
1(15), 1/7/99

1. INTRODUCTION

Due to the dramatic evolution of electronics, machine industry faces a shift in machine design where more and
more functionality is included in the form of software on embedded distributed computer systems. In the first phase
of this transition, e.g. in the automotive industry, the new software based solutions were in principle stand-alone
systems, [23], in terms of both the computer system and the used set of sensors and actuators. To really benefit
from the potential of software based systems, the next phase in this development is that different, previously stand-
alone functions, will be interacting and cooperating so as to optimize the overall performance of a system such as
in the next generation of cars. Essential, in both an engineering and research context, is the resulting need for in-
teractions between control, mechanical, and software/computer/electronics engineers, [33]. This, in addition, ne-
cessitates that new approaches and facilities are provided for system modelling, analysis and tool support.

It often pays off to introduce an embedded distributed computer control system in new machinery primarily
because of the reduction in cabling, hydraulic hoses, mechanical linkage etc., but also due to the flexibility inherent
in digital solutions allowing e.g. diagnostics and improved control algorithms, [28]. In a machine embedded dis-
tributed control system, electronic hardware (microprocessors, ASICs, etc.) and control software is distributed in
the machine and connected to sensors and actuators. The topology of the distributed computer system is usually to
a large extent given by the structure of the machine with its sensors and actuators.

In the development of such systems, however, designers are faced with several ‘new’ problems. For example,
the design of the mechanics can no longer be isolated from the design of electronic control nodes because the nodes
need to be embedded into the machine together with their information and energy cabling.

The design issues depicted in Figure 1 form the primary background for this work.

Figure 1. Essential design issues for distributed real-time control systems

❶ Structuring, partitioningand allocation deals with the
definition of components, their connections and to the mappings
between different structures (e.g. functions/threads/processors).

❷ Execution and communication policies. The definition of
policies and mechanisms for triggering, scheduling,
synchronisation and communication.

❸ Performance requirements.The definition of timing
requirements and related trade-offs.

❹ Error detection and handling policies.In particular
additional failure modes of distributed real-time systems must
be identified and handled.

Distributed
computer
system

Control
application

Mechanics (actuators, sensors, interfaces)

Human machine interface

❶❷❸❹

A Modelling Framework to Support the Design and Analysis of Distributed Real-Time
Control Systems

Martin Törngren and Ola Redell

Mechatronics Lab, Department of Machine Design, Royal Institute of Technology
SE-100 44 Stockholm, Sweden, email: {martin, ola}@damek.kth.se

ABSTRACT : Within the AIDA project a modelling framework has been developed to support design issues re-
lated to the implementation of control applications in embedded distributed computer systems. At a relatively high
level of abstraction the models describe the structure and timing behaviour of a control application (in terms of
functions and operational modes) and its implementation (hardware, operating system threads and resources). The
resource description allows the timing behaviour of the implementation to be analysed and fed back into the appli-
cation models. The models form the basis for a decentralization tool-set, where a first prototype is under develop-
ment. Examples of the models are given and the framework is compared to related modelling approaches.

2(15), 1/7/99

The horizontal arrows in Figure 1 indicate different design cases and disciplinary interactions. For example the
performance requirements of the control application could be used to dictate the choice of the execution policy in
the computer system. On the other hand, these policies may be given, thus constraining the solution space and po-
tentially requiring appropriate counter measures to be taken in control design (e.g. including compensation for
time-varying delays) or even the requirements to be reformulated.

The design issues of Figure 1 have the following overall characteristics

• The determination of a suitable degree of decentralization of the control system on the distributed computer
system depends on a number of sometimes conflicting factors including control performance, reliability, flex-
ibility and cost, forming a multi-objective design problem.

• The issues should be addressed in early design stages since they affect essential architectural properties of the
integrated computer control system. For example, the degree of decentralization of the control system is
highly related to the dimensioning of the computational and communicational resources of the distributed
computer system. Neglecting early performance analysis may lead to costly clashes in system integration. The
adoption of early performance analysis, on the other hand, enables the design of cost-effective solutions.

1.1. The AIDA project and the structure of the paper

Considering newer applications with increasing complexity, and with high reliability and safety requirements,
there is an increasing need to provide models and tools to support the designers of machine embedded control sys-
tems. Although several useful modelling approaches and computer aided tools exist for the design of control, soft-
ware and mechanical systems, such models and tools provide very little or no support when the applications are
implemented in embedded distributed real-time computer systems.

The projectAutomatic control in distributed applications (AIDA) was therefore started with the aim of devel-
oping a supporting modelling framework and a tool-set targeting analysis and synthesis related to the design issues
of Figure 1, see [2] for more background information on the project. The current status of the tool-set development
is that a modelling framework has been developed on which the tool-set will be based. The modelling framework
has been used in a few case studies, [28][22]. Based on the existing framework the implementation of a tool pro-
totype has just began.

The AIDA approach is far from a complete development method with supporting models and tools. Instead, the
whole concept is devoted towards solving a few concrete design problems that occur when a control application is
to be implemented in a distributed computer system. Thus, the AIDA models and related design guidelines,
[27][28], can be used to complement existing methodologies when appropriate. Issues such as timing analysis, the
provision of graphical views of system structure and timing behaviour should be useful not only in early conceptual
design stages but also in work related to the augmentation of already existing systems. The envisioned tool-set
could be seen as a real-time design complement to existing control engineering tools.

The interactions between the different design choices of Figure 1 are considerable, and have a great impact on
the final system performance. Therefore the AIDA tool-set is intended to support iterative engineering, answering
a number of “what if” questions put by the designer. Typical analysis results that the AIDA tool-set should be able
to provide are estimates of the timing behaviour of the control system given a particular implementation (alloca-
tion, processors, scheduling policies etc.). Example results include estimates of feedback delays, delay variations,
jitter in sampling periods, and the utilization of processor and communication links.

Such results can be used to answer a number of different design questions. For example; With fixed hardware
and application structures, what performance can be achieved by (i) changing the hardware components, (ii) chang-
ing policies for scheduling, clock synchronisation etc. Apart from analysis, synthesis functionality such as (semi)
automatic allocation and control system restructuring are also planned to be included.

