsystem.Figurefrom [4].
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Figure2.7: TheBeeHivevirtual database.Figurefrom [106]

BeeHive

Unlike mostdatabasesBeeHive is a virtual database,in a sensethat in additionto its own
datastoragefacility it canuseexternaldatabasesand incorporatethemasonedatabase.
Thesedatabasescanbelocatedeitherlocally or onanetwork, e.g.,theInternet.

In [40], avirtual databaseis definedasadatabasethatorganizesdatascatteredthrough
the Internetinto a queriabledatabase.Considera web servicethat comparespricesof
productsontheInternet.Whenyouenterthedatabaseyoucansearchfor aspecificproduct,
andtheservicewill returnto youalist of Internetretailersandto whatpricethey areselling
theproduct.Thedatabasesystemconsistsof four parts[40]:

� Wrappers. A wrapperis placedbetweena web-pageor databaseand the virtual
database.In the web-pagecase,the wrapperconverts the textual contentof the
web-pageinto a relational format understandableby the virtual database.When
usingawrapperin thedatabasecase,thewrapperconvertsthedatareceivedfrom the
databaseinto thevirtual databaseformat.Sucha wrappercanbeimplementedusing
ahigh level descriptionlanguage,e.g.,Javaapplets.

� Extractors.Therelationsreceivedfrom thewrappermostoftencontainsunstructured
textualdatain which theinterestingdataneedsto beextracted.

� Mappers.Themappermapsextractedrelationsinto acommondatabaseschema.

� Publisher. The publisheris usedto presentthe databaseto the user, it hassimilar
functionalityasa traditionaldatabase.

BeeHive cancommunicatewith othervirtual databases,web-browsersor independent
databasesusingwrappers.ThesewrappersareJavaappletsandmayusetheJDBCstandard,
seefigure2.7.
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RODAIN

RODAIN systemsupportsdatadistribution.Thenodescanbeanythingbetweenfully repli-
catedto completelydisjoint. Theirbelief is thatonly afew requestsin telecommunications
needaccessto morethanonedatabasenodeandthat the requestdistributionsamongthe
databasesin thesystemcanbearrangedto bealmostuniform[112].

ARTS-RTDB

ARTS-RTDB hasbeenextendedto supportdistribution. Thedatabasenodesusea shared
file which containsinformationthatbindsall relationsto theserver responsiblefor a par-
ticular relation. Sincethefile is sharedbetweenthe nodes,it is to be treatedasa shared
resourceandmustthereforebeaccessedusinga semaphore.It is believedthat if relations
areuniformly distributedbetweenthenodesandif no hot-spotrelationsexist, an increase
in performancewill beseen.A hot-spotrelationis a relationthat many transactionsuse,
andsucharelationcanleadto a performancebottleneckin thesystem.

2.4.3 Transactionworkload characteristics

DeeDS

DeeDSsupportsbothsporadic(event-triggered)andperiodictransactions.Therearetwo
classesof transactions:critical (hardtransactions)andnon-critical(soft transactions).To
ensurethat a deadlineis kept for a critical transaction,milestonemonitoringandcontin-
gency plansareused.A milestonecanbeseenasa deadlinefor a partof the transaction.
If a milestoneis passed,it is clearthatthetransactionwill not make its deadline,a contin-
gency plancanbeactivatedandthe transactionis aborted.A contingency planshould,if
implementedcorrectly, dealwith theconsequencesof a transactionaborting.Oneway to
computelessaccurateresultandpresentit in time,similar to imprecisecomputingusedby
ARTS-RTDB (seesection2.4.1).Milestonesandcontingency plansarediscussedfurtherin
[32]. Thetiming requirementsfor a transactionis passedto thesystemasa parameterized
valuefunction,thisapproachreducesthecomputationalcostandthestoragerequirements
of thesystem.

Theschedulingof transactionsis madeonlinein two steps.First,asufficientscheduleis
produced.Thisschedulemeetstheminimumrequirements,for exampleall harddeadlines
and 90 percentof the soft deadlinesare met. Secondly, the event monitorsworst-case
executiontime is subtractedfrom theremainingallowedtime for theschedulerduringthis
timeslot,andthis time is usedto refineandoptimizethetransactionschedule[73].

STRIP

STRIPsupportsfirm deadlinesontransactions[7], thuswhenatransactionmissesits dead-
line it will beaborted.Therearetwo classesof transactionsin STRIP, low valueandhigh
valuetransactions.Whentransactionsarescheduledfor executionis determinedby trans-
actionclass,valuedensity, andchoiceof schedulingalgorithm. The valuedensityis the
ratio betweenthe transactionsvalueandthe remainingprocessingtime. The scheduling
of transactionsis in competitionwith the schedulingof updates,thereforeupdatesalso
have thesamepropertiesastransactionswith respectto classes,values,andvaluedensity.
STRIPhasfour schedulingalgorithms,UpdatesFirst (UF), TransactionsFirst (TF), Split
Updates(SU),andApply UpdatesonDemand(OD).

� UpdatesFirst schedulesall updatesbeforetransactions,regardlessof thevalueden-
sity of the transactions.It is selectableif a runningtransactionis preemptedby an
updateof if it shouldbeallowedto commitbeforetheupdateis executed.For asys-
temwith a high loadof updatesthis policy cancauselong andunpredictableexecu-
tion timesfor transactions.However, for systemswhereconsistency betweennodes



CHAPTER2. DATABASESYSTEMS 34

andwheretemporaldataconsistency is moreimportantthantransactionthroughput,
this canbea suitablealgorithm. Further, this algorithmis alsosuitablefor systems
whereupdatesareprioritizedover transactions.Considera databaserunningstock
exchangetransactions.A changein pricefor a stockmustbeperformedbeforeany
pendingtransactionsin orderto getthecorrectvalueof thetransaction.

� TransactionsFirst is theoppositeof updatefirst. Transactionsarealwaysscheduled
in favor of updates.Howevera transactionscannot preempta runningupdate.This
becauseupdatesmostoftenhaveshortexecutiontimecomparedto transactions.This
algorithmsuitssystemsthatvaluesthroughputof transactionshigherthantemporal
consistency betweenthe nodes. Transactionsfirst might be useful in a industrial
controllingsystem.If, in anoverloadedsituation,themostrecentversionof a data
elementis not available,the systemmight gain in performancefrom beingableto
run its controlalgorithmsusinganoldervalue.

� Split Updatesmake useof thedifferentclassesof updates.It schedulesupdatesand
transactionsaccordingto thefollowing order: high valueupdates,transactions,and
low valueupdates.Thisalgorithmcombinesthetwo previousalgorithmsandwould
suit a systemwhereonepartof thedataelementsis crucialwith respectto temporal
consistency, at thesametimeastransactionthroughputis important.

� Apply Updateson Demandexecutetransactionsbeforeupdates,but with thediffer-
encethatwhenatransactionencountersstaledata,theupdatequeueis scannedfor an
updatethat is waiting to updatethestaledataelement.This approachwould enable
a high throughputof transactionswith a high degreeof temporalconsistency. How-
ever, calculatingtheexecutiontime for a transactionis moredifficult sincetheworst
caseis thatall dataelementsusedin thetransactionhaspendingupdates.Applying
updatesondemandresemblesabouttheideasof triggeredupdates[8].

Sincetransactiondeadlinesarefirm, thus transactionsarevaluelessafter their dead-
line hasexpired,a mechanismcalledfeasibledeadlinescanbeusedfor transactions.The
mechanismabortstransactionsthathasnochanceof committingbeforetheirdeadline.

BeeHive

Thefactthatthedatabaseis virtual andmayconsistof many differentkindsof underlying
databasesis transparent.The useraccessesthe databasethroughat leastoneof the four
interfacesprovidedby BeeHive: FT API, RT API, SecurityAPI, andQoSAPI (seefigure
2.8). FT API is the fault-tolerantinterface. Transactioncreatedwith this interfacewill
have someprotectionagainstprocessorfailuresandtransientfaultsdueto power glitches,
softwarebugs,raceconditions,andtiming faults.RT API is thereal-timeinterface,which
enablesthe userto specify time constraintsand typical real-timeparametersalongwith
transactions.Thesecurityinterfacecanbeusedby applicationthat for instancedemands
authorizationfor usersandapplications.Furthermoreencryptioncanbe supported.The
Quality of Service(QoS)interfaceis primarily usedfor multimediatransactions.Theuser
canspecifytransactionsdemandsonqualityof service.

Whena transactionarrivesfrom any interface,it is sentto theservicemapper, which
transformsit to a commontransactionformat usedfor all transactionsin the system,re-
gardlessof its type,e.g.,real-timetransaction.It is thenpassedon to theresourceplanner,
which determineswhich resourcesthat will be needed.Furthermore,it is passedto the
admissioncontroller, which in cooperationwith the resourceplanner, decidesif the sys-
tem canprovide a satisfactoryservicefor the transaction.If that is the case,it is sentto
the resourceallocationmodule,which globally optimizestheuseof resourcesin thesys-
tem. Finally thetransactionis sentto thecorrectresource,e.g.,a network or theoperating
systemetc.
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Figure2.8: Theresourcemanagerin BeeHive. Figurefrom [106]

RODAIN

Fivedifferentareasfor databasesin telecommunicationis identified[95]:

1. Retrieval of persistentcustomerdata.

2. Modificationsof persistentcustomerdata.

3. Authorizationof customers,e.g.,PIN codes.

4. Sequentiallog writing.

5. MasscallingandTelevoting. Thiscanbeperformedin largeblocks.

>Fromthesefive areas,threedifferenttypesof transactionscanbederived[78]: short
simplequeries,simpleupdates,andlong massive updates.Shortsimplequeriesareused
whenretrieving customerdataandauthorizingcustomers.Simpleupdatesareusedwhen
modifyingcustomerdataandwriting logs.Longmassiveupdatesareusedwhentelevoting
andmasscalling is performed.

Theconcurrency controlin RODAIN supportsdifferentkindsof serializationprotocols.
Oneprotocolis the > -serializationin which a transactionmaybeallowedto readold data
aslongastheupdateis notolderthanapredefinedtime [112].

Apart from a transactionsdeadline,an isolationlevel canalsobeassignedto a trans-
action.A transactionrunningon a low isolationlevel acceptsthattransactionsrunningon
a higher isolation level areaccessinglocked objects. However, it cannotaccessobjects
belongingto a transactionwith a highdegreeof isolation.

ARTS-RTDB

TheRTDB usesa pessimisticconcurrency control,strict two phaselocking with priority
abort[118]. This meansthatassoonasa higherprioritizedtransactionswantsa lock that
is ownedby a transactionwith a low priority, thelow level transactionis aborted.To avoid
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thecostlyprocessof rolling backtheabortedtransaction,all datawriting is performedon
copies.At thepoint of commit,thetransactionasksthelock-managerif a commitcanbe
allowed. If this is thecase,thetransactioninvokesa subsystemthatwritesall datainto the
database.

2.4.4 Activedatabases

Active databasescanperformactionsnot explicitly requestedfrom theapplicationor en-
vironment. Considera dataelement? , which is derivedfrom two otherdataelements,)
and + . The traditionalway to keep ? updatedwould be to periodicallypoll the database
to determineif ) or + have beenaltered. If that is the case,a new valueof ? would be
calculatedandtheresultwritten backto thedatabase.Periodicpolling is oftenperformed
at a high costwith respectto computationalcostandwill increasethe complexity of the
applicationtaskschedule.A differentapproachwouldbeto introducea triggerthatwould
causeaneventassoonaseither ) or + hasbeenchanged.Theeventwould in its turnstart
a transactionor similar thatwould update? . This functionalitywould beusefulfor other
purposesthanto updatederiveddataelements.It could, for example,beusedto enforce
boundariesof dataelements.If a dataelement,e.g.,datathat representsa desiredwater
level in ourexampleapplicationin figure1.1,hasamaximumandminimumallowedvalue
thanthisrestrictioncanbeappliedin thedatabaseinsteadof in theapplication.An attempt
to setaninvalid valuecouldresultin somekind of action,e.g.,anerrorexceptionor a cor-
rectionof thevalueto theclosestvalid value. By applyingthis restrictionin thedatabase
it is abstractedaway from theapplication,thusreducingtherisk of programmingerrorsor
inconsistency betweentransactionsthatusethisdataelement.

Oneway to handlesuchactive behavior is throughthe useof ECA rules[34], where
ECA is anabbreviation of Event-Condition-Action-rules,seefigure2.9. Theeventsin an

ON <event E>
IF <condition C>

THEN <action A>

Figure2.9: Thestructureof anECA rule.

active databaseneedto be processedby an eventmanager, which sendsthemto the rule
manager. Therule managerin its turn locatesall ECA rulesthatareaffectedby thenewly
arrivedeventandcheckstheir conditions.For thoseECA ruleswhoseconditionsaretrue,
theactionis activated.Thereare,however, threedistinctapproacheson whenandhow to
executetheactions[32]:

� Immediate:Whenaneventarrives,theactivetransactionis suspendedandcondition
evaluationandpossiblyactionexecutionis doneimmediately. Uponrulecompletion,
thetransactionis resumed.Thisapproachaffectstheresponsetimeof thetransaction.

� Deferred:Whenaneventarrives,theactivetransactionis runto completionandthen
conditionevaluationandpossiblyactionexecutionis done.This approachdoesnot
affect theresponsetimeof thetriggeringtransaction.

� Decoupled:Whenusingthis approach,conditionevaluationandpossiblyactionex-
ecutionareperformedin oneor severalseparatetransactions.Thishastheadvantage
thattheseupdateswill beloggedevenif thetriggeringtransactionaborts.

Onedisadvantagewith active databasesis that the predictability, with respectto re-
sponsetimes,is decreasedin thesystem.This is becauseof theexecutionof therules.For
immediateor deferredrules the responsetime of the triggeringtransactionis prolonged
becauseof the executionof rulesprior to its point of commit. To be ableto calculatea
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responsetime for sucha transaction,theexecutiontimeof all possiblerulesthatthetrans-
actioncaninvoke. Theserulescanin their turn activaterules,socalledcascading,which
cancreatearbitrarycomplex calculations.Whendecoupledrulesareused,transactionscan
generatenew transactionsin thesystem.Thesetransactionsandtheir priorities, response
times,andpossiblerule invocationsmustbetakenin accountwhencalculatingtransaction
responsetime,resultingin verypessimisticworst-case-executiontimes.

Someextensionsto ECA ruleswhichincorporatestimeconstraintshavebeenstudiedin
[51]. ForamoredetaileddescriptionaboutECA rules,activedatabasesandactivereal-time
databasessee[32, 101]

STRIP

TheSTRIPrule systemchecksfor eventsat eachtransaction,@ , commit-timeandfor all
eventswhoseconditionis truea new transaction@ " is createdthatexecutestheexecution
clauseof the rule. Thus, the STRIPsystemusesa decoupledapproach. @ " is activated
for executionafter the triggering transactionhascommitted. By default @ " is released
immediatelyafter commit of the triggering transaction,but it can be delayedusing the
optionalafter statement,seefigure2.10.

WHEN <eventlist>
[IF <condition>]
THEN

EXECUTE <action>
[AFTER <time-value>]

Figure2.10: A simplifiedstructureof a STRIP-rule.TheoptionalAFTER -clauseenables
for batchingof severalrule-executionsin orderto decreasecomputationalcosts.

Theafter statementenablesall ruleexecutionclauses,activatedduringthetimewin-
dow betweenrule evaluationandtheexecutionclausespecifiedby theafter statement,
to bebatchedtogether. If multipleupdatesonasingledataelementexistsin thebatch,only
theonesnecessaryto derive theresultingvalueof thatdataelementis executed,thussav-
ing computationalcost[6]. To havetheexecutionclausein aseparatetransactionsimplifies
rule processing.The triggeringtransactioncancommit regardlessof theexecutionof the
executionsclauses,sincetheconditionclauseof therulescannotalterthedatabasestatein
anyway. Possibleside-effectsof therulesarethendealtwith in aseparatetransaction.One
disadvantagewith decoupledexecutionclausesis that theconditionresultsandtransition
dataaredeletedwhenthetriggeringtransactioncommits,thus,datais notavailablefor the
thetriggeredtransaction.Thishasbeensolvedin STRIPby thebind as statement.This
statementbindsacreatedtableto a relationthatcanbeaccessedby theexecutionclause.

DeeDS

SinceDeeDSsupportshardreal-timesystemstheruleprocessingmustbedesignedto retain
asmuchpredictabilitywith respectto timelinessaspossible.This is achievedby restricting
rule processing.Cascading,for example,is limited so that unboundedrule triggeringis
avoidedwhena rule is executed. The usercandefinea maximumlevel of the cascade
depth.If thecascadinggoesdeeperthanthatanexceptionis raised.Furthermore,condition
evaluationis restrictedto logicalexpressionsoneventsandobjectparameters,andmethod
invocations.DeeDSsystemanextendedECA rules[73] which alsoallows for specifying
timing constraintsto rules,e.g.,deadlines.

Event monitoring hasalso beendesignedfor predictability. Both synchronousand
asynchronousmonitoringis available. In synchronousmodetheeventmonitor is invoked
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Sequential Parallel

Independent @A� independentof @B�
Dependent @ � cannot start until @B�

commits, otherwiseit is dis-
carded.

@ � cannot complete until
@B� commits, otherwiseit is
aborted.

Exclusive @A� cannot start until @B�
aborts, otherwiseit is dis-
carded.

@C� cannot complete until
@B� aborts, otherwiseit is
aborted.

Table2.12:Tableshowing all decoupledexecutionmodessupportedby theDeeDSsystem.
@B� is thetriggeringtransactionand @C� is therule transaction.Tablefrom [31].

on time-triggeredbasisandresultshave shown that throughputis higherthanif theasyn-
chronous(event-triggered)event monitoring is used,but at the costof longerminimum
eventdelays.Whensynchronousmodeis used,eventburstswill not affect thesystemin
anunpredictableway [73]. In DeeDS,theimmediateanddeferredcouplingmodesarenot
allowed. Insteadwhena rule is triggeredandthe conditionstatesthat the rule shouldbe
executed,a new transactionis created,which is immediatelysuspended.If a contingency
planexistsfor this rule,a contingency transactionis alsocreatedandsuspended.All com-
binationsof decoupledexecutionis supportedin DeeDS[31], seetable2.12. Depending
on which modethat is selected,the scheduleractivatesthe rule transactionsaccordingto
themode.Theexclusivemodeis usedto schedulecontingency plans.

REACH

REACH allowsECA rulesto betriggeredin all modes,immediate,deferredanddecoupled.
Decoupledrulesmight bedependentor independent,furthermorethey canbeexecutedin
parallel,sequential,or exclusive mode. The exclusive modeis intendedfor contingency
plans.TheECA rulesusedin REACH haveno real-timeextensions.

Therearehoweversomerestrictionsonwhentousethedifferentcouplingmodes.Rules
triggerby a singlemethodeventcanbeexecutedin any couplingmode,while a rule trig-
geredby a compositeeventonly cannotberun in immediatemode.This is becauseif the
eventsthat make up compositeevent originatein multiple transactions,no identification
of thespawning transactionsis possible[121]. Rulesthatareinvokedby temporalevents
(time-triggered)can only be run in an independentdecoupledmode,sincethey arenot
triggeredby a transaction[19]j.

To simplify thecreationof thetherule-basea tool, GRANT, hasbeendeveloped.This
graphicaltool,promptstheuserfor necessaryinformation,providescertaindefaultchoices,
createsC++ languagestructuresandmapsrulesto C functionsstoredin a sharedlibrary
[18].

Theeventmanagerin REACH consumeseventsaccordingto two policies:chronolog-
ical or mostrecent.Thechronologicalapproachexecutesall eventsin theorderthey arrive
while themostrecentstrategy only executesthemostrecentinstanceof everyevent.What
policy to useis dependentof thesemanticsof theapplication.Considertheexamplewith
the stockmarket databaseagain. If, in an overloadedsituation,the databaseis not able
to immediatelyexecuteall stockpriceupdates,only the mostrecentupdateof a stockis
interesting,sincethisupdatecontainsthecurrentpriceof thisstock.For asystemlike this,
themostrecentapproachwould besufficient,while in a telephonebilling systemit might
not. In asystemlike thatall updatesto thedatabaseconsistof avalueto addto theexisting
record,thereforemostrecentis notsufficienthere.
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2.5 Observations

Thedatabasespresentedrepresenta setof systemsthat basicallyhave the samepurpose,
i.e.,toefficientlystoreinformationin embeddedsystemsor real-timesystems.They mainly
consistof the samesubsystems,e.g., interfaces,index systemand concurrency control
system.But yet thesystemsbehave sodifferently. Somesystemsthatareprimarily event
driven, andon the otherhandsystemsthat might suit well for staticscheduling. Some
systemsarerelationalwhile otherareobject-oriented.Somesystemsare intendedfor a
specificapplication,e.g.,telecommunication,processcontrolor multimediaapplication.

Furthermore,aninterestingobservationcanbemadeaboutthesesystems.Theresearch
platformsfocusmoreon functionalitywhile thecommercialsystemsaremoreinterested
in userfriendliness,adaptability, andstandardscompliance.While theresearchplatforms
have detailedspecificationon new internalmechanismsthat improve performanceunder
certaincircumstances,like new concurrency controlsor schedulingpolicies,thecommer-
cial systemssupportsmultiple interfacesto easeintegrationwith theapplicationandsup-
portsstandardslikeODBC,OLE/DBandJDBC.Lookingbackatthecriteriamentionedby
ABB in section2.2.2,we canseethatmostof thecriteriaarefulfilled by thecommercial
products.To beableto combinethesecriteriawith thetechnologydeliveredby theresearch
platformswouldbeacontribution.

Oneimportantissuethatarisesis: Whatembeddeddatabasesystemshouldonechoose
for a specifictype of application?The taskof choosingthe bestdatabasesystemcanbe
a long andcostly processandprobablynot without compromises.A differentapproach
would be to have a moregenericdatabasethatcanbecustomized,possiblywith aid of a
tool, to fit a specificapplication.Thiswill befurtherdiscussedin thenext chapter.



Chapter 3

Component-basedsystems

Businessenterprisesandsocietyin generalarebecomingincreasinglydependenton com-
putersystems.Almosteveryapplicationdomainis facedwith thechallengeof ensuringthat
datain the systemis managedin a uniform mannerandstoredefficiently by the system,
e.g., telecommunications,e-commerce,businessenterprise,vehicle industry, embedded
andmobilesystems.As a result,databasesystemsareusedin a videvarietyof application
areas,andarerequiredto provideefficientmanagementof heterogeneousdataof all shapes
andsizes.

Databaseindustry is today, more thanever, facedwith requirementsfor rapid appli-
cationdevelopmentanddeployment,delivery of datain the right form to the right place
at theright time and,mostimportantly, minimizedcomplexity for bothendusersandde-
velopers. Rapiddevelopmentwith low costs,high quality andreliability, that minimize
systemcomplexity canbe achieved if component-basedsoftwaredevelopmentparadigm
is introducedin databasedevelopment.This hasbeenrecognizedandexploitedby some
major databasevendors,e.g.,Oracle,IBM, Informix andSybasehave all developedex-
tensibledatabasesystems,which allow addingnon-standardfeaturesandfunctionality to
the extensibledatabasesystem. However, existing component-baseddatabasesolutions,
mainly focuson solving oneproblem,e.g., the Microsoft UniversalDataAccessarchi-
tectureprovidesuniform manipulationof datafrom differentdatastores,the extensible
Oracle8i serverenablesmanipulationof non-standarddatatypes,etc.

