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Abstract. Formal veri�cation of computer-based engineering systems is only meaningful if
the mathematical models used are derived systematically, recording the assumptions made at
each modelling stage. In this paper we give an exposition of research e�orts in cooperation with
aerospace industries in Sweden. We emphasize the need for modelling techniques and languages
covering the whole spectrum from informal engineering documents, to hybrid mathematical mod-
els. In this modelling process we give as much weight to the physical environment as to the
controlling software. In particular, we report on our experience using switched bond graphs for
the modelling of hardware components in hybrid systems. We present the basic ideas underly-
ing bond graphs and illustrate the approach by modelling an aircraft landing gear system. This
system consists of actuating hydromechanic and electromechanic hardware, as well as controlling
components implemented in software and electronics. We present a detailed analysis of the closed
loop system with respect to safety and timeliness properties. The proofs are carried out within
the proof system of Extended Duration Calculus.
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cation, Duration Calculus

1. Introduction

In this article we present some insights gained from the work performed in a multi-
disciplinary project in cooperation with the Swedish aerospace industries, by com-
puter science, electrical engineering, and mechanical engineering departments at
Link�oping university. The project concerns generation of models and analysis of
hybrid systems { mathematical models including both continuous and discrete el-
ements. The article addresses modelling and formal veri�cation of a system, in-
volving hydromechanical and electromechanical sensors and actuators as well as
electronic and software modules performing diagnosis and control. The technical
system, hereafter referred to as \the system", is moreover in dynamic interaction
with a human operator (the pilot).

Our main thesis is that verifying properties of computer based systems bene�ts
from modelling both the embedded controller and its surrounding physical envi-
ronment. Furthermore, unless care is taken in developing the mathematical models
which form the basis of formal veri�cation, the results of veri�cation can not be
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relied upon. Therefore, rather than verifying properties of ad hoc models we take
a number of steps for systematically deriving the models from engineering design
documents. The models of the hardware and the software are typically fundamen-
tally di�erent in their character1. Hence, di�erent competences are required in
development and documentation of these models. However, it is the composition of
the models for these two parts, also referred to as the closed loop model, which is
needed for proving the properties we are interested in. The work reported here has
been partially presented in international conferences in the form of shorter articles.
This article can therefore be seen as the full version of [21, 32].

Deriving mathematical models from engineering documents, is an inherently dif-
�cult task. We have approached this problem by adopting an iterative process in
which models are successively re�ned as a result of earlier analysis. The pragmatic
reason for this is the following. The level of detail in the model is dependent on
factors such as the requirement speci�cation, assumptions made about the physical
components, and the choice of veri�cation technique. Hence, in real-world appli-
cations, the modelling and the analysis processes must go hand-in-hand. For this
kind of iterative process to be realistic in a multi-disciplinary setting, the formal
models derived and the assumptions made must be easy to convey to the domain
specialists. Also, new assumptions derived from results made available by earlier
analysis, must be easy to incorporate into the model at any time.

The above process necessitates the employment of a range of formalisms and
methodologies in our application. To mention a few, we have, at the physical level
of abstraction, ideal physical model diagrams and switched bond graphs [33]. At
the mathematical level of abstraction, we have employed hybrid transition systems
(HTS) [18, 19], and an architecture for the top-level decomposition of hybrid sys-
tems [17]. This modular framework allows us to plug in a re�ned version of an
arbitrary module without having to consider (or redo) the rest of the model. In
connection with the veri�cation technique, we have experimented with several other
mathematical modelling languages: Linear Hybrid Automata (LHA) [1] with the
tool HyTech, and Extended Duration Calculus (EDC) [6] from the hybrid family
of languages, as well as Esterel (I/O automata) [4] and statecharts [12] from the
synchronous family of languages.
In this article we concentrate on the derivation of mathematical models for a

landing gear system and the analysis of safety and timeliness properties of the
system within EDC. The application of the other veri�cation techniques are covered
in a longer technical report [22].

1.1. The Example

The techniques above are illustrated in the context of a landing gear in which the
response to the landing command by a pilot are analysed (see Figure 1). When de-
riving the mathematical models we note that some major elements of the physical
con�guration have already been �xed due to other demands on the aircraft as a
whole (weight, etc.). Also, some back-up mechanisms have already been envisaged.
That is, under abnormal situations there should always be possible to initiate land-
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Figure 1. The landing gear system as documented by a mechanical engineer.

ing using a reserve power supply. Thus we have started the modelling activity at
an architectural level.

A basic problem at this level is that the segregation of the landing gear subsystem
from the rest of the aircraft is not a straight-forward task. This is due to the fact
that achieving the goals of the landing gear is not solely dependent on the functional
correctness of a single controller. Rather, the proper operation of the landing gear
is possible under certain conditions in the rest of the aircraft. For example the
physical operation of the mechanical door and gear components is dependent on
hydraulic power at certain locations in the hydraulic power supply system and at
certain times. The load on the hydraulic system itself is dependent on several other
\clients" to which hydraulic pressure is delivered. Thus, in order to identify the
mode of operation in the landing gear control system there exists another module
for monitoring and diagnosis of the hydraulic power supply.

Based on the above observations we have identi�ed a sub-system consisting of two
blocks for modelling and analysis. The two blocks cover the power supply and the
mechanical linkage parts respectively { each consisting in turn of physical mecha-
nisms and control subsystems. Figure 2 shows the topology of the system under
study, where the full arrows denote directions of information exchange and half
arrows directions of (positive) energy exchange. In other words, full arrows corre-
spond to signals transmitted (one-way) via some abstract communication channel
(e.g. computer programs and communication protocols) and half arrows to bilateral
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Figure 2. An abstraction of the landing gear system.

signals transmitted via some physical structure (e.g. electromechanical or hydrome-
chanical hardware). The inputs denoted by di are abstractions of other activities
in the aircraft treated as disturbances, u denotes pilot commands, and y denotes
system state information delivered to the pilot.

1.2. Summary of the Work

The work in the project has led to derivation of physical and mathematical abstrac-
tions for all components of the system. In the current presentation we exclude the
diagnosis subsystem, since only proofs pertaining to one of its modes are presented
here.

At the �rst stage, models for the hydromechanical subsystems, in terms of
schematic engineering diagrams, have been developed. These models have been
transformed to the energy-based graphical language of switched bond graphs. The
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latter step signi�cantly aids the derivation of mathematical models for mode-
switching physical systems. These are physical systems which can not be described
by one set of di�erential and algebraic equations (DAE); rather di�erent sets of
DAE are needed depending on the discrete mode in the system. Next, models for
diagnosis and controller modules (to be implemented in hardware or software) have
been developed.

The modelling phase was followed by proofs of the following three properties for
several versions of landing gear models.

� The door and the gear do not collide under movement

� Whenever the pilot issues the landing (airborne) command, the gear will be out
(in) and the door closed within T seconds.

This article presents the proofs for a static controller in combination with two
di�erent environment models: one in which the environment variables change as
a linear function of time, and the second where the environment model is a non-
linear system of DAE. This corresponds to a mathematical model for a more re�ned
version of the hydraulic supply system in which the hydraulic pressure is not as-
sumed to be constant as in the �rst case. It is rather assumed to be regulated by
a hydromechanic pump.

The model of the composed system was in both cases analysed using the proof
system of EDC, leading to proofs for the above properties. While the closed loop
model based on the time-linear evolutions in the environment could also be analysed
using model checking (e.g. HyTech), the non-linear model required a combination
of analysis and logical deductions. Thus, the point with the proof of the time-linear
model with EDC was to provide the necessary structure over which the same proofs
for the non-linear model of the hydromechanical system could be based.

2. From Schematic Diagrams to Mathematical Models

We let the term 'apparatus' refer to an object for which the behaviour is described
by physical laws. By behaviour we mean the evolution in time of measurable
physical quantities such as pressure, 
ow, velocity, current etc. In the context of
computer controlled systems, apparatus models generally cover models of actuators,
the plant actuated by these actuators, and the sensors used to measure the e�ects
of the actuation. As a consequence, apparatus models generally involve several
di�erent physical domains. The apparatus model in Figure 1 involves at least three
di�erent physical domains: electric, hydraulic and mechanic.

