
Copyright IEEE

Abstract
We describe a novel tool developed to support

architectural design of distributed real-time control
systems. The approach enables the co-simulation of
functionality (from discrete-time control to logic) together
with the controlled continuous-time processes and the
behavior of the computer system. In particular, modelling
and simulation of distributed computer control systems is
supported allowing analysis of timing and control system
robustness. An emphasised feature of the tool is its
multidisciplinary and integrated approach that combines
the views of control and computer engineering into one view
at an appropriate level of abstraction. The use of the models
and the tool is illustrated through examples and the
usefulness of the approach for architectural design is
discussed together with avenues for further work. The
current models and the tool are designed with the modelling
and analysis of fault-tolerant systems in mind. Improved
support in this direction is the subject of ongoing work.

1. Introduction

The mechatronics perspective provides a large number
of opportunities to create improved machinery with the aid
of software, electronics, sensors, actuators and control.
Modern machinery, such as automobiles, trains and aircraft,
are equipped with embedded distributed computer control
systems, in which the software implemented functionality is
steadily increasing. At the same time, a number of
challenges face the developers of machinery in order to
really be able to benefit from the technological advances:

• Managing complexity arising from the sheer amount of
new functionality, as well as the non trivial dependencies
between system functions and components.

• Managing and exploiting multidisciplinarity in order to
achieve cost-efficient solutions and maintain

consistency (e.g. between goals, assumptions, design
and implementation) during development.

• Verification and validation of dependability
requirements with the challenge of developing
mechatronic systems that are safer and more reliable
than their mechanical counterparts.

Taking the current automotive systems as an example,
the computer system is typically composed of a number of
nodes connected via communication networks. With the
introduction of new functions in vehicular systems it is
inevitable that these will share resources in terms of sensors,
actuators, communication links and computer nodes with
the incentive of cost reduction. For example, in a brake-by
wire system, the dimensioning of the brake actuators will
need to consider not only the basic “by wire braking”, but
also braking demands from vehicle stability and cruise
control. Functional coordination will consequently be an
issue of increasing importance. The sharing of sensors will
influence the choice of sensors, filtering and the
information distribution. Computer system sharing
influences resource management and timing. Perhaps most
importantly, all types of sharing will have impact on the
system dependability and maintainability.

The development approach of such future mechatronic
systems, however, is still vague partly because the
application area is young and partly since it requires the
integrated cooperation of various disciplines from
mechanical, control and computer engineering. A key
element in addressing these challenges is to develop
models, methods and tools to support, in particular, the so
called architectural design stages.

1.1. The road towards architectural design

Essential architectural design decisions include
determining:

• The overall system structures, including functional,
software and computer structures.

 Towards a Toolset for Architectural Design of Distributed Real-Time Control
Systems

Jad El-khoury and Martin Törngren
The Mechatronics Lab, Department of Machine Design

Royal Institute of Technology - KTH, Stockholm, Sweden
{jad, martin}@md.kth.se

Copyright IEEE

• The principles and means for error detection and
handling, and at what level these should be implemented.

• The policies for resource scheduling, synchronisation,
communication, and function/software triggering.

Establishing a system architecture requires considering
conflicting requirements such as cost, flexibility, safety and
reliability. One difficulty and typical characteristic is that
while some of these properties, such as reliability and
performance may be quantifiable, others are difficult or
impossible to quantify, and in choosing an architecture, the
balancing and resulting trade-offs become more or less
subjective.

Architectural design requires the use of appropriate
models that describe structural and behavioural properties
[9], [4]. Models together with proper analysis tools provide
the possibility to perform solution space exploration early in
the development process, and prior to the point in time
where physical hardware (mechanics and/or electronics) is
available. Models also capture knowledge and form the
basis for reuse. A model and architecture based approach is
clearly highly motivated given the current state of practice
in industrial development of embedded control systems
where huge efforts and resources are spent on testing and
debugging. From an industrial perspective, Hanselmann [8]
points out the need for, and the current lack of, tools that
allow early analysis and verification of distributed control
systems.

The next section describes the general approach taken in
this project, followed by related work in section 3. Section
4 gives an overview of the model adopted in this approach.
After some implementation details in section 5, our
approach is illustrated in section 6 by walking through a
simple example. Finally, this paper concludes with some
future work proposals.