It has been recognizedthat embeddedand real-time systemscould benefit from
component-baseddevelopmentaswell. Generally, by having well-definedreusablecom-
ponentsasbuilding blocks,notonly developmentcostsarereduced,but moreimportantly,
verificationandcertificationof componentswill only needto bedoneonce. However, to
efficiently reusecomponentsfor composingdifferentsystems,goodcompositionrulesfor
thesystemassemblymustbeprovided,ensuringreliability of thecomposedsystem.Ex-
isting component-basedembeddedandreal-timesystemsaremostly focusedon waysof
preservingreal-timebehavior of the systemand/orenablinguseof componentsin low-
resourcesystems.A databasesystemthat canbe tailoredfor differentapplicationssuch
that it providesnecessaryfunctionality but requiresminimum memoryfootprint, and is
highly integratedwith thesystemwouldmostlikely bepreferablesolutionfor databasesin
embeddedreal-timesystems.However, databasesfor real-timeandembeddedsystemssup-
portingfastdevelopmentthroughreuseof components,donotexist,whichmakestheseap-
plicationdomainsdeprivedof thebenefitsthatcomponent-baseddevelopmentcouldbring.
Thus,in this chapterwe identify andcontrastmajor issuesin two component-basedsys-
tems,databaseandembeddedreal-time,andinspectpossibilitiesof combiningthesetwo
areas.

Component-basedsystemscan be analyzedonly if certain knowledge of general
component-basedsoftwareengineeringandits conceptssuchascomponents,architecture,
andreuseareunderstood.Therefore,basicconceptsof component-basedsoftwareengi-

40



CHAPTER3. COMPONENT-BASEDSYSTEMS 41

neeringare introducedin section3.1, and they arenecessaryin order to identify issues
in differentcomponent-basedsystemsandto obtainuniform criteria for surveying exist-
ing component-basedsolutionsin bothsystems.In section3.2we review componentsand
component-basedsolutionsin databasesystems.This is followedby real-timecomponents
andsolutionsin embeddedreal-timesystemsin section3.3. Section3.4 concludesthis
chapterwith atabularoverview of investigatedcomponent-basedsystemsandtheircharac-
teristics.

3.1 Component-basedsoftwaredevelopment

The needfor transitionfrom monolithic to openand flexible systemshasemergeddue
to problemsin traditionalsoftwaredevelopment,suchashigh developmentcosts,inade-
quatesupportfor long-termmaintenanceandsystemevolution, andoften unsatisfactory
quality of software[17]. Component-basedsoftwareengineering(CBSE)is anemerging
developmentparadigmthat enablesthis transitionby allowing systemsto be assembled
from a pre-definedsetof componentsexplicitly developedfor multipleusage.Developing
systemsout of existing componentsoffers many advantagesto developersandusers. In
component-basedsystems[17, 24, 25, 36]:

� Developmentcostsaresignificantlydecreasedbecausesystemsarebuilt by simply
pluggingin existingcomponents.

� Systemevolutionis easedbecausesystembuilt onCBSEconceptsis opento changes
andextensions,i.e., componentswith new functionalitycanbepluggedinto anex-
istingsystem.

� Quality of softwareis increasedsinceit is assumedthatcomponentsarepreviously
testedin differentcontexts andhave validatedbehavior at their interfaces.Hence,
validationefforts in thesesystemshave to primarily concentrateon validationof the
architecturaldesign.

� Time-to-marketis shortenedsincesystemsdonothaveto bedevelopedfrom scratch.

� Maintenancecostsarereducedsincecomponentsaredesignedto becarriedthrough
differentapplicationsandchangesin acomponentare,therefore,beneficialto multi-
plesystems.

Asaresult,efficiency in thedevelopmentfor thesoftwarevendoris improvedandflexibility
of deliveredproductis enhancedfor theuser[60].

Component-baseddevelopmentalsoraisesmany challengingproblems,suchas[60]:

� Building goodreusablecomponents.This is notaneasytaskanda significanteffort
mustbeusedto produceacomponentthatcanbeusedin differentsoftwaresystems.
In particular, componentsmustbetestedandverifiedto beeligible for reuse.

� Composinga reliablesystemout of components.A systembuilt out of components
is in risk of beingunreliableif inadequatecomponentsareusedfor the systemas-
sembly. Thesameproblemariseswhenanew componentneedsto beintegratedinto
anexistingsystem.

� Verificationof reusablecomponents.Componentsare developedto be reusedin
many differentsystems,which makesthecomponentverificationa significantchal-
lenge. For every componentuse,the developerof a new component-basedsystem
mustbe able to verify the component,i.e., determineif the particularcomponent
meetstheneedsof thesystemunderconstruction.
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� Dynamicandon-line configurationof components.Componentscanbe upgraded
andintroducedat run-time;thisaffectstheconfigurationof thecompletesystemand
it is importantto keeptrackof changesintroducedin thesystem.

3.1.1 Software component

Softwarecomponentsarethe coreof CBSE.However, differentdefinitionsandinterpre-
tationsof a componentexist. In a software architecture,a componentis consideredto
be a unit of compositionwith explicitly specifiedinterfacesand quality attributes,e.g.,
performance,real-time,reliability [17]. In systemswhereCOM is usedfor a component
framework, a componentis generallyassumedto bea self-contained,configurablebinary
packagewith preciselydefinedstandardizedinterfaces[77]. A componentcan be also
viewedasa softwareartifact thatmodelsandimplementsa well-definedsetof functions,
andhaswell-definedcomponentinterface(whichdonothaveto bestandardinterfaces)and
componentimplementation[28].

Hence,thereis no commondefinitionof a componentfor everycomponent-basedsys-
tem. Thedefinitionof a componentclearlydependson the implementation,architectural
assumptions,and the way the componentis to be reusedin the system. However, all
component-basedsystemshave onecommonfact, andthat is: componentsare for com-
position[111].

While frameworks andstandardsfor componentstodayprimarily focuson CORBA,
COM or JavaBeans,theneedfor component-baseddevelopmentin hasbeenidentifiedin
theareaof operatingsystems.Theaim is to facilitateOS evolution without endangering
legacy applicationsandprovidebettersupportof distributedapplications[74].

Commonfor all typesof components,independentof theirdefinition,is thatthey com-
municatewith its environmentthroughwell-definedinterfaces,e.g.,in COM andCORBA
interfacesaredefinedin aninterfacedefinitionlanguage(IDL), MicrosoftIDL andCORBA
IDL. Componentscanhave morethanoneinterface.For example,a componentmayhave
threetypesof interfaces:provided, required,andconfigurationinterface[17]. Provided
andrequiredinterfacesare intendedfor the interactionwith othercomponents,whereas
configurationinterfacesareintendedfor useby the userof the component,i.e., software
engineer(developer)who is constructinganapplicationoutof reusablecomponents.Each
interfaceprovidedby a componentis, uponinstantiationof thecomponent,boundto one
or moreinterfacesrequiredby othercomponents.Thecomponentproviding an interface
mayservicemultiplecomponents,i.e.,therecanbeone-to-many relationbetweenprovided
andrequiredinterfaces.Whenusingcomponentsin anapplicationtheremightbesyntactic
mismatchbetweenprovided andrequiredinterfaces,even whenthe semanticsof the in-
terfacesmatch.This requiresadaptationof oneor bothof thecomponentsor anadapting
connectorto beusedbetweencomponentsto performthetranslationbetweencomponents
(seefigure3.1).

Independentlyof applicationarea,asoftwarecomponentisnormallyconsideredtohave
blackbox properties[36, 28]: eachcomponentseesonly interfacesto othercomponents;
internalstateandattributesof thecomponentarestronglyencapsulated.

Everycomponentimplementssomefield of functionality, i.e.,adomain[17]. Domains
canbehierarchicallydecomposedinto lower-level domains,e.g.,thedomainof communi-
cationprotocolscanbedecomposedinto several layersof protocoldomainsasin theOSI
model.Thismeansthatcomponentscanalsobeorganizedhierarchically, i.e.,acomponent
canbecomposedout of subcomponents.In this context, two conflictingforcesneedto be
balancedwhendesigninga component.First, smallcomponentscover smalldomainsand
arelikely to be reused,as it is likely that suchcomponentwould not containlarge parts
of functionality unneededby the system. Second,large componentsgive moreleverage
thansmallcomponentswhenreused,sincechoosingthelargecomponentfor thesoftware
systemwould reducethe costassociatedwith the effort requiredto find the component,
analyzeits suitability for a certainsoftwareproduct,etc [17]. Hence,whendesigninga
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Performance Thesystemscapacityof handlingdataor events.
Reliability The probabilityof systemworking correctlyover a given

periodof time.
Safety Thepropertyof the systemthat will not endangerhuman

life or theenvironment.
Temporal constraints The real-timeattributessuchasdeadlines,jitter, response

time,worstcaseexecutiontime,etc.
Security Theability of softwaresystemto resistmaliciousintended

actions.
Availability The probability of a systemfunctioningcorrectly at any

giventime.

Table3.1: Functionalqualityattributes

component,a designershouldfind the balancebetweenthesetwo conflicting forces,as
well asactualdemandsof thesystemin theareaof componentapplication.

3.1.2 Software architecture

Everysoftwaresystemhasanarchitecture,althoughit maynotbeexplicitly modeled[72].
Thesoftwarearchitecturerepresentsahighlevel of abstractionwhereasystemis described
asa collectionof interactingcomponents[3]. A commonlyuseddefinitionof a software
architectureis [11]:

Thesoftwarearchitectureof aprogramor computingsystemis thestructureor
structuresof thesystem,which comprisesoftwarecomponents,theexternally
visiblepropertiesof thosecomponentsandtherelationshipamongthem.

Thus,thesoftwarearchitectureenablesdecompositionof thesysteminto well-definedcom-
ponentsandtheir interconnections,andconsequentlyprovidesmeansfor building complex
softwaresystems[72]. Designof the softwarearchitectureis the first stepin the design
processof a softwareproduct,right after the specificationof the system’s requirements.
Hence,it allows earlysystemtesting,that is, aspointedout by Bosch[17] assessmentof
designandquality attributesof a system.Quality attributesof a systemarethosethatare
relevant from the softwareengineeringperspective, e.g.,maintainability, reusability, and
thosethat representquality of the systemin operation,e.g.,performance,reliability, ro-
bustness,fault-tolerance.Thesequalityattributesof a systemcouldbefurtherclassifiedas
functional(seetable3.1)andnon-functionalqualityattributes(seetable3.2),andusedfor
architecturalanalysis[115]. Thesoftwarearchitecturaldesignprocessresultsin compo-

Required
interfaceProvided 

interface

Connector

Component

Component

Figure3.1: Componentsandinterfaces
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Testability Theability to easilyprovesystemcorrectnessby testing.
Reusability Theextentto whicharchitecturecanbereused.
Portability The ability to move software systemto a different hardware

and/orsoftwareplatform.
Maintainability Theability of a systemto undergoevolutionandrepair.
Modifiability Sensitivity of the systemto changesin one or several compo-

nents.

Table3.2: Non-functionalqualityattributes

nentquality requirements,aswell asseveralconstraintsanddesignrulescomponentmust
obey, e.g.,meansof communication[17].Hence,developingreusablecomponentsdepends
on thesoftwarearchitecture,becausethesoftwarearchitectureto a largeextentdefinesthe
way a componentis to bedeveloped,its functionalityandrequiredquality [17]. Thus,the
softwarearchitecturerepresentsthe effective basisfor reuseof components[88]. More-
over, thereareindicationsthatsoftwareevolutionandreuseis morelikely to receivehigher
payoff if architecturesanddesignscanbereusedandcanguidelow level componentreuse
[67, 76].

In thesystemdevelopmenttheissueof handlingconflictsin qualityrequirementsduring
architecturaldesignmustbeexplicitly addressed.Thatis becausea solutionfor improving
onequality attributeaffectsotherquality attributesnegatively, e.g.,reusabilityandperfor-
manceareconsideredto becontradicting,asarefault-toleranceandreal-timecomputing.
E.g., considera softwaresystemfine-tunedto meetextremeperformancerequirements.
In sucha system,it couldbe costly to addnew functionality (components),sinceadding
new partscould result in degradedperformanceof the upgradedsystem. In sucha sce-
nario,additionalefforts would have to bemadeto ensurethat thesystemmeetstheinitial
performancerequirements.

3.1.3 The futur e of component-basedsoftware engineering: fr om the
componentto the composition

So far, we have examinedsoftwarecomponentsand software architectures,as they are
the core of the component-basedsoftware development. However, the researchin the
component-basedsoftwareengineeringcommunityincreasinglyemphasizescomposition
of the systemasthe way to enabledevelopmentof reliablesystems,andthe way to im-
provereuseof components.In thissectionwegive introductionto new techniquesdealing
with theproblemof systemcomposition.Figure3.2provideshierarchicalclassificationof
component-basedsystems[69].

Component-basedsystemson the first level, e.g.,CORBA, COM, JavaBeans,repre-
sentthe first generationof component-basedsystems,andare referredto as “classical”
component-basedsystems.Frameworksandstandardsfor componentsof todayin industry
primarily focuson classicalcomponent-basedsystems.Componentsareblackboxesand
communicatethroughstandardinterfaces,providing standardservicesto clients,i.e., the
componentis standardized.Standardizationeasesaddingor exchangingcomponentsin the
softwaresystem,andimprovesreuseof components.However, classicalcomponent-based
systemslack rulesfor thesystemcomposition,i.e.,compositionrecipe.

The next level representsarchitecturesystems,e.g.,RAPIDE [66], UNICON [120].
Thesesystemsprovideanarchitecturaldescriptionlanguage(ADL). ADL is usedto spec-
ify architectureof thesoftwaresystem.In anarchitecturesystem,componentsencapsulate
application-specificfunctionality, and are also black boxes. Componentscommunicate
throughconnectors[3]. A connectoris aspecificmodulethatencapsulatescommunication
betweenapplication-specificcomponents.This givessignificantadvancementin thecom-
positionascomparedto classicalcomponent-basedsystems,sincecommunicationandthe
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Figure3.2: Classesof component-basedsystems

architecturecanbevariedindependentlyof eachother. Thus,architecturesystemsseparate
threemajoraspectsof thesoftwaresystem:architecture,communication,andapplication-
specificfunctionality. Oneimportantbenefitof architecturesystemis possibilityof early
systemtesting. Testsof the architecturecan be performedwith “dummy” components
leadingto thesystemvalidationin theearlystageof development.This alsoenablesthe
developerto reasonaboutthesoftwaresystemon anabstractlevel. Classicalcomponent-
basedsystems,adoptedin the industry, canbeviewedasa subsetof architecturesystems
(whicharenotyet adoptedby theindustry),asthey arein factsimplearchitecturesystems
with fixedcommunication.

The third level representsaspectsystems,basedon aspect-orientedprogramming
(AOP)paradigm[52]. Aspectsystemsseparatemoreaspectsof thesoftwaresystemthan
architecturesystems.Besidearchitecture,application,andcommunication,aspectsof the
systemcanbe separatedfurther: representationof data,control-flow, andmemoryman-
agement.Temporalconstraintscanalsobe viewed asan aspectof the softwaresystem,
implying thata real-timesystemcouldbedevelopedusingAOP[13]. Only recently, sev-
eralprojectssponsoredby DARPA (DefenseAdvancedResearchProjectsAgency), have
beenestablishedwith anaim to investigatepossibilitiesof reliablecompositionof embed-
dedreal-timesystemsusingAOP[94]. Aspectsareseparatedfrom thecorecomponentand
arerecombinedautomatically, throughprocesscalledweaving. In AOP, a corecomponent
is consideredto be a unit of system’s functionaldecomposition,i.e., application-specific
functionality[52]. Weaversarespecialcompilerswhichcombineaspectswith corecompo-
nentsat so-calledjoint pointsstatically, i.e.,at compiletime,anddynamicallyat run-time.
Weaving brakesthecorecomponent(at joint points)andcross-cutsaspectsinto thecom-
ponent,andthe weaving processresultsin an integratedcomponent-basedsystem.Core
componentsarenolongerblackboxes,ratherthey aregrey boxesasthey arecross-cutwith
theaspects.However, aspectweaverscanbeviewedasblackboxes,sincethey arewritten
for a specificcombinationof aspectsandcorecomponents,andfor eachnew combination
of aspectsandcorecomponentsa new aspectweaver needsto be written. As compared
to architecturesystems,aspectsystemsaremoregeneralandallow separationof various
additionalaspects,thus,architecturesystemscanbe viewed asthe subsetof the classof
aspectsystems.Having differentaspectsimprovesthereuse,sincevariousaspectscanbe
combined(reused)with differentcorecomponents.Drawbackof aspectsystemsis that
they arebuild on speciallanguagesfor aspects,requiringsystemdevelopersto learnthese
languages.

At the fourth level are systemsthat provide compositionoperatorsby which com-
ponentscan be composed.Compositionoperatorsare comparableto component-based
weaver, i.e., a weaver that is no longera blackbox,but is alsocomposableout of compo-
nents,andcanbe, in a sense,re-composedfor every combinationof aspectsandcompo-
nents,furtherimproving thereuse.Subject-orientedprogramming(SOP)[84], anexample
of systemswith compositionoperators,providecompositionoperatorsfor classes,suchas
merge(mergesontwo viewsof aclass),equate(mergestwo definitionof classesinto one),
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etc. SOPis a powerful techniquefor compositionalsystemdevelopment,sinceit provides
asimplesetof operatorsfor weaving aspectsor views,andSOPprogramssupportthepro-
cessof systemcomposition.However, SOPfocuseson compositionanddoesnot provide
any specialcomponent.Componentsin SOPareC++ classes.

Finally, at thelastlevel aresystemsthatcontainfull-fledgedcompositionlanguage,and
arecalledcompositionsystems.A compositionlanguageshouldcontainbasiccomposition
operatorsto compose,glue,adopt,combine,extendandmergecomponents.Thecompo-
sition languageshouldalsobe tailorable,i.e., component-based,andprovide supportfor
composing(different)systems,in thelarge. Invasivesoftwarecomposition[69] is oneap-
proachthat aimsto provide a languagefor the systemcomposition. Componentsin the
invasive compositiontechniquearemoregeneral.Thecomponentmayconsistof a setof
arbitraryprogramelements,andis calleda box. Boxesareconnectedto theenvironment
throughverygeneralconnectionpoints,calledhooks.Compositionof thesystemis encap-
sulatedin compositionoperators(composers),which transformthecomponentwith hooks
into a componentwith code.Theprocessof systemcompositionusingcomposersis more
generalthanaspectweaving andcompositionoperators,sinceinvasivecompositionallows
compositionoperatorsto becollectedin librariesandto beinvokedby thecompositionpro-
grams(recipes)in acompositionlanguage.Composerscanberealizedin any programming
or specificationlanguage.Invasivecompositionsupportssoftwarearchitecture,separation
of aspects,andprovidescompositionreceipts,allowing productionof familiesof variant
systems[69]. Reuseis improved,ascomparedto systemsin the lower levels,sincecom-
positionrecipescanalsobereused,leadingto easyreuseof componentsandarchitectures.
An exampleof the systemthat supportsinvasive compositionis COMPOST[23]. How-
ever, COMPOSTappearsto be moresuitablefor complex softwaresystems,ratherthan
systemsthathavelimited amountof resources,sinceresourcedemandsfor thecomponents
andthesystemarenot addressed.Further, COMPOSTis not developedto operateat run-
time. Also, thesystemis not generalenough,sinceit only supportsJava source-to-source
transformations.

The given overview illustratescurrentefforts to enableefficient systemcomposition.
In particular, techniquesat the last threelayers in figure 3.2 focus on the composition
process.Component-basedsystemswe investigatein moredetailin thefollowing sections
do not cover all classesof component-basedsystemsshown in figure 3.2. Systemswe
investigaterepresentcurrentcomponentizationefforts in the databaseandthe embedded
real-timecommunity, andaremainly subsetsof component-basedsystemsin thefirst two
layersin figure3.2.

3.2 Component-baseddatabasesystems

A databasesystemconsistsof asoftwarecalleddatabasemanagementsystem(DBMS) and
oneor moredatabasesmanagedby theDBMS [100]. Essentialpartof thedatabasesystem
is theDBMS.

In thissectionwefocusondatabasessystemsthatcanbepartiallyor completelyassem-
bledfromapre-definedsetof components,i.e.,thatexploit component-baseddevelopment.
Wereferto thesesystemsascomponent-baseddatabasesystems.First,themaingranularity
level of a componentusedfor thecompositionof a databasesystemis established.Then,
in sectionsthat follow, the classificationanddetail analysisof existing component-based
databasesystemsis given. Of a particularinterestis to show how andto which degree
differentcomponent-baseddatabasesystemsallow customization,i.e., to which degreea
designercantailor thedatabasesystemfor aparticularapplication.
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3.2.1 Granularity level of a databasecomponent

In general,two maingranularitylevelsof a databasecomponentin component-basedsys-
temsexist:

D DBMS (databasesystem)asacomponent,and

D partof theDBMS asa component.

The formercomponenttype is not exactly a component-basedsolutionof a databasesys-
tem,ratherDBMS usedasa componentin largercomponent-basedsystems.For example,
a databasesystemmaybeviewedasa componentin a federateddatabasesystem(FDBS),
which is a collectionof cooperatingbut autonomousdatabasesystems[100]. Database
systemsarecontrolledandmanagedby a softwarecalledfederateddatabasemanagement
system(FDBMS) (seefigure3.3). Hence,thedatabasesystemis not madeout of compo-
nentsbut is rathera componentof a larger component-basedfederateddatabasesystem.
In this respect,CORBA canbeusedto achieve interoperabilityamongDBMSsin a mul-
tidatabaseapproach.CORBA enablesthebasicinfrastructurethatcanbeusedto provide
databaseinteroperability[29]. WhenusingCORBA asa middlewarein a multidatabase
system,DBMS itself is not customizable;ratherDBMS is a component(CORBA object)
registeredto theCORBA infrastructure. Anotherexampleof a databasesystemusedas
a componentis an active real-timedatabasesystem(ARTDBMS) that canbe usedasa
componentin anarchitecturewith standardizedcomponents[77] (seefigure3.4). In this
solution,infrastructureof thecomponenttechnology(in this caseCOM) is usedfor sepa-
rating theexchangeof control informationbetweencomponentsanddatatransfervia the
statusdatabasesystem.Thestatusdatabasesystemis implementedasanactive real-time
databasesystemandcontainsall theinformationaboutthecurrentstatusof anapplication
that is usedby at leasttwo differentcomponents.This architecturesupportsapplication
compositionoutof components,andaimsto enableaddingor removing componentswith-
outadditionalprogramming.A componentin thissystemis assumedto beaself-contained,
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configurablebinary softwarepackagewith preciselydefinedstandardizedinterfacesthat
canbe combinedwith othercomponents.Time consistency of saved data,in additionto
thelogical consistency, is ensuredin thecomposedsystemby having a real-timedatabase.
However, this type of component-basedsolution is applicablefor tailoring component-
basedsystemswheretime consistency of datais neededandnot for tailoring a database
system.A databasesystemin thissolutionis amonolithicsystem,andchangesto thattype
of systemsarenoteasilydone.

It is our opinion that moreemphasisand detailedanalysisis neededfor the second
category of databasecomponents,i.e., a componentbeinga part of the DBMS. DBMS
madeoutof componentswouldindeedbeanactualcomponent-basedsolutionof adatabase
system.We motivatethis furtherin thefollowing section.

3.2.2 Componentvs. monolithic DBMS

Databasesystemsare today usedin variousapplicationareas,suchas telecommunica-
tions [1], e-commerce[37, 2], embeddedsystems[81], real-timesystems[44], etc. Ex-
pansionof databasesystemsto new applicationdomainsunavoidably resultsin new re-
quirementsa databasesystemmustfulfill [28]. ConsiderInternetapplicationswheredata
is accessedfrom avarietyof sourcessuchasaudio,video,text, imagedata,etc.Therefore,
many web-basedapplicationsrequirea databasethatcanmanagevide varietyof different
typesof data. Also, new application-specificdatatypeshave emergedthat arenot sup-
portedby traditionaldatabases.Examplesof non-standarddatatypesaretemporaldata,
spatialdata,multimediadata,etc.Hence,DBMSsarerequiredto providesupportfor mod-
eling and storing thesenew, non-standard,datatypes[83]. Broad variety of datafrom
differentdatasourcesmakesheterogeneousdatamanagementa very importantchallenge,
sincea large numberof applicationsrequirea databasethat providesthemwith the uni-
form andhomogeneousview of theentiresystem[21]. Businesscomputingenvironment
posesadditionalsetof requirementson databasesystems,suchasrapidapplicationdevel-
opment,andminimizedcomplexity bothfor endusersanddevelopers[82]. In addition,it
is commonthata company needsto producea databasesystemfor a biggerspectraof dif-
ferentapplicationareas.Suchscenariosrequirecost-effectivesolutionsof DBMSs.During
thedevelopmentof a DBMS, it is very hardto exactly predictin which directionsystem
will evolve, i.e., which additionalfeaturesthedatabasesystemwill have to provide in the
future. Thus,a DBMS mustbedevelopedsuchthat it is opento new, future,uses.Hav-
ing a databasethat canbe extendedwith new featuresor modifiedduring its life-time is
beneficialbothfor usersanddatabasevendors.