Industrial apparatus models are typically provided in terms of schematic dia-
grams. Within each physical domain there is a set of generally accepted icons
representing more or less complex standard apparatuses such as pilot controlled
valves, check valves, double-acting cylinders etc. These icons are fairly well de�ned
in the sense that they represent speci�c functions, e.g. electrical control of 
ow,
recti�cation of 
ow, mechanical actuation by 
ow etc. They are well understood
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by experts within the same physical domain, but are often di�cult to comprehend
by experts outside that domain.

Also, the icons used in schematic drawings are ambiguous with respect to the
underlying physics; it is not clear from the syntax which physical e�ects are taken
into account. The reason for this is that the behaviour of an apparatus depends
on the circumstances in which it is used. Often the e�ects needed to be considered
depend on the required accuracy of the model, timing properties, dynamic range
etc. Moreover, certain interaction e�ects are not so naturally captured in terms of
apparatus models { an example of such interaction e�ects being friction. Hence, the
type of models typically used in industry are in themselves not informative enough
for determining a unique mathematical model suitable for e.g. formal veri�cation.
From this perspective there is therefore a genuine need for modelling according to
physical principles.

2.1. Physical Modelling

In our project the apparatus models provided by the industry were made precise
by means of switched bond graphs. Switched bond graphs [34, 35, 33, 30] are based
on the graphical bond graph language [15], earlier introduced by Henry M. Payn-
ter [25]. The language was originally proposed as a means to bridge the gap between
di�erent physical domain experts in the context of complex industrial plants.

To meet these requirements, bond graphs are based on energy concepts. By
means of a set of well de�ned primitive energy concepts, bond graphs can be pre-
cisely interpreted by experts in several di�erent domains since they have a precise
mathematical and physical interpretation. Further, the bond graph concepts are
powerful enough to capture even very complex mechanisms using only a few sym-
bols.

2.2. Elementary Bond Graph Concepts

More speci�cally, bond graphs are based on the theory known as '�rst principle
of energy conservation'. As a consequence, the nodes in a bond graph represent
degenerate primitive energy processes and the directed arcs represent potential 
ow
of energy. The arcs are also referred to as power bonds, or simply bonds. The
direction of the bonds represent the direction of positive energy 
ow. Every bond
is associated with a pair (e; f) of variables referred to as generalised power variables.
The power variable e is further referred to as e�ort and the variable f as 
ow.

For a given physical domain, the generalised power variables represent a pair of
physical quantities such that [ef ] = Watts, where [q] denotes the unit of the physical
quantity represented by q. Recall that a physical quantity is a pair (value; unit) and
that a variable q representing it is a real-valued function on time, i.e. q : R ! R.

By means of e and f the semantics of a bond can now be summarised:

� ef � 0 i� the direction of energy 
ow coincides with the direction of the bond.
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� jef j represents the magnitude of the energy 
ow, i.e. the power transferred by
the bond.

Example: Consider the hydraulic domain. Let e represent pressure, i.e. [e] =
N=m2, and f volumetric 
ow, i.e. [f ] = m3=sec. Then we have [ef ] = [e][f ] =
N

m2

m
3

sec
= Nm

sec
= Watts, i.e. the pair (e; f) is indeed an instance of power variables.

In the same way we show that voltage (e) and current (f) is a pair of power variables
in the electrical domain and that torque (e) and angular velocity (f) is a pair in
the rotating mechanical domain.

Bond graphs de�ne a necessary and su�cient set of primitives for the modelling
of a wide range of practical systems. The necessary and su�cent set of primitives
consists of �ve elements, but normally a more practical set of nine elements is used.
These nine elements are grouped into �ve categories as follows:

1. Ideal sources: ideal source of e�ort denoted Se and ideal source of 
ow de-
noted Sf.

2. Ideal storages: ideal storage of e�ort denoted I and ideal storage of 
ow
denoted C.

3. Ideal dissipation: ideal energy dissipation denoted R.

4. Ideal conversions: ideal transformer denoted TF and ideal gyrator denoted
GY.

5. Ideal distributions: common e�ort junction denoted E and common 
ow
junction denoted F.

For example, the following instances of the abstract energy primitives are found in
the hydraulic domain: a wide container (Se), accumulator (C), hydraulic restriction
(R), hydromechanic pump (TF), parallel connection of components (E), and series
connection of components (F).
It is important to note that the nine energy primitives are degenerate ideals.

Hence, 'real' phenomena found in nature must be modelled by combining two or
more of these primitives. Typically the nodes of a bond graph are labelled by the
type (Se, Sf, C, . . . ) and a graph-unique identity. Hence a bond graph node is
labelled X:id, where X is the type and id the unique identity.

2.3. Constitutive Relations

From an energy perspective, the behaviour of a physical mechanism is an n-ary
relation over entities representing power variable pairs. Hence we have n = 2m;m 2
N, and m is sometimes referred to as the number of power ports.
For the ideal primitive mechanisms de�ned above, the set of possible behaviours

is further restricted. The formal de�nition of this structure will be exempli�ed in
what follows; further details, though informal, can be found in e.g. [2].
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Figure 3. Some example bond graph primitives.

2.3.1. The Ideal Dissipation R Consider the primitive ideal dissipation, i.e. the
R-element as depicted in Figure 3 (a). As a one-port R-element its behaviour is
a relation over two time functions. Let e; f represent the power variables of the
R-element. Then � � R

2 , where (e(t); f(t)) 2 � for all t, is a constitutive relation
with the following properties:

1. (0; 0) 2 �.

2. e(t) f(t) � 0.

3. There exists a bijective function �f : R ! R such that (e(t); f(t)) 2 � i�
�f (e(t)) = f(t).

The �rst two requirements ensure that an ideal dissipation can never generate en-
ergy. The third requirement ensures existence of an inverse function �e such that
(e(t); f(t)) 2 � implies �e(f(t)) = e(t).

Example: Consider a long narrow pipe carrying a hydraulic 
uid. Let e be the
pressure drop across, and f be the 
ow through the pipe. Let us assume the 
ow
is laminar. Then, according to any standard book in 
uid power,

� = f(e(t); f(t)) j k1 e(t)� f(t) = 0 for a speci�c k1 2 R
+g

where k1 is a physical parameter computed from properties of the pipe (e.g. friction)
and the 
uid (e.g. viscousity).

2.3.2. The Ideal Flow Storage C Consider the primitive ideal 
ow storage, i.e. the
C-element as depicted in Figure 3 (b). Let e; f represent the power variables of
the element, and x a state variable de�ned through _x � f = 0. By de�nition, x
represents a physical quantity which is referred to as the energy state of the mecha-
nism. If for instance [f ] = m3=sec, then it follows that [x] = m3, i.e. volume, which
further supports the intuition behind the energy state concept.
Provided _x(t) exists for all t, we have (e(t); x(t)) 2 � for all t where � � R

2

is a relation with the same properties as the constitutive relation de�ned for the
R-element.

Example: Consider an open hydraulic accumulator. The hydraulic pressure e at
the bottom of the accumulator (in which the 
uid is a�ected by gravity g only) is
proportional to the height h of the 
uid level. Hence, if the cross section area A is
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constant with respect to the height, the pressure is proportional to the accumulated

ow f . Let x be accumulated 
ow and � the density of the 
uid. Then, for all t,
we get

� = f(e(t); x(t)) j e(t) � k2 x(t) = 0 and _x(t)� f(t) = 0g

where k2 = �g=A.

2.3.3. The Ideal Flow Source Sf Consider the primitive ideal 
ow source Sf as
depicted in Figure 3 (c). Let e; f be the power variables of the element and u
an independent physical quantity referred to as the modulation signal or control
signal. The full arrow in Figure 3 (c) underlines the fact that u represents a causally
directed entity. We now have (e(t); f(t)) 2 � for all t and � = f(e(t); f(t)) ju(t)�
f(t) = 0g. Note that an ideal e�ort source actually does not restrict e in any way.