The purpose of this paper is to give an overview of the results so far, primarily dealing with the modelling
framework. Section 1.2. gives a brief overview of related research projects with respect to tool support. Section 2
describes the developed modelling framework including examples of the usage of the models. Section 3 discusses
other existing modelling approaches and their relation to the AIDA models. Finally section 4 provides conclusions
and discusses further work in the project.

1.2. Related research efforts on tools

State of the art computer aided control and software engineering (CACE and CASE respectively) tools do sup-

3(15), 1/7/99

port rapid prototyping for specific distributed computer systems. The tool-sets provided by the companies Math-
works and dSPACE enable control system design, analysis and simulation, code generation from the graphical
block diagrams of Simulink, “transparent” implementation of generated code on DSPs, and real-time operator in-
teraction and logging, [14]. Transparency here refers to the fact that the user manually specifies allocation of
Simulink blocks to processors, the physical configuration of which is also described in Simulink. The required
communication code is then included transparently. The resulting code is managed by a real-time executive.

While such tools are extremely useful for control designers, there is still a large amount of functionality missing
with respect to implementation analysis. This holds for both related control and software engineering tools which
do not allow exploration of implementation alternatives, for example with respect to resource structures and exe-
cution strategies. Nor do they provide any guarantee that an implementation will work with respect to real-time
behaviour.

Out of a number of related research tools we have found the three following to be highly interesting:

• The Development Framework, [4], incorporates some of the functions and a tool structure similar to that we
envision. The control design is specified in Simulink and then transferred to a commercial CASE tool (Soft-
ware through Pictures) which models can be analysed and transformed by other tools (clustering, replication).
The combination of CACE and CASE technology facilitates multi disciplinary project development and
makes use of the strong points of the respective modelling and analysis features. Hardware modelling, execu-
tion and communication strategy considerations appear to be weak points in the Development Framework.

• The GRAPE tool-set, [18], is developed for digital signal processing systems and has an interesting tool struc-
ture, including tools for allocation, scheduling and restructuring of the computer hardware. Only point to point
architectures are considered.

• An interesting effort is the Parallel Scalable Design Tool-set (PSDT) from Honeywell research. PSDT is a
CASE tool specifically addressing implementation in distributed and parallel real-time systems, [5].

In the real-time research community, a number of prototypical tools have been developed for schedule simula-
tion, timing analysis and schedule generation, [10][31][15][3]. The amount of theoretical research work is vast in-
cluding work on general purpose parallel processing, parallel and distributed real-time systems, and related work
in control engineering. One important shortcoming of the supporting models is that they, with a few rare excep-
tions, do not directly address the timing constraints of sampled data systems, [22][28].

2. THE MODELLING FRAMEWORK

2.1. Requirements on the modelling framework

The overall purpose of the models is to support the design of distributed real-time control systems by providing
means for describing system structure and timing behaviour, and by including information to support analysis and
synthesis. The ambition has been, and is still, to fill in the gaps in terms of missing models and tools. Commercial
tools and research provide good support for analysis and simulation of continuous-time and discrete-event dynamic
systems. Lacking support for behaviour modelling with respect to timing behaviour (e.g. precedence, parallelism,
triggers, durations etc.) and high-level modelling of resource management is therefore the primary focus.

The basis for developing the modelling framework was to determine the information needed in the context of
the early stages of design of distributed control systems. A major challenge in developing the framework concerns
the provision of adequate and different abstraction levels taking into account the analysis needs of industrial de-
signers and the modelling precision needed. Consider for example the implementation of a data-flow over two
processors and a serial network. A high level of abstraction is to simply model this network as a time-delay with
potential data-loss, thus providing an abstraction suitable for control engineers. Increasing detail would take into
account essential resource management (e.g. processor and communication scheduling) such that the timing be-
haviour of system functions can be analysed sufficiently well, providing a suitable high level of abstraction for soft-
ware and computer engineers.

The following requirements on the models were initially formulated:

• The models must support the multidisciplinary characteristics of the design problems where at least both com-
puter (software and hardware) and control engineering is involved. To do this the modelling framework must
provide suitable abstractions, views and links between these.

4(15), 1/7/99

• The model abstractions should be on a relatively high level to support ‘architectural decisions’ that directly
affect the system structure and timing behaviour, and thereby a number of essential system properties such as
control system performance (as a function of the system timing), extensibility, testability etc.

• The aim is to give support for the description of realistic control systems. This implies the need to be able to
model time- and event-triggered, multirate, control systems with different modes of operation. These control
systems are to be implemented on distributed heterogeneous hardware with both serial and parallel communi-
cation links interconnecting the processing elements. Furthermore the processing elements can be placed on
different locations in the mechanical structure, hence the sites of sensors and actuators should be modelled as
well as the assignment of processing elements to such sites. There is also a need for modelling the various sys-
tem specific overheads, scheduling policies, error handling etc.

• Since design could be based also on existing systems or components, the models must allow description of
earlier implementations with many already taken and hence fixed design decisions.

2.2. The structure of the modelling framework

The AIDA modelling framework is outlined in Figure 2. The models are divided into three separate parts,ap-
plication, computer system andmechanics.The application models describe the functional structure, data and con-
trol flows as well as timing requirements of the motion control system. Furthermore, the functions and the inter
function communications that constitute the smallest building blocks of the application models are described in
detail in terms of resource requirements. In the computer system models, the threads (no distinction is made here
between threads and processes) and their interconnections resulting from partitioning, are described together with
the computer hardware. Operating system behaviour, scheduling policies etc. are also defined. The mechanical
model describes the sensors, actuators, drive units and other elements that form the interface between the computer
system and the controlled process. One important attribute of the mechanical models is the physical locations of
such interfaces. Currently there is no timing behaviour description implemented for the mechanical parts, instead
time-constants and delays are given as attributes at the component level. No continuous and discrete-time behav-
iour is described for the mechanical system since this would include modelling of mechanical dynamics; for this
there already exists good models and tools. The AIDA modelling framework is more thoroughly described in [22].

2.3. A case study used to describe a representative subset of the AIDA models

A sub-set of the models will be briefly described in the coming sections with simple examples to give a flavour
of, and an introduction to the modelling framework. The emphasis in the description is on parts of the application
and computer system models. The description is based on a case study in which models of the control system of a
four legged vehicle were derived. In the case study, fixed vehicle mechanics is assumed as is the design of the con-
trol application. The vehicle is currently being built at the Mechatronics lab.