Meetingnew requirementsimpliesthattraditional,monolithicDBMSmustbeextended
to includenew functionality. However, addingfunctionality to a monolithic DBMS has
severaldrawbacks[28]:

E Partsin themonolithicDBMS areconnectedto oneanotheranddependenton one
anotherto a sucha degreethat changesmadein onepart of the DBMS structure
wouldleadto adominoeffect in otherpartsof themonolithicsystem,i.e.,extensions
andmodificationsarenoteasilydone.

E Adding new functionality in themonolithicsystemwould resultin increasedcom-
plexity of aDBMS andin turn, increasedmaintenancecostsof thesystem.

E Applicationswould have to pay performanceandcostpenaltyfor usingunneeded
functionality.

E Systemevolutionwouldbemorecomplex, sinceaDBMS vendormightnothavethe
resourcesor expertiseto performsuchextensionsin a reasonableperiodof time.

Oneapproachto solve theseproblemscould be componentizationof a DBMS [28]. A
componentDBMS (CDBMS),alsocalledacomponent-baseddatabasesystem,allowsnew
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functionality to be addedin a modularmanner, that is, systemcanbe easilymodifiedor
extendedby addingor replacingnew components.Componentsandtheir interconnections
shouldbewell-definedin theCDBMS architecture.Thearchitecturedefinesplacesin the
systemwherecomponentscanbeadded,thus,specifyingandrestrictingthewaysin which
DBMS canbecustomized.Ideally, applicationswouldno longerhave to payperformance
andcostpenaltyfor usingunneededfunctionalitybecauseunnecessarycomponentsdonot
have to beaddedto a system.However, it hasto benotedthatcomponentsneededby the
applicationmightcontainsomeunnecessaryfunctionalitythemselves.Also, complexity of
thesystemandmaintenancecostwould bereducedif thesystemcouldbecomposedonly
out of components(functionality)applicationneeds.Finally, evolution of sucha system
wouldbesimplified,sincenew componentscanbepluggedinto thesystemwithouthaving
to recompile(or shutdown) theentiresystem.Of course,this impliesthatnew components
havepreviouslybeentestedandhavea verifiedbehavior.

Note thatcomponent-baseddatabasesystemsarefacedwith thesamechallengesasa
component-basedtechnologyin general,suchasperformancedegradationof acomponent-
basedsystemas comparedto a monolithic system,complex developmentprocessof a
reusablecomponent,etc.

3.2.3 Componentsand architecturesin different CDBMS models

Fourdifferentcategoriesof CDBMSshavebeenidentifiedin [28]:

E ExtensibleDBMS. The purposeof systemsfalling into this category is to extend
existing DBMS with non-standardfunctionality, e.g.,Oracle8i [83], Informix Uni-
versalServer with its DataBladetechnology[47], SybaseAdaptive Server [82] and
DB2 UniversalDatabase[21].

E Databasemiddleware. Thepurposeof systemsfalling into this category is to inte-
grateexisting datastoresinto a databasesystemandprovide usersandapplications
with a uniform view of theentiresystem,e.g.,Garlic [22] andDiscoveryLink [42],
andOLE DB [75], .

E DBMS service. The purposeof systemsfalling into this category is to provide
databasefunctionality in standardizedform unbundled into services,e.g., COR-
BAService[85].

E ConfigurableDBMS. Thepurposeof systemsfalling into this category is to enable
compositionof anon-standardDBMS outof reusablecomponents,e.g.,KIDS [38].

Sectionsthat follow focus on characteristicsof systemsin eachof thesefour different
categories.

3.2.4 ExtensibleDBMS

Thecoresystemin this groupis formedfrom fully functionalDBMSsthat implementall
standardDBMS functionality [28]. Non-standardfeaturesandfunctionality not yet sup-
portedcanbe pluggedinto this DBMS (seefigure 3.5). Componentsin this category of
CDBMSsarefamiliesof baseandabstractdatatypesor implementationsof someDBMS
functionsuchasnew index structures.Thearchitecturedefinesanumberof plugsthatcom-
ponentscanuseandformulatesexpectationsconcerninginterfacesthat componentmust
meetin orderto beintegratedsuccessfully.

Oracle8i

Oracle8i allowsdevelopersto createtheirown application-domain-specificdatatypes[83].
Capabilitiesof theOracledataserver canbeextendedby meansof datacartridgeswhich,
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in this case,representcomponentsin theOracle8i architecture.Datacartridgesarestored
in anappropriatelibrary for reusability. A datacartridgeconsistsof oneor moredomain-
specifictypesandcanbe integratedwith theserver. For example,a spatialdatacartridge
mayprovidecomprehensivefunctionalityfor a geographicaldomainsuchasbeingableto
storespatialdata,performproximity/overlapcomparisonson suchdata,andalsointegrate
spatialdatawith theserverby providing theability to index spatialdata.In additionto the
spatialcartridge,text, imageandvideodatacartridgecanbeintegratedin thearchitecture.
Datacartridgescanbeintegratedinto a systemthroughextensibility interfaces.Thereare
threetypesof theseinterfaces:DBMS anddatacartridgeinterfaces,usedfor communica-
tion betweencomponentsandtheDBMS, andserviceinterfacesusedby thedevelopersof
acomponent.In theOracle8i architecture,datacartridgescanprovidetheirown implemen-
tationof databaseservicessuchasstorageservice,queryprocessingservice,servicesfor
indexing,queryoptimization,etc.Theseservicesareextendedby thedatacartridgeimple-
mentation,andarecalleddatabaseextensibility services(seefigure3.6). Extensibilityof
a databaseservicecanbe illustratedwith theexampleof thespatialdatacartridge,which
providestheability to index spatialdata,andconsequentlyextendsindexing serviceof the
server. Configurationsupportis providedfor thedevelopment,packaginganddeployment
of datacartridges,asillustratedin figure3.7. TheOracleDesignerfamily of productshas
modelingand codegenerationtools which enabledevelopmentof datacartridges. The
CartridgePackagermodule,part of the OracleEnterpriseManagerfamily, assistsdevel-
operin packagingdatacartridgesinto installableunits. Components(datacartridges)are
theninstalledinto theserverby endusersusingtheOracleInstaller.

Thearchitectureof the Oracle8i is fixed anddefinesthe placeswhereextensionscan
be made,i.e., componentsadded,as well as interfacesto thesecomponents.Designer
is allowed to customizedatabaseserver only by plugging-in new components,i.e., the
systemhaslow degreeof tailorability. Providedconfigurationsupportis adequate,since
thesystemalreadyhasa fixedarchitectureandpre-definedextensions,andthatextensions
areallowedonly in well-definedplacesof thearchitecture.Thistypeof systememphasizes
on satisfyingonly onerequirement- handlingnon-standarddatatypes. If a systemneeds
to provide another(non-standard)service besidemanagingabstractdata types, or if
someinternalpart of the infrastructureneedsto be changed,we arefacedwith thesame
difficultiesaswhenusingmonolithicsystems(seesection3.2.2).Also, this typeof system
cannot easilybe integratedin all applicationdomains,e.g.,real-timesystem,sincethere
is noanalysissupportfor checkingtemporalbehavior.
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The concept of the Informix DataBladetechnology, DB2 Universal Database,and
SybaseAdaptive Server is the sameas the above describedconceptof the extensible
Oracle8i server architecturefor manipulationof non-standarddata types. Moreover,
conclusionsmadefor the Oracle8i with respectto configurationtools, tailorability for
satisfyingonly onerequirement(handlingnon-standarddatatypes),andlack of real-time
propertiesand analysistools, are applicablefor all systemsthat fall in this category,
i.e., extensibleDBMS. Therefore,analysisof the Informix DataBladetechnology, DB2
UniversalDatabase,andSybaseAdaptiveServer is keptveryshort.

Inf ormix DataBladetechnology

DataBlademodulesarestandardsoftwaremodulesthatcanbepluggedinto the Informix
UniversalServer databaseto extendits capability [47]. DataBlademodulesarecompo-
nentsin the Informix UniversalServer. Thesecomponentsare designedspecificallyto
enableusersto store,retrieve,update,andmanipulateany domain-specifictypeof data.In-
formix allowsdevelopmentof DataBlademodulesin Java,C,C++,J++or storedprocedure
language(SPL) by providing the applicationprogramminginterface(API) for thoselan-
guages.SameasOracle,Informix hasprovidedlow degreeof tailoring,sincethedatabase
can only be extendedwith standardizedcomponentsthat enablemanipulationof non-
standarddatatypes. Configurationsupportis provided for developmentand installation
of DataBlademodules,e.g.,BladeSmith,BladePack,andBladeManager.

DB2 UniversalDatabase

As previously describeddatabaseservers, DB2 Universal Database[21, 27] also al-
lows extensionsin thearchitectureto provide supportfor comprehensive managementof
application-specificdatatypes. Application-specificdatatypesandnew index structures
for thatdatatypesareprovidedby DB2 RelationalExtenders,reusablecomponentsin the
DB2 UniversalDatabasearchitecture.ThereareDB2 RelationExtenderfor text (text ex-
tender),image(imageextender),audioandvideo(extender).Eachextenderprovidesthe
appropriatefunctionsfor creating,updating,deleting,andsearchingthroughdatastored
in its datatype. An extenderdeveloperskit with wizardsfor generatingandregistering
extendersprovidessupportfor thedevelopmentandintegrationof new extendersin DB2
UniversalDatabase.

SybaseAdaptiveServer

Similar to otherdatabasesystemsin thiscategory, theSybaseAdaptiveServer [82] enables
extensionsin its architecture,calledSybase’sAdaptiveComponentArchitecture(ACA), to
enablemanipulationof application-specificdatatypes.Componentsthatenablemanipula-
tion of thesedatatypesarecalledSpecialityDataStores,e.g.,specialitydatastoresfor text,
time seriesandgeospatialdata. The SybaseAdaptive Server differs from otherdatabase
systemsin theextensibleDBMS category in thatit providesasupportfor standardcompo-
nentsin thedistributedcomputingenvironment,asthenameof theACA architectureindi-
cates.Throughopen(Java) interfacesSybase’s Adaptive ComponentArchitecture(ACA)
providesmechanismsfor communicationwith otherdatabaseservers. In additionof pro-
viding the interoperabilityof databaseserver, Sybaseenablesinteroperabilitywith other
standardizedcomponentsin thenetwork, suchasJavaBeans.

3.2.5 Databasemiddleware

Theaimof systemsfalling into thiscategoryis to integrateexistingdatastores,into acom-
mon DBMS-styleframework [28]. A CDBMS actingasa middlewarebetweendifferent
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datastoresandtheapplicationof integrationprovidesusersandapplicationswith auniform
andintegratedview of theentiresystem(seefigure3.8). In this modelthearchitecturein-
troducesacommonintermediateformatinto whichthelocaldataformatscanbetranslated.
Componentsin in this category of CDMSsperformthis kind of translation.Commonin-
terfacesand protocolsdefinehow the databasemiddlewaresystemand the components
interact.Components,alsoknown aswrappers,arelocatedbetweentheDBMS andeach
datasource. Eachcomponentmediatesbetweenthe datasourceand the DBMS, i.e., it
wrapsthedatasource.

Garlic

Garlic [22] is an IBM researchprojectthat aimsto integrateandunify datamanagedby
multiple, disparate,datasources.Theprimarily goalof theGarlic projectis to build het-
erogeneousmultimediainformationsystemcapableof integratingdatafrom a broadrange
of datasources.Eachdatasource(alsoknown asa repository)hasits own datamodel,
schema,programminginterfaceandquerycapability. Datamodelsfor thesesourcesvary
widely, e.g.,relational,object-oriented,a simplefile-system,anda specializedmolecular
searchdatamodel. TheGarlic datamodelis basedon theObjectDatabaseManagement
Group(ODMG) standard.Garlic canprovide accessto a datasourceonly if appropriate
wrapperfor thatdatasourceexists. Thus,associatedwith eachdatasourceis a wrapper, a
reusablecomponentin theGarlic architecture(seefigure3.9). In additionto datasources
containinglegacy data,Garlicallowsusersto createtheirown datasource,i.e.,datasource
for Garlic complex objects.Wrappersfor new datasourcescanbe integratedinto anex-
isting Garlic databasewithout disturbinglegacy applications,otherwrappersandGarlic
applications.Garlicapplicationsinteractwith queryservicesandrun-timesystemthrough
Garlic’sobjectquerylanguageandaC++API. Thequeryprocessordevelopsplansto effi-
ciently decomposequeriesthatspanmultiple datasourcesinto piecesthat individual data
sourcescanhandle.As shown in figure3.10wrapperprovidesfour majorservicesto the
Garlicsystem[97]:

1. A wrappermodelsthecontentsof its datasourceasGarlicobjects,andallowsGarlic
to retrievereferencesto theseobjects.TheGarlicDataLanguage(GDL), avariantof
the ODMG’s ObjectDescriptionLanguage(ODMG-ODL), is usedto describethe
contentof a datasource. Interfacesthat describethe behavior of objectsin a data
source(repository)areknown collectively asa repositoryschema.Repositoriesare
registeredaspartsof theGarlicdatabaseandtheir individual repositoryschemasare
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mergedinto theglobalschemathatis presentedto Garlicusers.

2. A wrapperallows Garlic to invoke methodson objectsandretrieve their attributes.
Method invocationcan be generatedby Garlic’s executionengine,or by a Garlic
applicationthathasobtaineda reference(eitherasa resultof a queryor by looking
uprootobjectby name).

3. A wrapperparticipatesin queryplaningwhena Garlic queryprocessorrangesover
multipleobjectsin repository. Thegoalof thequeryplanningis todevelopalternative
plansfor answeringa query, andthento choosethemostefficientone.

4. A wrapper’s finaleserviceis to participatein plan translationandqueryexecution.
A Garlic queryplanis presentedasa treeof operators,suchasFILTER,PROJECT,
JOIN, etc. The optimizedplan mustbe translatedinto a form suitablefor execu-
tion. Duringeveryexecutionthewrappercompletesthework whichwasassignedto
it in thequeryplaningphase.Operatorsaremappedinto iterators,andeachwrap-
perprovidesa specializedIterator subclassthatcontrolsexecutionof thework
describedby oneof its plans.
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Having definedservicesthat a wrapperprovidesto the Garlic architecture,simplifies
the developmentprocessof the wrapper. A designerof the wrapperneedsto perform
specifictaskto ensurethatawrapperprovidesacertainservice.After definingthewrapper
services,i.e.,performingtasksspecificto eachservice,thewrapperdesignerhasafinal task
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of packagingwritten piecesin a completewrapper. To keepthe costof communication
betweenthe Garlic anda wrapperlow, the wrappercodeis packagedas a dynamically
loadablelibrary andresidesin thesameaddressspace.Every wrapperincludesinterface
files thatcontainoneor moreinterfacedefinitionswritten in GDL, environmentfiles that
containname/valuepairsto encoderepository-specificinformationfor useby thewrapper,
and libraries that containdynamicallyloadablecodeto implementschemaregistration,
methodinvocation,andthe queryinterface. Decomposinga wrapperinto interfacefiles,
libraries,andenvironmentfiles givesthedesignerof a wrapperadditionalflexibility when
designinga wrapperfor a particularrepositoryor family of repositories.For example,the
wrapperfor relationaldatabasespackagesgenericmethoddispatch,queryplaningcode,
andqueryexecutioncodeassharablelibrary. For eachrepository, aninterfacefile describes
the objectsin the correspondingdatabase,andan environmentfile encodesthe nameof
the databaseto which the wrappermustconnect,the namesof the rootsexportedby the
repositoryandthe tablesto which they arebound,etc. Wrapperdesignersareprovided
with a library of schemaregistrationtools,query-plan-constructionroutines,a facility to
gatherandstorestatistics,andotherusefulroutinesin orderto automatewriting wrappers
asmuchaspossible.

To conclude,the well-definedGarlic wrapperarchitecturewith wrapperservicesand
tasksfor a wrapperdesignerassociatedwith eachservice,enableseasyand fast (cost-
effective)developmentof wrappers.Thearchitecturealsoprovidesstability in a sensethat
new wrapperscanbe easily installedinto an existing systemwithout effecting the other
wrappersor thesystemitself. TheGarlic systemis suitablefor largedistributeddatabase
systems. In termsof tailorability, one can observe that the Garlic wrapperarchitecture
providesamoderatedegreeof customization,andcanbetailoredfor differentapplications,
providedthatappropriatewrappers,neededby theapplicationexist, or aredeveloped.

However, theGarlic cannotbeusedwith easein everyapplicationdomain,e.g.,a real-
timedomain,wherecorrectnessof asystemdependsonthetimewhenresultsareproduced.
TheGarlicwrapperarchitectureunifiesaccessto differentdatasource,but it is not clearif
suchaccesscanbeguaranteedin a timely predictablemanner.

DiscoveryLink

DiscoveryLink [42] is a commercialmiddlewareDBMS, completelybasedon the Garlic
technology, andincorporatedinto a IBM’ sDB2 databaseserver. DiscoveryLink integrates
life sciencedatafrom heterogeneousdatasources. As in Garlic, components,i.e., wrap-
pers, in the DiscoveryLink are C++ programs,packagedas sharedlibraries. Wrappers
canbecreateddynamically, allowing a numberof datasourcesto to grow (andshrink)on
thefly. Most of thewrappersin DiscoveryLink arerequiredto have only minimumfunc-
tionality, in particular, the wrappermustbe able to returnthe tuplesof any relationthat
it exports. The wrapperarchitectureandthe notion of having reusablecomponentsthat
canbeaddedor exchangedmakesDiscoveryLink anuniqueamongcommercialdatabase
middlewaresystemsthatprovidequeryacrossmultiplerelationalsources,e.g.,DataJoiner1

andSybase2.
SinceDiscoveryLink completelyrelieson the Garlic principles,but is tailored for a

specificapplicationdomain,i.e., life sciencedata,analysisperformedfor theGarlic is suf-
ficientto getaninsideof theDiscoveryLinkandits characteristics(seepreviousdescription
of theGarlicwrapperarchitecture).

OLE DB

OLE DB [14, 15] is designedasa Microsoft ComponentObjectModel (COM) interface.
COM providesa framework for integratingcomponents.This framework supportsinter-

1http://www.software.ibm.com/data/datjoiner
2http://www.sybase.com
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operabilityandreusabilityof distributedobjectsby allowing developersto build systems
by assemblingreusablecomponentsfrom differentvendorswhichcommunicatevia COM.
COM definesanapplicationprogramminginterface(API) to allow for thecreationof com-
ponentsfor usein integratingcustomapplicationsor to allow diversecomponentsto inter-
act. However, in orderto interact,componentsmustadhereto a binarystructurespecified
by Microsoft. As long ascomponentsadhereto this binary structure,componentswrit-
ten in differentlanguagescaninter-operate.COM supportsconceptssuchasaggregation,
encapsulation,interfacefactoring,inheritance,etc.

OLEDB is aspecificationfor asetof dataaccessinterfacesdesignedto enableavariety
of datastoresto work together[75]. OLE DB providesa way for any typeof datastoreto
exposeits datain a standardandtabular form, thusunifying dataaccessandmanipulation.
In Microsft’s infrastructurefor component-basedcomputing,a componentis thoughtof as
[75]

. . . thecombinationof bothprocessanddatainto a secure,reusableobject.. .

andasa result,both consumersandprovidersof dataaretreatedascomponents.A data
consumercanbe any pieceof the systemor the applicationcodethat needsaccessto a
broadrangeof data.In contrast,dataprovidersarereusablecomponentsthatrepresentdata
source,suchasMicrosoftODBC,MicrosoftSQLserver, Oracle,MicrosoftAccess,which
areall standardOLE DB providers. Thus,OLE DB enablesbuilding component-based
solutionsby linking dataprovidersanddataconsumersthroughprovidingservicesthatadd
functionality to existing OLE DB dataandwherethe servicesaretreatedascomponents
in thesystem(seefigure3.11).Thearchitecturein figure3.11is calledtheUniversalData
Access(UDA) architecture.It is possibleto developnew, custom,dataprovidersthatreuse
existingdataprovidersastheunderlyingcomponentoracomponentbuildingblockof more
complex (dataprovider) component.This enablesdevelopersto exposecustomviews of
dataandfunctionalitywithout rewriting theentiredatastoreor theaccessmethods.Note
that only reusablecomponentsin this systemaredataproviders. Thesecomponentscan
beviewedaswrappersin theUDA architecture.Note thatarchitecturalrequirementsget
morecomplex, ascomparedto the systemsin the extensiblecategory. In contrastto the
Garlic wrapperarchitecture,OLE DB allows theUDA architectureto have morevariable
partsandmorecustomizationof thesystemis allowed. TheUDA architectureprovidesa
commonformatinto whichall local dataformatscanbetranslatedaswell asstandardized
interfacesthat enablecommunicationbetweenthe applicationsanddifferentdatastores,
i.e.,OLE DB interface.

AlthoughOLE DB providesunifiedaccessto dataandenablesdevelopersto build their
owndataproviders,thereis nocommonimplementationoneithertheprovideror consumer
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sideof the interface[16]. Compatibility is provided only throughthe specificationand
developersmust follow the specificationexactly to make interoperablecomponents,i.e.,
adequateconfigurationsupportfor this is not yet provided. To make up for inadequate
configurationsupport,Microsoft hasmadeavailable,in Microsoft’s SoftwareDeveloper’s
Kit (SDK), teststhatvalidateconformanceof thespecification.However, analysisof the
composedsystemis missing.

OLE DB is not applicablefor a real-timedomain,sincetemporalbehavior is not of an
importance.Additionally, OLE DB is limited with respectto softwareplatforms,sinceit
canonly beusedin Microsoftsoftwareenvironments.

3.2.6 DBMS service

In this typeof a CDBMS, the DBMS andrelatedtasksareunbundledinto services[28],
andasa resultthemonolithicDBMS is transformedinto a setof stand-aloneservices(see
figure3.12).Applicationsno longeroperateon full fledgedDBMSs,but insteadusethose
servicesasneeded.Servicesaredefinedin a commonmodelor languageandareimple-
mentedusingacommonplatformin orderto rendertheserviceimplementationsexchange-
ableandfreely combinable.Systemsin this category have componentsthat aredatabase
servicesandtheir implementations.CORBA with its CORBAservicescouldbeanexam-
ple of a systemfalling into this category. Although thereareno DBMS servicesystems
thatareimplementedsolutions,theobjectivesof this category canbeillustratedthrougha
CORBAservicesexample-system.

CORBAservices

OnesingleDBMS couldbeobtainedby gluing togetherCORBAserviceswhich arerele-
vant for databases,suchastransactionservice,backupandrecovery service,concurrency
service.CORBAservicesareimplementedonthetopof theObjectRequestBroker(ORB).
Serviceinterfacesaredefinedusingthe InterfaceDefinition Language(IDL) [29]. In this
scenariocomponentwould beoneof the databaserelevantCORBAservices.This would
meanthatapplicationscouldchoosefrom a setof stand-aloneservicesthoseservices,i.e.,
components,which they need. However, this approachis (still) not viable becauseit re-
quireswriting significantamountof gluecode. In addition,performanceoverheadcould
beproblemdueto theinability of anORB to efficiently dealwith fine-granularityobjects
[85]. Also, an adequatevalue-addedframework that allows developmentof components
anduseof thesecomponentsin otherapplicationsis still missing.Configurationaswell as
analysistoolsto supportthisprocessaremissing.