2.3.4. The Ideal Distribution Elements Consider the primitive ideal junctions
E and F as depicted in Figure 4. We note that the elements are multi-ports in that
m > 1. As the name suggests, distribution elements are used to model interaction
between other primitives, and hence m � 2 follows as an immediate consequence.

Let ei; fi be the power variables of bond i. For an E-junction we have, for all t

f(e1(t); f1(t); : : : ; em(t); fm(t)) j
mX
i=1

�i fi = 0 and 8m�1i=1 ei � ei+1 = 0g

and for an F-junction

f(e1(t); f1(t); : : : ; em(t); fm(t)) j

mX
i=1

�i ei = 0 and 8m�1i=1 fi � fi+1 = 0g

where �i 2 f�1; 1g represents the relative direction of bond i. If bond i is directed
towards the junction, then �i = 1, otherwise �i = �1.
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Figure 5. (a) A simple hydraulic circuit. (b) A �rst bond graph model of the circuit. Note that
the system pressure e = e1 = e2 = e3 is the same for all three apparatuses.

2.4. Model Composition

The composition of primitive ideals to form models of real systems is obtained after
a series of steps. Here we simply outline the modelling process by providing a simple
example.

Example: Consider the hydraulic system as represented by the schematic drawing
in Figure 5 (a). The 
ow source provides a 
ow f1 proportional to the control signal
u, the hydraulic load is essentially dissipative and the accumulator nearly loss-free.
The interaction between the source, the accumulator and the load is such that the
pressures e1; e2; e3 at the ports of the mechanisms are all the same. Consequently,
Figure 5 (b) depicts a �rst potential bond graph model of the system.

Combining the constitutive relations of the individual mechanisms, we get the
following set of equations (omitting t for clarity):

u� f1 = 0

k1 e2 � f2 = 0

_x� f3 = 0

e3 � k2 x = 0

f1 � f2 � f3 = 0

e1 � e2 = 0

e2 � e3 = 0

This set of equations uniquely de�nes the behaviour of the system once the initial
value x(t0) is known.
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2.5. Causality in Bond Graphs

We have now seen how a given bond graph and a set of constitutive relations maps
to a mathematical model of the underlying system. We have already observed that
such a model is a non-minimal set of equations which can in general be di�cult
to solve explicitly. A preferred alternative is a sequence of directed assignment
statements such that unknowns can be immediately and sequentially computed
from the knowns on the right hand side. Such a model is sometimes referred to as
a computational model.
Such a causal computational model requires the model variables to be ordered

in a speci�c cause-e�ect relationship. Bond graph theory comes with algorithms
for assigning causality to a given graph [36]. The choice of algorithm depends on
the speci�c form of computational model required as well as on the complexity
of the bond graph itself. There are graph oriented algorithms suitable for man-
ual calculations as well as algorithms better suited for machine implementation.
One classical algorithm is the so called Sequential Causality Assignment Procedure
(SCAP) which is used to derive classical state space forms consisting of ordinary
di�erential equations only.

Example: Applying SCAP on the model in Section 2.4 we obtain

_x = �k1k2 x+ u

The above equation is the basis for the physical model of the landing gear ap-
pearing in our application.

2.6. The Switched Extension

Classical bond graphs only allow for �nite 
ows of energy and are thus restricted
to the modelling of continuous change over time only. However, many practical
apparatuses undergo abrupt changes in their behaviour, usually due to external or
internal discrete control. Examples of such apparatuses are diodes, check valves,
relays and devices with end-stops. Systems consisting of at least one such apparatus
will be referred to as mode-switching systems.
Switched bond graphs were introduced to extend bond graphs to mode-switching

physical system while maintaining the classical bond graph theory. The main ingre-
dient in the extension is a new ideal degenerate element, namely the ideal generalised
switch (Sw). As opposed to the other bond graph elements, the Sw-element is not
associated with a constitutive mathematical relation over e�ort and 
ow. Instead,
it is associated with a discrete mathematical structure determining the Boolean
state of the switch. The two states of the Sw-element are referred to as the e�ort
and the 
ow state. The reason for these terms is the following: In state e�ort
the Sw-element is equivalent with an Se-element for which u = 0 for all t, and in
state 
ow it is equivalent with an Sf-element for which u = 0. Given a switched
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Figure 6. The physical environment models. Left: the coarsest model of the hydraulic supply.
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bond graph with p Sw-elements, once all the elements have been mathematically
characterised, we get a computational hybrid system with � 2p sets of DAE, and a
set of Boolean transition conditions. In this paper we do not elaborate further on
the switched versions of the landing gear models. The interested reader is referred
to [33, 30, 31].

2.7. The Landing Gear Models

The hardware components in the landing gear system consist of the landing gear
itself, i.e. the wheel{and{suspension system, a pair of doors protecting the gear
during 
ight and landing, and a pair of hydraulic actuators for the manouvering of
the gear and the doors (Figure 1). As part of the landing gear system, the hydraulic
power supply system provides the hydromechanic energy needed to manoeuvre the
gear and the doors under all operating conditions.
For the purpose of illustration, we present two di�erent bond graph models of the

hydraulic power supply subsystem only and a single model of the door{and{gear
subsystem. These models di�er in the assumptions made about the subsystems,
and therefore illustrate the capability of bond graphs to make such assumptions
clear.
In the coarsest model of the hydraulic power supply we represent the assump-

tion that the hydraulic power supply system behaves as an ideal constant pressure
source; see the lowest left-most box in Figure 6 where p and q stand for hydraulic
pressure and 
ow respectively. Combining it with the model of the door{and{gear
subsystem, the overall plant model converts to a simple time-linear dynamic system

_xd = �d ud; xd 2 [0; 1]

_xg = �g ug ; xg 2 [0; 1]
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where �d; �g > 0 are constants (time-invariants), xd (xg) the normalised door (gear)
position and ud (ug) 2 f�1; 0;+1g is the three-valued door (gear) control signal.
In the more detailed model of the power supply system (lowest right-most box

in Figure 6), we no longer assume that the hydraulic pressure is ideal. Instead we
make an explicit model of the hydromechanic regulator which in fact attempts to
make the pressure 'as constant as possible' given a particular engine velocity !. In
this case the overall bond graph converts to a non-linear dynamic system

_xd = �0d p ud; xd 2 [0; 1]

_xg = �0g p ug; xg 2 [0; 1]

_p = �(
 + 
d judj+ 
g jugj) p+ �

where �0d; �
0
g ; 
d; 
g > 0 are constants. The quotient �=
 is a monotonic function

of the aircraft engine velocity !.
These models are only a small selection of models we have derived. Other models

consisting of some �fty bond graph elements have been e�ciently developed in
cooperation with hardware experts from Saab Aerospace and the Department of
Fluid Power at Link�oping University. The e�ciency of this iterative modelling
process has signi�cantly gained from the use of bond graphs. By means of the
bond graphs we were able to communicate our models with all engineers from the
industrial partners and were able to sort out misunderstandings and misconceptions
at an early stage of the modelling process.
The DAE models derived can now be plugged into the model of the closed loop

system as required. To do this we use a hybrid modelling architecture [17] described
in the next section.

3. Framework for Iterative Modelling

This section describes a framework for putting together the environment models
derived earlier with mathematical models for the other parts of the system. It can
be used for re�ning the overall architecture in Figure 2 by making the interface
between the controller (diagnoser) and the physical world more explicit.
The generic architecture as depicted in Figure 7, accommodates both the mathe-

matical models for the physical environment and the mathematical models for the
discrete controllers and supervisory systems. It has been adopted from the multi-
layer architecture for hierarchical control suggested earlier [17]. This architectural
decomposition is used as a framework for veri�cation and makes the interfaces (as
dictated by the choice of sensors and actuators) explicit.
The discrete controller consists of a selector asynchronously reacting on discrete

events e detected by the characterizer. The characterizer generates these using a
classi�cation function over the real valued environment variables z. The output
of the selector is the discrete choices c of control algorithms implemented by the
e�ector. The environment is driven by the real valued control variables u. The
unpredictability of the environment is made explicit by the disturbance variable v.
This variable is typically used for allowing uncertainties in sensor measurements.
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In addition, it may be used to model major elements of the environment not under
control.