2. Approach and focus

The suggested approach allows for the analysis of
various architectural design decisions, and their impacts on
control functionality, through a modelling and simulation
tool. This analysis is intended to be carried out early in the
development process and being useful for engineers from
various disciplines. The co-simulation of the control system
functionality together with implementation details of the
chosen computer structure, allows the user to directly study
the resulting system behaviour, and thereby gives the
possibility to try out different architectures. In addition, the
modelling process, spanning control design and computer
system implementation, is important as such in that it
promotes the interdisciplinary design. The tool simulation
approach obviously needs to be complemented by other

types of analyses and approaches, such as control analysis
for performance and stability, and static timing analysis.

The work described in this paper in particular allows the
modelling and simulation of:

• Application software encompassing different
functionalities in a wide variety of styles (e.g. discrete-
time, even-triggered, data-flow, state machines etc.).

• System software such as communication protocols where
in principle the same modelling styles are used as for the
application software. The concurrency model includes
scheduling and thread interactions such as inter thread
communication.

• Distributed computer systems including networks and
computer system nodes (composed of processors with
network and I/O interfaces). Global scheduling is
supported including scheduling of processors, local and
global communication, and other resources.

• Mechanical systems with sensors, actuators and
mechanical system dynamics.

The work forms part of a larger research effort at the
Mechatronics lab [14] where a common denominator is the
development of a toolset supporting model based
architectural design with different types of analysis. An
essential requirement for the models and the toolset is the
interdisciplinary design support encompassing system,
control, computer and mechanical engineers. This will
require a large set of models and analysis features including
models encompassing discrete-time control, finite state
machines, continuous time dynamics, software tasks and
resource management. Our approach is to build upon and
reuse existing models and tools where appropriate, and to
add models and analysis features as required, as illustrated
in this paper.

3. Related Work

From a control system point of view, modelling and
simulation of distributed system implementations has been
used at least since the late 80s. The typical approach is to
map all implementation related problems into control
related effects such as time-varying feedback delays,
sampling period jitter, data loss and permanent errors
causing open loop drift (e.g. controller stuck at the
maximum value) [12], [15], [22]. In [18] it was shown how
special Simulink [10] blocks, can be developed to model
these effects. Although this approach is suitable from a
control design point of view it does not explicitly model the
real-time computer implementation and thus lacks in
supporting holistic architectural design.

Simulation tools such as the ones described in [16], [2]
and [23] tackle various aspects of the design and analysis of

Copyright IEEE

real-time applications. They are, however, limited in their
use in the multidisciplinary approach suggested in this
paper. The models used may be too abstract or domain
specific to be understood by another discipline. Also, the
tools’ aim could be to analyse a particular aspect of the
system such as a communication protocol or a specific
operating system. In particular, little support exists for the
co-simulation of a control application with the computer
system. Exceptions to this are the tools described in [5] and
[6], in which a control application can be simulated together
with a task scheduler, and with potential extensions to
include data sharing mechanisms. However, the usability
aspects of this tool are weak from the mechatronics
perspective since the control application needs to be
implemented in code prior to simulation and changes to the
system parameters are not straightforward.

There is relatively little work on interdisciplinary
modelling. Exceptions in this regard include [21], [11] and
[3]. The latter two describe work that deals with safety and
reliability analysis in the context of computer control
systems.

More detailed surveys of related work can be found in
[13] and [20].

4. The Model

In order to achieve the goal of a multidisciplinary
modelling environment, modelling aspects were borrowed
from models in the various disciplines. In particular, three
models are worth pointing out here. The AIDA modelling
framework [13] provided insights into the control
implementation requirements needed, the component
models and their parameters. As a software engineering
design methodology and model, the CODARTS method by
Gomaa [7] highlighted the aspects of software that need to
be included. Finally, the control engineering approach of
using data flow diagrams was kept in the modelling of the
internal task structure.

Inspiration is also drawn from an industrial case study
where the task was to evaluate the fault-tolerant computer
control system of the SMART satellite, to be launched by
the European Space Agency in 2002. The aim of the
evaluation was to analyse the high level redundancy
protocols being introduced in the system, and their behavior
when implemented using the Controller Area Network
(CAN). The work entailed modelling the distributed fault-
tolerant computer system and simulating its behaviour
during stipulated failure modes such as loss of
communication, node loss, and various CAN controller
failures. The modelling, tool development and evaluation
efforts are further described in [19].

The models described below maintain a good balance
between three factors that were considered important. First,
a good representative model is needed to reflect real entities
in the system and which is not too mathematically abstract.
At the same time, an executable model needs to be well
defined and unambiguous. Finally, the model should
contain a minimal number of different components with a
simple and generic interface in order to simplify the
development and use of the tool.

4.1. System Topology Model

At the top level, the hardware topology of the whole
system is modelled. This hardware structure consists of
three types of components: The surrounding environment,
communication links, and the computer nodes. The node
model will be described in more detail in section 4.2.