Application models
Computer system models:
Software and Hardware

Mechanical models

Overall
behaviour

Modes of Operation

Structure Functional block diagrams Computer hardware structure

Process structure diagram

Location model

Interface components placement

Timing
Behaviour
Specifica-
tion &
Implementa-
tion

Timing and Triggering Diagram
(TTD)

Implementation TTD

Inter Process Communications
IPC model, Communication resources,
Communication resource chains

Processes: Process TTD and Process internal TTD

Computer system:
Operating system, Scheduling policy,
Synchronisation

See comment in section 2.2.

Component
Descriptions

Detailed function description

Detailed data flow description

HW characteristics:
Processing elements, Communication links,
Clocks

SW characteristics: Implemented Processes

Interface component model

Environment interfaces model

Figure 2. Overview of the structure of the AIDA modelling framework

5(15), 1/7/99

In the complete case study, described in [22], two choices of hardware architectures are investigated. Based on
the developed application and computer models a coarse analysis of the timing behaviour of the implementation is
performed.

2.4. Application models

The application is the control design as it is originally modelled in for example Simulink. In the AIDA appli-
cation models, the control design is further specified with three basic types of diagrams: The macro mode transition
diagram, the functional block diagrams and timing and triggering diagrams.

The Macro Mode Transition Diagram (MMTD) describes the different high-level control modes of the system.
An example is the take-off, cruising and landing of an aircraft. Each mode can be expected to use substantially
different controllers that are best described separately.

The Functional Block Diagrams describe the data-flows between the different control functions within each
macro mode. Note that the emphasis is on describing the functional and implementation independent structure of
the control application with its functional blocks and data-flows. No execution semantics (e.g. execute a block
when data is available) is associated with a block diagram. Instead, precise timing and triggering specifications are
given in separate diagrams.

Figure 3 shows a part of a functional block diagram for the control system of the vehicle mentioned above. The
torque control loop of one joint of the vehicle’s four legs is shown. The diagram shows how functionsS, TC and
A are connected to perform a sample (S), compute (TC) and actuate (A) loop. The position samples include meas-
ures of two joint angles (on both sides of the flexible joint), used byTC to compute the joint torque.

Data-flows to functions not shown in Figure 3 are indicated by dashed lines. Those data-flows correspond to
the position sample,pos, sent to an observer function higher in the hierarchy and the reception of a torque reference
signal,torq, from a higher level controller.

The behaviour of the application in terms of timing, triggering and precedence is modelled in TTDs (Timing
and Triggering Diagrams). The same functions are used as building blocks as in the functional block diagrams, but
the TTDs separate functions that are executed with different periods into activities. A TTD describes the control
flow of the activities within each macro mode. Precedence relations, time and event triggers are shown and toler-
ances can be given for the control delays, jitter and synchronisation. This is useful to specify the requirements that
the control design poses on the implementation.

With the example functions in Figure 3, a TTD can be specified. It is assumed that all functions in the torque
control loop are specified to be executed with the same frequency (period) but that the actuate function should be
triggered 0.5ms after the sample function in order to achieve a constant control delay. Hence, the functions are
collected into one activity, described by one single TTD. It is further assumed that there are requirements on the
admissible jitter of the sample function, as well as on the variation in control delay. These requirements are shown
in the TTD as specifications on the time trigger. A time trigger is defined as follows: < Type : Source , Peri-

od:[Delay], Tolerance >. TheType describes if it is a time, event or loop trigger (TT, ET or LOOP). The
source indicates what the source of the trigger is (a clock for time triggers and an event for event triggers).Period
gives the period of a time trigger and minimum period of an event trigger.Delay is an optional specification of the
delay (phase) of the trigger compared to other triggers having the same source. Finally, thetolerance defines a tol-
erance of what variation is admissible from the specified triggering time.

Figure 4 shows the TTD for the torque control loop in Figure 3. The precedence relations between the functions
are shown as well as the explicit triggers that both the sampler (S) and actuate (A) functions are given. It is specified
that the actuation should be done 0.5ms after the sampling. Both the sample and actuate functions are allowed to

Figure 3. Functional block diagram for the torque control loop.

Torque
Control

Position
sample

torq

pos

ctrl
TC A

S

Actuation

6(15), 1/7/99

deviate with at most 100µs from their specified start times

The double rectangle defines arate interfacing function which is used to describe asynchronous (non blocking)
communication between different activities. The meaning is that the sample function sends data (pos in Figure 3)
to an observer function,Obs, that belongs to the parts of the control system that are not modelled here. The observer
function should however be part of some other TTD in a complete system modelling. In a similar manner, a rate
interfacing function (taggedTC) is used in some other TTD (which is not given here), to describe the communica-
tion associated with the data-flow,torq, in Figure 3. In that case,TC is the receiving function.

A timing and triggering diagram can describe parallel paths as well as alternative paths, selected at run-time. A
path that is not necessarily executed every time the activity is triggered is called a micro mode. Two complemen-
tary micro modes may e.g. be the use of a fast linear controller versus using a better but slower non-linear one. It
should be noted that the arbitration between different micro modes is not described at a low level with e.g. if-then-
else constructs. Micro modes are included only to indicate possible execution paths in an activity, not to show how
the micro modes are selected.

One additional timing and triggering diagram is used to describe the timing that results from an implementation.
The Implementation TTD (I-TTD) is expected to be the result of some analysis tool within the AIDA tool-set. An
I-TTD is similar to its corresponding original TTD but with the difference that extra delay functions have been
included to show the effects of implementation. Furthermore, the triggers are specified with their achieved values
on jitter, delays and period. The added delay functions include delays originating from e.g. communications and
scheduling effects such as the sequential execution of concurrent activities.

Figure 5 shows an I-TTD for the torque control activity in Figure 4. The delay functionsD1 andD2 have been
included and the values specifying the triggers have been exchanged for some estimated values obtained by anal-
ysis.

At the functional level of the application models, the functions and the data-flows are described with worst case
execution times, communication requirements etc. Hence, the functions are not described in detail, only their re-
source needs are specified.

2.5. Computer System

The computer system models include specification of the computer hardware, the processing elements and their
inter connecting communication links. Also, the operating system is described in terms of scheduling policies, dis-
patching time, clock tick period etc.

When the application has been partitioned into processes, the connections (communications) between the proc-
esses are shown in a process structure diagram.