3.2.7 Configurable DBMS

Onestepfurtheraway from theDBMS servicecategoryof CDBMSs,wherethesetof ser-
viceshave beenstandardizedandfixed,is a configurableDBMS category thatallows new
DBMSpartstobedevelopedandintegratedinto aDBMS(seefigure3.13)[28]. Here,com-
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ponentsareDBMS subsystemsdefinedin theunderlyingarchitecturewhich is no longer
fixed.

KIDS

KIDS (Kernel-asedImplementationof DatabasemanagementSystems)[38] approachin
constructingCDBMSs is an interestingresearchproject from the University of Zürich,
sinceit offers a methodical,open,and cost-effective constructionof a DBMS. The ap-
proachoffers high level of reusability, wherevirtually any resultobtainedin a previous
systemconstructionis reused(designs,architectures,specifications,etc.).Thearchitecture
is well-defined,andoncecreatedit canbesaved in a library andreused.TheDBMS ar-
chitectureis basedon the broker/servicemodel, i.e., it consistsof brokers,services,and
responsibilities.A servicerepresentsa specifictask to be provided by the DBMS, and
eachserviceis providedby at leastonecomponentin thesystemandcanberequestedby
raisingevents.Servicesareprovidedby reactive processingelementscalledbrokers(bro-
kersarecomparableto objectsin object-orientedprogramming).Componentsin KIDS are
DBMS subsystemsthat arecollectionsof brokers. Brokersareresponsiblefor a related
setof tasks,e.g.,objectmanagement,transactionmanagementandintegrity management.
For example,the transactionmanagementsubsystemcanconsistof a transactionbroker,
scheduler, log managementbroker andrecoverybroker. Transactionbroker is responsible
for startingandterminatingtransactions,i.e., servicessuchasbegin transaction,commit
andabort. The scheduleris responsiblefor serializingconcurrenttransactions,i.e., vali-
dateservicewhichcheckswhetherthedatabaseaccessis legitimatewith therespectto the
executionof concurrenttransactions.A structuralview of theKIDS architectureis shown
in figure3.14. TheDBMS architectureconsistsof two layers.Thefirst layer is theobject
server component,which supportsthestorageandretrieval of storageobjects.Theobject
serverprovidesafixedinterface,whichhidesimplementationdetailsandoperatingsystem
characteristicsfrom upperlayers. The objectserver componentis reusedin its entirety,
andbelongsto the fixedpartof the DBMS architecture(this is becausetheobjectserver
implementsfunctionalityneededby any DBMS). The secondlayer is variableto a large
extent, andcanbe decomposedinto varioussubsystems.In the initial decompositionof
KIDS, threemajorsubsystemsexist:
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E The object managementsubsystem(OMS), which implementsthe mappingfrom
datamodelobjectsinto storageobjects,retrieval of datamodelobjects,andmeta
datamanagement.

E Thetransactionmanagementsubsystem(TSM), which implementstheconceptof a
transaction,includingconcurrency control,recovery, andlogging.

E The integrity managementsubsystem(IMS), which implements the (DBMS-
specific) notion of semanticintegrity, and is responsiblefor checking whether
databasestatetransitionsresultin consistentstates.

Eachof thesesubsystemsis implementedusingdedicatedlanguagesandreusetechniques.
Thesethreesubsystems(OMS, TMS, andIMS) implementbasicdatabasefunctionality.
Additional functionality canbe provided by addingnew subsystemsin the secondlayer
of the KIDS architecture,i.e., expandingdecompositionof this layer to morethanthree
subsystems.

KIDS is composedout of components(subsystems)which arecarefullydefinedin an
underlyingarchitecture.Theconstructionprocessof theCDBMSis well-defined,andstarts
after a requirementanalysisof the desiredDBMS, for a specificdomain,hasbeenper-
formedand relevant aspects,i.e., functionality that DBMS needsto provide, have been
determined(seefigure3.15).Theprocessof DBMS constructioncontinuesin phases:

E Theselectionof anarchitectureskeletonfrom thelibrary, or adevelopmentof anew
architectureskeleton,i.e.,a (possiblystill incomplete)collectionof partiallydefined
subsystems.

E Thesubsystemdevelopment,which consistsof subsystemdesign,implementation,
andsubsystemintegration. At this phasethe processbranchesin a senseof paral-
lelismfor adesignandimplementationof eachsubsystem.Integrationof subsystems
into previously definedarchitecturalskeletonis thenperformed.Sinceit might not
alwaysbepossibleto integratethesubsystemaftertheimplementationof all subsys-
temshasbeencompleted,it is possibleto performintegrationasfarasnecessaryand
continuewith subsystemdevelopment,i.e., thisphaseis iterativeandincremental.

E Testingandoptimizationarein the phasethat follows the subsystemdevelopment.
TheKIDS constructionprocessfocuseson thedevelopmentof subsystemsandtheir
integration.Analysisof thesystemis not investigatedin greaterdetails.

KIDS allows new componentsto be developedand integratedinto the system,thus,
enablestailoringof aDBMS for differentapplications.Expandingtheinitial setof compo-
nentsin theKIDS architecturewith thefunctionality(components)neededby a particular
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Figure3.15:Phasesof theDBMS constructionprocess

application,onecould be ableto design“plain” object-orientedDBMS, a DBMS video-
server, or a real-timeplant control DBMS. Of course,in the proposedinitial designof
KIDS, real-timepropertiesof the systemor componentsarenot considered.For a real-
time application,proposedconstructionprocesscanbe usedif a component(subsystem)
is constructedsuchthat its timing behavior is known, andtheconsumptionof memoryby
eachcomponentis takeninto account.Also, KIDS offersgoodbasisfor theearlysystem
testing;in thefirst phaseof theconstructionprocess,at thearchitecturelevel of thesystem.

Definedprocessof a DBMS construction,reusabilityof componentsandarchitectures,
andhigh degreeof componentization(tailorability) of a systemdifferentiatethis CDBMS
from all others.

3.3 Componentbasedembeddedand real-timesystems

Embeddedreal-timesystemsarebeingusedwidely in today’smodernsociety. Thus,agile
andlow-costsoftwaredevelopmentfor embeddedreal-timesystemshasbecomecritically
important.Successfuldeploymentof embeddedreal-timesystemsdependson low devel-
opmentcosts,high degreeof tailorability andquicknessto market. Thus, the useof the
component-basedsoftwaredevelopmentparadigmfor constructingandtailoring embed-
dedreal-timesystemshaspremise.We elaboratethis in moredetailby listing someof the
majorbenefitsof usingcomponent-basedsoftwareengineeringfor developmentof embed-
dedreal-timesystems[109, 64]:

E Rapiddevelopmentanddeploymentof thesystem.Component-basedsoftwarede-
velopmentaimsto reducetheamountof new codethatmustbewritteneachtimenew
applicationis beingdeveloped.Many softwarecomponents,if properlydesignedand
verified,canbereusedin differentembeddedreal-timeapplications.Embeddedreal-
time systemsbuilt out of componentsmay be readily adoptedand tunedfor new
environmentsthanmonolithicsystems.

E Changingsoftware“on-the-fly”. Embeddedreal-timesensor-basedcontrolsystems
may be designedto have softwareresourcesthat canchangeon the fly, e.g.,con-
trollers,device drivers.This featureis desirablein autonomousandintelligentcon-
trol applications,aswell.
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E Evolutionary design. In a component-basedsystemsoftware componentscan be
replacedor addedin the system. This is appropriatefor complex embeddedreal-
timesystemsthatrequirecontinuoushardwareandsoftwareupgradesin responseto
technologicaladvancements,environmentalchange,or alterationof systemgoals.

E Productlines. It is commonthatmanufacturerscreateseveraldifferent,but still sim-
ilar, embeddedreal-timeproducts.Having reusablecomponentsstoredin a library
would enabletheentireproductline to usesamesoftwarecomponentsfrom the li-
brarywhendevelopingproducts.This eliminatestheneedto developandmaintain
separatesoftwarefor eachdifferentproduct.

E Increasedreliability. It is easierto develop,testandoptimizeindividualcomponents
of limited functionality, thanwhenthesamefunctionalityis embeddedwithin a large
monolithicsystem.In addition,individualcomponentscanbespecifiedandverified
moreeasily, andprovided that the rulesfor the compositionof a systemarewell-
defined,safety-criticalapplicationscanbecomposedfrom suchcomponents.

E Fine-tuning.Having componentsin the systemthat canbe replacedoffersconsid-
erableflexibility for fine-tuningof anembeddedreal-timeapplication,e.g.,compo-
nentscanbeintroducedthatenableswitchingbetweenstaticanddynamicscheduling
algorithms.

E Reducedsystemcomplexity. Componentsaredesignedto have differentfunction-
ality. Choosingcomponentsfrom the library that provide functionality neededby
the systemshouldreducesystem’s complexity. This is true sinceit is likely that a
component(ascomparedto the monolithic system)will not containlarge partsof
functionalityunneededby thesystem.

In the remainderof this sectionwe give analysisof existing component-basedembedded
real-timesystems.However, someof thecomponent-basedsystemsanalyzedarenot em-
beddedreal-time,but areonly embeddedor only real-timesystems.To obtaina goodun-
derstandingof how component-basedsoftwaredevelopmentcanbesuccessfullyintegrated
in theareaof embeddedreal-timesystems,it is necessaryto investigatebothreal-timeand
embeddedsystem,in additionto thosesystemthatcanbeclassifiedasembeddedreal-time
(definitionsof embedded,real-time,andembeddedreal time systemsaregivenin chapter
1). In orderto keepthe notationassimpleaspossibleand,at the sametime, easilyun-
derstandable,whenreferringto multiple systemsthatcanbeclassifiedeitherasreal-time
or asembeddedor asembeddedreal-time,we usethenotationembedded(and)real-time
systems.

3.3.1 Components and architectures in different component-based
embedded(and) real-timesystems

We have identifiedthreedistincttypesof component-basedembedded(and)real-timesys-
tems:

E Extensiblesystems.An exampleof thistypeof thesystemis SPIN[12], anextensible
microkernel.Extensionsin thesystemarepossibleby pluggingcomponents,which
provide non-standardfeaturesor functionality, into anexisting system.Extensions
areallowedonly in well-definedplacesof thesystemarchitecture.

E Middlewaresystems. Theseare characterizedby their aim of providing efficient
managementof resourcesin dynamicheterogeneousenvironments,e.g., 2K [54]
is a distributedoperatingsystemthat is specificallydevelopedfor managementof
resourcesin a distributedenvironment,which consistsof a differentsoftwareand
hardwareplatforms.
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E Configurablesystems.An architectureof a configurablesystemallowsnew compo-
nentsto bedevelopedandintegratedinto thesystem.Componentsin suchsystems
aretruebuilding partsof thesystem.A varietyof configurablesystemsexists,e.g.,
VEST [105], Ensemble[64], the approachto systemdevelopmentwith real-time
componentsintroducedby Isović [48], andsystemsbasedon theport-basedobject
(PBO)model[108].

3.3.2 Extensiblesystems

SPIN

SPIN [12, 87] is an extensibleoperatingsystemthat allows applicationsto definecus-
tomizedservices.That is, SPINcanbeextendedto provide so-calledapplication-specific
operatingsystemservices[12]. An application-specificserviceis onethatpreciselysatis-
fiesthefunctionalandperformancerequirementsof anapplication,e.g.,multimediaappli-
cationsimposespecialdemandsonthescheduling,communicationandmemoryallocation
policiesof anoperatingsystem.SPINprovidesa setof coreservicesthatmanagememory
andprocessorresources,suchasdevice access,dynamiclinking, andevents. All other
services,suchasuser-spacethreadsandvirtual memoryareprovidedasextensions.Thus,
SPIN providespossibility to customize,i.e, tailor, the systemaccordingto the needsof
a specificapplication. However, the systemhasa low degreeof tailorability, sincethe
architectureof SPINcanonly beextendedwith components,calledextensions.

A reusablecomponent,anextension,is a codesequencethatcanbe installeddynam-
ically into the operatingsystemkernelby, or on behalfof the application. Thus,an ap-
plicationcandynamicallyaddcodeto anexecutingsystemto providea new service.The
applicationcanalsoreplaceor augmentold codeto exchangeexistingservices,i.e.,compo-
nentscanbeadded,replaced,or modifiedin thesystem.E.g.,anapplicationmayprovidea
new in-kernelfile system,replaceanexistingpagingpolicy, or addcompressionto network
protocols.Extensionsarewritten in Modula-3,amodular, ALGOL-lik eprogramminglan-
guage.Themechanismthat integratesextensions(components)with the coresystemare
events,i.e.,communicationin SPINis event-based.An eventis a messagethatis raisedto
announcea changein thestateof thesystemor a requestfor a service.Eventsareregis-
teredin aneventhandler, which is a procedurethatreceivesanevent.An eventdispatcher
overseesevent-basedcommunication.Thedispatcheris responsiblefor enablingservices
suchasconditionalexecution,multicast,asynchrony, andaccesscontrol.An extensionin-
stallsa handlerwith theeventthorougha centraldispatcherthatrouteseventsto handlers.
Event-basedcommunication,usedin the SPIN architecture,allows considerableflexibil-
ity of thesystemcomposition.All relationshipsbetweenthecoresystemandcomponents
aresubjectto changesby simply changingsetof eventhandlersassociatedwith any given
event.

The correctnessof the composedsystemdependsonly on the language’s safetyand
encapsulationmechanisms;specificallyinterfaces,typesafety, andautomaticstorageman-
agement.Analysisof thecomposedsystemis not performed,sinceit is assumedthat the
configurationsupportprovidedwithin theModula-3languageis enoughto guaranteethe
correctandsafesystem.SPINallowsapplicationsto implementtheirown schedulingpoli-
cies.Providedtheright extensionfor real-timeschedulingpolicy thisoperatingsystemcan
beusedfor soft real-timeapplicationssuchasmultimediaapplications.

3.3.3 Middleware systems

2K

2K [56, 54] is anoperatingsystemspecificallydevelopedfor manipulationof resourcesin
adistributedheterogeneousenvironment(differentsoftwaresystemsondifferenthardware
platforms).2K is basedonanetwork-centricmodelandCORBA componentinfrastructure.
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In thenetwork centricmodelall entities,i.e.,userapplications(labeledas2K applications),
softwarecomponentsanddevices,exist in thenetwork andarerepresentedasCORBA ob-
jects(seefigure3.16).Whena particularserviceis instantiated,theentitiesthatconstitute
thatserviceareassembled.Softwarecomponents(CORBA objects)communicatethrough
IDL interfaces. As shown in figure 3.16, 2K middlewarearchitectureis realizedusing
standardCORBA servicessuchasnaming,trading,securityandpersistence,andextend-
ing theCORBA servicemodelwith additionalservices,suchasQoS-awaremanagement,
automaticconfiguration,andcodedistribution. The 2K automaticconfigurationservice
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Figure3.16:The2K middlewarearchitecture

supportsloadingcomponentsinto run-timesystem. CORBA object,calledComponent-
Configurator, in this systemstoresinter-componentdependency, which mustbe checked
beforecomponentscanbesuccessfullyinstalledinto a systemby theautomaticconfigura-
tion service.An Internetbrowser, for example,couldspecifythatit dependsuponcompo-
nentsimplementinganX-Windows system,a local file service,theTCP/IPprotocol,and
the Java virtual machineversion1.0.2or later. The automaticconfigurationserviceand
ComponentConfiguratorenableautomatedinstallationandconfigurationof new compo-
nents,providedthatthesystemhasaccessto therequirementsfor installingandrunninga
softwarecomponent,i.e, inter-componentdependencies.

Integrationof componentsinto the middleware is donethrougha componentcalled
dynamicTAO (TheAdaptiveCommunicationEnvironmentORB).ThedynamicTAO is a
CORBA compliantreflectiveORBasit allowsinspectionandreconfigurationof its internal
engine[55]. This is importantsincethemiddlewaremustbeconfigurableandableto adopt
todynamicchangesin resourceavailability andin thesoftwareandhardwareinfrastructure.

However, the dynamic TAO componenthas a memory footprint greaterthan few
megabytes,what makesit inappropriatefor usein environmentswith limited resources.
A variantto thedynamicTAO, a LegORBcomponent,is developedby the2K groupsuch
thatit hasasmallfootprint,andis appropriatefor embeddedenvironmentswith limited re-
sources,e.g.,6 Kbyteson thePalmPilotrunningon PlamOS.DynamicTAO andLegORB
componentsarenot reusable,but arethe key enablerfor reuseof otherCORBA objects,
i.e., componentsin thenetwork. Eventhoughthis systemprovidesautomatedinstallation
andconfigurationof new components,it doesnot specify the developmentof new com-
ponents.Thedevelopmentof new componentsis doneonly basedon CORBA component
modelspecifications.Softwarecomponentsin this systemcanbereused.However, those
arecomponentswhich alreadyexist in thenetwork, andarereusedin the sensethat they
canbedynamicallyinstalledinto thesystemwhenever someapplicationneedsa specific
component.Also, it is is assumedthat inter-componentdependenciesprovide goodbasis
for thesystemintegration,andguaranteecorrectsystembehavior (otherguaranteesof the
systembehavior, obtainedby appropriateanalysis,donotexist).

Embeddedsystemrequirementsaremeetby theLegORBcomponent,suitablefor low-
resource(embedded)systems.As figure3.16shows, 2K providesservicesfor the appli-
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cationssuchas video-on-demandand video-conferencing,which can be viewed as soft
real-timeapplications.Consideringthat 2K usesCORBA componentinfrastructurewith
real-timeCORBA extensions,i.e.,TAO ORB, impliesthathardreal-timeapplicationscan
alsobesupportedby the2K middlewarearchitecture.

3.3.4 Configurable systems

Ensemble

Ensembleis a high performancenetwork protocolarchitecturedesignedto supportgroup
membershipand communicationprotocols[64]. Ensembledoesnot enforcereal-time
behavior, but is neverthelessinterestingbecauseof the configurablearchitectureandthe
way it addressesthe problemof configurationandanalysisof the system.Ensemblein-
cludeslibrary of over sixty micro-protocolcomponentswhich canbestacked,i.e, formed
into a protocol, in a variety of waysto meetcommunicationdemandsof an application.
Eachcomponenthasa commonevent-drivenEnsemblemicro-protocolinterface,anduses
message-passingway of communication. Ensemble’s micro-protocolsimplementbasic
sliding window protocols,andfunctionalitysuchasfragmentationandre-assembly, flow
control, signingandencryption,groupmembership,messageordering,etc. The Ensem-
ble systemprovidesanalgorithmfor calculatingthestack,i.e., composingprotocolout of
micro-protocols,giventhesetof propertiesthatanapplicationrequires.Thisalgorithmen-
codesknowledgeof protocoldesignersandappearsto work quitewell, but doesnotassure
generationof a correctstack(themethodologyfor checkingcorrectnessis not automated
yet). Thus,Ensemblecanbeefficiently customizedfor differentprotocols,i.e, hasa high
level of tailorability. In addition,Ensemblegivesthepossibilityof formal optimizationof
thecomposedprotocol.This is donein Nuprl [64], andalsoappearsto givegoodresultsas
farastheoptimizationof aprotocolfor a particularapplicationgoes.

Systemdevelopmentwith real-timecomponents

Isović et al. [48] definedthedevelopmentmethodspecificallytargetedtowardsreal-time
systemsregardlessof its complexity (it is suitablefor the complex as well as for more
simplesystems).The developmentmethodthey proposeis an extensionof the method
usedfor developingreal-timesystemsin Swedishcar industry[79]. In this development
methodit is assumedthat:

E Thecomponentlibrary containsbinariesof COTS,components-of-the-shelf,andde-
scriptionof them,e.g.,memoryconsumption,identification,environmentassump-
tions(processorfamily onwhichcomponentoperates),andfunctionaldescription.

E Thecomponentlibrary alsocontainsdependenciesto othercomponents.

E Componentsaremappedto tasks,or multiple tasksfor morecomplex components.

E Componentcommunicationis donethroughsharedmemory, andinterfacesarecalled
ports.

The developmentprocessfor real-timesystemsis divided in several stagesasshown in
figure3.17,andstartswith asystemspecificationasaninputto thetop-level design.At the
top-leveldesignstagedecompositionof asystemintocomponentsis performed.A designer
browsesthroughthe library anddesignsthe systemhaving in mind possiblecomponent
candidates.At the detaileddesignstagetemporalattributesareassignedto components:
period,releasetimes,precedenceconstraints,deadline,mutualexclusion,andtime-budget
(a componentis requiredto completeits executionwithin its time-budget).At thefollow-
ing stagechecksareperformedto determineif selectedcomponentsareappropriatefor
the system,or, if the adaptationof componentsis required,or new componentsneedto
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be developed.Also, at this stage,componentinterfacesarechecked to seeif input ports
areconnectedandif their typematches,andthatway systemintegrationis performed.If
this stageshows that selectedcomponentsarenot appropriatefor the systemundercon-
struction,thenanew componentneedsto bedeveloped.Developedcomponentsareplaced
in librariesfor futurereuse.Thedetaildesignstage,thescheduling/interfacecheckstage,
andthe top-level designstagecanbe repeateduntil propercomponentsfor systeminte-
grationarefound(or designed).Whenthesystemfinally meetstherequirementsfrom the
specification,the temporalbehavior of componentsmustbe testedon the targetplatform
to verify if they meettemporalconstrainsdefinedin thedesignphase,i.e., verificationof
worstcaseexecutiontime is performed.Themethoddescribedprovidesa high degreeof

System specification

Top-level design

Detailed design

Scheduling/Interface check

Timing behavior

System verification

Component library

Component developement

Figure3.17:Designmodelfor real-timecomponents

tailorability for thedeveloper, sincethearchitectureof thesystemis notfixed,andcompo-
nentsin thesystemcanbeexchangedduringthedesignof thesystemin orderto obtaining
the mostsuitablecomponentsfor that particularsystem. The developerdoeshave some
supportwhile choosingtheappropriatecomponentfor reuse,giventhecheckstagesof the
designanddependency checksamongcomponentthat arestoredin libraries. However,
suchprocessis notautomated.

Thismethodsupportsanalysisof temporalbehavior of components(focusis onWCET
checks),but how thetemporalbehavior of theentiresystemis checkedis not clear. Also,
thisapproachis constrainedby theassumptionthatthecomponentsin library canbeCOTS
andthattemporalbehavior of componentsis notknown beforehand.Thisallows temporal
constraintsof thecomponentto bedefined(or betterto saypredicted)only at thedesign
timeof thesystem.

VEST

While previouslydescribeddesignmethodis targetedtowardssystemsthat,in mostcases,
needto be composedout of COTS, andis suitablefor morecomplex real-timesystems,
VEST [105] aimsto enabletheconstructionof theOS-like portionof anembeddedreal-
time systemwith strengthenresourceneeds.Thedevelopmentprocessis fairly goodde-
fined anda needfor properconfigurationandanalysistools is recognizedin VEST. The
developmentprocessoffersmoreflexibility thanonepresentedby Isović et. al. [48], since
componentsin the library arepassive andreal-timeattributesof componentsareknown.
Systemdevelopmentstartswith thedesignof theinfrastructure,whichcanbesavedin a li-
brary andusedagain(seefigure 3.18). The infrastructureconsistsof micro-components
suchas interrupt handlers,inidirection tables,dispatchers,plug and unplug primitives,
proxiesfor statemapping,etc. The infrastructurerepresentsa framework for composing
a systemout of components.Configurationtoolspermitstheuserto createanembedded
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real-timesystemby composingcomponentsinto a system,i.e, mappingpassive compo-
nentsinto run-timestructures(tasks).After systemis composed,dependency checksare
invoked to establishcertainpropertiesof the composedsystem.If thepropertiesaresat-
isfying andthe systemdoesnot needto be refined,the usercaninvoke analysistools to
performreal-time,aswell asreliability analysis.As canbeseen,VESToffershighdegree
of tailorability for thedesigner, i.e.,a specificsystemcanbecomposedout of appropriate
componentsaswell asinfrastructurefrom thecomponentlibrary. Notethatcomponentsin

Infrastructure creation

Component selection/design

Integrated system

Dependency checks

Library

Analysis

components

infrastructure

dependencies

Figure3.18:Embeddedsystemdevelopmentin VEST

VEST arepassive (collectionof codefragments,functionsandobjects),andaremapped
into run-timestructures(tasks).Eachcomponentcanbecomposedoutof subcomponents.
For example,taskmanagementcomponentcanbemadeof componentssuchascreatetask,
deletetask,andsettaskpriority. Componentshavereal-timepropertiessuchasworstcase
executiontime,deadline,andprecedenceandexclusionconstraints,whichenablereal-time
analysisof thecomposedsystem.In additionto temporalproperties,eachcomponenthas
explicit memoryneedsandpowerconsumptionrequirements,neededfor efficientusein an
embeddedsystem.Selectinganddesigningtheappropriatecomponent(s)is fairly complex
process,sincebothreal-timeandnonreal-timeaspectsof acomponentmustbeconsidered
andappropriateconfigurationsupporthasto beavailable.Dependency checksproposedin
VEST areonegoodway of providing configurationsupportandthestrengthof theVEST
approach.Dueto its complexity dependency checksarebrokeninto 4 types:

F factual: component-by-component dependency checks(worst caseexecutiontime,
memory, importance,deadline,etc.),

F inter-component:pairwisecomponentchecks(interfacerequirements,versioncom-
patibility, is acomponentincludedin another, etc.),

F aspects:checksthatincludeissueswhichaffecttheperformanceor semanticof com-
ponents(real-time,concurrency synchronizationandreliability issues),and

F general:checksof globalpropertiesof thesystem(thesystemshouldnotexperience
deadlocks,hierarchicallocking rulesmustbefollowed,etc.).