Environment. It is necessary to include the environment
into the model in order to define its connection to the
embedded computer system. With the types of applications
considered here, the most apparent entity that needs to be
modelled is the mechanical dynamics of the system
including sensors and actuators. For this, well-established
mathematical models exist. These models will not be
discussed any further and the reader can refer to a wide
range of dynamics textbooks for details. It is however
necessary that the chosen environment model is integrable
with the rest of the hardware model, meaning that it should
be possible to actuate and sense appropriate parameters of
the mechanics.

A computer node connects to the system environment at
various points. This connection is performed via Hardware
Units (see “Hardware Units” in Section 4.2) such as pulse
width modulators (PWM), analogue to digital converters
(ADC), and digital to analogue converters (DAC) that
reside in the node.

Communication Link. A communication link provides
data exchange facilities between computer nodes. It defines
the protocols that handle the messages being sent between
connected nodes. A communication link indirectly interacts
with each connected node through communication
controllers that reside in the node. The communication link
performs the scheduling of messages requested from
connected controllers, while the controller internally
schedules its own messages. Such a setup allows for a
representation of a multitude of node and link models to be
connected, as well as allowing for a node to connect to one
or more links, and vice versa.

As an example, consider the implementation of the CAN
bus. Requests to send messages on the bus are received by
the bus from the controllers. These requests are only

Copyright IEEE

serviced if the bus is idle, and ongoing transmissions are not
disturbed. Once the bus is idle, controllers arbitrate between
each other to gain access to the bus according to the CAN
protocol. The message transmission time depends on the
bus bit rate and the message size including any protocol
overheads. Note that the arbitration within a CAN controller
is performed independently at the node level, and that this
local scheduling is not part of the CAN protocol itself.

4.2. Node model

A node consists of the following types of components:

• One or more tasks from which the system software is
built. The task model is described in section 4.3.

• A task scheduler.
• Zero or more operating system Service Providers (SP)

such as inter-task communication, task synchronisation
and semaphores.

• Zero or more hardware units such as communication
controllers, timers, ADCs and DACs

• A processor.

The application functionality to be developed by the user
is composed of application tasks, with services provided by
the other components comprising the operating system.
Software layers, which interface the application software to
the system hardware and operating system, can be easily
modelled and designed with this approach. For example,
system tasks, belonging to the operating system, can be
developed to implement software drivers or high level
network protocols.

Scheduler. A single task scheduler exists for each node in
the system. The scheduler’s role is to, when triggered,
simply choose and activate a single task that is to run on the
node processor at that time. The scheduler may be triggered
by any of the service providers installed on that node, or by
a timer reaching certain predefined points in time. A task list
component also exists which holds certain information on
each task such as its ID, current status, priority and any user-
specific parameters. The scheduler only needs to interface
to the task list in its decision making, and different
scheduler models require different information about the
tasks and hence, the task list model should be consistent
with that of the scheduler.

This model allows for the modelling of a wide range of
schedulers such as event/time triggered, static/dynamic, and
off-line/on-line schedulers. Developing a new scheduler
requires the implementation of the function that decides on
the next running task, as well as the design of the data
structures needed for each task in the task list. Using a
particular scheduler simply requires the inclusion of the
scheduler and its accompanying task list into the node, and

any off-line customisation is done by the user through the
task list.

As an illustrating example, consider the design of a fixed
priority preemptive scheduler. The task list stores, for each
task, the user specified static priority as well as its current
status. A task status can be one of ready, running or blocked.
The scheduler in this case is triggered every time a task
changes its status in order to evaluate if a more legitimate
ready task needs to run on the processor. A scheduler
triggering may be caused by, for example, an interrupt or a
service provider.

Service Provider. Examples of service providers are inter-
task communication and task synchronisation. Although
they vary in their functionality, these components have very
similar features and interactions to the rest of the system.
Essentially, a service provider (SP) responds to a service
request from a task to perform certain activities. This
activity may cause the calling task (or any other task, in
general) to change status due to the internal state of the SP.

The mechanism of making requests by a task and the
response to these requests is fixed across all services. What
varies is the interpretation of the requests and the way they
are handled. Hence, developing new services simply
requires the definition of the internal states, and the
functionality to handle the various types of possible
requests. All SPs have access to the task list and are able to
trigger the processor scheduler.