This architecture has been used in a number of di�erent applications and aids
the process of modelling the closed loop system for the purpose of veri�cation. In
the landing gear study we have used the architecture as a framework for iterative
modelling of the closed loop system. It was thus used to plug in di�erent models
of the environment while keeping the same selector, characterizer and e�ector;
or di�erent selectors while keeping the same environment model. Thus, we have
been able to study and illustrate di�erent veri�cation techniques depending on the
complexity (granularity) of the closed loop model and the property to be veri�ed.

In the following section we will show the details of two alternative landing gear
models by �lling the boxes in the above architecture.

4. Hybrid Mathematical Models

In this section we describe how the models for the closed loop system can be derived
using the mathematical models for the hardware derived earlier. Here, we concen-
trate on a static selector as depicted in Figure 8. This model can be a representa-
tion of a hard-wired electronics implementation of the controller, or alternatively, a
model obtained from the compilation of a synchronous software model, e.g. in Es-
terel or Lustre [9]. Analysis of similar properties in presence of a dynamic selector
with communication and computation delays can be found elsewhere [21, 22].

Next we will make the mappings in the interface between the controller and its
environment (i.e. the characterizer and the e�ector) explicit.

As it can be seen in Figure 9, the inputs to the static selector are discrete states
open, closed, in, out, cmd. Changes in these states are determined by the character-
izer based on the sensed values of the door and gear position and the current pilot
command. Note also that keeping the same selector and changing the environment
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Figure 8. A static selector operating in two alternative physical environments.
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((cmd ^ :out) _ (:cmd ^ :in)) ^ :open ^ :u12 , u11
((cmd ^ out) _ (:cmd ^ in)) ^ :closed ^ :u11 , u12

cmd ^ open ^ :out ^ :u22 , u21
:cmd ^ open ^ :in ^ :u21 , u22

open , xd � 1
closed , xd � 0

in , xg � 0
out , xg � 1
cmd , r > 0

u11 ^ :u12 , ud = 1
(:u11 ^ :u12) _ (u11 ^ u12) , ud = 0

:u11 ^ u12 , ud = �1
u21 ^ :u22 , ug = 1

(:u21 ^ :u22) _ (u21 ^ u22) , ug = 0
:u21 ^ u22 , ug = �1

_xd = �d ud �d; �g > 0
_xg = �g ug xd; xg 2 [0; 1]

Environment

Selector

Characterizer E�ector

r Pilot command

Figure 9. The system built up from the time-linear environment model and the static selector.

model to a more realistic one is simply achieved by plugging in the �ner non-linear
model in the architectural decomposition.
To analyse the model �rst we need to represent the closed loop model and the

required properties in an extension of the interval temporal logic Duration Calculus
(DC). Then verifying that the requirements are met by the given model is achieved
through proving theorems in the proof system of the logic.

4.1. Brief Introduction to EDC

We use the extension of Duration Calculus in accordance with [27] in which a
mathematical theory about state functions is assumed as given. The logical foun-
dations of DC can be found in [11]. Here we give a brief exposition of the extended
language. The syntactic constituents of EDC are state names denoting functions
on time (in our case real valued functions xd; xg ; _xd; _xg , etc), including Boolean
state names denoting a Boolean valued function on time (in our case open, closed,
etc). State expressions and state assertions are built from variables, functions and
relations on real numbers, and propositional logic operators in a standard form. In
our example we have ud�d as an state expression, and xg � 1 as well as P ^ C as
state assertions.
State expressions and assertions are evaluated in accordance with interpretations

of states and operators. Assertions evaluate to 0 or 1 in a given interpretation. In
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particular, true and false as state assertions evaluate to 1 and 0 respectively at
all times. Durations are formed from state expressions and assertions, using the
symbol

R
. Thus, for an assertion P ,

R
P denotes the duration of P holding over an

interval. Its semantics with respect to interpretation I and interval [b; e] is de�ned
by the integral

R e
b
I(P )dt, where I assigns values of the right type to state names,

and de�nes the (non standard) operator symbols of the language.
The length ` of an interval, is de�ned by the duration of true holding over the

interval, expressed as `b= R true. Thus, the semantics for `, in any interpretation I
over any interval [b; e], is de�ned by I(`)[b; e] = e� b. Furthermore, for Q being an
assertion, the notion of Q holding over an interval (represented by dQe) is related
to durations by the following de�nition:

dQeb=(RQ = `) ^ (` > 0)

Atomic duration formulas have the form dQe or /(dterm1; : : : ; dtermn) where / is
an n-ary relation on reals and dtermi are duration terms. Duration terms essentially
have the form

R
se (for state expression se), b.se and e.se denoting the value of

the state expression se at the beginning and end of an interval respectively, and
terms built with operators on reals. Compound duration formulas are built from
atomic formulas using the usual logical connectives as well as the chop connective
of interval temporal logic (denoted by ;) which chops an interval in two parts.
The truth of a formula D, determined over an interval [b; e] in an interpretation

I, is denoted VI ; [b; e] j= D. Speci�cally, the semantics of formulas built using the
chop operator is de�ned as follows. For duration formulas D1 and D2, we have:

VI ; [b; e] j= D1;D2 i� VI ; [b;m] j= D1 and VI ; [m; e] j= D2

for somem 2 [b; e]:

A formula D is satis�able in an interpretation I (written VI j= D) i� VI ; [0; t] j=
D for all t 2 R

�0 . A formula D is valid (written j= D) i� VI j= D for every
interpretation I. The following abbreviations are introduced at the formula level:

d e b= ` = 0 the empty interval
3D b= true;D; true D holds in some sub-interval
2D b= :3:D D holds in every sub-interval

To avoid excessive use of parentheses, precedence rules for the operators in the
language are provided [27] { e.g. :; 2 and 3 bind stronger than chop (;) which
binds stronger than the other logical operators.
Next we present a number of proof rules (laws) from the proof system of EDC [27]

which will be used in the proofs later on in the paper.

P-And:

dP ^Qe , dP e ^ dQe
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P-Always:

dP e ) 2 (dP e _ d e)

Somewhere-Neg:

:3D, 2:D and 3:D, :2D

Always-intro:

2D ^ (D1 ; D2)) (2D ^D1) ; (2D ^D2)

Always-Once-Somewhere:

2D ) D and D ) 3D

Zero:

R
false = 0

Chop-false:

D ; false) false and false ; D ) false

Chop-P-Or:

dP1 _ P2e ; true, dP1e ; true _ dP2e ; true

Dur-Chop:

(
R
P = r1) ; (

R
P = r2),

R
P = (r1 + r2)

Chop-Exists: provided v does not occur free in D1

D1 ; (9v : T � D2), 9v : T �D1 ; D2

Continuity:

(e.se = v1) ; (b.se = v2)) (v1 = v2)

Note that the last law applies only to continuous state expressions. In the proofs
which follow we sometimes use analysis where the current line can be motivated
by the immediately preceding line and real arithmetic. As well as the above rules,
the proofs may use another motivation denoted by PL, whenever the preceding line
in the proof leads to the current line according to the rules in predicate logic. We
further include a general EDC result which is used in later proofs.

Lemma 1 For duration formulas D1 and D2 and state assertion P

dP e ^ (D2 ; D2)) ((dP e _ d e) ^D1) ; ((dP e _ d e) ^D2)
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Table 1. Declaration of states and global variables.