Inter process communications (IPCs) are modelled with communication resources (message queues and trans-
mitters) that specify e.g. blocking times of message queues and scheduling policies of the communication links.

Figure 4. Timing and triggering diagram for the torque control activity.

Figure 5. Implementation timing and triggering diagram for the torque control activity.

TT:C1, 1 ms, 100 µs

S

Obs

ATC

TT:C1, 1: 0.5 ms, 100 µs

TT:C1, TS: τS, jitS

S ATC

TT:C1, TA: τA, jitA

D1 D2

Obs

7(15), 1/7/99

The communication models can later be used for analysis of communication latencies.

Assume that the example activity shown in Figure 4 is partitioned into two processes,P-STC andP-A. The par-
titioning may correspond to e.g. a distributed implementation with the sample and computation functions at one
processor, and the actuation at another.P-STC contains the sample (S) and computation functions (TC), andP-A
contains the actuation function (A). Also assume that another process,P-X, corresponding to all other activities in
the system, is defined. The corresponding process structure diagram is shown in Figure 6. Note that three IPCs are
defined:pos, torq andctrl. Each of the IPCs are data-flows in Figure 3 that “cross process borders”. For simplicity,
the IPCs are here given the same tags as their corresponding data-flows in the functional block diagram.

The timing of the processes is specified in a Process timing and triggering diagram (P-TTD) that looks like a
regular TTD only that it specifies the timing and triggering of the processes and not of the functions. In Figure 7,
a P-TTD is shown that defines the requirements of the process timing.

The same types of triggers are used as in the regular TTD but no rate interfacing functions are included. Instead,
the correspondence to rate interfacing functions, the inter process communications, are visible in the Process inter-
nal timing and triggering diagrams (Pi-TTD). A Pi-TTD defines the control flow internal to a process with the func-
tions from the original TTD as building blocks. Also the IPCs are visible as blocks defining the reception and
sending of a message. Furthermore, any functions that are allowed to execute in parallel according to the original
TTDs, are shown in sequence. The blocks corresponding to the sending and the reception of a message are associ-
ated with communication resources belonging to some communication model. The communication resource blocks
are shown as rectangles in the Pi-TTD.

In Figure 8 the Pi-TTDs for the processesP-STC andP-A are shown. The first of the diagrams shows the
P-STC process with visible blocks for interfacing the sender and receiver communication resources. Sending of a
position message (pos) is shown as the blockS_pos, reception of torque reference is taggedR_torq etc.

Note that all the diagrams shown in this example are specification diagrams used to specify a required behav-
iour rather than showing the results of an implementation. Just like in the TTD and I-TTD case however, the dia-

Figure 6. Process structure diagram for the three processes in the example.

Figure 7. Process timing and triggering diagram for the three processes in the example.

Figure 8. Process internal timing and triggering diagrams for processP-STC andP-A.

P-STC P-A

P-X

pos
torq

ctrl

P-STC P-A

P-X

TT:C1, 1 ms, 100 µs TT:C1, 1: 0.5 ms, 100 µs

TT:C2, T3, τ3

TT:C1, 1 ms, 100 µs

S R_torq TCS_pos

TT:C1, 1:0.5 ms, 100 µs

AR_ctrl

S_ctrl

8(15), 1/7/99

grams can be used with achieved values of the time triggers to show a result rather than a specification. In that case,
triggers are assigned to the starting block of each process. Compare Figure 8 where the requirement specification
is given for the timing of the actuate function.

To describe the behaviour of IPCs the AIDA models use communication resources (CRs) and chains of such,
called communication resource chains (CR-chains). These provide the ability to describe various implementations
ranging from an RTOS message queue to a complex communication system including software and networks. A
communication resource is an entity used for communication. It can be either a message queue with an associated
data storage and arbitration policy, or it may be a transmitter which does not store data. Typically, a register in a
communication device is modelled as a one place buffer (in AIDA terms, a message queue of length one) and the
communication media is described by a transmitter resource. A communication resource may be used in several
CR-chains associated to different IPCs. This makes it possible to model priority arbitration between different mes-
sages using the same resource(s). The CR-chains also make it possible to describe priority arbitration in several
levels (one in each resource). A CR-chain starts and ends with message queues to which the sending process writes
and from which the receiving process reads the data (called sender and receiver resource respectively).

Figure 9 shows the CR-chain for thectrl IPC from Figure 6 when the IPC is implemented over a Controller
Area Network (CAN).Mailbox 1 is a message queue resource describing the buffer in the CAN communication

chip of the sending node. TheP-STC process ‘writes’ data toMailbox 1 when it wants to send data via the corre-
spondingctrl IPC. TheCAN controller 1 resource is a transmitter that performs arbitration on the available mail-
boxes that have data to send. TheCAN bus is likewise a transmitter resource that, in priority order, selects one of
the messages served to it by its connected CAN controllers. The last communication resource,Mailbox 2 in the
described chain, is the buffer in the CAN chip at the receiving node.Mailbox 2 is modelled as a message queue
from which the receiving process (P-A) reads the data.

3. QUALITATIVE COMPARISON WITH RELATED MODELLING APPROACHES

The purpose of this section is to provide another perspective to, and evaluation of, the AIDA models. Three
interesting modelling approaches have been chosen here. These are representative in that they represent efforts
from different ‘communities’ and methods including ‘object-oriented analysis and design’, ‘structured analysis and
design’, and ‘real-time scheduling research’. Some further comments on these choices and their relations to other
modelling approaches are given below. The selection criteria are discussed in section 3.2.

3.1. Modelling approaches selected for comparison

• RT-UML - Real-time extensions to the Unified Modelling Language. UML is the result of a recent effort in
the object oriented community to develop a unified (object-oriented) modelling language with a graphical
notation, [29][30]. Consequently, UML incorporates most of the models and diagrams found in previously
developed OO methods. The large UML repertoire includes diagrams for describing use cases, class/object

Figure 9. Visual description of a communication resource chain for an IPC using a CAN network.