As an example, consider an inter-task communication
service implemented as a first-in/first-out, block-on-full
service. When a task requests to send a message, it simply
sends the data to the specific SP. Normally, the SP places
the data in the FIFO buffer. However, if the buffer is full,
the SP changes the task status to blocked, and triggers the
scheduler. When the buffer is available again, the SP
changes the task status to ready and triggers the scheduler.

Hardware Unit. Hardware units may be fully embedded
in the computer node (such as a floating point processor)
and hence only interfacing with the processor, or they could
lie on the border (such as an ADC) and provide an interface
between the processor and the surrounding environment.

From the task perspective, the interface to a hardware
unit is similar to that of a service provider in that a request
is made for a service which the unit provides. Hence, it is
important to match the requests to the correct service.
However, a hardware unit differs from a service provider in
that it has no direct access to the internal data structures of
the OS such as the scheduler or task list. Instead, the unit
may cause processor interrupts that tasks in the system need
to handle appropriately. This model naturally facilitates the
masking of these units by developing unit drivers

Copyright IEEE

(consisting of system tasks) that encapsulate the hardware
units and handle the generated interrupts.

As a simple example, consider a hardware unit
implementing a CAN communication controller. A task
requesting to send a message over CAN makes a request for
service by directly accessing the hardware registers. The
unit in turn communicates with the associated CAN
communication link, and upon receiving a message from
the link, produces a hardware interrupt (if so configured).
The CAN controller performs the local scheduling of
simultaneous transmission requests, e.g. FIFO or priority
based.

4.3. The task model

A task is modelled as a single sequence of elementary
functions (EF). Each EF is assumed to take a specified non-
zero amount of time to execute. We can draw a simple task
as shown in Figure 1a, illustrating the precedence
relationship between the elementary functions. The EF can
be either user-specific (octagonal block representation) or
an operating system service request (rectangular block).

When first triggered, the task is made ready to run on the
processor. During its lifetime, and depending on the system
activities and the scheduler being used, a task runs on the
processor at different time slots. The directed link between
two EFs within a task indicates passing control from the
source to the destination EF, triggering the destination EF to
begin its execution. The currently activated EF terminates
once the task executes for a time period that is equivalent to
the EF execution time, since the EF was first activated.
When the control is passed to the last block, the task is
terminated.

This simple model can be extended in order to provide
looping and branching of the elementary functions, as
shown in Figure 2. Once triggered, the Branch block (B)
produces an output trigger in one, and only one of its
outputs, based on internal logic. The Merge block (M)
produces a trigger on the output as soon as any of its inputs
is triggered. These mechanisms do not consume any
processor time, and are only intended to be used for high
level modes of operations of the application.

Tasks may be initially triggered as soon as the node is
booted, or they may be configured to be triggered by an
interrupt. The first is typical for many application tasks,
while the latter can be used to model system interrupt
handlers. It is also necessary to have at least a single task
(the system idle task) in the system that is initiated during
boot time, and that may never terminate.

Elementary Function (EF). The internal model of an EF is
shown in Figure 1b. The input to an EF (either user-specific
or an operating system service request) consists of the
elementary function trigger and its data. When an EF is first
triggered, the input data is captured and when its specified
execution time elapses, an output trigger is produced
together with output data. By definition, an elementary
function may be preempted at any instance in its execution.
Non-preemptive EFs can be implemented as a subset of
normal EFs, by implicitly surrounding each elementary
function with service requests that disable and enable
preemption.

(a)

(b)
Figure 1. (a) The task model consisting of a sequence of

elementary functions (EF). (b) The internal model of
an EF.

1

End

SR

EF4

User
Specific

EF3

SR

EF2

SR

EF1

1

Start

1

Out

mExecution
Delay Activity

Function

1

in

Trigger

Data

(a)

(b)
Figure 2. Examples of more complex task structures

such as (a) branching or (b) looping.

1

End

MB

User
Specific

EF3
SR

EF2

SR

EF1
1

Start

1

End

M User
Specific

EF2

SR

EF1

1

Start

Copyright IEEE

4.4. Model attributes

Table 1 lists the explicit attributes that the user needs to
specify for each of the components in the model. In
addition, components contain implicit properties that can be
automatically derived from their context. For example, a
task implicitly identifies the list of elementary functions that
are contained within it. Also, each component contains a
unique identifier that distinguishes it from other
components.

4.5. Software structure

As well as being executable, the models described above
are representative enough that the collection of task models
from each of the nodes in the system can serve as a basis for
a detailed software model, which could be translated to a
more traditional and familiar form, if desired. Sufficient
level of detail is available to generate pseudo-code for each
task in the system, and configuration information indicating
the services needed for each node.