Name: Signature Type: Description

xd : R! R Plant state: door position (closed: 0, opened: 1)
xg : R! R Plant state: gear position (retracted: 0, extended: 1)
�d : R Plant parameter: door speed
�g : R Plant parameter: gear speed
u11 : R! f0; 1g Controller command: open door (hold: 0, open: 1)
u12 : R! f0; 1g Controller command: close door (hold: 0, close: 1)
u21 : R! f0; 1g Controller command: extend gear (hold: 0, extend: 1)
u22 : R! f0; 1g Controller command: retract gear (hold: 0, retract: 1)
r : R! f0; 1g Pilot command: extend gear (retract: 0, extend: 1)

Proof:

dP e ^ (D1 ; D2)
) fP-Alwaysg

2 (dP e _ d e) ^ (D1 ; D2)
) fAlways-introg

(2 (dP e _ d e) ^D1) ; (2 (dP e _ d e) ^D2)
) fAlways-Once-Somewhereg

((dP e _ d e) ^D1) ; ((dP e _ d e) ^D2)

4.2. EDC Model of the Landing Gear

Table 1 gives the declaration of the constituents in the coarse plant model of the
landing gear, the only variables determined externally being the reference pilot
signal (r).
Using the above notation and the architectural breakdown in Figure 9, the closed

loop system for the landing gear is represented by

S � P ^ C

where the plant model
P � Env ^ E�

and the controller model
C � Char ^ Sel

Here Env, Char, Sel, and E� are assertions within the underlying mathematical
theory and de�ned in accordance with the formulas provided in the appropriate
boxes in Figure 9. Then the behaviour of the system over an interval of time can
be represented by lifted duration formulas over these assertions.
Note that the composition of the environment and e�ector model leads to the

following two sets of constraints on the door and the gear parts of the model re-
spectively. That is, dP e ) dP1e ^ dP2e.
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P1 b=

8>>>><
>>>>:

(u11 ^ :u12 ) _xd = �d)^
((:u11 ^ :u12) _ (u11 ^ u12) ) _xd = 0)^

(:u11 ^ u12 ) _xd = ��d)
0 � xd � 1
0 � �d � 1

(1)

P2 b=

8>>>><
>>>>:

(u21 ^ :u22 ) _xg = �g)^
((:u21 ^ :u22) _ (u21 ^ u22) ) _xg = 0)^

(:u21 ^ u22 ) _xg = ��g)
0 � xg � 1
0 � �g � 1

(2)

Likewise, the selector and characterizer models can be combined to the give the
following EDC formulation:

C b= (3)8>><
>>:

(r > 0 ^ :(xg � 1)) _ (r � 0 ^ :(xg � 0)) ^ :(xd � 1) ^ :u12 , u11
((r > 0 ^ (xg � 1)) _ (r � 0 ^ (xg � 0))) ^ :(xd � 0) ^ :u11 , u12
r > 0 ^ (xd � 1) ^ :(xg � 1) ^ :u22 , u21
r � 0 ^ (xd � 1) ^ :(xg � 0) ^ :u21 , u22

Given the static controller model, for example, it is possible to verify

dCe ) d:(u11 ^ u12)e (4)

dCe ) d:(u21 ^ u22)e (5)

i.e. open and close (extend and retract) commands can never be issued simul-
taneously. Also, the overall system model can be summarised by the following
invariant

2 (:d:Se ^ continuous(xd) ^ continuous(xg)):

4.3. Requirement Speci�cations in EDC

We now present the EDC formulations of the three closed loop system properties
which were presented in the introduction. First we consider the safety property
that the door and gear do not collide in operation. The property is proved by
proving the stronger property that the gear must never move when the door is not
fully open. This requirement R1 may be formalised as
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R1 � 2:d _xg 6= 0 ^ xd < 1e

The timeliness properties require that the extension (or retraction) to be com-
pleted within T time units. These requirements may now be formalised by the two
formulas R2 and R3.

R2 � 2:((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)

R3 � 2:((dr � 0e ^ ` = T ) ; d:(xg � 0 ^ xd � 0)e)

In other words, it is never the case that the landing (no landing) command is in
operation for an interval of length T and the desired e�ect has not been achieved
immediately after the interval. In order to verify these properties we thus have to
prove

dSe ) R1 ^ R2 ^ R3

5. Veri�cation of the Requirements

In what follows we give the proofs that the closed loop system satis�es requirements
R1 and R2. The proof for R3 is analogous to the one for R2 and is therefore omitted.
First we show how proofs in EDC can be used to verify the design in presence of
the coarse environment model. Next, in section 6, we show another proof for the
closed loop model, now including the non-linear environment model instead. This
is carried out by just adding three extra lemmas and preserving the proof structure
for the simpler environment model.

5.1. Veri�cation of R1

In order to verify the �rst requirement we employ proof by contradiction within the
proof system of EDC [27]. But before that we need to state the following lemma
which gives a property of the application model as presented in 4.2.

Lemma 2 dP ^ Ce ^ d _xg 6= 0 ^ xd < 1e ) false

Proof:
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dP ^ Ce ^ d _xg 6= 0 ^ xd < 1e
) fP-Andg

dP ^ C ^ _xg 6= 0 ^ xd < 1e
) f2, PLg

dC ^ :((:u21 ^ :u22) _ (u21 ^ u22)) ^ xd < 1e
) fPLg

dC ^ ((u21 ^ :u22) _ (:u21 ^ u22)) ^ xd < 1e
) f3, PLg

d((xd � 1) _ (xd � 1)) ^ xd < 1e
) fPLg

dfalsee
) fDefngR

false = ` > 0
) fZerog

0 = ` > 0
) fanalysisg

false

Now we can prove the safety property.

Theorem 1 dSe ^ :R1 ) false

Proof:

dP ^ Ce ^ :2:d _xg 6= 0 ^ xd < 1e
) fSomewhere-Neg, PLg

dP ^ Ce ^ 3 d _xg 6= 0 ^ xd < 1e
) fDefng

dP ^ Ce ^ true ; d _xg 6= 0 ^ xd < 1e ; true
) fLemma 1g

((d e _ dP ^ Ce) ^ true) ; ((d e _ dP ^ Ce) ^ d _xg 6= 0 ^ xd < 1e) ;
((d e _ dP ^ Ce) ^ true)

) fLemma 2, PLg
(d e _ dP ^ Ce) ; (d e ^ d _xg 6= 0 ^ xd < 1e) ; (d e _ dP ^ Ce)

) fDefng
(d e _ dP ^ Ce) ; false ; (d e _ dP ^ Ce)

) fChop-falseg
false
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5.2. Veri�cation of R2

To prove the timeliness property we �rst need to make the structure of the appli-
cation more explicit. This conceptualisation then provides the necessary structure
over which a case-based proof can be carried out.

5.2.1. Structure of Closed Loop System First, going back to our closed loop
model as depicted in Figure 9 and the mathematical formulation of the controller
in equation (3) we note that the controller represents the combination of a static
selector and a static characterizer, whereas the plant equations (1), (2) can be seen
as a combination of the static e�ector and the dynamic environment model.
Using hybrid transition systems [18, 20, 19] for modelling the environment, phases

of continuous activity are interleaved with discrete mode transitions. The system
stays in a mode where its behaviour is de�ned by a set of DAE until the guard of
some transition out of the mode is true, whereby it immediately moves to the next
mode as de�ned by a di�erent set of DAE. This compares with a hybrid automa-
ton in which taking an enabled discrete transition is not optional but progress is
enforced.2.
Using di�erent expertise for deriving the models necessitates that the model of a

controller and its environment are modularly developed. With no knowledge about
the controller, the model of the environment could be represented by a hybrid
transition system with two di�erential equations in each mode. The derivatives of
the door and gear positions ( _xi) could then take any of the values (��i; 0; �i) for
i 2 fd; gg in di�erent modes. The system would have 9 modes and would change its
mode depending on various choices of e�ector output. There would therefore be 8
transitions into each mode from all the other 8 modes, and 8 transitions out of each
mode, each going to one of the other 8 modes. A parallel composition of the plant
and controller would then give us a hybrid transition system in which the reachabil-
ity of some modes would be constrained. In what follows we provide the structure
of the closed loop system after application-based simpli�cation (minimisation) of
the hybrid transition system3.
The following properties of the closed loop model gives us the underlying struc-

ture. First, not all 9 combinations of e�ector output are allowed by the combination
of the e�ector and the selector. In other words, the composition of the character-
izer, selector and e�ector mappings is not surjective. To see this note that if the
e�ector is seen as a function

E : B 4 ! fhud; ugi j ud 2 f�1; 0; 1g and ug 2 f�1; 0; 1gg

then it is surjective. However, the selector mapping S : B 5 ! B
4 is not surjective.