Having well defineddependency checksis very importantsinceit minimizespossibleer-
rors in the systemcomposition. Interfaceproblemsin VEST areonly identifiedbut are
not addressedat all; thusit is not obvioushow componentscanbe interconnected.Also,
analysisof the systemis proposed,but somemoreconcretesolutionsarenot presented.
Finally, it is unclearif theVEST is animplementedsolution.

PBO model

A component-basedsystembasedon theport-basedobject(PBO)modelcanbeclassified
asconfigurable,andis suitablefor developmentof embeddedreal-timecontrol software
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system[108]. Componentsfrom thecomponentlibrary, in additionto newly createdones,
canbeusedfor thesystemassembly. A componentis thePBOthat is implementedasan
independentconcurrentprocess.Componentsareinterconnectedthroughports,andcom-
municatethroughsharedmemory. ThePBOdefinesmodulespecificcode,includinginput
andoutputports,configurationconstants(for adoptingcomponentsfor differentapplica-
tions), the type of the process(periodicandaperiodic),andtemporalparameterssuchas
deadline,frequency, andpriority. Supportfor composinga systemout of componentsis
limited to generalguidelinesthat aregiven to the designerfor composinga systemout
of PBO components,and is not automatedat all. This approachto componentizationis
somewhat uniquesinceit givesmethodsfor creatinga framework that handlesthe com-
munication,synchronizationand schedulingof eachcomponent. Any C programming
environmentcanbe usedto createcomponentswith minimal increasein performanceor
memoryusage.CreatingcodeusingPBO methodologyis an “inside out” programming
paradigmascomparedto a traditionalcodingof real-timeprocesses.The PBO method
providesconsistentstructurefor every processandOS systemservices,suchascommu-
nication,synchronization,scheduling.Only whennecessary, OS calls PBO’s methodto
executeapplicationcode.Analysisof thecomposedsystemis notconsidered.

3.4 A tabular overview

This chapterconcludeswith a tabular summaryof investigatedcomponent-basedsystems
andtheircharacteristics.Tables3.3and3.4provideanadditionalinstrumentfor comparing
andanalyzingcomponent-baseddatabaseandcomponent-basedembeddedreal-timesys-
tems.
Thefollowing symbolsareusedin thetable:

x — featureis supportedin/truefor thesystem,and

x/p — featureis partiallysupportedin/truefor thesystem,
i.e, thesystemfulfills thefeatureto a moderateextent.

Below followsadescriptionof thecriteria.

A. Type of the system We investigatedintegrationof thecomponent-basedsoftwareen-
gineeringfor thesystemdevelopmentin thefollowing areas:

1. database,

2. embedded,

3. real-time,and

4. embeddedreal-time.

This criteria illustrateslack of component-basedsolutionsin the areaof embeddedreal-
time databasesystems. As can be seenfrom table 3.3 thereare few component-based
systems(alsoreferredasplatforms)that canbeclassifiedasembeddedreal-time,andall
component-basedsystemsareeitherembeddedandreal-timesystems,or databasesystems.
Theredoesnotexistacomponent-baseddatabasesystemthatcanbeclassifiedasembedded
real-time.

1The systemaimsto supportthe feature,but only the draft of how the featureshouldbe supportedby the
systemexists,i.e., thereis noconcreteimplementation.
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B. Status Analyzedcomponent-basedplatformsare:

1. researchplatforms,and

2. commercialproducts.

As canbeseenfromthetable3.3,mostcomponent-baseddatabasesystemsarecommercial
products,whileembedded(and)real-timeplatformsareall researchprojects.It is important
to noticethatdatabaseindustryhasembracedcomponent-basedsoftwareparadigmandthat
the needfor componentizationis increasinglyimportant,sincealmostall major database
vendorsprovidesomecomponent-basedsolutionof theirdatabaseservers.Also, it is clear
thatreal-timeandembeddedissuesarenot integratedin thecommercialcomponent-based
development,thus,implying thattherearestill a lot of openresearchquestionsthatneedto
beanswered,beforecomponent-basedembeddedreal-timesystemsarebecommericalized.

C. Componentgranularity Therearetwo majorgranularitylevelsof components:

1. systemasacomponent,and

2. partof thesystemasacomponent.

It is noticeablethatadatabasecomponentcanbeanything from adatabasesystem,acom-
ponentof large granularity, to lightweight componentsthat are composingpartsof the
DBMS. In contrast,mostembeddedreal-timesystemshave lightweightcomponents,i.e.,
partsof thesystem,andarebuilding anoperatingsystem-like portionof embedded(and)
real-timesystems.Exceptionis 2K wherecomponent(CORBA object)is of largergranu-
larity, andcanbeanembeddedsystemitself.

D. Category of the system If we emphasizethata databaseasa componentcannotrep-
resenta realcomponent-basedsolutionof a databasesystem,thenourview is narrowedto
a componentDBMS (CDBMS) andpartsor extensionsof thedatabasesystemasa com-
ponent. Samecanbe statedfor embedded(and)real-timesystems.Hence,investigated
component-basedsystemsareclassifiedasfollows:

1. extensible,

2. middleware,

3. service,and

4. configurable.

Notethatserviceis thecategoryof CDBMSs,andnotof embedded(and)real-timesystems.

E. Component type A componentin a component-baseddatabasesystem and a
component-basedembedded(and)real-timesystemis oneof thefollowing :

1. domain-specificdatatypeor a new index,

2. wrapper,

3. service,

4. DBMS subsystem,

5. CORBA object,

6. microprotocol,

7. binarycomponent,
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8. passivecomponent,and

9. PBO(port-basedobject).

Thefirst four componenttypesaretypically componentsfound in databasesystems.We
referto theseasdatabasecomponents.Thelastfive typesof componentsaremostlyfound
in embedded(and)real-timesystems.

CDBMSsmainlyconsistof componentsthatimplementacertaindatabasefunctionality
(or extendexisting functionality),usuallymappedinto services.Thus,a databasecompo-
nentprovidescertaindatabaseserviceor function.For example,in Oracle8i thespatialdata
cartridgecomponentimplementsnon-standardDBMS functionalitysuchasspatialindex.
Also, in KIDS, the DBMS subsystemcomponent,transactionmanagement,canprovide
several relatedservicessuchas transaction,serializationandvalidationservices,and in
CORBAservicesonecomponentis onedatabaseservice.

Componentsin embedded(and)real-timesystemsaremorediverse.In somesystems
componentsarenot explicitly defined,andcanonly be classifiedaspassive components
(VEST) or asbinary components(in developmentmethodologyintroducedby Isović et
al.[48]). SystemssuchasSPINandEnsemblehave morespecificcomponents,extensions
for application-specificoperatingsystemservices(SPIN)andmicroprotocols(Ensemble).
Only 2K hasstandardizedcomponents,CORBA objects.

Note that almostevery systemhasits own notion and a definition of a component,
whichsuitesthesystem’spurposeandrequirements.

F. Real-time properties Component-baseddatabaseandembedded(and)real-timesys-
temsmay:

1. notpreserve,and

2. preserve

realtimeproperties.Component-baseddatabasesystemsdonotenforcereal-timebehavior
(seetable3.4). In addition,issuesrelatedto embeddedsystemssuchaslow-resourcecon-
sumptionarenotaddressedatall. Accentin adatabasecomponentis onprovidingacertain
databasefunctionality. In contrast,component(or components)in existing component-
basedembeddedreal-timesystemsis usuallyassumedto bemappedto a task,i.e.,passive
components[105], binarycomponents[48] andPBOcomponents[108] areall mappedto
a task.Thiscomesnaturallyin thereal-timeresearchcommunitybecausea task,i.e.,con-
currentprocess,is thesmallestschedulableunit in a real-timesystem.Therefore,analysis
of real-timecomponentsin thesesolutionsaddressesthe problemof managingtemporal
attributesatacomponentlevel by consideringthemastaskattributes[48, 105, 57]:

E worst-caseexecutiontime (WCET)- thelongestpossibletime it takesto completea
task,

E releasetime - the time at which all datathat are requiredto begin executingare
available,

E deadline- thetimeby whicha taskmustcompleteits execution,

E precedenceconstraintsandmutualexclusion- specifyif a taskneedsto precedeor
excludeothertasks,and

E period- if a taskis periodic.

Componentsin the PBO model [108] have only two temporalattributes,frequency and
deadline.Components,in thedevelopmentmethodfor component-basedreal-timesystems
introducedby Isović et al. [48], are assumedto have all of the above listed temporal
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attributes,andtheseattributesarepredictedin thedesignphaseof thesystemdevelopment.
VEST includesfull list of temporalattributesin its componentsandexpandsthat list with
attributesessentialfor correctbehavior of componentsin anembeddedenvironment:

E powerconsumptionrequirements,and

E memoryconsumptionrequirements.

ThismakestheVESTapproachthemostflexible embeddedreal-timeapproach,sincecom-
ponentattributesincludereal-timeandembeddedneeds,andareknown for every compo-
nentin the library (this wasnot thecasein thedevelopmentmethodfor component-based
real-timesystemsintroducedby Isović et al. [48]).

A componentin anembeddedreal-timesystemmusthavewell definedtemporalprop-
erties, i.e., componentbehavior must be predictable,in order to be able to composea
reliableembeddedreal-timesystem.Hence,to beableto developa databasesuitablefor
an embeddedreal-timesystemout of components,suchcomponentswould have to have
well-definedtemporalpropertiesandresourcerequirements,e.g.,memoryandpowercon-
sumption,issuesnot addressedin currentdatabasecomponents.Thus,we concludethata
databasecomponentusedin anembeddedreal-timesystemwould have to bea real-time
component,andassuch,mappedto a taskin orderto ensurepredictabilityof thecompo-
nentandof thecomposedembeddedreal-timesystem,i.e.,weneedto know, for example,
worst-caseexecutiontime for a databasecomponentto beableto ensurepredictabilityof
thecomponent,and,in turn,of thedatabasesystemcomposedoutof suchcomponents.

G. Interfaces / communication The componentcommunicateswith its environment
(othercomponents)throughwell-definedinterfaces.Generally, existing component-based
databaseandembedded(and)real-timesolutionsuse:

1. standardinterfaces,

2. systemspecific,and

3. unbufferedinterfaces(ports),in whichcasethey usecommunicationthroughshared
memory.

For example,standardizedinterfacesdefinedin theIDL areusedin CORBAservicesandin
2K. Also, OLE DB interfaceis usedin theMicrosoft’sUniversalDataAccessarchitecture.
Interfacesdevelopedwithin the system(we refer to themassystemspecific)areusedin
othersystems,e.g.,Oracle8i hasextensibility interfacesandKIDS hascomponent-specific
interface.Systemsthataim to allow moreflexible compositionuseevent-basedcommuni-
cation,e.g.,KIDS, SPIN,Ensemble,and2K. Inter-componentcommunicationin database
systemsand embeddedreal-timesystemshave differentgoals. Interfacesin embedded
real-timesystemsmustbesuchthat inter-componentcommunicationcanbeperformedin
a timely predictablemanner. Therearetwo possiblewaysof a real-timecomponentcom-
munication:

E Buffered communication. The communicationis donethroughmessagepassing,
e.g., [64].

E Unbufferedcommunication.Unbuffereddatais accessedthroughsharedmemory,
e.g.,[107, 48].

Notethatmostcomponent-baseddatabasesystemsusebufferedcommunication,sincepre-
dictability of communicationis not of importancein suchsystems. Systemsenforcing
real-timebehavior useunbufferedcommunication(exceptionis VEST whereinterfacesof
componentsarenotdefined).This is becauseof severaldisadvantagesthatareidentifiedin
bufferedcommunication[45, 48]:
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E Sendingandreceiving messagesincursignificantoverhead.

E Taskswaiting for datamightblock for anundeterminedamountof time.

E Crucialmessagescangetlostasaresultof thebuffer overflow if tasksdonotexecute
at thesamefrequency.

E Sendingmessagesin controlsystems,whichhavemany feedbackloops,createsrisk
for deadlock.

E The upperboundon the numberof produced/consumedmessagesmust be deter-
minedto enableguaranteeof temporalproperties.

Generally, a real-timesystemthatusesbufferedcommunicationis difficult to analyzedue
to dependenciesamongtasks.Unbufferedcommunicationeliminatesdirectdependencies
betweentasks,sincethey only needto bind to a single elementin the sharedmemory.
Communicationthroughsharedmemoryincursfeweroverheadsascomparedto amessage-
passingsystem.Also, it is easierto checksystem’s temporalbehavior if unbufferedcom-
municationis used[48]. Hence,unbufferedstyle of communicationis preferredstyle of
communicationin embeddedreal-timesystems.It is suggestedthat interfacesin (hard)
real-timesystemsshouldbeunbuffered[48]. Unbufferedinterfacesarecalledports.

H. Configuration tools The developmentprocessmustbe well definedto enableeffi-
cient systemassemblyout of existing componentsfrom the componentlibrary or newly
createdones. Adequateandautomatedconfigurationsupportmustexist to help system
designerwith this process,e.g.,rulesfor composinga systemout of components,support
for selectionof anappropriatecomponentfrom thecomponentlibrary, andsupportfor the
developmentof new components.However, in somesystemsconfigurationtools arenot
available. Hence,we identify thatconfigurationtools in a component-baseddatabaseand
embedded(and)real-timesystemare:

1. notavailable,and

2. available.

Observe (table3.4) that mostextensibleCDBMSshave availableconfigurationsupport.
Sinceextensiblesystemsalreadyhave fixedarchitectureandpre-definedextensions,pro-
vided configurationtools aresufficient to enabledevelopmentandintegrationof compo-
nentsinto anextensiblesystem.TheGarlic middlewaretechnologyprovidesa simpleand
fairly easydevelopmentof new components(wrappers),but thesecomponentsarewith
simple functionality and structure. The situationgetsmore complicatedif we consider
OLE DB middleware,wherenot only components,dataproviders,canbe addedor ex-
changedin thearchitecture,but thearchitecturecanalsobeextendedto usecustomizable
dataproviders.Hence,adequateconfigurationsupportis neededto ensureinteroperability
of differentdataproviders.However, whendevelopinga dataprovidercomponentthede-
veloperis onlyencouragedto follow specificationexactlyin ordertoensureinteroperability
with otherdataproviders,i.e, configurationsupportavailablebut is not enough.OLE DB
is alsolimited in termsof use,it canonly beusedin Microsoft’scomputingenvironments.

Ontheotherhand,extensibleandmiddlewareembedded(and)real-timesystemsdonot
providegoodconfigurationsupport.2K, for example,doesnot have reusablecomponents
in its architectureandprovidesautomatedconfiguration(andreuse)of componentsfrom
differentsystems.The correctnessof integrated2K middlewareis only assumed(based
on checksof inter-componentdependencies).Also, SPIN offers very little configuration
support,sincecorrectness,configuration,andintegrationof componentsin thecoresystem
is basedon featuresof the extensionlanguagein which componentsaredeveloped.The
rulesfor compositionof a systemarenot definedin 2K andSPIN,andthesesystemscan
beviewedasthefirst generationof acomponent-basedembedded(and)real-timesystems.
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In general,demandson developmentsupportin configurablesystemsarehigh. KIDS
hasmetthesedemandsto someextent,with a well-defineddevelopmentprocess.In most
configurableembeddedreal-timesystems,someconfigurationsupportis alsoprovided.For
example,PBOmodelgivesgoodguidelinestohelpdesignerwhencomposingsystemoutof
components.Thedevelopmentmethodfor component-basedreal-timesystemsintroduced
by Isović et al. [48] providesconfigurationsupportfor choosingappropriatecomponent
for systemcomposition,i.e., checksof temporalpropertiesandinterfacesof components
areperformedto ensurethatthecomponentfrom thelibrary is suitablefor thesystemun-
derdevelopment.In VEST, thenecessityof having goodconfigurationtoolsis recognized.
Compositionrulesaredefinedthroughfour typesof dependency checks.Notethatthede-
velopmentintroducedby Isović et al. [48] and2K have only inter-componentdependency
checks,which arejust oneout of four typesof checksproposedin VEST. This makesthe
VEST approachthemostappropriateonewith respectto thecorrectsystemcomposition,
becausethemoredependenciesarecheckedin thesystem,within components,theproba-
bility of errorsin thecomposedsystem,i.e.,compositionalerrors,is minimized.

I. Analysis tools Sincethe reliability of the composedsystemdependson the level of
correctnessof thecomponent,analysistoolsareneededto verify thebehavior of thecom-
ponentandthecomposedsystem.In particular, real-timesystemsmustmeettheir temporal
constraints,andadequateanalysisto ensurethata systemhasmeettemporalconstraintsis
required.Thus,analysistoolsare:

1. notavailable,and

2. available.

The problem of analysisof the composedcomponent-baseddatabasesystemis rather
straightforward, in most cases,analysisof the composedsystemis unavailable (seeta-
ble 3.4). Importanceof having good analysisof the composedsystemis recognizedin
KIDS, but is not pursuedbeyond that, i.e., analysistools arenot provided. Component-
basedembedded(and)real-timesystemsdo not provide analysisof thecomposedsystem
aswell. Thatis truefor SPIN,2K, andsystemsbasedonthePBOmodel.VESTintroduces
notionof reliability andreal-timeanalysisof thesystem,but doesnot give moredetailed
descriptionof suchanalysis.In thedevelopmentmethodintroducedby Isović et al. [48]
checksof theWCETof componentsareperformed.

G. Reusability Systemsarecomposedout of reusablecomponentsfrom thelibrary. Ar-
chitectureof the systemcan be reusedin the system’s developmentas well. Thus, in
component-baseddatabaseandembedded(and)real-timesystemspartsthatcanbereused
are:

1. component,and

2. architecture.

As canbeseenfrom thetable3.4, thepart thatcanbereusedin all systemsis thecompo-
nent.KIDS andVEST canalsoreusethearchitecture,asopposedto othersystems.If we
considerthattheliterature [67, 76] pointsto reusabilityof architectureasa way to receive
a higherpay-off, KIDS andVEST have significantlyhigherdegreeof reusabilityascom-
paredto others.The fact thatanarchitectureof a systemcanbe reusedis alsoimportant
from a differentaspect,early systemtesting. For example,even thoughit doesnot have
any analysistools,KIDS offersgoodbasisfor theearlysystemtesting,in thefirst phaseof
theconstructionprocess,at thearchitecturelevel of thesystemdevelopment.
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H. Tailoring ability Thebenefitof usingcomponent-baseddevelopmentin databasesys-
temsis customizationof thedatabasefor differentapplications.Therearefour degreesof
tailorability in component-baseddatabaseandembedded(and)real-timesystems:

1. none,

2. low,

3. moderate,and

4. high.

It is noticeablethatextensiblesystemshave low tailorability, middlewaremoderate,while
configurablesystemshavehigh tailorability (seetable3.4). Sincethegoalis to providean
optimizeddatabasefor a specificapplicationwith low developmentcostsandshorttime-
to-market,it is safeto saythatconfigurablesystemsarethemostsuitablein thisrespect.In
particular, VEST andKIDS, sincethey allow architectureto besavedandreused.At the
sametime,themethodologyintroducedin KIDS andVESTshouldenabletailoringof one
genericsystemfor a varietyof differentapplications.



Chapter 4

Summary

Thisfinal chapterstartswith asummaryof themainissueswehave identifiedin thereport
with respectto currentstate-of-the-artin the areaof embeddeddatabasesfor embedded
real-timesystems(section4.1). In the lastsection(section4.2)we identify challengesfor
futurework.

4.1 Conclusions

Embeddedsystems,real-timesystems,anddatabasesystemsareresearchareasthathave
beenactively studied.However, researchon embeddeddatabasesfor embeddedreal-time
systems,explicitly addressingthedevelopmentanddesignprocess,is sparse.A database
thatcanbeusedin anembeddedreal-timesystemmusthandletransactionswith temporal
constraints,andmust,at the sametime, be suitablefor embeddedsystemswith limited
amountof resources,i.e., thedatabaseshouldhavesmallfootprint,beportableto different
operatingsystemplatforms,have efficient resourcemanagement,andbe able to recover
from a failurewithoutexternalintervention.

As wehaveshown in thisreport,thereareavarietyof differentembeddeddatabaseson
themarket. However, they vary significantlyin their characteristics.Differencesin prod-
uctsaretypically theway dataareorganizedin thedatabase(datamodel),thearchitecture
of thedatabase(DBMS model),andmemoryusage.Commercialembeddeddatabasesalso
provide different interfacesfor applicationsto accessthe database,andsupportdifferent
operatingsystemplatforms. Applicationdevelopersmustchoosecarefully theembedded
databasetheir applicationrequires. This is a difficult, time consumingand costly pro-
cess,with a lot of compromises.Onesolutioncouldbeto have a moregenericembedded
databaseplatform that canbe tailoredandoptimizedsuchthat it is suitablefor different
applications.Existingreal-timedatabaseresearchplatformsareunsuitablein this respect,
sincethey aremainlymonolithicsystems,and,assuch,they arenoteasilytailoredfor new
applicationshaving differentor additionalrequirements.

Satisfyingrequirementsput on theembeddeddatabasein anembeddedreal-timesys-
temcallsfor anew wayof designinganddevelopinganembeddeddatabasefor application
specificsystem.For this purposewe have examinedcomponent-basedsoftwareengineer-
ing paradigm,sinceit hasbeensuccessfullyappliedin conventionalnonreal-timeenviron-
ments.

Building partsany component-basedsystemare components.However, traditional
component-basedsystems,e.g., systemsbasedon COM or CORBA componentframe-
work, normallyview anentiredatabasesystemasonecomponent.We emphasizethat the
component-baseddatabasesystemis thedatabasesystem,whichbuilding partsarecompo-
nents,andreferto suchbuilding partsasdatabasecomponents.Componentsin a database
systemusually implementcertaindatabasefunctionality (or extend existing functional-

76



CHAPTER4. SUMMARY 77

ity), andthesearenormallymappedinto services.In contrast,componentsin embedded
real-timesystemsaredevelopedto have well-definedtemporalproperties,e.g.,worst-case
executiontime,deadlineandreleasetime,andaremappedonetaskor multiple tasks.We
haveshown thatareal-timedatabasecomponent,i.e.,adatabasecomponentwith temporal
constraintsthat representsthe intersectingtypeof thedatabaseandreal-timecomponent,
doesnot exist. Existingcomponent-baseddatabasesystemsdo not enforcereal-timebe-
havior, andissuesrelatedto embeddedsystemssuchaslow-resourceconsumptionarenot
addressedat all in thesesolutions. However, in order to composea reliableembedded
real-timesystemoutof components,eachcomponent’sbehavior mustbepredictable.This
is thereasonwhy componentsin existing component-basedreal-timesystemsareusually
assumedto be mappedto a task with well-definedtemporalproperties. To ensurepre-
dictability andreliability of a databasein an embeddedreal-timesystem,suchdatabase
would have to be composedout of components,with well-definedandknown temporal
propertiesof a componentmustbewell-definedandknown. This, in turn, would require
sucha componentto bemappedto a task.