5. Simulator Overview

In this section, we will give a brief outline of the
simulator implementation of the above models. More
detailed description requires extensive explanations of
various Matlab/Simulink aspects and is the subject of a
technical report to be produced in the near future. The
Matlab/Simulink toolbox [10] has been chosen to
implement the simulator for the following reasons:

• Working in the control engineer environment allows the
control engineer to specify, validate and interact with the
computer engineer in a familiar environment that
reduces the chances of ambiguity and confusion.

• A rich API is available for the extension of the tool in a
variety of languages such as C and Java. Combined with
the broad range of existing blocks, the tool development
is simplified, particularly for monitoring and testing.

• Simulink allows for the integration of custom code into
its models. Hence, it is possible to model the control
application together with any encapsulating software. In
addition, Simulink supports hierarchical models.

• Simulink supports modelling and simulation of hybrid
systems.

• Many commercial development tools such as rapid
prototyping tools, working with Simulink, can give a
well integrated working environment.

On the other hand, there is a strong gap between the
Simulink modelling level and the real-time system
implementation, further motivating this work.

The handling of hybrid systems required the simulator to
have an event-triggered architecture, where all the activities
in the system are event-triggered, and the Simulink
triggering capabilities are used extensively. Note that this
still allows for the modelling of purely time-triggered
architectures, where time is viewed as an event. A
combination of C-coded S-functions and Simulink blocks
were used in the implementation.

Each of the model components discussed in section 4, is
actually represented in the simulator as a Simulink block.
The drag-and-drop approach of blocks from libraries is used
to build the models. Blocks are then customised through a
graphical user interface. Also, there are no restrictions on
the types of standard Simulink blocks that can be used with
the simulator models, except for those imposed by Simulink
itself. This ensures a well integrated environment with
Simulink and the user does not need to learn a new tool.

As can be seen from the definitions in section 4, there is
extensive data exchange between the components. Taking
the traditional Simulink approach of connecting blocks to
exchange data is not favourable since this will certainly
complicate the model for the simplest cases. Even worse,
confusion will occur between data exchange of the
application itself and that needed for the implementation of
the underlying components. The approach taken in the
simulator is to hide all data exchanges that do not form part
of the representation model of the system. For example,
although data exchange is necessary between a scheduler
and each of the tasks on its processor, these links are not
explicit in the model presentation since they do not
contribute to the understanding of the model. The user need
not be concerned with these hidden links since each
component automatically reconfigures itself based on the
presence of other blocks in the system. Also, the interface
between these types of components within a node is well
defined and fixed, allowing for the independent
development of subtypes and variations in the internals of
each of the components.

The simulator permits the user to monitor any variable in
the system, as illustrated by the examples in section 6.

Table 1. Explicit component attributes.

Component Attributes

Communication link Link Speed
Communication Protocol

Scheduler Scheduling Algorithm

Service Provider/
Hardware Unit

Service Response Policies
Internal Buffer Sizes

Elementary Function Execution Time

Copyright IEEE

Parameters that may be of interest for timing analysis
include a task’s status, the times when particular events or
activities within a task occur, or the time when a service
request is serviced.

6. Illustrative Examples

The aim of this simple example is to demonstrate how
the tool can be used in architectural design for the
evaluation of the computer implementation effects on the
control performance. We will proceed from a pure
functional design, to a single node and a distributed system
implementation. In addition, the usability aspects of the tool
are illustrated.

6.1. Controller Design

Consider the problem of controlling the angular position
of a DC motor in order to reach a set point specified by the
user. The control algorithm is to be implemented on a
computer system. After modelling the mechanics of the
motor, the control engineer uses established techniques in
designing a discrete controller that produces acceptable
performance. A Simulink model of the resulting system is
represented in Figure 3a.

In this example, a continuous time PID controller was
developed and then translated into a corresponding discrete-
time controller. A sampling period of 2ms was chosen
according to standard rules of thumb [24]. The angular
position of the motor and the user reference value are
measured by the controller. The controller outputs and

controls the motor voltage. This information becomes the
software specification to be implemented. At this stage of
development, important requirements such as controller
jitter and delays are often overlooked, since they are
dependant on implementation details and their values can
only be deduced once the system is implemented. As shown
in [5] and [22], these parameters are critical to ensure a
certain controller performance. One approach to determine
these parameters is to iterate between the control design and
the software implementation until satisfactory results are
achieved. Another cheaper alternative is to model and
evaluate the computer implementation effects early in the
design stage, and to try to take appropriate design measures
before the implementation is carried out.