More speci�cally, some combinations of hu11; u12; u21; u22i are not in the range of
the selector function. For example, u11 and u12 are not allowed to be true at the
same time (see equation 4). Also, if the landing command is active, then based on
the selector equations it is possible to eliminate some other combinations of uij .
Lemma 4 formalises this property of the selector-e�ector composition. The allowed
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values of uij , however, depend on a partitioning of the state space given below.
Note that state regions Si provide a covering of the state space in presence of the
landing command.

Lemma 3 Let Si be de�ned according to the following combinations of state vari-
ables and pilot command:

S1 � (((0 < xd < 1) ^ (0 < xg < 1))_
((xd � 0) ^ (0 < xg < 1))_
((xd � 0) ^ (xg � 0))_
((0 < xd < 1) ^ (xg � 0))) ^ r > 0

S2 � (((xd � 1) ^ (0 < xg < 1))_
((xd � 1) ^ (xg � 0))) ^ r > 0

S3 � (((0 < xd < 1) ^ (xg � 1))_
((xd � 1) ^ (xg � 1))) ^ r > 0

S4 � (xd � 0) ^ (xg � 1) ^ r > 0

Then we have

dP e ^ dr > 0e ) dS1 _ S2 _ S3 _ S4e

Lemma 4 Let Si be de�ned according to Lemma 3. Then the following statements
can be derived using propositional logic:

dS1 ^ Ce ) du11 ^ :u12 ^ :u21 ^ :u22e

dS2 ^ Ce ) d:u11 ^ :u12 ^ u21 ^ :u22e

dS3 ^ Ce ) d:u11 ^ u12 ^ :u21 ^ :u22e

dS4 ^ Ce ) d:u11 ^ :u12 ^ :u21 ^ :u22e

Note that the above result implies that while the landing command is in operation
(implicit in the region conditions), no combinations of uij other than those listed
above are possible. This means that in none of the given regions, no pairs of door
and gear movement commands are issued simultaneously by the selector. This is a
direct corollary to Lemma 3. It rests on the fact that the domain of the function
composed from the characterizer and selector functions has been completely covered
by the conditions on the left hand side of ) in the above formulas. Based on this
result and the e�ector mapping described in P1 and P2, we can now state the
following lemma, again proved using propositional logic and Lemma 4.

Lemma 5 Let Si be de�ned according to Lemma 3. Then we have

dS1e ^ dP ^ Ce ) d _xd = �d ^ _xg = 0e

dS2e ^ dP ^ Ce ) d _xd = 0 ^ _xg = �ge

dS3e ^ dP ^ Ce ) d _xd = ��d ^ _xg = 0e
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_xd = �1
_xg = 0

_xd = 0
_xg = �2

S2S1

xd � 1

xd � 0

S4
S3

xg � 1

_xd = 0
_xg = 0

_xd = ��1
_xg = 0

Figure 10. State space regions of the closed loop system with landing command in operation.

dS4e ^ dP ^ Ce ) d _xd = 0 ^ _xg = 0e

This lemma provides the necessary structure over which the proof of the timeliness
property R2 can be carried out. To make the structure of the proof for the main
theorem more visible we present a fraction of a hybrid transition system which is
derived for the closed loop system. With each mode in this system we associate a
region in the continuous state space given that the pilot command is in operation4.
Figure 10 associates one mode with each of the state space regions Si in Lemma 3

above. Each mode in the graph is annotated with the corresponding door and
gear equations given in Lemma 5. Note that re
exive transitions have an implicit
\otherwise" condition. They have only been drawn to simplify visualisation: if the
guard of the outgoing transition is not true the system remains in the current Si
region. In particular, the system will remain in the S4 region unless the landing
command is altered { a transition for moving out to the other half of the model
which has not been depicted.
Based on Lemma 3 and Lemma 5 we can provide a pictorial representation of

the mode changes, where the choice of arcs and their respective labels are justi�ed
by characteristics of each region Si. This analysis is formalised in the following
EDC formulation. The �rst formula, for example, states that if S1 holds during a
subinterval which starts an interval, then it will either continue to hold during the
rest of the interval, or the subinterval will be followed by an adjacent subinterval
in which S2 holds.
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Lemma 6 For Si as de�ned in Lemma 3 we have:

(1) (dS1e ; true) ^ dr > 0e ) (dS1e _ (dS1e ; dS2e ; true))

(2) (dS2e ; true) ^ dr > 0e ) (dS2e _ (dS2e ; dS3e ; true))

(3) (dS3e ; true) ^ dr > 0e ) (dS3e _ (dS3e ; dS4e ; true))

(4) (dS4e ; true) ^ dr > 0e ) dS4e and dS4e ) (true ; dS4e)

Proof: By straight forward mathematical analysis, we can motivate the transition
from S1 to S2 as follows: based on Lemma 5 the value of xg in the region S1 is
constant. Therefore, during every interval in which the landing command remains
constant (r > 0), if the state of the system should move out of this region, it should
do so due to the value of xd. That is, xd should increase beyond the bounds set
by the region. This will take the system to state S2 with xd � 1 as a condition.
Similar reasoning can be performed for other transitions.

5.2.2. The Proof Sketch for R2 The above structure is the basis for the following
proof steps which lead to the proof of R2. First, we show that if the system arrives
at S4 then we can be sure that the condition stipulated in the second subinterval
of R2 is not violated (i.e. the door not fully closed or the gear not fully extended)
{ this is shown in Lemma 7. Hence, it su�ces to show that from any state, if
r > 0 persists, then the system will reach S4 within the time limit stipulated in
the �rst subinterval of R2. To begin with, we show that the duration of stay in
each mode is limited according to Lemma 8. Then the main theorem shows that
starting anywhere in the state space will take us to S4 within the allowed time T
provided that the following relation holds: 2

�d
+ 1

�g
� T . Alternatively stated, we

obtain these additional constraints as a by-product of the main proof. The proofs
of the lemmas and the main theorem can be found in the appendix.

Lemma 7 Let S4 be de�ned as in Lemma 3. Then we have:

(dP ^ Ce ^ true ; dS4e) ; d:(xg � 1 ^ xd � 0)e ) false

Next, we show the constraints over the duration of stay in each of S1; : : : ; S3.

Lemma 8 Let Si be de�ned as in Lemma 3. Then we have:

(1) dP ^ Ce ^ dS1e ) ` � 1

�d

(2) dP ^ Ce ^ dS2e ) ` � 1

�g

(3) dP ^ Ce ^ dS3e ) ` � 1

�d

This will in turn imply that, under the above constraint over �d; �g and T , neither
of these modes can last for as long as T time units.
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Corollary 1 Let 1

�d
� T and 1

�g
� T . Then for i 2 f1; 2; 3g we have

dSie ^ ` = T ) false

Theorem 2 Let 2=�d + 1=�g � T . Then dSe ^ :R2 ) false

6. Verifying the Non-linear Hybrid Model

We now present the additional proof steps necessary to show that the same prop-
erties hold in presence of the non-linear environment model. Let the environment
model in Env be replaced by Env0 to give the mathematical model S0. We recall
the re�ned physical model of the hydraulic supply system (corresponding to the
bond graph to the right of Figure 6) we have:

_xd = �0d p ud

_xg = �0g p ug

_p = �(
 + 
d judj+ 
g jugj) p+ �

where �0d; �
0
g ; �; 
; 
d; 
g > 0 are constants, xd; xg 2 [0; 1] are the positions of the

door and the gear actuators as before, and where p is the hydraulic supply pressure.
First we note that the proofs for Lemma 2 and Theorem 1 are not a�ected by the

new plant model. Hence, the safety property continues to hold.
Next, we study the proof of the timeliness property R2. The coarse model S was

shown to have this property under the assumption that 2=�d + 1=�g � T . We
need similar assumptions in the case of S0, only the di�erence is that due to the
higher complexity in the model more insights from the physical world are needed to
formulate and validate the assumptions. More speci�cally, the new proof requires
that the values of the constants 
; 
d; 
g; � and the pressure level p are made explicit.
But before that we review the impact of the new plant model on the existing
lemmas. We note that Lemma 4 still holds since it is based on the combination
of the characterizer and the selector which remain unchanged. Lemma 5 will be
restated as the following lemma taking account of Env0 equations.