Mailbox1

CAN Bus

CAN Controller 1

Mailbox2

Message queue

Transmitter

Message queue

Transmitter

9(15), 1/7/99

structures and relations, statecharts (state transition diagrams) and activity diagrams, sequences, collaboration,
components and hardware deployment. UML also incorporates three extensibility mechanisms to extend or
tailor the modelling capabilities. These mechanisms include constraints (rules applied to elements of a model),
tagged values and stereotypes (with which new model elements can be created and associated with user-
defined icons). UML is claimed to have very broad applicability also encompassing at least real-time event-
triggered systems, [30][26]. One major question for research still appears to be to what extent object orienta-
tion and UML are sufficient for modelling hybrid real-time control systems. It is relatively well accepted that
object orientation in general, see e.g. [31][6][25], and UML in its current form, see e.g. [20], are not sufficient
for real-time systems. Limitations include the specification of timing constraints, the handling of periodic
time-triggered systems, and the definition of specific computer system configurations. This is also being man-
ifested by the ongoing work within the Object Management Group to define real-time extensions for UML. In
this comparison the basis is the use of UML for real-time systems as described in [9] and the real-time exten-
sions proposed in [20] and other related articles, [1].

• RTT - Real Time Talk. RTT is a design framework for developing distributed real-time applications, [10].
RTT is based on object orientation with the premise of reuse and modularity advantages. To support real-time
systems a number of notions are incorporated into an extended object oriented framework. These notions
include explicit descriptions of synchronization (ordering the execution of objects), timing requirements of
individual and interacting objects, and communication between objects. RTT encompasses programming in
the large and in the small, and includes considerations on how to combine soft and hard real-time software. In
terms of timing models and analysis, RTT is closely linked to the real-time scheduling theory community.
DEDOS, [31], and HRT-HOOD, [6] are two approaches that are related since they also extend traditional
object oriented concepts with data- and control-flow specifications. As in RTT, timing analysis based on real-
time scheduling theory is incorporated in the design guidelines.

• DARTS/DA - the design approach for real-time systems extended for distributed system, [12][13]. DARTS/
DA builds upon the structured analysis and design (SA/SD) methods but extends these for concurrent distrib-
uted systems. In traditional SA/SD, the analysis and design steps are accompanied by a set of diagrams includ-
ing hierarchical data-flow diagrams (DFD) which on the highest level describe the system context. The
structure of a distributed computer system and of operating system processes are also described by DFD’s.
The DFD’s may include control-flow (divided into triggers, enable and disable events) and control transfor-
mations. Additional models include state transition diagrams, data dictionaries, mini-specifications of primi-
tive transformations, and structure charts showing the system decomposition into modules. DARTS/DA, and
refined versions of it [13], elaborate ‘task architecture diagrams’ (i.e. the process structure and the inter-proc-
ess communication principles) and also modularization into objects (information hiding modules), thus
attempting to bring the structured and object oriented approaches together.

3.2. Selection of comparison criteria

To support the design issues targeted in this paper a modelling framework must enable multidisciplinary and
concurrent development. It must enable high-level design trade-offs to be made and evaluated from both control
and computer system perspectives. There is then a need to incorporate suitable viewpoints, relations and links be-
tween these views, see e.g. [32]. In addition, it is essential that the specification languages and models (in textual
or graphical form) capture the designer’s conceptual view of the system with minimum effort, [11][21]. I.e., the
models should be natural to use and preferably directly and explicitly support the features that the designer wishes
to model.

Several definitions and classifications of views exists. Some classifications focus on the users and/or subsystem
viewpoints. This is for example the approach taken in the COntrolled REquirements expression requirements anal-
ysis method. This is related to the AIDA modelling parts, where domain views, corresponding to different disci-
plines are provided. A closely related classification of views is given by the “4+1 view model of architecture”, [16].
The views include thelogical view (describing system functionality and structure in terms of objects and classes),
theprocess view (describing concurrency and communication), thedevelopment view (describing the organization
of the actual software modules), thephysical view (describing the mapping of the software on the hardware), and
thescenario view, which is used to support architectural design and to indicate essential requirements.

Another classification is given in [21] where a view is said to describe a system with respect to some set of

10(15), 1/7/99

attributes or concerns. The following views are defined:system purpose (i.e. requirements),form (i.e. structure),
behavioural/functional, performance, data, andmanagerial (process related).

Which are the most essential views? This probably to a large extent depends on the type of system, compare
with a database vs. a real-time control system. According to [21] thesystem purpose andform views are in general
the most important ones. Given certain critical system requirements, models to analyse their satisfaction are also
essential. For distributed real-time systems and with the focus of this paper it follows that the requirements and
structure criteria (and views) need to be complemented by performance models that enable analysis and prediction
of the timing behaviour of a particular system.

Based on the preceding discussion the following criteria for qualitative comparison have been chosen:

• Timing behaviour - can the specified timing as well as the implemented timing behaviour be described with
relation to system functions?Timing behaviour is one of the key attributes and requirements addressed in this
evaluation. There is a need to express relevant timing requirements for the targeted time- and event-triggered
control systems, such as response and feedback delays, sampling periods, allowable jitter, synchronization and
precedence. There is also a need to describe the timing behaviour of an implemented system at an application
abstraction level, i.e. in terms of the actual or predicted delays and timing variations that are introduced due to
computations, communications, blocking, non synchronous activities, and interference. Due to the different
focuses of the evaluated models the distinction between time- and event-triggered systems is included. Note
that time-triggered here primarily refers to the need to describe multirate systems where functions (objects or
transformation) executing at different periods communicate. Behavioural descriptions of processes (threads),
primarily in terms of the communication primitives (asynchronous vs. synchronous), are not included in the
comparison. Such descriptions are available in mixed structural and behavioural descriptions in UML and
DARTS/DA in terms of concurrency and data-flow diagrams.

• Structure:Given the targeted design issues it is clear that the structures corresponding to the application func-
tions, threading in the software implementation, the hardware and environment interfaces need to be
described. Links (mappings or allocations) between these structural representations must be supported. Hier-
archies are an important part of structural descriptions and offer well known advantages in dealing with sys-
tem complexity thereby allowing a designer to focus on different abstractions and subsystems at a time, [19],
[11]. Different types of hierarchies exist; the most common is that of decomposition or refinement of objects
(components, functions etc.) to describe the details of the objects in terms of lower level objects within the
same domain. Compare for example with a computer hardware structural description starting at the network
level, where each network is composed of nodes and communication links, and where each node is composed
processors and peripherals, [8]. Nancy Leveson, [19], in the context of system specifications, discusses
another type of hierarchy termed “means-ends hierarchies”.According to [19] these have been shown to play
an important role in the understanding of complex systems. “Ends” refers to “upper levels” and describes
goals, whereas “Means” refers to lower level implementation descriptions. Such a hierarchy is applicable both
to the structure (compare logical vs. process views) and to the timing behaviour.