6.2. A Single Node architecture

Assume that it has been decided that the whole controller
application should be implemented on a single computer
node. Having identified what needs to be measured from the
system environment, it is deduced that two ADCs and one
DAC are needed. A complete model of our hardware
structure is given in Figure 4a.

The node internal structure is shown in Figure 5a. The
application is to be divided into two tasks. The first, called
the Sensor task, performs the sampling of the sensor values,
while the second, called the Controller task, executes the
control algorithm. Data sharing between the two tasks is to
be done via a FIFO, block-on-empty, inter-task
communication buffer (FIFO_Buffer). The tasks’ internal

(a)

(b)
Figure 3. (a) A pure functional model of a DC-motor

controller together with a model of the motor
dynamics. (b) Closed loop performance of the system
in Figure 3a for a step response.

2

User Reference Display

1813z −3327z+15302

z −1.239z+0.3942

Discrete
PID

3.6

0.08s +0.45s2

DC motor

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

A
ng

ul
ar

 P
os

iti
on

 (
ra

d)

Motor Performance
Motor Angular Position vs. Time

(a)

(b)
Figure 4. (a) The hardware model, showing the

computer hardware and system environment. (b)
Closed loop system performance where the
computer-induced delays cause oscillatory behavior.

Scope

1

Node

3.6

0.08s +0.45s2

DC motor

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

Controller Performance
Motor angular position vs. Time

Time (s)

A
ng

ul
ar

 P
os

iti
on

 (
ra

d)

Copyright IEEE

structures are shown in Figure 5b. The sensor task is
triggered periodically (WaitTrigger) by a system timer with
a period of 2 milliseconds; the trigger is produced by an
interrupt handler task (IH_Task) and communicated to the
sensor task via a buffer (IH_Trigger). The controller task is
triggered by the arrival of messages (the sampled sensor
values) from the sensor task.

To build this model, the developer simply drags and
drops the blocks from the Simulink library. The parameters
of each block are then customised through a GUI.
Partitioning is performed by copying the blocks from the
original control model (e.g. “discrete PID” block in
Figure 3a.) into the appropriate EF (e.g. “Controller EF” in
Figure 5b). The execution time of each EF is then specified.
Having chosen a fixed priority preemptive scheduler for this
node, the user can specify the priority of each of the
application tasks in the system. The task list is designed
such that the priority of system tasks are automatically
generated by the task list component and may not be
modified by the user.

Once the model is built, a simulation is performed and
output devices such as scopes can be placed in various parts
of the system to monitor any data required. Figure 4b shows
the motor angular position. Note the difference between this
controller performance (such as overshoot, rise time and
settling time) and that achieved by the pure functional
model in Figure 3b.

By instrumenting the model, various jitter and delay
parameters were measured. For example, the motor
actuation occurred 1.4ms after the sensor reading. This
delay caused the change in the controller performance
detected in Figure 4.

6.3. A distributed architecture

Now, assume that it is required to distribute this control
application over two computer nodes. One node performs
the sensor sampling, while the other node performs the
motor actuation. CAN is chosen as the communication
protocol between the nodes. Hence, a CAN bus is placed in
the hardware model, with a CAN controller in each of the
computer nodes. This architecture is shown in Figure 6a
where the “Other Node” is added to introduce interference
and blocking to the CAN communication.

The internal node and task structures are essentially
similar to the previous example with the difference that the
Sensor and Controller tasks are placed in the Sensor and

(a)

(b)
Figure 5. (a) Internal node configuration. (b) Internal

task structure for the Sensor and Controller tasks.

1

Analog Out

TaskList

Timer
Interrupt

0_0

Sensor

SCHEDULER

0_0

IdleTask

IH_Trigger

0_0

IH_Task

FIFO−Buffer
DAC

DAC

0_0

Controller

BOOT

Boot Time

ADC

ADC1

ADC

ADC

2

Analog In1

1

Analog In

1

End

WaitTrigger

M

Sensor EF ADD

ADC

ADCRequest

1

Start

1

End
M

GET

m
DAC

DACRequestController EF

ADC

ADCRequest

1

Start (a)

(b)
Figure 6. (a) Distributed hardware model. (b) Internal

node structure for the “Actuator Node”.

Event

3

Sensor Node

Scope

2

2

Other Node

3.6

0.08s +0.45s2

DC motor

CAN Bus

1

Actuator Node

2

1

Analog Out

TaskList

SCHEDULER

0_0

IdleTask

DAC

DAC

0_0

Controller

CAN Controller

CAN Controller

BOOT

Boot Time

ADC

ADC

1

Analog In

Copyright IEEE

Actuator nodes respectively. Also, the communication of
the sensor samples is now performed over a communication
link. Figure 6b shows the internal node structure for the
“Actuator Node”. The Controller task is triggered by the
CAN Controller block upon receiving a message (the sensor
value) from the CAN bus. In this example, the CAN bus bit
rate is configured to 100kbit/s, and the sensor value is sent
on the bus with an ID of three and a size of three bytes. For
each CAN frame, the worst-case bit stuffing and frame
overhead are assumed [17].