Lemma 9 Let Si be de�ned according to Lemma 3. Let P 0 b= Env0 ^ E�. Then we
have

dS1e ^ dP
0 ^ Ce ) d _xd = �0dp ^ _xg = 0e ^ d _p = �(
 + 
d)p+ �e

dS2e ^ dP
0 ^ Ce ) d _xd = 0 ^ _xg = �0gpe ^ d _p = �(
 + 
g)p+ �e

dS3e ^ dP
0 ^ Ce ) d _xd = ��0dp ^ _xg = 0e ^ d _p = �(
 + 
d)p+ �e

dS4e ^ dP
0 ^ Ce ) d _xd = 0 ^ _xg = 0e ^ d _p = �
p+ �e

The above lemma can then be used to redraw Figure 10 to get a similar �gure
which covers the state space of S0 in presence of r > 0. This is done by simply
replacing the di�erential equations in Figure 10 with the equations on the right
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hand side of implications in Lemma 9. Based on the above lemma, Lemma 7 will
continue to hold for S0. Furthermore, the new structure and the following lemma
can be used to show that the earlier result about S stated in Lemma 6 continues
to hold for S0.

Lemma 10 Consider S0 � P 0 ^ C. Let 
̂ = max (
 + 
d; 
 + 
g).
Let p(0) � p̂ = �=
̂. Then p(t) � p̂ > 0 for all t � 0.

Proof:

Based on physical knowledge we know that � is a positive constant dependable
on the engine velocity ! (for a particular ! we get a particular �); also that 
d and

g are positive. We show that if p is positive to begin with, it will remain positive
under all circumstances. We consider two cases.
Case 1: p(0) = p̂. Then _p = 0 and hence p = p̂ at all times. This case reduces the
problem to the coarse model analysed earlier.
Case 2: p(0) > p̂. Then _p < 0 and hence p will eventually reach p̂, in which case
the argument under case 1 will continue to hold.

Thus, p̂ is the minimum value that p can take if the system is initialised with
adequate pressure. Next we show that the positions of the door and gear will
monotonically increase (decrease) in every Si region except for S4.

Lemma 11 For any interval in which ud and ug have �xed values, p is monotonic
in t.

Proof: Follows from Lemma 9 and Lemma 10.

It is therefore the case that the earlier transition relation between the modes
(regions) holds even in the new system S0. In other words, Lemma 6 holds also for
S0. The last two results can be used to derive the upper bound for the duration
of staying in each region in terms of the minimal pressure value p̂, in a similar
fashion to the non-linear case. Only the duration of stay in each mode is now also
dependent on the minimal pressure p̂. The higher the pressure the shorter time
it takes for moving from an end position (for the door or gear) to another end
position.

Theorem 3 Let 2

p̂�0

d

+ 1

p̂�0

g
� T . Then

dS0e ^ :R2 ) false

Proof:

We follow the same proof structure as in Theorem 2 only with the initial assump-
tion that 2

p̂�0

d

+ 1

p̂�0

g
� T . In addition, we systematically replace the references

to Lemma 5 and the associated right hand side di�erential equations, with ref-
erences to Lemma 9 and the new equations from Env0 as given in Lemma 9.
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7. Concluding Remarks

We have reported here on an approach to formal veri�cation which is initiated at
the informal engineering documents. We have described the physical components,
derived bond graph and mathematical models for the environment systematically,
and then combined them with the mathematical model of the discrete controller,
to obtain models suitable for formal veri�cation.
We used a generic architecture to derive alternative closed loop models based on

alternative environment models. These ranged from simple time-linear models to
non-linear models allowing variable hydraulic pressure. We also illustrated the use
of proofs in Extended Duration Calculus to ensure safety and timeliness properties
of the di�erent closed loop models.

7.1. The Insights Gained

Going back to our generic hybrid architecture, the work reported in this article
illustrates a possible technique when the complexity and the dynamics of the closed
loop system lies in the lower half (the environment model). Typical for these cases
is that a fair amount of the formal veri�cation is mathematical analysis over the
real-valued variables. This can be contrasted with other methods illustrated in
[21, 22], for cases where the complexity arises due to the size or non-deterministic
timing characteristics of the upper half of the architecture (discrete controllers).
This study is among the �rst applications of formal deductive proofs to hybrid
systems with non-linear DAE.
It should be obvious from the illustration of the method that, aided by the archi-

tectural decomposition, the EDC formulations of the closed loop model were easy
to obtain. Moreover, switching from one plant model to another simply amounts
to changing one conjunct in the formula representing S (the closed loop system)
with another (representing the re�ned plant model).
The EDC proofs, of course, require a general familiarity with constructing logical

proofs. However, having this familiarity, the use of EDC proof system was not
particularly di�cult. Nevertheless, since similar proof tactics (contradiction, case
analysis, etc.) tend to appear in di�erent applications, the use of mechanised proof
assistants is recommendable. Thus, the next step for making this type of analysis
worthwhile in a larger example is the use of theorem provers. PC/DC, a mechan-
ical prover for Duration Calculus implemented on top of PVS [24] has existed for
some years [29]. An attempt to mechanically check some of our hand proofs was
successfully carried out [23]. There is, however, more work to be done; tedious
rewriting to bring the sequent in a special form can be eliminated by provision of
more infrastructure in the prover. The PC/DC proof for Lemma 2 which requires
8 hand proof steps, for example, required 140 proof steps.
Another re
ection over the work performed is the close connection between the

region based transition system (Figure 10) and the structure of the proof. Much
of the literature on formal veri�cation assumes that the model (or axiomatisation)
of the system to be analysed exists a priori. This formalisation is additionally
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assumed to be in a form suitable for the application of the given proof technique.
HyTech [14] could for example analyse the transition system based on the coarse
model automatically, thereby eliminating the need for the EDC proof in the time-
linear case. However, the exercise illustrates that the very derivation of this model
may be nontrivial { or rather, once a satisfactory model is found, the proof work is
more or less routine. Moreover, the insights gained while modelling can be reused
for verifying later re�nements of the model (e.g. for the non-linear case).

7.2. The Wider Perspective

Fundamental research in formal methods and its deployment in several real world
applications has seen a major progress over the past decade. Among the notable
examples are the application of formal methods and tools to the London air tra�c
management system [10], avionic software for the Lockheed C130J [7], the Tra�c
Collision avoidance system (TCAS) [13], the Motorola 68020 microcode proces-
sor [5], and the proof of correctness for an SRT division algorithm [28].

However, despite the impressive results, it is clear that the road to application
of formal techniques as a routine step within the system development process is
quite a long and bumpy one. To attack the problems along this road research in
two directions is needed. There is a need for basic research in formal languages,
data structures and algorithms for speci�cation and reasoning about complex em-
bedded systems. There is also a requirement to study the needs of application
domain engineers, the suitable models and abstractions in di�erent domains (e.g.
telecommunications, aerospace, electronic design, etc.) and to obtain suitable in-
terfaces accessible to non formal method experts. The key to success is to get a
good synergy between both of these tracks of research.

The �rst phase of the reported project started along the second track. Our work
con�rms conclusions reported in similar projects [8], that analysis by deductive
techniques requires a great deal of user knowledge and interaction. We note that
this is also true with algorithmic approaches. When applying model-checking in
our example, the bulk of the work was in justifying the time-linearity assumption
by the physical modelling activity, and presenting the exact hardware assumptions
under which this veri�cation result makes sense.