• Resource management - evaluating the performance models with respect to timing analysis:Under the head-
ing ‘resource management’ we group policies and mechanisms, in software and hardware, used to implement
scheduling, process communication, interprocessor communication and synchronization. Related information
includes descriptions of the provided processing and communication performance (e.g. overhead and effective
bits/s in communication). Such descriptions are essential to be able to predict the timing behaviour of an appli-
cation. Other important pieces of information for timing analysis, such as requirements on processing (e.g. the
number of and type of operations required) and communication (e.g. messages/s) should be contained within
the application description.

• Graphical notation: evaluating the model diagrams for the engineering of distributed real-time systems.
Models in an appropriate graphical format are essential for describing complex systems (cmp. with [7]). This
point should be seen as a general assessment of each of the models regarding the ‘maturity’ of the available
graphical notations. This criteria is emphasized by the importance of models for communication, for example
to provide an understanding of a system under construction, [21].

• Guidelines: do guidelines exist that indicate how the models can be used in the design of distributed real-time
systems? Given a modelling approach there is a need for guidelines on how to use the models in system

11(15), 1/7/99

design. A modelling approach may be closely associated with a particular design philosophy or more stand-
alone. The emphasis here is to judge whether available guidelines do provide support for the design issues of
Figure 1. A guideline should describe how the models can be used to represent the structure of the system, the
requirements on the system, the timing behaviour of the implemented system and how the model contents can
be used for analysis and other design activities. As for the timing behaviour criteria a distinction between
time- and event-triggered systems is included here.

3.3. Qualitative comparison and discussion

For the related modelling approaches, the comparison should be seen as an attempt to answer the following
question; How well does the modelling approach support the design issues of Figure 1? Although the comparison
is qualitative it is of interest for the AIDA project also for other reasons. So far the AIDA project has focused on
the multidisciplinary aspects of the models and their content rather than on the graphical notation and the language
for describing the models. I.e., a further question is if the AIDA models can benefit from the other approaches in
this respect.

Despite the fact that the modelling approaches chosen for comparison in some sense target distributed real-time
systems, they are still rather different. The AIDA modelling framework is targeted to support certain specific de-
sign issues for real-time control systems. UML on the other hand is a “general purpose” modelling language with
software origin that has been extended to better handle distributed real-time systems. Also DARTS/DA is more
general in nature compared to AIDA. There is a closer similarity between AIDA and RTT since they are both tar-
geted towards distributed real-time control systems, although AIDA is more focused on the modelling framework
and RTT on software design.

The comparison is summarized in Figure 10 where, for each approach, full, partial or little/no support for the
comparison criteria is indicated through black, gray and white bullets respectively.

Timing Behaviour: Time-triggered (TT) vs. Event-triggered (ET) systems

• The AIDA timing and triggering diagrams describe the required and implemented timing behaviour, cmp.
with section 2. The models are developed primarily with TT multirate systems in mind. Limited support is
provided for event-triggered parts where overall timing requirements on event-sequences can be specified. No
details such as conditions on state transitions can be specified, thus the behaviour of micro-modes and modes
can not be described in detail.

• UML can describe timing behaviour through sequence, activity and state transitions diagrams. In the real-time
extensions of UML, the concept of modes and mode transitions, and timing information in sequence diagrams
have been included, [1][20]. With the extended sequence diagrams it is principally possible to describe both
the required and implemented timing behaviour. The basic modelling concepts, however, are developed for
event-triggered object oriented systems. It remains to be shown how useful these diagrams are for time-trig-
gered multirate systems. Compare with the pinpointing of this problem by ObjectTime, [25].

Figure 10. Qualitative comparison of modelling approaches for distributed real-time systems

Timing Behavior:
Time T. / Event T.

Structure
Resource

Management
Graphical
notation

Guidelines:
Time T. / Event T.

AIDA

RT-UML

DARTS/DA

RTT

12(15), 1/7/99

• DARTS/DA expresses requirements on timing textually. The behavioural model is based on data-flow dia-
grams extended with a discrete-event formalism. The data-flow diagrams thus combine pure data-flow with
control flow, where the control transformations are linked to finite state machine descriptions. The data-flow
diagrams have associated triggering semantics, transformations are triggered to execute upon the arrival of
data. These descriptions are used for requirements and may encompass time- and event-triggered systems
although they do not seem to have been applied to multirate systems. There are no explicit means or methods
to describe the implemented timing behaviour.

• TheRTT programming model is hierarchical and in descending order composed of modes, use-cases, tasks
and objects. Tasks are used to encapsulate objects, and provide the thread of control and communication for
the object. Timing behaviour is described through extended scheduling theory models; precedence graphs
define the order in which tasks execute, the timing attributes of individual tasks (execution time, release time
relative period and deadline relative period), constraints among tasks such as mutual exclusion, and the timing
attributes of the precedence graphs (period time). Although multirate systems can be specified this is done in
terms of task oriented timing constraints rather than application level timing requirements, [24]. On the other
hand, the model is formal and an off-line scheduler tool has been developed and successfully commercialized.
The description is focused on time-triggered systems for which off-line scheduling is used in the implementa-
tion. There is currently no way to fed back results from timing analysis to describe the actual behaviour of
implemented tasks.

Structure:

• AIDA includes provisions for the required structures (application functions, threading, the hardware and envi-
ronment interfaces). The different hierarchical relations however need to be further developed.

• UML with its real-time extensions, has the models needed to describe an object-oriented structure, threading
in the software implementation, the hardware and environment interfaces. Again, however, the basic model-
ling concepts are developed for event-triggered object oriented systems where functionality and transforma-
tional views traditionally have been de-emphasised. One slight problem with the object and class views are
that they really constitute integrated views combining a number of hierarchies; aggregation, inheritance and
associations. Aggregation is a decomposition of functionality (or composition of objects) whereas inheritance
defines an additional class hierarchy. Associations, on the other hand, can be used to model for example inter
object communication, i.e. data-flow. Although all these views are valuable it is difficult to see what a control
engineer would gain from having them all integrated. Nevertheless, a tool could of course in principle solve
this problem by only showing associations corresponding to data-flow, thus in principle converting the class
diagram to a functional block diagram. Alternatively, a collaboration diagram could be used to show func-
tional structure, [1]. Further evaluation is required to show that UML is useful for time-triggered control sys-
tems and that the models can satisfy the “conceptual views” of designers.