We have observed that the architectureof component-basedsystemsvary from fixed
(extensiblesystems),to completelyconfigurable.In the extensiblesystems,which have
fixedarchitecture,extensionsareallowedonly in well-definedplacesof the architecture.
In theconfigurablesystemscomponentscanbefreely addedor exchangedin thearchitec-
ture. Configurablesystemsallow significantamountof flexibility to thedeveloperandthe
user, in comparisonto othersystems.Hence,configurablesystemsrepresentthepreferred
typeof component-basedsystems,asthey allow theembeddeddatabaseto betailoredfor
new applicationswith differentrequirements.Sinceconfigurablesystemsoffer thehighest
degreeof tailorability, andarethemostflexible ones,we focuson thesesystems;in par-
ticularKIDS (component-baseddatabasesystem)andVEST(component-basedembedded
real-timesystem).Higherpay-off andquicknessto marketcanbeachievedif thearchitec-
turecanbestoredin a library andreused,aswell ascomponents(this featurecanalsobe
foundin configurablesystemssuchasKIDS andVEST).Moreover, tohaveanarchitectural
abstractionof a systemwould enableearlysystemtesting. Temporalanalysisof systems
andcomponentscouldbedonein anearlystageof thesystemdevelopment,thus,reducing
developmentcosts,andenhancingreliability andpredictabilityof thesystem.For example,
in KIDS thearchitectureis reusable,andeventhoughit doesnot have any analysistools,
KIDS offersgoodbasisfor theearlysystemtesting;in thefirst phaseof theconstruction
process,at thearchitecturelevel of thesystem.

To ensureminimum errorsin the systemcomposition,the mostefficient existing ap-
proachis to have a large numberof dependency checks,as in VEST, wherefour types
of dependency checksareintroduced,e.g.,factual,inter-component,aspectsandgeneral.
Notethatsomesystems,suchas2K, have only onetypeof dependency checks,i.e., inter-
componentdependency checks.Othersystemsdonothavedependency checksatall, which
makesthemmorevulnerablefor compositionalerrors.

Whencomposinganembeddeddatabasesystemout of components,theissueof inter-
componentcommunicationshouldbe carefullyhandled.Componentsin embeddedreal-
time systemsmustcommunicatein a timely predictablemanner, andfor that reasonmost
embeddedreal-timesystemsuseunbufferedcommunication. In contrast,most existing
component-baseddatabasesystemshave bufferedcommunication(messagepassing),and
arenot concernedwith predictabilityof inter-componentcommunication.Furthermore,
mostcomponent-baseddatabasesystemsusestandardizedinterfaces,e.g.,IDL, OLE DB,
whichmakesthemsuitablefor easierexchangeandadditionof new components(they must
conformto a standard),while embeddedreal-timesystemsmostly have system-specific
interfaces,i.e., interfacesdefinedwithin thesystem.

We have studiedcomponentsand their definitionsin component-basedsoftwareen-
gineeringin particular, aswell as in component-baseddatabaseandembeddedreal-time
systems.We found that every component-basedsystemhasits own notion anda defini-
tion of a component.Thus, the componentis to a large extent an arbitrarynotion, and
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is practicallyre-definedandre-inventedin eachsystem.However, thereareat leastthree
commonrequirementsthat a componentmustsatisfyin any component-basedsystem(i)
to bea composingpartof thesystem;(ii) to bereusablewith well-definedconditionsand
waysof reuse;and(iii) to havewell-definedinterfacesfor inter-connectionwith othercom-
ponents.Furthermore,rulesfor compositionof a systemmustbedefined,and(automated)
tools to assistthe developermustbe available. Although mostof the component-based
databaseandembeddedreal-timesystemsfocuson components,their solutionslack good
compositionrules,andautomateddevelopmentsupport.

4.2 Future work

It is evidentthatresearchfor embeddeddatabasesthatexplicitly addresses(i) development
anddesignprocess,and(ii) limited amountof resources,inheritschallengesfrom thetradi-
tional real-timesystems,embeddedsystems,andcomponent-basedsoftwareengineering.

Key challengesin component-basedsoftwareengineeringinclude:

G developinga componentthat canbe reusedasmany timesaspossible,andwould
conformto a standard,

G determininghow a componentshouldbeverified to obtainappropriateinformation
in orderto determinesuitabilityof acomponentfor aspecificsystem,

G definingrulesfor for thecompositionof a reliablesystem,which satisfiesspecifica-
tion requirements,

G analyzingthebehavior of thecomposedsystem,aswell asensuringtrade-off analysis
betweenconflictingrequirementsin theearlydesignstage,and

G providing adequateconfigurationsupportfor developmentprocess,in particularde-
terminingwhatis doableby toolsandwhatneedsto beleft to thedesigner.

Theaboveresearchchallengesin acomponent-basedsoftwareengineeringarefurtheraug-
mentedfor embeddedreal-timesystems.Theadditionalchallengesinclude:

G defininga componentwith predictablebehavior,

G determininghow inter-componentcommunicationshouldbe performed,andwhat
areappropriateinterfacesfor real-timecomponents,

G managingresourcessuchasmemoryusageandrequiredprocessingtimefor different
operationsof a component,possiblyon differenthardwareplatformsandoperating
systemplatforms,and

G determiningwhataretheappropriateanalysistools for analysisof systemresource
demands,andanalysisof thetiming propertiesof thecomposedsystem.

Embeddingadatabasein a real-timesystemalsobringsa setof challenges:

G determiningwhat type of the DBMS architectureis appropriate(library vs client-
server) to ensurepredictabilityin a real-timesystem,

G determiningthemostappropriatedatamodelfor theembeddeddatabase,and

G determiningwhich typeof interfaces,throughwhichuseris accessinga database,is
themostsuitable.

Finally, fundamentalresearchquestionswhen developingan embeddeddatabasefor an
embeddedreal-timesystemusingcomponent-basedsoftwareengineeringinclude:
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G defininga real-timedatabasecomponent,i.e., functionalityandservicesthata com-
ponentshouldprovide,andtemporalconstraintsa componentshouldsatisfy, and

G determiningwhich componentinterfacesareappropriate,andhow inter-component
communicationshouldbeperformed(messagepassingvs sharedmemory).

G integratingthecomposeddatabaseinto anembeddedreal-timesystem.

Our researchis focusedon providing an experimentalresearchplatform for building
embeddeddatabasesfor embeddedreal-timesystems.At ahigh-level, theplatformconsists
of two parts.First,weintendto developacomponentlibrary, whichholdsasetof methods,
thatcanbeusedwhenbuilding anembeddeddatabase.Initially, we will developa setof
componentsthatdealwith concurrency control,scheduling,andmain-memorytechniques.
At thenext step,wedeveloptoolsthat,basedontheapplicationrequirements,will support
thedesignerwhenbuilding anembeddeddatabaseusingthesecomponents.More impor-
tantly, wewantto developapplicationtoolsandtechniquesthat: (i) supportthedesignerin
thecompositionandtailoringof anembeddeddatabasefor a specificsystemusingthede-
velopedcomponents,wheretheapplicationrequirementsaregivenasaninput; (ii) support
thedesignerwhenanalyzingthetotalsystemresourcedemandof thecomposedembedded
databasesystem;and(iii) help the designerby recommendingcomponentsandmethods
if multiple componentscanbeused,basedon theapplicationrequirements.Further, such
a tool will help the designerto make trade-off analysisbetweenconflicting requirements
earlyin thedesignphase.

The componentsshouldcarry propertydescriptionsof themselves with information
about(i) whatserviceandfunctionality thecomponentprovides;(ii) whatquality of ser-
vice guaranteesfacilitatedby the component,e.g., techniquesmay be applicableto soft
real-timeapplicationsbut not hardreal-timeapplications;(iii) their systemresourcede-
mand,e.g,memoryusageandrequiredprocessingtime for differentoperationsandser-
vicesprovidedby a component,possiblyon differenthardwareplatformsin orderto sim-
plify interoperability;and(iv) compositionrules,i.e.,whichspecifieshow, andwith which
components,acomponentcanbecombined.

Our researchshouldgive betterunderstandingof the specificationof componentsto
be usedin an embeddedand real-timesetting. This includesfunctionality provided by
thecomponent,theresourcedemandrequiredby a componentwhenexecutedondifferent
platforms,andrulesfor specifyinghow componentscanbecombinedandhow theoverall
systemcanbecorrectlyverifiedgiventhateachcomponenthasbeenverified.
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Cyclic debugging is one of the most important and
most commonly used activities in program development.
During cyclic debugging, the program is repeatedly re-
executed to track down errors when a failure has been
observed. This process necessitates reproducible program
executions. Applying classical debugging techniques such
using breakpoints or single stepping in real-time systems
change the temporal behavior and make reproduction of
the observed failure during debugging less likely, if not
impossible. Consequently, these techniques are not
directly applicable for cyclic debugging of real-time
systems.

In this paper we present a novel software-based
approach for cyclic debugging of distributed real-time
systems. By on-line recording significant system events,
and off-line deterministically replaying them, we can
inspect the real-time system in great detail while still
preserving its real-time behavior.

�����
��: Determinism, debugging, monitoring,
probe-effect, testing, distributed real-time systems, replay.
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Testing is the process of revealing failures by exploring
the runtime behavior of the system for violations of the
specifications. Debugging on the other hand is concerned
with revealing the errors that cause the failures. The
execution of an error infects the state of the system, e.g.,
by infecting variables, memory, etc, and finally the
infected state propagates to outputs. The process of
debugging is thus to follow the trace of the failure back to
the error. In order to reveal the error it is imperative that
we can reproduce the failure repeatedly. This requires
knowledge of the start conditions and a deterministic
execution. For sequential software with no real-time
requirements it is sufficient to apply the same input and
the same internal state in order to reproduce a failure. For

distributed real-time software the situation gets more
complicated due to timing and ordering issues.

There are several problems to be solved in moving
from debugging of sequential programs (as handled by
standard commercial debuggers) to debugging of
distributed real-time programs. We will briefly discuss the
main issues by making the transition in three steps:

����������������	����
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���

In moving from debugging sequential non real-time
programs to debugging sequential real-time programs
temporal constraints on interactions with the external
process have to be met. This means that classical
debugging with breakpoints and single-stepping cannot be
directly applied since it would make timely reproduction
of outputs to the external process impossible. Likewise,
using a debugger we cannot directly reproduce inputs to
the system that depend on the time when the program is
executed, e.g., readings of sensors and the local real-time
clock. A mechanism, which during debugging faithfully
and deterministically reproduces these interactions, is
required.
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In moving from debugging sequential real-time programs
to debugging multitasking real-time programs executing
on a single processor we must in addition have
mechanisms for reproducing task interleavings. We need
for example, to keep track of preemptions, interrupts, and
accesses to critical regions. That is, we must have
mechanisms for reproducing the interactions and
synchronizations between the executing tasks.

Reproducing rendezvous between tasks have been covered
by Tai et al. [14], as have reproduction of interrupts and
task-switches using special hardware, Tsai et al. [17].
Reproducing interrupts and task switches using both
special hardware and software has been covered by Dodd
et al. [1]. However, since both the two latter approaches
are relying on special hardware and profiling tools they



are not very useful in practice. They also lack support for
debugging of distributed real-time systems, even though
Dodd et al. claim they do.
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The transition from debugging single node real-time
systems to debugging distributed real-time programs
introduces the additional problems of correlating
observations on different nodes and break-pointing tasks
on different nodes at exactly the same time.

To implement distributed breakpointing we either need to
send ���� or �������	
messages from one node to a set of
other nodes with the problem of nonzero communication
latencies, or we need �
������ agreed upon times when the
executions should be halted or resumed. The latter is
complicated by the lack of perfectly synchronized clocks,
meaning that we cannot ensure that tasks halt or resume
their execution at exactly the same time. Consequently, a
different approach is needed.

���������������	�
�����	���
�����

We will in this paper present a software based
debugging technique based on deterministic replay [8][9],
which is a technique that records significant events at run-
time and then uses the recording off-line to reproduce and
examine the system behavior. The examinations can be of
finer detail than the events recorded. For example, by
recording the actual inputs to tasks we can off-line re-
execute the tasks using a debugger and examine the
internal behavior to a finer degree of detail than recorded.

Deterministic replay is useful for tracking down errors
that have caused a detected failure, but is not appropriate
for speculative explorations of program behaviors, since
only recorded executions can be replayed.

We have adopted deterministic replay to single tasking,
multi-tasking, and distributed real-time systems. By
recording all synchronization, scheduling and
communication events, including interactions with the
external process, we can off-line examine the actual real-
time behavior without having to run the system in real-
time, and without using intrusive observations, potentially
leading to probe-effects [3]. Probe-effects occur when the
relative timing in the system is perturbed by observations,
e.g., by breakpoints put there solely for facilitating
observations. We can thus deterministically replay the task
executions, the task switches, interrupt interference and
the system behavior repeatedly. This also scales to
distributed real-time systems with globally synchronized
time bases. If we record all interactions between the nodes
we can locally on each node deterministically reproduce
them and globally correlate them with corresponding
events recorded on other nodes.

!��	
���	���

The contribution of this paper is a method for debugging
real-time systems, which to our knowledge is
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"���
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�
presents our system model and
�	�����
 �
 our method for real-time systems debugging.
�	�����
 � provides a small example to illustrate the
method. �	�����
� discusses some general issues related to
deterministic replay, and �	�����
   gives an overview of
related work. Finally, in �	�����
!, we conclude and give
some hints on future work.

$� �%�����	���&����

We assume a distributed system consisting of a set of
nodes. Each node is a self sufficient computing element
with CPU, memory, network access, a local clock and I/O
units for sampling and actuation of an external process.
We further assume the existence of a global synchronized
time base [2][4] with a known precision δ, meaning that
no two nodes in the system have local clocks differing by
more than δ.

The software that runs on the distributed system
consists of a set of concurrent tasks and interrupt routines,
communicating by message passing or via shared memory.
Tasks and interrupts may have functional and temporal
side effects due to preemption, message passing and
shared memory.

We assume a run-time real-time kernel that supports
preemptive scheduling, and require that the kernel has a
recording mechanism such that significant system events
like task starts, preemptions, resumptions, terminations
and access to the real-time clock can be recorded, as
illustrated in Figure 1. The detail of the monitoring should
penetrate to such a level that the exact occurrence of

TASK
Recorder

Time stamps

External process

I/O

Activation
System calls
Preemptions
Termination
Interrupt hits

RT-kernel
monitor
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preemptions and interrupt interference can be determined,
i.e., it should record the program counter values where the
events occurred. All events should also be time-stamped
according to the local real-time clock.

We further require that the recording mechanism
governed by the run-time kernel supports programmer
defined recordings. That is, there should be system calls
for recording I/O operations, local state, access to the real-
time clock, received messages, and access to shared data.

All these monitoring mechanisms, whether they reside
in the real-time kernel or inside the tasks, will give rise to
probe-effects [3][9] if they are removed from the target
system. That is, removing the monitoring probes will
affect the execution, thereby potentially leading to new
and untested behaviors. The probes should therefore
remain in the target system. It is consequently essential to
consider monitoring early in the design process and
allocate resources for it.

We further assume that we have an off-line version of
the real-time kernel (shown in Figure 2), where the real-
time clock and the scheduling have been disabled. The
off-line kernel with support by a regular debugger is
capable of replaying all significant system events
recorded. This includes starting tasks in the order
recorded, and making task-switches and repeating
interrupt interference at the recorded program counter
values. The replay scheme also reproduces accesses to the
local clock, writing and reading of I/O, communications
and accesses to shared data by providing recorded values.

'� ����	�������	�������������

We will now in further detail discuss and describe our
method for achieving deterministic replay. We follow the
structure in the introduction and start by giving our
solution to handling sequential software with real-time
constraints, and then continue with multitasking real-time
systems, and distributed multitasking real-time systems.

'(�������������������	�� �
����	�������	���

Debugging of sequential software with real-time
constraints, requires that the debugging is performed such
that the temporal requirements imposed by the
environment are still fulfilled. This means, as pointed out
in the introduction, that classical debugging with
breakpoints and single-stepping cannot be directly
applied, since it would invalidate timely reproduction of
inputs and outputs.

However, if we identify and record significant events in
the execution of the sequential program, such as reading
values from an external process, accesses to the local
clock, and outputs to external processes, we can order
them. By ordering all events according to the local clock,
and recording the content of the events (e.g., the values
read) together with the time when they occurred we can
off-line reproduce them in a timely fashion. That is, during
debugging we “short-circuit” all events corresponding to
the ones recorded by substituting readings of actual values
with recorded values.

An alternative to our approach is to use a simulator of
the external process, and synchronize the time of the
simulator with the debugged system. However, simulation
is not required if we already have identified the outputs
that caused the failure.

'($��������������	�	�� ����
����	�������	���

To debug multitasking real-time systems we need, in
addition to what is recorded for single task real-time
systems, to record task interleavings. That is, we should
record the transfers of control. To identify the time and
location of the transfers we must for each transferring
event assign a time stamp, and record the program counter
(PC).

To reproduce the run-time behavior during debugging
we replace all inputs and outputs with recorded values,
and instrument all tasks by inserting trap calls at the PC
values where control transfers have been recorded. These
trap calls then execute the off-line kernel, which has all the
functionality of a real-time kernel, but all transfer of
control, all accesses to critical regions, all releases of
higher priority tasks, and all preemptions by interrupts are
dictated by the recording. Inter-process communication is
however handled as in the run-time kernel, since it can be
deterministically reproduced by reexecuting the program
code.

Figure 3 depicts a schedule with the three tasks ", #,
and $. We can see that task " is being preempted by task
# and $. During debugging this scenario can be
reproduced by instrumenting task " with calls to the kernel
at "’s PC=% and PC=�.
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The above reasoning is a bit simplistic when we have
program control structures like loops and recursive calls,
since in such structures the same PC value will be
executed several times, and hence the PC value does not
define a unique program state. This can be alleviated if the
target processor supports instruction or cycle counters.
The PC will together with any of these counters define a
unique state. However, since these hardware features are
not very common in commercial embedded micro-
controllers, we will use the following alternative approach:

Instead of just saving the PC, we will save all
information stored by the kernel in context-switches,
including CPU registers (address and data), as well as
stack and program counter registers pertaining to the task
that is preempted. The entire saved context can be used as
a unique marker for the preempted program. The program
counter and the contents of the stack register would for
example be sufficient for differentiating between recursive
calls.

For loops, this approach is not guaranteed to uniquely
identify states, since (at least theoretically) a loop may
leave the registers unchanged. However, for most realistic
programs the context together with the PC will define a
unique state. Anyhow, in the unlikely situation, during
replay, of having the wrong iteration of a loop preempted
due to indistinguishable contexts, the functional behavior
of the replay will be different from the one recorded – and
therefore detectable; or if the behaviors are identical, then
it is of no consequence.

Any multitasking kernel must save the contexts of
suspended tasks in order to resume them, and in the
process of making the recording for replay we must store
contexts an additional time. To eliminate this overhead we
can make the kernel store and retrieve all contexts for
suspended tasks from the recording instead, i.e., we need
only store the contexts once.

Our approach eliminates the need for special hardware
instruction counters since it requires no extra support other
than a recording mechanism in the real-time kernel. If we
nonetheless have a target processor with instruction
counters or cycle counters, we can easily include these
counters into the recorded contexts, and thus guarantee
unique states.

To enable replay of the recorded event history we insert
trap calls to the off-line kernel at all recorded PC values.
During replay we consequently get plenty of calls to the
kernel for recorded PC values that are within loops, but
the kernel will not take any action for contexts that are
different from the recorded one.

An alternative approach to keep track of loop executions
is to make use of software instruction counters [10] that
count backward branches and subroutine calls in the
assembly code. However, this technique requires special
target specific tools that scan through the assembly code
and instrument all backward branches. The approach also
affects the performance, since it usually dedicates one or
more CPU registers to the instruction counter, and
therefore reduces the possibility of compiler
optimizations.

'('��������������	
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We will now show how local recordings can be used in
achieving deterministic distributed replay. The basic idea
is to correlate the local time stamps up to the precision of
the clock synchronization. This will allow us to correlate
the recordings on the different nodes. As we by design can
record significant events like I/O sampling and inter-
process communication, we can on each node record the
contents and arrival time of messages from other nodes.
The recording of the messages therefore makes it possible
to locally replay, one node at a time, the exchange with
other nodes in the system without having to replay the
entire system concurrently. Time stamps of all events
make it possible to debug the entire distributed real-time
system, and enables visualizations of all recorded and
recalculated events in the system. Alternatively, to reduce
the amount of information recorded we can off-line re-
execute the communication between the nodes. However,
this requires that we order-wise synchronize all
communication between the nodes, meaning that a fast
node waits up until the slow node(s) catch up. This can be
done truly concurrently using several nodes, or emulated
on a single node for a set of homogenous nodes.

)�������	�	��

In order to correlate observations in the system we need
to know their orderings, i.e., determine which observations
are concurrent, and which precede and succeed a
particular event. In single node systems or tightly coupled
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multiprocessor systems with a common clock this is not a
problem, but for distributed systems where there is no
common clock this is a significant problem. An ordering
on each node can be established using the local clocks, but
how can observations between nodes be correlated?

One approach is to establish a causal ordering between
observed events, using for example logical clocks [7]
derived from the messages passed between the nodes.
However, this is not a viable solution if tasks on different
nodes work on a common external process, without
exchanging messages, or when the duration between
observed events is of significance. In such cases we need
to establish a total ordering of the observed events in the
system. This can be achieved by forming a synchronized
global time base [2][4]. That is, we keep all local clocks
synchronized to a specified precision δ� meaning that no
two nodes in the system have local clocks differing by
more than δ.

 Figure 4 illustrates the local ticks in a distributed
system with three nodes, all with tick rate ∏&
 and
synchronized to the precision δ�
 There is no point in
having ∏
≤
δ*�because the precision δ�dictates the margin
of error of clock readings, and thus a ∏
≤
δ
would result
in overlaps of the δ intervals during which the
synchronized local ticks may occur [6]�

Consider Figure 5, illustrating two external events that
all three nodes can observe, and which they all timestamp.
Due to the sparse time base [5] and the precision δ,
we
end up with timestamps of the same event that differ by 1
time unit (i.e., ∏) while still complying with the precision
of the global time base. This means that some nodes will
consider events to be concurrent (i.e., having identical
time stamps), while other nodes will assign distinct time
stamps to the same events. This is illustrated in Figure 5,
where node 2 will give the events e1 and e2 identical time
stamps, while they will have difference 2 and 1 on nodes 1
and 3, respectively. That is, only events separated by more
than 2∏ can be globally ordered.

+� ���������,�����

We are now going to give an example of how the entire
recording and replay procedure can be performed. The
considered system has four tasks ", #, $, and '
 (Figure
6). The tasks ", #, and ' are functionally related and
exchange information. Task " samples an external process
via an analog to digital converter (A/D), task # performs
some calculation based on previous messages from task ',
and task ' receives both the processed A/D value and a
message from #; subsequently ' sends a new message to
#.

Task $ has no functional relation to the other tasks, but
preempts # at certain rare occasions, e.g., when # is
subject to interrupt interference, as depicted in Figure 7.
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However, task $ and # both uses a function that by a
programming mistake is made non re-entrant. This
function causes a failure in #, which subsequently sends
an erroneous message to ', which in turn actuates an
erroneous command to an external process, which fails.
The interrupt ( hits #, and postpones #’s completion
time. ( causes in this case # to be preempted by $ and
therefore becomes infected by the erroneous non-reentrant
function. This rare scenario causes the failure. Now,
assume that we have detected this failure and want to track
down the error.

We have the following control transfer recording for time
0 -16:

Together with the following data recording:

During debugging all tasks are instrumented with calls to
the off-line kernel at their termination, and preempted
tasks # and $ are instrumented with calls to the off-line
kernel at their recorded PC values. Task "’s access to the
read_ad() function is short circuited and feed with the
recorded value instead. Task # gets at its start a message
from ', which is recorded before time 0.