This architecture gives the controller performance
shown in Figure 7a. As expected, this is worse than that of
the single node architecture since the transmission time of
messages over a bus is longer than inter-task
communication within a single node.

Studying the effects of interference and blocking.
Assuming the presence of other functions in the system,

it may be desired to study how these affect our control
system. Here, we assume that another application resides on
a third node in the system and it periodically sends low
priority messages (ID = 4) on the CAN bus as shown in
Figure 6a. Also, at time = 25 ms, the node sends a single
high priority message, (ID = 2) eight bytes in size, on the

bus. How does this affect the controller application? By
incorporating the third node in our model and running a
simulation, the new controller performance can be
investigated (Figure 7b). The arrival times of each message
in the CAN controllers is shown in Figure 8.

Here, we see that the controller performance has
degraded even further, with a transient glitch, due to the
delays in communicating between the two nodes, induced
by the new function. Such information can be used by the
system designer for example to produce limiting
requirements on the communication bandwidth of other
functions in the system, and/or by modifying the control
system to be more robust towards (varying) time-delays.

Further Evaluation. Early in the design stages, the
developer may wish to evaluate the effects on the
application of varying certain parameters such as the task
scheduler, inter-task communication mechanisms, or the
communication protocols used. The tool allows the simple
exchange of such parameters by simply replacing a
particular component with another and reconfiguring it
appropriately, with minimal effort from the user.

7. Future Work and Conclusion

This paper has described the current status of the models
and toolset being developed at the Mechatronics Lab, as
part of the AIDA project [1]. The analysis of computer
induced effects (due to design faults such as timing
problems and computer hardware faults) on the system
behaviour, constitutes a kind of failure mode and effects
analysis. We expect the simulation tool to be especially
useful for evaluating different error detection as well as
error handling techniques, spanning the computer and
control system levels. As mentioned earlier, this work is to
be extended in various directions in the future. Most

(a)

(b)
Figure 7. Closed loop performance for the (a)

distributed architecture (b) distributed architecture,
with interference at time = 25 ms.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

Motor Performance
Motor Angular position vs. Time

Time (s)

A
ng

ul
ar

 P
os

iti
on

 (
ra

d)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

Motor Performance
Motor Angular Position vs. Time

Time (s)

An
gu

la
r P

os
itio

n
(ra

d)

Communication
Burst

Figure 8. The arrival time of messages received by the
CAN Controllers, (high priority interference
message: ID=2, sensor readings: ID=3, other periodic
messages: ID=4).

0.02 0.024 0.028 0.032 0.036 0.04
1.5

2

2.5

3

3.5

4

4.5

Bus Activity Diagram
Received Message ID vs. Time

Time (s)

C
A

N
 M

es
sa

ge
 ID

Copyright IEEE

importantly, it is desired to validate and evaluate this work
through further industrial case studies, such as the
evaluation of architectures for x-by-wire systems in other
related projects at the Mechatronics lab. Currently, no
emphasis has been placed on simulation efficiency; this
may require work in the future.

Parallel to the work described here, an analysis tool,
aiming at the timing analysis of distributed control systems,
is also under development at the lab. In the future, the two
tools are to be integrated, providing two complementary
approaches for system analysis. This may necessitate the
extension of the current models in order to overcome any
unforeseen shortcomings in the models.

Certain tool implementation limitations also need to be
overcome. For example, in the current implementation, the
scheduler preemption overhead is not an explicit parameter
of the scheduler and need to be specified for each task in the
system. From the usability perspective, it will be desired to
expand the current libraries (for example, with a collection
of communication protocols) and extend the tool to support
features such as redundancy mechanisms and clock
synchronisation. Also, it is desired to further the
development of hardware entity models, such as simple
processors and smart sensors, allowing the modelling of
functionality implemented directly in hardware.

8. Acknowledgement

This work is partially funded by the national Swedish
Real-Time Systems research initiative ARTES
(www.artes.uu.se), supported by the Swedish Foundation
for Strategic Research. The authors are also grateful for the
valuable suggestions and reviews of the RTC group
members (Ola Redell, Martin Sanfridson and DeJiu Chen)
during the work described in this paper.