Another approach that we studied may be labelled the `discrete events approach',
whereby the system is represented as parallel composition of a set of �nite automata.
Although the theory for synthesis of discrete controllers has existed for a while [26],
its application to veri�cation requires obtaining natural discrete models of the plant,
and practical automatic veri�cation tools.

Our study of the landing gear example in this framework was carried out within
the development environment of Esterel/Mauto [3]. The synchronous family of
languages have the bene�t of a formal semantics (as synchronous I/O machines
or Mealy automata) and an intuitive appeal within the engineering community {
one attraction being the possibility of automatic code generation. Once the model
of a controller in interaction with a plant has been formally veri�ed for certain
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properties, then the high level controller model can be automatically translated to
C, Ada or a circuit design language.
Again, our application of these techniques rests on the fact that realistic discrete

models of the mechanics and hydraulics could be developed based on the physically
driven models.
To sum up, our experience with di�erent modelling and veri�cation techniques

con�rms that a principled derivation of the models remains a cornerstone of the
veri�cation activities. For smaller systems it is possible to manually translate be-
tween model types while preserving their essential properties; but applications in
an industrial setting require more support tools for derivation and management of
models.
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Appendix

Proofs for the timeliness property

Lemma 7

Proof:

(dP ^ Ce ^ true ; dS4e) ; d:(xg � 1 ^ xd � 0)e
) fLemma 1g

((dP ^ Ce _ d e) ^ true) ; ((dP ^ Ce _ d e) ^ dS4e) ; d:(xg � 1 ^ xd � 0)e
) fPLg

(dP ^ Ce _ d e) ; ((dP ^ Ce ^ dS4e) _ (d e ^ dS4e)) ; d:(xg � 1 ^ xd � 0)e
) fDefn, PLg

(dP ^ Ce _ d e) ; (dP ^ Ce ^ dS4e) ; d:(xg � 1 ^ xd � 0)e
) fLemma 5g

(dP ^ Ce _ d e) ; (dP ^ Ce ^ dS4e ^ d _xd = 0 ^ _xg = 0e) ;
d:(xg � 1 ^ xd � 0)e

) fanalysis, PLg
(dP ^ Ce _ d e) ;
(dP ^ Ce ^ dS4e ^ (9v1v2 : R � b.xg = e.xg = v1 ^ b.xd = e.xd = v2)) ;
d:(xg � 1 ^ xd � 0)e

) fChop-Existsg
(9v1v2 : R � (dP ^ Ce _ d e) ;
(dP ^ Ce ^ dS4e ^ b.xg = e.xg = v1 ^ b.xd = e.xg = v2) ;
d:(xg � 1 ^ xd � 0)e)

) fContinuityg
(9v1v2 : R � (dP ^ Ce _ d e) ;
(dP ^ Ce ^ dS4e ^ b.xg = e.xg = v1 ^ b.xd = e.xd = v2) ;
(b.xg = v1 ^ b.xd = v2 ^ d:(xg � 1 ^ xd � 0)e))

) fLemma 3g
(9v1v2 : R � (dP ^ Ce _ d e) ; (v1 � 1 ^ v2 � 0) ;
(b.xg = v1 ^ b.xd = v2 ^ d:(xg � 1 ^ xd � 0)e))

) fanalysisg
(9v1v2 : R � (dP ^ Ce _ d e) ; (v1 � 1 ^ v2 � 0) ; false)

) fChop-Existsg
(9v1v2 : R � (dP ^ Ce _ d e) ; (v1 � 1 ^ v2 � 0)) ; false

) fChop-falseg
false

Lemma 8

Proof:

We show the proof for (1) which is a proof by contradiction. Proofs for (2) and
(3) are analogous.
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dP ^ Ce ^ dS1e ^ ` > 1

�d

) fLemma 3,Lemma 5, P-Andg
dP ^ C ^ x < 1 ^ _xd = �d ^ _xg = 0e ^ ` > 1

�d

) fDefng
dx � 0 ^ x < 1 ^ _xd = �d ^ _xg = 0e ^ ` > 1

�d

) fanalysisg
` � 1

�d
^ ` > 1

�d

) fPLg
false

Theorem2

Proof:

dP ^ Ce ^ :2:((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)
) fSomewhere-Neg, PLg

dP ^ Ce ^ 3 ((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)
) fDefng

dP ^ Ce ^ (true ; (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e ; true)
) fLemma 1, PLg

(d e _ dP ^ Ce) ;
(d e _ dP ^ Ce) ^ ((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e) ;
(d e _ dP ^ Ce)

Considering the middle intervals:

(d e _ dP ^ Ce) ^ ((dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)
) fPLg

(d e ^ (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)_
(dP ^ Ce ^ (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)

) fDefn, PL, Chop-falseg
false _ (dP ^ Ce ^ (dr > 0e ^ ` = T ) ; d:(xg � 1 ^ xd � 0)e)

) fLemma 1g
((d e _ dP ^ Ce) ^ dr > 0e ^ ` = T ) ; ((d e _ dP ^ Ce) ^ d:(xg � 1 ^ xd � 0)e)

) fDefn, PLg
(dP ^ Ce ^ dr > 0e ^ ` = T ) ; (dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fP-And, Lemma 3g
(dP ^ Ce ^ dS1 _ S2 _ S3 _ S4e ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fChop-P-Org
(dP ^ Ce^
(dS1e ; true _ dS2e ; true _ dS3e ; true _ dS4e ; true)^
dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)
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We prove each case separately. The �rst three cases cover the possibilities that the
�rst subinterval is started by S1, S2, and S3 respectively. Cases 2 and 3 essentially
appear as a subproof in case 1, which is the longest subproof and will be shown
here.
Case 1:

(dP ^ Ce ^ (dS1e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6g
(dP ^ Ce ^ (dS1e _ (dS1e ; dS2e ; true)) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fCorollary 1, PLg
(dP ^ Ce ^ (dS1e ; dS2e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6g
(dP ^ Ce ^ (((dS1e ; dS2e) _ (dS1e ; dS2e ; dS3e ; true))^
dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 8, PLg
(dP ^ Ce^
((` � 1=�d ; ` � 1=�g _ (dS1e ; dS2e ; dS3e ; true)) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fDur-Chop, analysisg
(dP ^ Ce ^ (false _ (dS1e ; dS2e ; dS3e ; true)) ^ dr > 0e ^ ` = T ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6, PLg
(dP ^ Ce^
(((dS1e ; dS2e ; dS3e) _ (dS1e ; dS2e ; dS3e ; dS4e ; true)) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fanalysisg
(dP ^ Ce^
((` � 1=�d ; ` � 1=�g ; ` � 1=�d _ (dS1e ; dS2e ; dS3e ; dS4e ; true))^
dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fDur-Chop, analysisg
(dP ^ Ce ^ (false _ (dS1e ; dS2e ; dS3e ; dS4e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6, PLg
(dP ^ Ce ^ (dS1e ; dS2e ; dS3e ; true ; dS4e) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 7, Chop-falseg
false
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Next we show the case where S4 holds at the beginning of the �rst subinterval.
Case 4:

(dP ^ Ce ^ (dS4e ; true) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 6g
(dP ^ Ce ^ (true ; dS4e) ^ dr > 0e ^ ` = T ) ;
(dP ^ Ce ^ d:(xg � 1 ^ xd � 0)e)

) fLemma 7, Chop-falseg
false

Based on the above case analysis and through two further applications of Chop-
false we can conclude the proof for

dSe ^ :R2 ) false

Notes

1. Our notion of hardware includes mechanical, electrical and hydraulic components. The paper
will make some of these di�erences clear.

2. Note that once the guard is true, the jump is immediate in physically modelled plants, but
may be subject to explicit time constraints for timed controllers.

3. In general, we need formal rewrite rules and tools to obtain the simplest form for each appli-
cation, but here the model is presented in simpli�ed form

4. A similar but slightly di�erent fraction can also be derived for the case when r � 0 holds, in
order to prove the property R3.
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