The message transfers from " and # to $ is performed by
the off-line kernel in the same way as the on-line kernel.

The programmer/analyst can breakpoint, single step and
inspect the control and data flow of the tasks as he or she
see fit in pursuit of finding the error. Since the replay

mechanism reproduces all significant events pertaining to
the real-time behavior of the system the debugging will
not cause any probe-effects.

As can be gathered from the example it is fairly
straightforward to replay a recorded execution. The error
can be tracked down because we can reproduce the exact
interleavings of the tasks and interrupts repeatedly.
Experience has shown that reproducing failures of the
exemplified kind is very difficult in practice. A
deterministic replay mechanism is thus an invaluable tool.

-� ����������

Schütz [12] has made three claims about deterministic
replay in general, which we briefly comment below:
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The amount and the necessary information required is of
course a design issue, and it is not true that all inputs and
intermediate messages must be recorded. The replay can
as we have shown actually re-execute the tasks in the
recorded event history. Only those inputs and messages
which are not re-calculated, or re-sent, during the replay
must be kept. This is specifically the case for RTS with
periodic tasks, where we can make use of the knowledge
of the schedule (precedence relations) and the duration
before the schedule repeats it self (the LCM – the Least
Common Multiple of the task period times.) In systems
where deterministic replay has previously been employed,
e.g., distributed systems [11] and concurrent programming
(ADA) [14] this has not been the case. The restrictions,
and predictability, inherent to scheduled RTS do therefore
give us the great advantage of only recording the data that
is not recalculated during replay.
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If a program has been modified, the relative timing
between racing tasks can change and thus the recorded
history will not be valid. The timing differences can stem
from a changed data flow, or that the actual execution time
of the modified task has changed. In such cases it is likely
that a new recording must be made. However, the
probability of actually recording the sequence of events
that pertain to the modification may be very low. As
explained earlier, debugging in general and deterministic
replay especially is not suited for speculative

1. Task " starts at time 0

2. Task " stops at time 2

3. Task # starts at time 4

4. Interrupt ( starts at time 6, and preempts task
# at PC=%

5. Interrupt ( stops at time 6,5

6. Task # resumes at time 6,5, at PC=%

7. Task $ starts at time 8, and preempts task #
at PC=�

8. Task $ stops at time 10

9. Task # resumes at time 10, at PC=�

10. Task # stops at time 10,3

11. Task ' starts at time 14

12. Task ' stops at time 16

1. Task " at time 1, read_ad() = 234

2. Task # at time 4, message from ' = 78



investigations of the system behavior. This is an issue for
regression testing, as explained in [15][16].
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The event history can only be replayed on the target
hardware. This is true to some extent, but should not be a
problem if remote debugging is used. The replay could
also be performed on the host computer if we have a
hardware simulator, which could run the native instruction
set of the target CPU. Another possibility would be to
identify the actual high-level language statements where
task switches or interrupts occurred, rather than try to
replay the exact machine code instructions, which of
course is machine dependent. In the latter case however,
we run into the problem of defining a unique state when
differentiating between iterations in loops.

.� ���	�����
 

There are a few descriptions of deterministic replay
mechanisms (related to real-time systems) in the literature:

• A deterministic replay method for concurrent Ada
programs is presented by Tai et al [14]. They log the
synchronization sequence (rendezvous) for a
concurrent program / with input 0. The source code
is then modified to facilitate replay; forcing certain
rendezvous so that / follows the same
synchronization sequence for 0. This approach can
reproduce the synchronization orderings for
concurrent Ada programs, but not the duration
between significant events, because the enforcement
(changing the code) of specific synchronization
sequences introduces gross temporal probe-effects.
The replay scheme is thus not suited for real-time
systems, neither are issues like unwanted side-effects
caused by preempting tasks considered. The
granularity of the enforced rendezvous does not allow
preemptions, or interrupts for that matter, to be
replayed. It is unclear how the method can be
extended to handle interrupts, and how it can be used
in a distributed environment.

• Tsai et al present a hardware monitoring and replay
mechanism for real-time uniprocessors [17]. Their
approach can replay significant events with respect to
order, access to time, and asynchronous interrupts.
The motivation for the hardware monitoring
mechanism is to minimize the probe-effect, and thus
make it suitable for real-time systems. Although it
does minimizes the probe-effect, its overhead is not
predictable, because their dual monitoring processing
unit causes unpredictable interference on the target
system by generating an interrupt for every event
monitored [1]. They also record excessive details of

the target processors execution, e.g., a 6 byte
immediate AND instruction on a Motorola 68000
processor generates 265 bytes of recorded data. Their
approach can reproduce asynchronous interrupts only
if the target CPU has a dedicated hardware instruction
counter. The used hardware approach is inherently
target specific, and hard to adapt to other systems.
The system is designed for single processor systems
and has no support for distributed real-time systems.

• The software-based approach 12)3 [1] is designed
for the HARTS distributed (real-time) system
multiprocessor architecture [13]. A general-purpose
processor is dedicated to monitoring on each
multiprocessor. The monitor can observe the target
processors via shared memory. The target systems
software is instrumented with monitoring routines, by
means of modifying system service calls, interrupt
service routines, and making use of a feature in the
pSOS real-time kernel for monitoring task-switches.
Shared variable references can also be monitored, as
can programmer defined application specific events.
The recorded events can then be replayed off-line in a
debugger. In contrast to the hardware supported
instruction counter as used by Tsai et al., they make
use of a software based instructions counter, as
introduced by [10]. In conjunction with the program
counter, the software instruction counter can be used
to reproduce interrupt interferences on the tasks. The
paper does not elaborate on this issue. Using the
recorded event history, off-line debugging can be
performed while still having interrupts and task
switches occurring at the same machine code
instruction as during run-time. Interrupt occurrences
are guaranteed off-line by inserting trap instructions at
the recorded program counter value. The paper lacks
information on how they achieve a consistent global
state, i.e., how the recorded events on different nodes
can consistently be related to each other. As they
claim that their approach is suitable for distributed
real-time systems, the lack of a discussion concerning
global time, clock synchronization, and the ordering
of events, diminish an otherwise interesting approach.
Their basic assumption about having a distributed
system consisting of multiprocessor nodes makes their
�������	 approach less general. In fact, it makes it a
hardware approach, because their target architecture
is a shared memory multiprocessor, and their basic
assumptions of non-interference are based on this
shared memory and thus not applicable to distributed
uniprocessors.
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We have presented a method for deterministic debugging
of distributed real-time systems. The method relies on an
instrumented kernel to on-line record the occurrences and
timings of major system events. The recording can then,
using a special debug kernel, be replayed off-line to
faithfully reproduce the functional and temporal behavior
of the recorded execution, while allowing standard
debugging using break points etc. to be applied.

The cost for this dramatically increased debugging
capability is the overhead induced by the kernel
instrumentation and by instrumentation of the application
code. To eliminate probe-effects, these instrumentations
should remain in the deployed system. We are however
convinced that this is a justifiable penalty for many
applications.

We are currently implementing an experimental real-time
kernel for evaluation of the presented debugging method,
but also investigate modifications of existing real-time
kernels to support deterministic replay.
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1. INTRODUCTION

Due to the dramatic evolution of electronics, machine industry faces a shift in machine design where more and
more functionality is included in the form of software on embedded distributed computer systems. In the first phase
of this transition, e.g. in the automotive industry, the new software based solutions were in principle stand-alone
systems, [23], in terms of both the computer system and the used set of sensors and actuators. To really benefit
from the potential of software based systems, the next phase in this development is that different, previously stand-
alone functions, will be interacting and cooperating so as to optimize the overall performance of a system such as
in the next generation of cars. Essential, in both an engineering and research context, is the resulting need for in-
teractions between control, mechanical, and software/computer/electronics engineers, [33]. This, in addition, ne-
cessitates that new approaches and facilities are provided for system modelling, analysis and tool support.

It often pays off to introduce an embedded distributed computer control system in new machinery primarily
because of the reduction in cabling, hydraulic hoses, mechanical linkage etc., but also due to the flexibility inherent
in digital solutions allowing e.g. diagnostics and improved control algorithms, [28]. In a machine embedded dis-
tributed control system, electronic hardware (microprocessors, ASICs, etc.) and control software is distributed in
the machine and connected to sensors and actuators. The topology of the distributed computer system is usually to
a large extent given by the structure of the machine with its sensors and actuators.

In the development of such systems, however, designers are faced with several ‘new’ problems. For example,
the design of the mechanics can no longer be isolated from the design of electronic control nodes because the nodes
need to be embedded into the machine together with their information and energy cabling.

The design issues depicted in Figure 1 form the primary background for this work.

Figure 1. Essential design issues for distributed real-time control systems
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ABSTRACT : Within the AIDA project a modelling framework has been developed to support design issues re-
lated to the implementation of control applications in embedded distributed computer systems. At a relatively high
level of abstraction the models describe the structure and timing behaviour of a control application (in terms of
functions and operational modes) and its implementation (hardware, operating system threads and resources). The
resource description allows the timing behaviour of the implementation to be analysed and fed back into the appli-
cation models. The models form the basis for a decentralization tool-set, where a first prototype is under develop-
ment. Examples of the models are given and the framework is compared to related modelling approaches.
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The horizontal arrows in Figure 1 indicate different design cases and disciplinary interactions. For example the
performance requirements of the control application could be used to dictate the choice of the execution policy in
the computer system. On the other hand, these policies may be given, thus constraining the solution space and po-
tentially requiring appropriate counter measures to be taken in control design (e.g. including compensation for
time-varying delays) or even the requirements to be reformulated.

The design issues of Figure 1 have the following overall characteristics

• The determination of a suitable degree of decentralization of the control system on the distributed computer
system depends on a number of sometimes conflicting factors including control performance, reliability, flex-
ibility and cost, forming a multi-objective design problem.

• The issues should be addressed in early design stages since they affect essential architectural properties of the
integrated computer control system. For example, the degree of decentralization of the control system is
highly related to the dimensioning of the computational and communicational resources of the distributed
computer system. Neglecting early performance analysis may lead to costly clashes in system integration. The
adoption of early performance analysis, on the other hand, enables the design of cost-effective solutions.

1.1. The AIDA project and the structure of the paper

Considering newer applications with increasing complexity, and with high reliability and safety requirements,
there is an increasing need to provide models and tools to support the designers of machine embedded control sys-
tems. Although several useful modelling approaches and computer aided tools exist for the design of control, soft-
ware and mechanical systems, such models and tools provide very little or no support when the applications are
implemented in embedded distributed real-time computer systems.

The projectAutomatic control in distributed applications (AIDA) was therefore started with the aim of devel-
oping a supporting modelling framework and a tool-set targeting analysis and synthesis related to the design issues
of Figure 1, see [2] for more background information on the project. The current status of the tool-set development
is that a modelling framework has been developed on which the tool-set will be based. The modelling framework
has been used in a few case studies, [28][22]. Based on the existing framework the implementation of a tool pro-
totype has just began.

The AIDA approach is far from a complete development method with supporting models and tools. Instead, the
whole concept is devoted towards solving a few concrete design problems that occur when a control application is
to be implemented in a distributed computer system. Thus, the AIDA models and related design guidelines,
[27][28], can be used to complement existing methodologies when appropriate. Issues such as timing analysis, the
provision of graphical views of system structure and timing behaviour should be useful not only in early conceptual
design stages but also in work related to the augmentation of already existing systems. The envisioned tool-set
could be seen as a real-time design complement to existing control engineering tools.

The interactions between the different design choices of Figure 1 are considerable, and have a great impact on
the final system performance. Therefore the AIDA tool-set is intended to support iterative engineering, answering
a number of “what if” questions put by the designer. Typical analysis results that the AIDA tool-set should be able
to provide are estimates of the timing behaviour of the control system given a particular implementation (alloca-
tion, processors, scheduling policies etc.). Example results include estimates of feedback delays, delay variations,
jitter in sampling periods, and the utilization of processor and communication links.

Such results can be used to answer a number of different design questions. For example; With fixed hardware
and application structures, what performance can be achieved by (i) changing the hardware components, (ii) chang-
ing policies for scheduling, clock synchronisation etc. Apart from analysis, synthesis functionality such as (semi)
automatic allocation and control system restructuring are also planned to be included.

The purpose of this paper is to give an overview of the results so far, primarily dealing with the modelling
framework. Section 1.2. gives a brief overview of related research projects with respect to tool support. Section 2
describes the developed modelling framework including examples of the usage of the models. Section 3 discusses
other existing modelling approaches and their relation to the AIDA models. Finally section 4 provides conclusions
and discusses further work in the project.

1.2. Related research efforts on tools

State of the art computer aided control and software engineering (CACE and CASE respectively) tools do sup-
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port rapid prototyping for specific distributed computer systems. The tool-sets provided by the companies Math-
works and dSPACE enable control system design, analysis and simulation, code generation from the graphical
block diagrams of Simulink, “transparent” implementation of generated code on DSPs, and real-time operator in-
teraction and logging, [14]. Transparency here refers to the fact that the user manually specifies allocation of
Simulink blocks to processors, the physical configuration of which is also described in Simulink. The required
communication code is then included transparently. The resulting code is managed by a real-time executive.

While such tools are extremely useful for control designers, there is still a large amount of functionality missing
with respect to implementation analysis. This holds for both related control and software engineering tools which
do not allow exploration of implementation alternatives, for example with respect to resource structures and exe-
cution strategies. Nor do they provide any guarantee that an implementation will work with respect to real-time
behaviour.

Out of a number of related research tools we have found the three following to be highly interesting:

• The Development Framework, [4], incorporates some of the functions and a tool structure similar to that we
envision. The control design is specified in Simulink and then transferred to a commercial CASE tool (Soft-
ware through Pictures) which models can be analysed and transformed by other tools (clustering, replication).
The combination of CACE and CASE technology facilitates multi disciplinary project development and
makes use of the strong points of the respective modelling and analysis features. Hardware modelling, execu-
tion and communication strategy considerations appear to be weak points in the Development Framework.

• The GRAPE tool-set, [18], is developed for digital signal processing systems and has an interesting tool struc-
ture, including tools for allocation, scheduling and restructuring of the computer hardware. Only point to point
architectures are considered.

• An interesting effort is the Parallel Scalable Design Tool-set (PSDT) from Honeywell research. PSDT is a
CASE tool specifically addressing implementation in distributed and parallel real-time systems, [5].

In the real-time research community, a number of prototypical tools have been developed for schedule simula-
tion, timing analysis and schedule generation, [10][31][15][3]. The amount of theoretical research work is vast in-
cluding work on general purpose parallel processing, parallel and distributed real-time systems, and related work
in control engineering. One important shortcoming of the supporting models is that they, with a few rare excep-
tions, do not directly address the timing constraints of sampled data systems, [22][28].

2. THE MODELLING FRAMEWORK

2.1. Requirements on the modelling framework

The overall purpose of the models is to support the design of distributed real-time control systems by providing
means for describing system structure and timing behaviour, and by including information to support analysis and
synthesis. The ambition has been, and is still, to fill in the gaps in terms of missing models and tools. Commercial
tools and research provide good support for analysis and simulation of continuous-time and discrete-event dynamic
systems. Lacking support for behaviour modelling with respect to timing behaviour (e.g. precedence, parallelism,
triggers, durations etc.) and high-level modelling of resource management is therefore the primary focus.

The basis for developing the modelling framework was to determine the information needed in the context of
the early stages of design of distributed control systems. A major challenge in developing the framework concerns
the provision of adequate and different abstraction levels taking into account the analysis needs of industrial de-
signers and the modelling precision needed. Consider for example the implementation of a data-flow over two
processors and a serial network. A high level of abstraction is to simply model this network as a time-delay with
potential data-loss, thus providing an abstraction suitable for control engineers. Increasing detail would take into
account essential resource management (e.g. processor and communication scheduling) such that the timing be-
haviour of system functions can be analysed sufficiently well, providing a suitable high level of abstraction for soft-
ware and computer engineers.

The following requirements on the models were initially formulated:

• The models must support the multidisciplinary characteristics of the design problems where at least both com-
puter (software and hardware) and control engineering is involved. To do this the modelling framework must
provide suitable abstractions, views and links between these.
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• The model abstractions should be on a relatively high level to support ‘architectural decisions’ that directly
affect the system structure and timing behaviour, and thereby a number of essential system properties such as
control system performance (as a function of the system timing), extensibility, testability etc.

• The aim is to give support for the description of realistic control systems. This implies the need to be able to
model time- and event-triggered, multirate, control systems with different modes of operation. These control
systems are to be implemented on distributed heterogeneous hardware with both serial and parallel communi-
cation links interconnecting the processing elements. Furthermore the processing elements can be placed on
different locations in the mechanical structure, hence the sites of sensors and actuators should be modelled as
well as the assignment of processing elements to such sites. There is also a need for modelling the various sys-
tem specific overheads, scheduling policies, error handling etc.

• Since design could be based also on existing systems or components, the models must allow description of
earlier implementations with many already taken and hence fixed design decisions.

2.2. The structure of the modelling framework

The AIDA modelling framework is outlined in Figure 2. The models are divided into three separate parts,ap-
plication, computer system andmechanics.The application models describe the functional structure, data and con-
trol flows as well as timing requirements of the motion control system. Furthermore, the functions and the inter
function communications that constitute the smallest building blocks of the application models are described in
detail in terms of resource requirements. In the computer system models, the threads (no distinction is made here
between threads and processes) and their interconnections resulting from partitioning, are described together with
the computer hardware. Operating system behaviour, scheduling policies etc. are also defined. The mechanical
model describes the sensors, actuators, drive units and other elements that form the interface between the computer
system and the controlled process. One important attribute of the mechanical models is the physical locations of
such interfaces. Currently there is no timing behaviour description implemented for the mechanical parts, instead
time-constants and delays are given as attributes at the component level. No continuous and discrete-time behav-
iour is described for the mechanical system since this would include modelling of mechanical dynamics; for this
there already exists good models and tools. The AIDA modelling framework is more thoroughly described in [22].

2.3. A case study used to describe a representative subset of the AIDA models

A sub-set of the models will be briefly described in the coming sections with simple examples to give a flavour
of, and an introduction to the modelling framework. The emphasis in the description is on parts of the application
and computer system models. The description is based on a case study in which models of the control system of a
four legged vehicle were derived. In the case study, fixed vehicle mechanics is assumed as is the design of the con-
trol application. The vehicle is currently being built at the Mechatronics lab.

Application models
Computer system models:
Software and Hardware

Mechanical models

Overall
behaviour

Modes of Operation

Structure Functional block diagrams Computer hardware structure

Process structure diagram

Location model

Interface components placement

Timing
Behaviour
Specifica-
tion &
Implementa-
tion

Timing and Triggering Diagram
(TTD)

Implementation TTD

Inter Process Communications
IPC model, Communication resources,
Communication resource chains

Processes: Process TTD and Process internal TTD

Computer system:
Operating system, Scheduling policy,
Synchronisation

See comment in section 2.2.

Component
Descriptions

Detailed function description
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HW characteristics:
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SW characteristics: Implemented Processes

Interface component model

Environment interfaces model

Figure 2. Overview of the structure of the AIDA modelling framework
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In the complete case study, described in [22], two choices of hardware architectures are investigated. Based on
the developed application and computer models a coarse analysis of the timing behaviour of the implementation is
performed.

2.4. Application models

The application is the control design as it is originally modelled in for example Simulink. In the AIDA appli-
cation models, the control design is further specified with three basic types of diagrams: The macro mode transition
diagram, the functional block diagrams and timing and triggering diagrams.

The Macro Mode Transition Diagram (MMTD) describes the different high-level control modes of the system.
An example is the take-off, cruising and landing of an aircraft. Each mode can be expected to use substantially
different controllers that are best described separately.

The Functional Block Diagrams describe the data-flows between the different control functions within each
macro mode. Note that the emphasis is on describing the functional and implementation independent structure of
the control application with its functional blocks and data-flows. No execution semantics (e.g. execute a block
when data is available) is associated with a block diagram. Instead, precise timing and triggering specifications are
given in separate diagrams.

Figure 3 shows a part of a functional block diagram for the control system of the vehicle mentioned above. The
torque control loop of one joint of the vehicle’s four legs is shown. The diagram shows how functionsS, TC and
A are connected to perform a sample (S), compute (TC) and actuate (A) loop. The position samples include meas-
ures of two joint angles (on both sides of the flexible joint), used byTC to compute the joint torque.

Data-flows to functions not shown in Figure 3 are indicated by dashed lines. Those data-flows correspond to
the position sample,pos, sent to an observer function higher in the hierarchy and the reception of a torque reference
signal,torq, from a higher level controller.

The behaviour of the application in terms of timing, triggering and precedence is modelled in TTDs (Timing
and Triggering Diagrams). The same functions are used as building blocks as in the functional block diagrams, but
the TTDs separate functions that are executed with different periods into activities. A TTD describes the control
flow of the activities within each macro mode. Precedence relations, time and event triggers are shown and toler-
ances can be given for the control delays, jitter and synchronisation. This is useful to specify the requirements that
the control design poses on the implementation.

With the example functions in Figure 3, a TTD can be specified. It is assumed that all functions in the torque
control loop are specified to be executed with the same frequency (period) but that the actuate function should be
triggered 0.5ms after the sample function in order to achieve a constant control delay. Hence, the functions are
collected into one activity, described by one single TTD. It is further assumed that there are requirements on the
admissible jitter of the sample function, as well as on the variation in control delay. These requirements are shown
in the TTD as specifications on the time trigger. A time trigger is defined as follows: < Type :  Source ,  Peri-

od:[ Delay ],  Tolerance >. TheType describes if it is a time, event or loop trigger (TT, ET or LOOP). The
source indicates what the source of the trigger is (a clock for time triggers and an event for event triggers).Period
gives the period of a time trigger and minimum period of an event trigger.Delay is an optional specification of the
delay (phase) of the trigger compared to other triggers having the same source. Finally, thetolerance defines a tol-
erance of what variation is admissible from the specified triggering time.

Figure 4 shows the TTD for the torque control loop in Figure 3. The precedence relations between the functions
are shown as well as the explicit triggers that both the sampler (S) and actuate (A) functions are given. It is specified
that the actuation should be done 0.5ms after the sampling. Both the sample and actuate functions are allowed to

Figure 3. Functional block diagram for the torque control loop.
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deviate with at most 100µs from their specified start times

The double rectangle defines arate interfacing function which is used to describe asynchronous (non blocking)
communication between different activities. The meaning is that the sample function sends data (pos in Figure 3)
to an observer function,Obs, that belongs to the parts of the control system that are not modelled here. The observer
function should however be part of some other TTD in a complete system modelling. In a similar manner, a rate
interfacing function (taggedTC) is used in some other TTD (which is not given here), to describe the communica-
tion associated with the data-flow,torq, in Figure 3. In that case,TC is the receiving function.

A timing and triggering diagram can describe parallel paths as well as alternative paths, selected at run-time. A
path that is not necessarily executed every time the activity is triggered is called a micro mode. Two complemen-
tary micro modes may e.g. be the use of a fast linear controller versus using a better but slower non-linear one. It
should be noted that the arbitration between different micro modes is not described at a low level with e.g. if-then-
else constructs. Micro modes are included only to indicate possible execution paths in an activity, not to show how
the micro modes are selected.

One additional timing and triggering diagram is used to describe the timing that results from an implementation.
The Implementation TTD (I-TTD) is expected to be the result of some analysis tool within the AIDA tool-set. An
I-TTD is similar to its corresponding original TTD but with the difference that extra delay functions have been
included to show the effects of implementation. Furthermore, the triggers are specified with their achieved values
on jitter, delays and period. The added delay functions include delays originating from e.g. communications and
scheduling effects such as the sequential execution of concurrent activities.

Figure 5 shows an I-TTD for the torque control activity in Figure 4. The delay functionsD1 andD2 have been
included and the values specifying the triggers have been exchanged for some estimated values obtained by anal-
ysis.

At the functional level of the application models, the functions and the data-flows are described with worst case
execution times, communication requirements etc. Hence, the functions are not described in detail, only their re-
source needs are specified.