• DARTS/DA provides models for describing a so called physical model, i.e. hardware and interfaces, and a
threading structure. The functional structure is given through the combined behavioural data-flow and control-
flow diagrams. Links between these structures are supported. This provides a relatively complete view of the
required structures.

• RTT describes the object structure and object communications and the task structure (for time-triggered
threads). No hardware structure is given.

Resource management:

• AIDA focuses strongly on this issue, compare with Figure 2. None ofRT-UML, DARTS/DA and RTT come
close to these types of models.RTT provides partial information here; for the hard-real time model there is
ample of information regarding timing requirements and the off-line scheduling. However, other aspects are
very limited.

Graphical notation:

• In AIDA specific work on a graphical notation has mainly focused on the timing and triggering diagrams.
These were developed to complement functional block diagrams and to separate timing behaviour from struc-
tural specifications. BothUML andDARTS/DA lean on diagramming concepts that have been used for quite
some time although in different notational versions. ForUML there is still work to do on the real-time exten-
sions. As for AIDA,RTT provides a graphical notation only for parts of the models.

13(15), 1/7/99

Guidelines: Time-triggered (TT) vs. Event-triggered (ET) systems

• ForAIDA this is a strong point with respect toTT systems although there is as yet no single condensed guide-
line. The research in [22][24][27][28] provides guidelines on the derivation of timing requirements and con-
straints, control system structuring, allocation, choice of execution and communication strategies, and exploits
scheduling theory for timing analysis. This is also a strong point forRTT , partly carried out in cooperation
with the AIDA-team. For both, there is much less emphasis onET systems.

• ForUML the numerous existing OO-methodologies provide good support in the design of event-triggered
non real-time systems. Guidelines which attempt to cover distributed real-time systems include [16][26][9].
These however provide relatively little support for these issues. For example, in [9], partitioning, the use of
deployment diagrams, and links to scheduling are briefly discussed. The guidelines are similar in nature for
RT-UML , [1] which however place more emphasis on modelling concurrency, timing information in
sequence diagrams, the hardware representation and the system context. Regarding the event-triggered parts,
research developments in timed automata, formal semantics, state machine analysis and verification tech-
niques (see e.g. [17]) still remain to be exploited. All in all there is room for more work on guidelines having
both time- and event-triggered systems in mind for object-oriented systems.

• DARTS/DA provides guidelines in terms of heuristics for allocation and partitioning. Some timing analysis
considerations for ET and TT systems are also incorporated based on fixed priority scheduling [13].

3.4. Concluding discussion on the AIDA models: views and model relations

The “4+1 view model of architecture”, [16], corresponds relatively well to AIDA. Thelogical view matches
the AIDA application models, and theprocess andphysical views match the structural parts of the AIDA computer
system model. There is no direct correspondance in AIDA to thedevelopment view describing the software module
organization since this topic is not within the scope of AIDA. The computer system resource models come closest
to the development view in that it provides a layered view of the implementation software and hardware. The sce-
nario view can be seen as a correspondance to the timing requirements part of the AIDA application models. A
difference in AIDA is that it in addition incorporates these requirements and implementation models for both the
application and computer system timing behaviour models. The AIDA resource models, cmp. Figure 9, do not
seem to have a correspondance in the “4+1 view model” which are more focused on describing system structure.

Compared to the classification given in [21], the AIDA models provide a set of requirements focused on timing,
structural, timing behaviour and performance models. There is no data view or model in AIDA. There is no explicit
managerial (process related) view but the models are related to an associated design method.

The multidisciplinary views provided in AIDA could be interpreted asmeans-ends hierarchies (the term intro-
duced in [19], recall section 3.2.) for both structure and timing behaviour. The latter hierarchy is established by the
functions in the application model that describe the required timing behaviour and the computer system model
which describes the implementation in terms of schedulable processes and the resources and policies used in the
implementation.

Reindeer is a recent research project where an environment to support design of distributed systems is being
developed, [8]. Integrated within Reindeer is a diagramming methodology where sets of diagrams are provided for
each hierarchical level of design (requirements, network, node, processor, task). The utilized diagrams can be seen
as an extension to DARTS/DA incorporating also for example sequence diagrams and use cases. Relations between
these diagrams through the hierarchies are also provided. The proposed diagrams to a large extent correspond to
the AIDA models wherefore this project is of interest to study further.

4. CONCLUSIONS AND FUTURE WORK

The paper has described the modelling framework that has been developed within the AIDA project. The AIDA
modelling framework is by no means complete, there still remains work and research on some of the submodels.
Future work on the AIDA modelling framework will include refinements and more exact semantic definitions of
the models and their hierarchies. Since the emphasis in the design of the modelling framework has been the mod-
elling of time-triggered control systems, the modelling of event-triggered systems is only partially supported. The
direction the models should take here is open at this stage. From Figure 10. and with the extensibility mechanisms
of UML in mind it is straightforward to say that the combination, or integration, of the AIDA modelling framework

14(15), 1/7/99

with RT-UML could be very fruitful. Further evaluation of RT-UML in tool implementations will therefore be car-
ried out.

Desired analysis and synthesis capabilities of the prototype tool-set will be investigated. The primary idea is to
exploit advances in real-time scheduling theory that can be incorporated into the toolset. The execution time anal-
ysis that is supported by the models is coarse. Functions for more accurate execution time analysis are not planned
to be a part of the AIDA tool-set even though it may be of interest to include this in the future. The toolset will
provide for further evaluation possibilities of the models and their graphical notations.

An interesting issue for further model developments is the consideration of including other architectural aspects
into to the framework. A prime candidate here is dependability requirements and their implementation. Today, the
AIDA models can be used to describe certain requirements and behavioural characteristics of redundant/fault-tol-
erant systems; for example, a particular redundancy approach usually comes along with fixed and specified strat-
egies for synchronization, scheduling, etc. Explicit specifications of fault-tolerance requirements and the
mechanisms for error detection and handling are currently not part of the models.