9. References

[1] http://www.md.kth.se/~ola/aida/index.html
[2] Audsley N., STRESS: A Simulator for Hard Real-Time Systems,
RTRG 106, Dept. of Computer Science, University of York (1991).
[3] Bass, J.M., Brown, A.R., Hajji, M.S., Marriott, D.G., Croll, P.R.;
Fleming, P.J, Automating the development of distributed control
software, IEEE Parallel & Distributed Technology: Systems &
Applications Conference, Winter 1994, pp 9-19.
[4] Bass, L. and Kazman, R., Architecture-Based Development,
Technical Report, Carnegie Mellon University, CMU/SEI-99-TR-
007, ESC-TR-99-007.
[5] Eker J. and Cervin A., A Matlab toolbox for real-time and
control systems co-design, Proc. of 6th Int. Real-Time Computing
Systems and Applications Conference, 1999, pp 320-327.

[6] Palopoli L., Abeni L., Buttazzo G. Real-Time control system
analysis: an integrated approach. Proceedings of Real-Time
Systems Symposium, 2000, pp 131-140.
[7] Gomaa H., Software design methods for concurrent and real-
time systems. Addison-Wesley publishing company, 1993, ISBN 0-
201-52577-1.
[8] Hanselmann H., Development Speed-Up for Electronic Control
Systems. Convergence-International Congress on Transportation
Electronics, October, 1998.
[9] Maier, M. W., System Architecture: An Emergent Discipline?,
IEEE Aerospace Applications Conf., Vol. 3, pp. 231-246, 1996.
[10] http://www.mathworks.com
[11] Papadopoulos Y., McDermid J.A., Sasse R., and Heiner G.,
Analysis and Synthesis of the Behaviour of Complex
Programmable Electronic Systems in Conditions of Failure.
Reliability Engineering and System Safety, 71(3):229-247, Elsevier
Science, 2001.
[12] Ray, A. and Halevi, Y., Integrated Communication and Control
Systems: Part II - Design Considerations. ASME Journal of
Dynamic Systems, Measurements and Control, Vol 110, Dec. 1998,
pp 374-381.
[13] Redell, O., Modelling of Distributed Real-Time Control
Systems, An Approach for Design and Early Analysis, Licentiate
Thesis, Department of Machine Design, KTH, 1998, TRITA-MMK
1998:9, ISSN 1400-1179, ISRN KTH/MMK--98/9--SE,
Stockholm, Sweden.
[14] http://www.md.kth.se/RTC
[15] Shin, K.G. and Kim, H., Derivation and application of hard
deadlines for real-time control systems. IEEE Trans. on Systems,
Man and Cybernetics, Vol. 22/no. 6, Nov-Dec. 1992, pp 1403 -1413
[16] Storch, M.F., DRTSS: a simulation framework for complex
real-time systems, Proc. of Real-Time Technology and Applications
Symposium, 1996, pp 160-169.
[17] Tindell, K.W., Hansson, H., and Wellings, A.J., Analysing
real-time communications: controller area network (CAN)
Proceedings of Real-Time Systems Symposium, 1994, pp 259 -263
[18] Törngren, M., Modelling and design of distributed real-time
control applications. Doctoral thesis, Dept. of Machine Design,
KTH, ISSN1400-1179, ISRN KTH/MMK--95/7--SE.
[19] Törngren, M. and Fredriksson, P., SMART-1. CAN and
Redundancy logic simulation of the SMART SU. Swedish Space
Corporation, Report S80-1-SRAPP-1.
[20] Törngren, M., Elkhoury, J., Sanfridson, M. and Redell, O.,
Modelling and Simulation of Embedded Computer Control
Systems: Problem Formulation. Technical report, Department of
Machine Design, KTH, TRITA-MMK 2001:3, ISSN1400-1179,
ISRN KTH/MMK/R--01/3--SE.
[21] Vestal, S., Integrating control and software views in a CACE/
CASE toolset. IEEE/IFAC Joint Symposium on Computer-Aided
Control System Design, 1994, pp: 353 -358
[22] Wittenmark, B., Nilsson, J. and Törngren, M., Timing
Problems in Real-time Control Systems. Proceedings of the 1995
American Control Conference, Seattle, WA, USA.
[23] Zhu, J., Design and simulation of hard real-time applications,
Proc. of 27th Annual Simulation Symposium, 1994, pp 217 -225.
[24] Åström, K. J. and Wittenmark B., Computer-Controlled
Systems, Theory and Design. Second edition, Prentice-Hall
International, inc, 1990, ISBN 0-13-172784-2.