2.5. Computer System

The computer system models include specification of the computer hardware, the processing elements and their
inter connecting communication links. Also, the operating system is described in terms of scheduling policies, dis-
patching time, clock tick period etc.

When the application has been partitioned into processes, the connections (communications) between the proc-
esses are shown in a process structure diagram.

Inter process communications (IPCs) are modelled with communication resources (message queues and trans-
mitters) that specify e.g. blocking times of message queues and scheduling policies of the communication links.

Figure 4. Timing and triggering diagram for the torque control activity.

Figure 5. Implementation timing and triggering diagram for the torque control activity.
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The communication models can later be used for analysis of communication latencies.

Assume that the example activity shown in Figure 4 is partitioned into two processes,P-STC andP-A. The par-
titioning may correspond to e.g. a distributed implementation with the sample and computation functions at one
processor, and the actuation at another.P-STC contains the sample (S) and computation functions (TC), andP-A
contains the actuation function (A). Also assume that another process,P-X, corresponding to all other activities in
the system, is defined. The corresponding process structure diagram is shown in Figure 6. Note that three IPCs are
defined:pos, torq andctrl. Each of the IPCs are data-flows in Figure 3 that “cross process borders”. For simplicity,
the IPCs are here given the same tags as their corresponding data-flows in the functional block diagram.

The timing of the processes is specified in a Process timing and triggering diagram (P-TTD) that looks like a
regular TTD only that it specifies the timing and triggering of the processes and not of the functions. In Figure 7,
a P-TTD is shown that defines the requirements of the process timing.

The same types of triggers are used as in the regular TTD but no rate interfacing functions are included. Instead,
the correspondence to rate interfacing functions, the inter process communications, are visible in the Process inter-
nal timing and triggering diagrams (Pi-TTD). A Pi-TTD defines the control flow internal to a process with the func-
tions from the original TTD as building blocks. Also the IPCs are visible as blocks defining the reception and
sending of a message. Furthermore, any functions that are allowed to execute in parallel according to the original
TTDs, are shown in sequence. The blocks corresponding to the sending and the reception of a message are associ-
ated with communication resources belonging to some communication model. The communication resource blocks
are shown as rectangles in the Pi-TTD.

In Figure 8 the Pi-TTDs for the processesP-STC andP-A are shown. The first of the diagrams shows the
P-STC process with visible blocks for interfacing the sender and receiver communication resources. Sending of a
position message (pos) is shown as the blockS_pos, reception of torque reference is taggedR_torq etc.

Note that all the diagrams shown in this example are specification diagrams used to specify a required behav-
iour rather than showing the results of an implementation. Just like in the TTD and I-TTD case however, the dia-

Figure 6. Process structure diagram for the three processes in the example.

Figure 7. Process timing and triggering diagram for the three processes in the example.

Figure 8. Process internal timing and triggering diagrams for processP-STC andP-A.
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grams can be used with achieved values of the time triggers to show a result rather than a specification. In that case,
triggers are assigned to the starting block of each process. Compare Figure 8 where the requirement specification
is given for the timing of the actuate function.

To describe the behaviour of IPCs the AIDA models use communication resources (CRs) and chains of such,
called communication resource chains (CR-chains). These provide the ability to describe various implementations
ranging from an RTOS message queue to a complex communication system including software and networks. A
communication resource is an entity used for communication. It can be either a message queue with an associated
data storage and arbitration policy, or it may be a transmitter which does not store data. Typically, a register in a
communication device is modelled as a one place buffer (in AIDA terms, a message queue of length one) and the
communication media is described by a transmitter resource. A communication resource may be used in several
CR-chains associated to different IPCs. This makes it possible to model priority arbitration between different mes-
sages using the same resource(s). The CR-chains also make it possible to describe priority arbitration in several
levels (one in each resource). A CR-chain starts and ends with message queues to which the sending process writes
and from which the receiving process reads the data (called sender and receiver resource respectively).

Figure 9 shows the CR-chain for thectrl IPC from Figure 6 when the IPC is implemented over a Controller
Area Network (CAN).Mailbox 1 is a message queue resource describing the buffer in the CAN communication

chip of the sending node. TheP-STC process ‘writes’ data toMailbox 1 when it wants to send data via the corre-
spondingctrl IPC. TheCAN controller 1 resource is a transmitter that performs arbitration on the available mail-
boxes that have data to send. TheCAN bus is likewise a transmitter resource that, in priority order, selects one of
the messages served to it by its connected CAN controllers. The last communication resource,Mailbox 2 in the
described chain, is the buffer in the CAN chip at the receiving node.Mailbox 2 is modelled as a message queue
from which the receiving process (P-A) reads the data.

3. QUALITATIVE COMPARISON WITH RELATED MODELLING APPROACHES

The purpose of this section is to provide another perspective to, and evaluation of, the AIDA models. Three
interesting modelling approaches have been chosen here. These are representative in that they represent efforts
from different ‘communities’ and methods including ‘object-oriented analysis and design’, ‘structured analysis and
design’, and ‘real-time scheduling research’. Some further comments on these choices and their relations to other
modelling approaches are given below. The selection criteria are discussed in section 3.2.

3.1. Modelling approaches selected for comparison

• RT-UML  - Real-time extensions to the Unified Modelling Language. UML is the result of a recent effort in
the object oriented community to develop a unified (object-oriented) modelling language with a graphical
notation, [29][30]. Consequently, UML incorporates most of the models and diagrams found in previously
developed OO methods. The large UML repertoire includes diagrams for describing use cases, class/object

Figure 9. Visual description of a communication resource chain for an IPC using a CAN network.
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structures and relations, statecharts (state transition diagrams) and activity diagrams, sequences, collaboration,
components and hardware deployment. UML also incorporates three extensibility mechanisms to extend or
tailor the modelling capabilities. These mechanisms include constraints (rules applied to elements of a model),
tagged values and stereotypes (with which new model elements can be created and associated with user-
defined icons). UML is claimed to have very broad applicability also encompassing at least real-time event-
triggered systems, [30][26]. One major question for research still appears to be to what extent object orienta-
tion and UML are sufficient for modelling hybrid real-time control systems. It is relatively well accepted that
object orientation in general, see e.g. [31][6][25], and UML in its current form, see e.g. [20], are not sufficient
for real-time systems. Limitations include the specification of timing constraints, the handling of periodic
time-triggered systems, and the definition of specific computer system configurations. This is also being man-
ifested by the ongoing work within the Object Management Group to define real-time extensions for UML. In
this comparison the basis is the use of UML for real-time systems as described in [9] and the real-time exten-
sions proposed in [20] and other related articles, [1].

• RTT - Real Time Talk. RTT is a design framework for developing distributed real-time applications, [10].
RTT is based on object orientation with the premise of reuse and modularity advantages. To support real-time
systems a number of notions are incorporated into an extended object oriented framework. These notions
include explicit descriptions of synchronization (ordering the execution of objects), timing requirements of
individual and interacting objects, and communication between objects. RTT encompasses programming in
the large and in the small, and includes considerations on how to combine soft and hard real-time software. In
terms of timing models and analysis, RTT is closely linked to the real-time scheduling theory community.
DEDOS, [31], and HRT-HOOD, [6] are two approaches that are related since they also extend traditional
object oriented concepts with data- and control-flow specifications. As in RTT, timing analysis based on real-
time scheduling theory is incorporated in the design guidelines.

• DARTS/DA - the design approach for real-time systems extended for distributed system, [12][13]. DARTS/
DA builds upon the structured analysis and design (SA/SD) methods but extends these for concurrent distrib-
uted systems. In traditional SA/SD, the analysis and design steps are accompanied by a set of diagrams includ-
ing hierarchical data-flow diagrams (DFD) which on the highest level describe the system context. The
structure of a distributed computer system and of operating system processes are also described by DFD’s.
The DFD’s may include control-flow (divided into triggers, enable and disable events) and control transfor-
mations. Additional models include state transition diagrams, data dictionaries, mini-specifications of primi-
tive transformations, and structure charts showing the system decomposition into modules. DARTS/DA, and
refined versions of it [13], elaborate ‘task architecture diagrams’ (i.e. the process structure and the inter-proc-
ess communication principles) and also modularization into objects (information hiding modules), thus
attempting to bring the structured and object oriented approaches together.

3.2. Selection of comparison criteria

To support the design issues targeted in this paper a modelling framework must enable multidisciplinary and
concurrent development. It must enable high-level design trade-offs to be made and evaluated from both control
and computer system perspectives. There is then a need to incorporate suitable viewpoints, relations and links be-
tween these views, see e.g. [32]. In addition, it is essential that the specification languages and models (in textual
or graphical form) capture the designer’s conceptual view of the system with minimum effort, [11][21]. I.e., the
models should be natural to use and preferably directly and explicitly support the features that the designer wishes
to model.

Several definitions and classifications of views exists. Some classifications focus on the users and/or subsystem
viewpoints. This is for example the approach taken in the COntrolled REquirements expression requirements anal-
ysis method. This is related to the AIDA modelling parts, where domain views, corresponding to different disci-
plines are provided. A closely related classification of views is given by the “4+1 view model of architecture”, [16].
The views include thelogical view (describing system functionality and structure in terms of objects and classes),
theprocess view (describing concurrency and communication), thedevelopment view (describing the organization
of the actual software modules), thephysical view (describing the mapping of the software on the hardware), and
thescenario view, which is used to support architectural design and to indicate essential requirements.

Another classification is given in [21] where a view is said to describe a system with respect to some set of
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attributes or concerns. The following views are defined:system purpose (i.e. requirements),form (i.e. structure),
behavioural/functional, performance, data, andmanagerial (process related).

Which are the most essential views? This probably to a large extent depends on the type of system, compare
with a database vs. a real-time control system. According to [21] thesystem purpose andform views are in general
the most important ones. Given certain critical system requirements, models to analyse their satisfaction are also
essential. For distributed real-time systems and with the focus of this paper it follows that the requirements and
structure criteria (and views) need to be complemented by performance models that enable analysis and prediction
of the timing behaviour of a particular system.

Based on the preceding discussion the following criteria for qualitative comparison have been chosen:

• Timing behaviour - can the specified timing as well as the implemented timing behaviour be described with
relation to system functions?Timing behaviour is one of the key attributes and requirements addressed in this
evaluation. There is a need to express relevant timing requirements for the targeted time- and event-triggered
control systems, such as response and feedback delays, sampling periods, allowable jitter, synchronization and
precedence. There is also a need to describe the timing behaviour of an implemented system at an application
abstraction level, i.e. in terms of the actual or predicted delays and timing variations that are introduced due to
computations, communications, blocking, non synchronous activities, and interference. Due to the different
focuses of the evaluated models the distinction between time- and event-triggered systems is included. Note
that time-triggered here primarily refers to the need to describe multirate systems where functions (objects or
transformation) executing at different periods communicate. Behavioural descriptions of processes (threads),
primarily in terms of the communication primitives (asynchronous vs. synchronous), are not included in the
comparison. Such descriptions are available in mixed structural and behavioural descriptions in UML and
DARTS/DA in terms of concurrency and data-flow diagrams.

• Structure:Given the targeted design issues it is clear that the structures corresponding to the application func-
tions, threading in the software implementation, the hardware and environment interfaces need to be
described. Links (mappings or allocations) between these structural representations must be supported. Hier-
archies are an important part of structural descriptions and offer well known advantages in dealing with sys-
tem complexity thereby allowing a designer to focus on different abstractions and subsystems at a time, [19],
[11]. Different types of hierarchies exist; the most common is that of decomposition or refinement of objects
(components, functions etc.) to describe the details of the objects in terms of lower level objects within the
same domain. Compare for example with a computer hardware structural description starting at the network
level, where each network is composed of nodes and communication links, and where each node is composed
processors and peripherals, [8]. Nancy Leveson, [19], in the context of system specifications, discusses
another type of hierarchy termed “means-ends hierarchies”.According to [19] these have been shown to play
an important role in the understanding of complex systems. “Ends” refers to “upper levels” and describes
goals, whereas “Means” refers to lower level implementation descriptions. Such a hierarchy is applicable both
to the structure (compare logical vs. process views) and to the timing behaviour.

• Resource management - evaluating the performance models with respect to timing analysis:Under the head-
ing ‘resource management’ we group policies and mechanisms, in software and hardware, used to implement
scheduling, process communication, interprocessor communication and synchronization. Related information
includes descriptions of the provided processing and communication performance (e.g. overhead and effective
bits/s in communication). Such descriptions are essential to be able to predict the timing behaviour of an appli-
cation. Other important pieces of information for timing analysis, such as requirements on processing (e.g. the
number of and type of operations required) and communication (e.g. messages/s) should be contained within
the application description.

• Graphical notation: evaluating the model diagrams for the engineering of distributed real-time systems.
Models in an appropriate graphical format are essential for describing complex systems (cmp. with [7]). This
point should be seen as a general assessment of each of the models regarding the ‘maturity’ of the available
graphical notations. This criteria is emphasized by the importance of models for communication, for example
to provide an understanding of a system under construction, [21].

• Guidelines: do guidelines exist that indicate how the models can be used in the design of distributed real-time
systems? Given a modelling approach there is a need for guidelines on how to use the models in system
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design. A modelling approach may be closely associated with a particular design philosophy or more stand-
alone. The emphasis here is to judge whether available guidelines do provide support for the design issues of
Figure 1. A guideline should describe how the models can be used to represent the structure of the system, the
requirements on the system, the timing behaviour of the implemented system and how the model contents can
be used for analysis and other design activities. As for the timing behaviour criteria a distinction between
time- and event-triggered systems is included here.

3.3. Qualitative comparison and discussion

For the related modelling approaches, the comparison should be seen as an attempt to answer the following
question; How well does the modelling approach support the design issues of Figure 1? Although the comparison
is qualitative it is of interest for the AIDA project also for other reasons. So far the AIDA project has focused on
the multidisciplinary aspects of the models and their content rather than on the graphical notation and the language
for describing the models. I.e., a further question is if the AIDA models can benefit from the other approaches in
this respect.

Despite the fact that the modelling approaches chosen for comparison in some sense target distributed real-time
systems, they are still rather different. The AIDA modelling framework is targeted to support certain specific de-
sign issues for real-time control systems. UML on the other hand is a “general purpose” modelling language with
software origin that has been extended to better handle distributed real-time systems. Also DARTS/DA is more
general in nature compared to AIDA. There is a closer similarity between AIDA and RTT since they are both tar-
geted towards distributed real-time control systems, although AIDA is more focused on the modelling framework
and RTT on software design.

The comparison is summarized in Figure 10 where, for each approach, full, partial or little/no support for the
comparison criteria is indicated through black, gray and white bullets respectively.

Timing Behaviour: Time-triggered (TT) vs. Event-triggered (ET) systems

• The AIDA timing and triggering diagrams describe the required and implemented timing behaviour, cmp.
with section 2. The models are developed primarily with TT multirate systems in mind. Limited support is
provided for event-triggered parts where overall timing requirements on event-sequences can be specified. No
details such as conditions on state transitions can be specified, thus the behaviour of micro-modes and modes
can not be described in detail.

• UML can describe timing behaviour through sequence, activity and state transitions diagrams. In the real-time
extensions of UML, the concept of modes and mode transitions, and timing information in sequence diagrams
have been included, [1][20]. With the extended sequence diagrams it is principally possible to describe both
the required and implemented timing behaviour. The basic modelling concepts, however, are developed for
event-triggered object oriented systems. It remains to be shown how useful these diagrams are for time-trig-
gered multirate systems. Compare with the pinpointing of this problem by ObjectTime, [25].

Figure 10.  Qualitative comparison of modelling approaches for distributed real-time systems
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• DARTS/DA expresses requirements on timing textually. The behavioural model is based on data-flow dia-
grams extended with a discrete-event formalism. The data-flow diagrams thus combine pure data-flow with
control flow, where the control transformations are linked to finite state machine descriptions. The data-flow
diagrams have associated triggering semantics, transformations are triggered to execute upon the arrival of
data. These descriptions are used for requirements and may encompass time- and event-triggered systems
although they do not seem to have been applied to multirate systems. There are no explicit means or methods
to describe the implemented timing behaviour.

• TheRTT  programming model is hierarchical and in descending order composed of modes, use-cases, tasks
and objects. Tasks are used to encapsulate objects, and provide the thread of control and communication for
the object. Timing behaviour is described through extended scheduling theory models; precedence graphs
define the order in which tasks execute, the timing attributes of individual tasks (execution time, release time
relative period and deadline relative period), constraints among tasks such as mutual exclusion, and the timing
attributes of the precedence graphs (period time). Although multirate systems can be specified this is done in
terms of task oriented timing constraints rather than application level timing requirements, [24]. On the other
hand, the model is formal and an off-line scheduler tool has been developed and successfully commercialized.
The description is focused on time-triggered systems for which off-line scheduling is used in the implementa-
tion. There is currently no way to fed back results from timing analysis to describe the actual behaviour of
implemented tasks.

Structure:

• AIDA  includes provisions for the required structures (application functions, threading, the hardware and envi-
ronment interfaces). The different hierarchical relations however need to be further developed.

• UML with its real-time extensions, has the models needed to describe an object-oriented structure, threading
in the software implementation, the hardware and environment interfaces. Again, however, the basic model-
ling concepts are developed for event-triggered object oriented systems where functionality and transforma-
tional views traditionally have been de-emphasised. One slight problem with the object and class views are
that they really constitute integrated views combining a number of hierarchies; aggregation, inheritance and
associations. Aggregation is a decomposition of functionality (or composition of objects) whereas inheritance
defines an additional class hierarchy. Associations, on the other hand, can be used to model for example inter
object communication, i.e. data-flow. Although all these views are valuable it is difficult to see what a control
engineer would gain from having them all integrated. Nevertheless, a tool could of course in principle solve
this problem by only showing associations corresponding to data-flow, thus in principle converting the class
diagram to a functional block diagram. Alternatively, a collaboration diagram could be used to show func-
tional structure, [1]. Further evaluation is required to show that UML is useful for time-triggered control sys-
tems and that the models can satisfy the “conceptual views” of designers.

• DARTS/DA provides models for describing a so called physical model, i.e. hardware and interfaces, and a
threading structure. The functional structure is given through the combined behavioural data-flow and control-
flow diagrams. Links between these structures are supported. This provides a relatively complete view of the
required structures.

• RTT describes the object structure and object communications and the task structure (for time-triggered
threads). No hardware structure is given.

Resource management:

• AIDA  focuses strongly on this issue, compare with Figure 2. None ofRT-UML, DARTS/DA and RTT come
close to these types of models.RTT  provides partial information here; for the hard-real time model there is
ample of information regarding timing requirements and the off-line scheduling. However, other aspects are
very limited.

Graphical notation:

• In AIDA  specific work on a graphical notation has mainly focused on the timing and triggering diagrams.
These were developed to complement functional block diagrams and to separate timing behaviour from struc-
tural specifications. BothUML  andDARTS/DA lean on diagramming concepts that have been used for quite
some time although in different notational versions. ForUML  there is still work to do on the real-time exten-
sions. As for AIDA,RTT  provides a graphical notation only for parts of the models.
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Guidelines: Time-triggered (TT) vs. Event-triggered (ET) systems

• ForAIDA  this is a strong point with respect toTT systems although there is as yet no single condensed guide-
line. The research in [22][24][27][28] provides guidelines on the derivation of timing requirements and con-
straints, control system structuring, allocation, choice of execution and communication strategies, and exploits
scheduling theory for timing analysis. This is also a strong point forRTT , partly carried out in cooperation
with the AIDA-team. For both, there is much less emphasis onET systems.

• ForUML  the numerous existing OO-methodologies provide good support in the design of event-triggered
non real-time systems. Guidelines which attempt to cover distributed real-time systems include [16][26][9].
These however provide relatively little support for these issues. For example, in [9], partitioning, the use of
deployment diagrams, and links to scheduling are briefly discussed. The guidelines are similar in nature for
RT-UML , [1] which however place more emphasis on modelling concurrency, timing information in
sequence diagrams, the hardware representation and the system context. Regarding the event-triggered parts,
research developments in timed automata, formal semantics, state machine analysis and verification tech-
niques (see e.g. [17]) still remain to be exploited. All in all there is room for more work on guidelines having
both time- and event-triggered systems in mind for object-oriented systems.

• DARTS/DA provides guidelines in terms of heuristics for allocation and partitioning. Some timing analysis
considerations for ET and TT systems are also incorporated based on fixed priority scheduling [13].

3.4. Concluding discussion on the AIDA models: views and model relations

The “4+1 view model of architecture”, [16], corresponds relatively well to AIDA. Thelogical view matches
the AIDA application models, and theprocess andphysical views match the structural parts of the AIDA computer
system model. There is no direct correspondance in AIDA to thedevelopment view describing the software module
organization since this topic is not within the scope of AIDA. The computer system resource models come closest
to the development view in that it provides a layered view of the implementation software and hardware. The sce-
nario view can be seen as a correspondance to the timing requirements part of the AIDA application models. A
difference in AIDA is that it in addition incorporates these requirements and implementation models for both the
application and computer system timing behaviour models. The AIDA resource models, cmp. Figure 9, do not
seem to have a correspondance in the “4+1 view model” which are more focused on describing system structure.

Compared to the classification given in [21], the AIDA models provide a set of requirements focused on timing,
structural, timing behaviour and performance models. There is no data view or model in AIDA. There is no explicit
managerial (process related) view but the models are related to an associated design method.

The multidisciplinary views provided in AIDA could be interpreted asmeans-ends hierarchies (the term intro-
duced in [19], recall section 3.2.) for both structure and timing behaviour. The latter hierarchy is established by the
functions in the application model that describe the required timing behaviour and the computer system model
which describes the implementation in terms of schedulable processes and the resources and policies used in the
implementation.

Reindeer is a recent research project where an environment to support design of distributed systems is being
developed, [8]. Integrated within Reindeer is a diagramming methodology where sets of diagrams are provided for
each hierarchical level of design (requirements, network, node, processor, task). The utilized diagrams can be seen
as an extension to DARTS/DA incorporating also for example sequence diagrams and use cases. Relations between
these diagrams through the hierarchies are also provided. The proposed diagrams to a large extent correspond to
the AIDA models wherefore this project is of interest to study further.

4. CONCLUSIONS AND FUTURE WORK

The paper has described the modelling framework that has been developed within the AIDA project. The AIDA
modelling framework is by no means complete, there still remains work and research on some of the submodels.
Future work on the AIDA modelling framework will include refinements and more exact semantic definitions of
the models and their hierarchies. Since the emphasis in the design of the modelling framework has been the mod-
elling of time-triggered control systems, the modelling of event-triggered systems is only partially supported. The
direction the models should take here is open at this stage. From Figure 10. and with the extensibility mechanisms
of UML in mind it is straightforward to say that the combination, or integration, of the AIDA modelling framework
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with RT-UML could be very fruitful. Further evaluation of RT-UML in tool implementations will therefore be car-
ried out.

Desired analysis and synthesis capabilities of the prototype tool-set will be investigated. The primary idea is to
exploit advances in real-time scheduling theory that can be incorporated into the toolset. The execution time anal-
ysis that is supported by the models is coarse. Functions for more accurate execution time analysis are not planned
to be a part of the AIDA tool-set even though it may be of interest to include this in the future. The toolset will
provide for further evaluation possibilities of the models and their graphical notations.

An interesting issue for further model developments is the consideration of including other architectural aspects
into to the framework. A prime candidate here is dependability requirements and their implementation. Today, the
AIDA models can be used to describe certain requirements and behavioural characteristics of redundant/fault-tol-
erant systems; for example, a particular redundancy approach usually comes along with fixed and specified strat-
egies for synchronization, scheduling, etc. Explicit specifications of fault-tolerance requirements and the
mechanisms for error detection and handling are currently not part of the models.

It appears that there are still several research challenges in modelling, in particular regarding “hybrid” systems
composed of both time- and event-triggered subsystems, the relations between views, and how all this can be in-
corporated into a design tool provided with appropriate graphical representations to be beneficial for users. It is
also clear that tool and model integration will be increasingly called for in the future to combine the strength of
different modelling formalisms and analysis tools.

These interesting problems and probably many more are ahead of us as we embark on the prototype tool im-
plementation.
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