It appears that there are still several research challenges in modelling, in particular regarding “hybrid” systems
composed of both time- and event-triggered subsystems, the relations between views, and how all this can be in-
corporated into a design tool provided with appropriate graphical representations to be beneficial for users. It is
also clear that tool and model integration will be increasingly called for in the future to combine the strength of
different modelling formalisms and analysis tools.

These interesting problems and probably many more are ahead of us as we embark on the prototype tool im-
plementation.

5. ACKNOWLEDGEMENTS

This work was supported in part by the Mechatronics trade-association, the Swedish National Board for Indus-
trial and Technical Development (NUTEK) and the Volvo Research Foundation. The authors want to acknowledge
the AIDA reference group for providing us with useful input in the development of the modelling framework. In
addition De Jiu Chen and Marcelo Masera are acknowledged for valuable comments.

REFERENCES

[1] ARTISAN Software. http://www.artisansw.com/articles/index.html

[2] AIDA (1998). http://www.damek.kth.se/~martin/aida.html

[3] Ancilotti P. et al. Design and Programming Tools for Time Critical Applications.J. of Real-Time Systems, Vol.
14, No. 3, 1998.

[4] Bass J. M. et al. (1994),Automating the Development of Distributed Control Software. IEEE Parallel & Dis-
tributed Tech., Winter 1994.

[5] Bhatt D. (1996),A methodology and toolset for the design of parallel embedded systems. In Proc. of the School
on Embedded Systems, Organised by the European Educational Forum, Veldhoven, NL, Nov. 1996

[6] Burns A., Wellings A.J., (1994). HRT-HOOD: A Structured Design Method for Hard Real-Time Systems.J.
of Real-Time Systems, Vol. 6, No. 1, 1994.

[7] Cooling J.E. Real-time software systems: an introduction to structured and object-oriented design. Int. Thom-
son Computer Press, 1997.

[8] Cooling J.E. et al. The design of software for real-time systems.European Embedded Systems Conf. Sept. 1998.

[9] Douglass B.P. (1998).Real-time UML: Developing efficient object for embedded systems. Addison Wesley
Longman, Inc.

[10] Eriksson C., et al. (1996). An Overview of RealTimeTalk, a Design Framework for Real-time Systems. J. of
Parallel and Distributed Computing, No. 36, p 66-80, Academic Press Inc.

[11] Gajski. D.D. et al. Specification and design of embedded systems. Prentice Hall 1994.

[12] Gomaa H. A software design method for distributed real-time applications. J. of Systems and Software, 9, 81-
94. Elsevier Science Publishing.

[13] Gomaa H.Software design methods for concurrent and real-time systems. Addison-Wesley publishing com-
pany, 1993.

15(15), 1/7/99

[14] Hanselmann H. (1995),DSP in Control: The Total Development Environment.Int. Conference on signal
processing applications and technology. Oct. 24-26, 1995, Boston, MA, USA.

[15] Hansson H. et al. (1998). BASEMENT: A distributed real-time architecture for vehicle applications.J. of real-
time systems, 11, p. 223-244. Kluwer Academic Publishers.

[16] Kruchten P. The 4+1 view model of architecture.IEEE Software Nov. 1995, 12 (6), pp. 42-50.

[17] Larsen et al. (1997). UPPAAL in a Nutshell.Springer Int. Journal of Software Tools for Technology Transfer,
1(1/2).

[18] Lauwereins R. et al. (1995),Grape-II: A system-level prototyping environment for DSP applications. IEEE
Computer, Feb. 1995, pp. 35-43.

[19] Leveson N.G. Intent Specifications: An approach to building human-centered specifications. 1998.IEEE

[20] McLaughlin M.J. and More A. (1998). Real-time extensions to UML: Timing, concurrency and hardware in-
terfaces. Dr. Dobb’s Journal December 1998.

[21] Rechtin E. and Maier M.W. (1997).The Art of System Architecting, ISBN 0-8439-7836-2, CRC Press, 1997.

[22] Redell O.Modelling of Distributed Real-Time Control Systems, An Approach for Design and Early Analysis,
Licentiate Thesis, Dep. of Machine Design, KTH, 1998, TRITA-MMK 1998:9, ISSN 1400-1179, ISRN KTH/
MMK--98/9--SE

[23] Roppenecher G. and Wallentowitz H. (1993). Integration of chassis and traction control systems: What is pos-
sible- What makes sense - What is under development. J. of Vehicle System Dynamics, 22 (1993), pp. 283-298.

[24] Sandström K. Eriksson C. Törngren M. (1999). Modeling and scheduling of control systems. Research Report
Dep. of Machine Design, KTH, TRITA-MMK 1999:4, ISSN 1400-1179, ISRN KTH/MMK--99/4--SE

[25] Selic B. Periodic Tasks in Room. Position paper submitted to theWorkshop on OO Real-Time Systems, ACM
OOPSLA '95 Conference, Austin Texas, Oct. 15-19, 1995.

[26] Selic B. and J. Rumbaugh. Using UML for Modelling Complex Real-Time Systems. White Paper. www.ra-
tional.com/uml/resources/whitepapers

[27] Törngren, M. and Wikander, J., (1996). A Decentralization Methodology for Real-Time Control Applications.
Journal of Control Engineering Practice, Vol. 4, No 2, pp. 219-228, 1996. Elsevier Science.

[28] Törngren M. (1995),Modelling and design of distributed real-time control applications. Doctoral thesis, De-
partment of Machine Design, KTH, TRITA-MMK 1995:7, ISSN1400-1179, ISRN KTH/MMK--95/7--SE.

[29] UML notation guide. Version 1.1. Sept. 1997. Object Management Group, doc. no. ad/97-08-05. http://
www.rational.com/uml

[30] UML Summary. Version 1.1. Sept. 1997. Object Management Group, doc. no. ad/97-08-03.

[31] Verhoosel J. (1995),A Model for Scheduling of Object-Based, Distributed Real-Time Systems, J. of Real-Time
Systems, Vol. 8(1), January 1995

[32] Vestal S. Integrating Control and Software Views in a CACE/CASE toolset.IEEE/IFAC Joint Symposium on
Computer Aided Control System Design for Control Systems, pp. 353-358, Tucson, AZ, 1994.

[33] Wikander J. and Törngren M. Mechatronics as an engineering science. Proc. of the6th UK Mechatronics Fo-
rum Int. Conf. Skövde Sweden, 9-11 September 1998.

